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A TIME-MAP APPROACH FOR NON-HOMOGENEOUS
STURM-LIOUVILLE PROBLEMS *

Abstract. By means of a time-map approach, we study the existence dipteul
solutions to the boundary value problem

u'+ f(uy=0
u(0) = sA u(r) =sB.

The results depend on the values of the real numbers and B, and on the
behaviour of the ratid (u) /u for u near zero and near infinity. Both the asymptot-
ically linear and superlinear asymmetric growth condigi@t infinity are consid-
ered.

1. Introduction

This paper is concerned with the existence of multiple gmhstto a non-homogeneous Dirichlet
problem of the form

u 4+ fuy=0
@ { u(0) =sA u(mr) =sB,

A, B ands being real numbers anfl : R — R being a continuous function; we define the
potential F (x) = fé‘ f (t) dt and we assume that

2) f(xX)x >0 forall x#0

and

(3) lim F(x) =+00.
[X]—~+00

It is well-known (see e.g. [1, 2, 5]) that in general the nhumbiesolutions to boundary value
problems associated to an equation as

4) u'+fu=0

strongly depends on the behaviour of the rdti@)/u for u — 0 andu — oo. In this article, we
deal with two situations which are rather classical in &tare: theasymptotically linearcase,
characterized by

. f(u)
| — =
©) \U|—I>n-1i-oo u

=0,

*Work performed under the auspices of GNAFA, C.N.R. - Italy.
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106 W. Dambrosio

and thesuperlinear asymmetricase, for which we suppose

f f
(6) lim ﬂ:-i—oo, lim ﬂ= >0;
u—>+oo U u—>—-oo U
moreover, we shall always assume that
f
) lim O =h=>0.
u—0 U

When (5) is assumed, then multiplicity results for varioaesitidary value problems have been
obtained; more precisely, in [1, 9, 10, 11] the authors prttrecexistence of multiple solutions
for

8 v+ fw=q),
with
9) u@ =0=u(r),

for large positive forcing termg. More recently, in [7, 8], it was shown that for every conting
functionh there are one, two or three solutions to (8) together with

(10) u(0) = o1, U(T) =09
or
(11) U'(0) = o1, U'(7) = 07,

depending on the position ¢§1, o2) with respect to the classical Fucik spectrum.

If, in addition to (5), also (7) is considered, then the etise of solutions to (4)—(9) can be
proved by studying the “gap” between the numbhémndh. Indeed, see e.g. [5], the number of
solutions of (4)—(9) coincides with the number of eigenealof theu — —u” operator (with
boundary conditions (9)) which fall betwe@nandh (or viceversa): this means that the number
of solutions depends on the number of eigenvalues crossétkehyonlinearityf passing from
zero to infinity. For a similar discussion, relative to thermgeneral case of the Laplacian
operator inR", we refer to [4].

Similar results have been obtained for the superlinear amnic case. Indeed, when only
(6) is assumed, the existence of multiple solutions to @)fer largeh has been proved in [13]
(in the casén constant) and in [15] (for non constamyx

More recently, in [2] a result on the lines of the above quqiager [5] for (4)—(9), under
assumptions (6)—(7), has been obtained.

In this paper we shall prove the existence of a certain nurobsolutions to (1) when (5)—
(7) or (6)—(7) are assumed. More precisely, supposeBhatA > 0 and that there exist positive
integerd, j and p such that

12) 12 < B <(+12,
(13) iZ<h<(j+12
and

(14) P> <y < (p+1?;
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moreover, we consider the intervdls= [ g i‘/—J—J—% | — 1], o = [I +2,j—

2
§_£ B AJTli], [J-I— +f BfAJ—JJ-r—;l 2p— ]and|4=[2p+4,j_§_

f,/ Hl 1] and we denote b (N € N) the number of the integera such that in € 14
or2m e I2 and byM the number of the integera such that tn € I3 or 2m € I4. We observe
thatN andM, as well as the intervalk (k =1, ... , 4) depend on the assumptions @rh and

y, i.e. on the behaviour of the nonlinearity at infinity and @@ It could also happen that there
are no integerm satisfying one of the previous conditions: in this case Wetd=0orM =0
and no existence and multiplicity results can be obtainedegd, also in the cage= B =0 it
can be shown that there are problems without nontrivialtemis).

Then, we will prove (see Theorem 3 and Theorem 4):

THEOREM1. Assume (5) and (7); moreover, suppose (12) and (13) arefigatisThen, for
every B> A > Othere existg > 0(k =0, ..., 2N — 2) such that for every € (S5i_1, Sj)
i=0,...,N—1;s_1:=0) problem (1) has at leagt(N — i) nontrivial solutions.

THEOREM2. Assume (6) and (7); moreover, suppose (14) and (13) arefigatisThen, for
every B> A > Othere existg > 0(k =0,...,2M — 2) such that for every & (Spj_1. ;)
i=0,...,M—1s 41 :=0)problem (1) has at leagt(M — i) nontrivial solutions.

We point out that multiplicity results on the lines of Thewrel and Theorem 2 can be
obtained also whei > B. Moreover, the cases when (5) or (7) are replaced by

im W _
u—>4oo U
or
f
() —ht
u—0t U

can be considered as well. Similarly, multiple solutions ba obtained also when (12) (or (13)
or (14)) is not satisfied, i.e. when there exists an intégsuch thatg = If. We remark that in
this case we are dealing with a resonant situation.

The proofs of Theorem 1 and Theorem 2 are based on the timeguhapique introduced
in [3]. More precisely, in order to study (1) we need to intodthreetime-mapsTy, T, and
T3 and a functionT : Rt — R3 (whose components afig, To and T3) which describe the
solutions of our problem: indeed, there exists aSetR3 (Sconsists of four families of planes)
such that (1) has a solution if and onlyTi{e) € Sfor somex > 0. This setSis a 3-dimensional
variant of the classical Fucik spectrum [6].

We refer to the papers [3, 14] for a more complete discussiothe use of the time-map
technique for the study of boundary value problems.

The structure of the paper is as follows.

In Section 2 we explain the time-map technique and we intedhe setS which is useful
in order to describe the solutions to (1). In Section 3 we @rour main results, both for the
asymptotically linear and the superlinear asymmetric.case

The author is grateful to Prof. A. Capietto for her valid sop@and encouragement.
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2. Definition and asymptotic properties of the time-maps

In this section we study the following Picard problem

(15)

u + fu=0
u(0) =sA u(r) =sB,

A, B ands being real numbers anfl : R — R being a continuous function; we define the
potential F (x) = fé‘ f (t) dt and we assume that

(16) f(x)x >0 forall x#0

and

17 lim  F(x) = +oc.
[X]—+o00

We will give a multiplicity result, depending on the valuesA, B ands, for (15) in the case
whenB > A > 0 ands > 0; analogous results can be obtained in the other situations

We introduce the energy associated to the equation in (A&)etyH (X, y) = %yz + F(X).
Fora > 0 we denote by the sub-levels of energy («), i.e.

FY = {(x,y) e RZ : H(x, y) < F(a)}

(see Figure 1). Lef* be the boundary of*; from now on, we shall assume that> «g = sB.
Therefore, the straight lines of equations= sAandx = sB intersect, in the phase-plane
(X, y) = (u, u), the (closed) curv@&®.

For everya > 0, let—aq < 0 be such thaF (—«1) = F(«) and let us define the following
time-maps:

V2 o du
+ I -
(18) TO=% ) Feo-Fo
and
0
(19) T () = V2 du

2 Ly JSFo—Fu

It is straightforward to check thatt («) andr~ () represent the time needed for a rotation,
alongI'?, in the upper half-plane or in the lower half-plane, from gwént of abscissa 0 to the
point of abscissa and from the point of abscissax1 to the point of abscissa 0, respectively.
Following the approach of [3], we define, for each energyll&#, the following three
time-maps, which will enable us to describe the solutionsnafrgyF («). Indeed, we set:

J2 [ du
20 T - Mo =0
(20) 1@ 2 Jse VF@ - F@

ﬁ sB du
21 T _ N2 [h__du
1) 2@) 2 Jsa VF@ - F@
and

_ V2 [sA du

(22) T3(Ot)—f (a)+7A m
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T2(w)

//

T3(a) T1(a)

(_als 0) (Os a)

1"0{

Figure 1: Time-maps for non-homogeneous problems.

As before,T1 (@) is the time needed by a solution of energyw) to rotate in the upper half-
plane from the point of abscissa to the point of abscissa. The quantitiesT>(«) and T3(«)
have a similar meaning. We also remark that the symmetry efothits with respect to the
x-axis implies that eachij (@), i = 1,2, 3, is also the time needed for a rotation between the
corresponding points in the half-plage< 0.

First of all, we observe that the functioiis (i = 1, 2, 3) are continuous (this fact can be
easily proved); secondly, we give some asymptotic estisnatd; (i = 1, 2, 3) whena goes to
infinity or to «g. To this aim, let us formally denote/@ = co and J/oco = 0 and let us recall the
following celebrated result, due to Z. Opial [12]:

LEmmA 1. [[12], Corollaire 6] Let f be a continuous function satisfig conditions (16)
and (17). Then:

(23) lim w:ke[o,—l—oo] = lim 7=
X—=400 X a——+00

T
2Vk
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and

. f(x) . _ T
(24) o kel = I @ =k
Analogously,

. f(x) . bid
2 lim —= =kt lim ¥ (@) =
(25) x—|>n(1)+ X €l0. 4o = ainor @) 2Vk+
and

. f(x) _ . _ T
26 im — =k™ €[0,400] = Im =—.
(26) Jim [ ] Jim (@) e

An application of Lemma 1 gives the following propositiorhigh is a variant of [3, Lemma
3.2]; we point out that the estimates we prove are indepdratethe parametes which appears
in the boundary conditions:

PROPOSITIONL. Let us assume that

. f(x)
Mo = e € [0l
Then
@7) im Tie) = ——
a— 400 e a 2B+ ’
(28) lim T(w) = O,
a—>+00
. b
(29) a_ll)rﬂoo T3(a) = ﬁ .
Proof. First of all, we observe that the following inequality halds
1 1 1
(B0) 0O<x<u<y<a = < < .
VF@) —F(X) ~ VF(e) —F) ~ VF(@) —F(y)
Therefore
sB du sB
31 / < — 0 as a — +o0o.
G 0 VF@—-FW =~ VF(@) - F(sB)

Now, we are in position to obtain the needed estimates: since
\/E sB du
o) = o - L2 [
1(e) = 7 () 2 /o o —Fo
from (31) and (23) we deduce (27).
As far as (28) is concerned, we observe that (30) implies

\/_E s(B— A
2 JF(a) — F(sB)

and a trivial application of (31) gives (28).

Finally, since
\/E sA du
T =1 — _—,
3(@) =1 () + > /0 HOEE)
again from (30) we obtain (29). |

To(a) <
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Now, we will prove some other estimates on the three timesiratpoduced above; they are
obtained by the study of the function Rt — R defined by

2 [SA d
(32) r(s) = £ / S

2 Jo JF(B —F(u)
We give the asymptotic estimates fir(i = 1, 2, 3) fora — «g (we recall thatxg = s B); they
are trivial consequences of the continuityrof

PrRopPosITION2. The following estimates hold:

0o . ;
(33) Tis = a"l‘lo Ti(@) =0,
0 . : _ -+ _
(34) Tos = Jim To(@) =1"(a0) —1(9)
and
0 ._ i -
(35) T3si= al'—%o Ta(@) =1 (ag) +1(9).

By Proposition 2, in order to know the valuest?ﬁ’s (i = 2, 3) we must study the function
r; to this aim, for eveng € Rt let

V2 sA
(36) r—(s) = 7\/ﬁ
and
(37) 9= Y2___SA

2 JF(SB —FGA

¢ From (30) we immediately obtain that
(38) r_(s) <r(s) <ry(s) VseR'.

Moreover, we can prove the following:

LEMMA 2. Let us assume that

f
(39) lim feo =h.
x—0 X
Then, for the function r defined in (32), we have:
Al V2 [ A1
40 ——<lmr(s) < —, /| ——.
(40) B\/ﬁ_s»o()_ 2VB-AVh

Proof. Since (38) holds, it is sufficient to prove that

(42) limr_(s) = éi
s—0 - - B \/ﬁ
and
. V2 [ A1
“2 = Ve A
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Indeed, we have
V2 A im (sB?
2 Bs—0 F(sB)’
then, an application of De I'Hospital rule, together witl®)3gives
f 2A f_

Jh'

Iimr_(s) =
s—0

limr_(s
s—0 ® =
Therefore, (41) is fulfilled.
Now, by the mean value theorem we infer that
(43) F(sB) — F(sA = f(s¢)s(B — A)

for someA < ¢ < B. Therefore,

r (S)—Q A S5 <£ —A %
YT EB-AY fs T 2 VB-AY T’

hence, from (39) we obtain (42). O

Now, let us assume that (39) holds and that there exists egent € N such that

(44) iZ<h<(+1%
We immediately observe that (44) implies
1 1 1
(45) — < —= <.
i+1 Vho

We are ready to prove the following:

PROPOSITION3. Assume (39) and (44); then, there exigisss 0 such that for every &
(0, 5p) we have

T V2 0 T A 1
46 — T — -
(46) 2+ 2VB= Aj<2’s<2j Bj+1
and
T A1l x N2 [ A1
(47) - 4+ —- <T??S<_'+_ _— .
2(j+1) Bj+1 ST 2) " 2VB-Aj
Proof. By (25), (40) and (45), we deduce that
0 T Al 7 A1
lim T. T = _—— = -
s—0 2/h B[ 2j Bj+1°
Lete > 0 such that
T Al T A 1

“9) 2vh Bx/ﬁ+6<21 Bj+1

By the definition of limit, there existsy > 0 such that, for eversg € (0, 5p), we have

this relation, together with (48), implies the right inetityain (46). The left inequality in (46)
and (47) can be proved in a similar way. |
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Now, let us assume that

(49) im 1% _

X—>+o00 X

B+
then, the following analogue of Lemma 2 holds:

LEMMA 3. Assume (49); then, for the function r defined in (32), we have:

A1l V2 A 1

0 BUE “sote OS2 VEBoA R

The proof of Lemma 3 is a straightforward variant of that ofrirea 2.
Now, suppose thgt+ = 8 and that there exists an intedes N such that

(51) 12 < B < (+1)72.
As before, we observe that (51) implies

(52) = 1 % .

< —= <

I+1° /B

The following result can be proved arguing as in Proposifion

PrROPOSITION4. Assume (49) and (51); then, there existsss0 such that for every s- s*
we have

n V2 [ A1 o, 7 A1
53 SRR ) LA S
(53) 2041 2VB—_Al -~ 25T Bi+1
and
n A1 o m N2 [ A1
54 — - <T AT Sl (LA
(54 20+ TBIi+1 - s~ T 2 VBCAl
In the case when
f
(55) lim ﬂ=+oo
X—>400 X
and
f(x
(56) im 1% _

X——-00 X

suppose that there exists an integerN such that

(57) |2<y<(l—|—1)2,
Then, from (23), (24), (34), (35) and (50) we obtain
lim T2, =
sJToo 25=0
and o .
s—llr—?oo T3’s - NG

Hence, we have the following:
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PROPOSITIONS. Assume (55), (56) and (57); then, for every- O there existss > 0
such that for every s- s* we have

(58) T <€
and
(59) T 0 4

. <X
2041 ~ 3577

Now, we recall from [3] that (15) has a solution of enefg§r) for somex > 0 if and only
if there exists an integen € N such that

2mT(e) + 2m — D To(a) +2mT3(a) =7

or
2mTy (@) + 2m — DTo(w) +2(m — DT3(e) = 7
or
2mT(a) + 2m+ DTo(e) +2(m+ DT3(a) =7
or
2mT(@) + 2m+ D To(e) + 2mTa(e) = 7.
Let us introduce the s& = S U S, where
S = {XVY,2)¢€ R3, x>0, y>0, z>0: there existsn € N such that
am : 2mx+ 2m — 1)y + 2mz=m orbm : 2mx+ 2m — 1)y +2(m — D)z = «}
and
S = {XYy,2€ R3, Xx>0,y>0,z>0: there existsn € N such that

Cm:2mx+ (2m+ 1)y +2mz=m ordm: 2mx+ 2m+ 1)y +2(m+ D)z = n}.

In Figure 2 we have drawn the projection of the Sedn the planey = 0, corresponding
to the boundary conditiond = B. We note that in this case the s@treduces to a family of
straight lines; moreover, we observe that we find the sameeigdized Fucik spectrum” already
used e.g. in [2] for the study of homogeneous Dirichlet peois.

¢From [3], we know that problem (15) has a solution of endfgy) if and only if for
the triple T (@) = (T1(@), To(x), T3(x)) we haveT (@) € S. This means that there exists a
correspondence between the solutions of (15) and the @utizoss (inR3) of the setSwith the
support of the curvd : o — T ().

Hence, it is crucial to know the image @fas a set irR3; more precisely, let us denote by
Po.s the point of coordinateéTfs, . T30_S) and by Pso = (Xoo, Yoo, Zoo) the point whose
coordinates are given by

Xoo = lim Tq(a),
oa—>—+00
Yoo = lim Tr(a),
oa—>—+00
and
Zoo = lim T3(O[).
a—>—+00

Then, T is a continuous curve connecting the poifgs and P; moreover, the number of
solutions of (15) coincides with the number of planes (bgiog to the sefs) which are crossed
by any line fromPy s and Peo.
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3. The main results

First, we consider the asymptotically linear case, i.e. ssume that

. fX _
© LAl
and
(61) lim Bﬁ:ﬂ.

Moreover, we suppose that there exist two positive integensdl such that

(62) jiZ2<h<(j+1?

1
Figure 2: Some of the lines belonging to theSdor A = B.
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and
(63) 12 < B <(+1)2.

Finally, letN (N possibly zero) be the number of positive integersuch that gn € [j + g +

“[1/ J+11I—1]or2ne[l+21—§—£ ﬁj—f—lﬁl].
We WI|| prove the following result:

THEOREM3. Assume that f R — R is a continuous function satisfying (16), (60) and
(61); moreover, suppose (62) and (63) are satisfied. Thergvery B > A > 0 there exist
s >0(k=0,...,2N — 2) such that for every &€ (Si_1,%i) (i =0,... ,N—-1;s_7:=0)
problem (15) has at leagt{N — i) nontrivial solutions.

REMARK 1. 1. Aresult on the lines of Theorem 3 can be obtained alsharcase the
ratio f (x)/x has no limit forx — 0 (but there exist the left and the right limit) or when
the limits at+o0 are different.

2. Multiplicity theorems for (15) can be obtained also whiand B satisfy the condition
A > B > 0 or when they are negative. We omit these results, whosd @aovariant
of the one of Theorem 3; they are only based on slightly diffieicomputations on the
time-maps.

3. On the lines of [2], we might state a result similar to Theor3 for the case when the
numbersh or B do not satisfy conditions (62) or (63); indeed, Jetj’, | andl’ be positive
integers such that

(64) j2<h<('+12
or
(65) 12 < B < (' +17?;

then, Theorem 3 holds withn2 e [] +3 +‘[,/ o 71,I—1] or2m e [I’+

2,j— % — ,/ J+1 1] We also observe that condltlons like (64) or (65) mean

that the numbers\ andﬂ can be eigenvalues of the operator— —u” with Dirichlet
conditions in(0, 7). For brevity, we omit the details.

Before proving Theorem 3, we recall that, by assumption3 &l (61), in the present
situation we have

andPg s = (0, Tgs, T:gs), where for evens € (0, 59) we have

T NG 0 T A 1

67 S 0. <2 -2~

67 2+ 2VB= A]< 25~ %] TBj+1
and

LAl 2 A 1

(68) a <T9?s<l.+£ —_—

2(]+1) B]+1
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and for everys > s*

n V2 A1 g 9w A1

69 Al AN (A

(69) 2041 2VB—Al =~ 252 " Bif1
and

A1 2 A 1

(70) T AL qo _m V2 a7

20+1)  Bl+1 35 2" 2VB-A

Then, we can prove the following result:
LEMMA 4. For every se (0, ), problem (15) has at leagtN solutions.

Proof First of all, we recall that we denote dy the number of integerm such that & e
[J +3+ */_‘/ g AJHl I —1] or 2m e [I +2,j —:—S—Q ﬁj—jr—l%]. Moreover, let

my, ..., my be these integers.

Letso > 0 be as in Proposition 3 and let us §ix (0, 59). According to the discussion con-
tained in Section 2, the solutions to problem (15) corredporthe intersections of the support
of the curveT with the setS; more precisely, problem (15) has a solution of endfgy) with
T(«) € am if the points Py s and P» belong to the opposite half-spaces generated by the plane
am. Analogous remarks are valid for the platmg cm anddm.

Now, letady = 2Mxeo +(2M—1)Yoo +2Mzy and letad, = 2m T2 +(2m—1) TS +2m
In order to obtain a solution with the prescribed propettig sufﬂuent that

(71) ay <7 <ay,

or

(72) arQn <7 <ay.

Using (63), (67) and (68), we can explicitate (71) and (7Qreprecisely, we have
2m 2m

7 = 0o -

(73) n 171 <ag < i T

and

4m-1_ A 1 o 4dm-1_ 2
74 — -
74 20+  TBiF1 "~ 3 "t 2VBC A]

Therefore, (71) is fulfilled if

dm-—1 +A -
- T+ == big
2(j+1 Bj+1~
(75)
2m
|—7T <,
while (72) is satisfied if
4m—1 N V2 1_
2j d 2 B—A] =7
(76)
2m
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Now, by some easy computations, it is easy to deduce thataf¥®)75) are fulfilled for every
integerms, ... , my. This proves that there exist at led$tsolutions to (15) corresponding to
the planesm.

Analogous computations show that any line between the &t and P intersects the
planesbm, cm anddm form=mjy, ..., my. |

Proof of Theorem 3We give the proof for the case

.+5+J§ A j+11<| 1
I 3T o Ve-A ] 75 70

the other case being similar.

From Lemma 4 we infer that f& € (0, sp) there are at leastN solutions to (15); more
precisely, we can say that fere (0, sp) the pointPg g is “over” all the planesy, by, ¢k anddy
fork = my, ..., my, while the pointP is “under” all these planes.

Moreover, using the same argument developed in the prooépfrha 4 it is easy to prove
the following:

Claim. For every s> s* let Zs := [ P, Py s] be the segment frompPand R) s; then for every
k € N we have
ZsNag = Zsﬂbkz ZsNey = Zsmdk =0.

Roughly speaking, the above Claim means that for large saéie (i.e. fors > s*) there
are no planes belonging to the Shetween the point8 s and Px.

By the continuity of T, (i = 1, 2) as functions o, we can deduce that the poiRp s,

ass increases, crosses the plargs by, ¢ anddy for k = mq, ..., my. Indeed, there are
S > 51 > 5 (82 < s*) such that ifs € (s1, ) the pointPg s is under the planeam,, bm;,
Cmy, anddm,, but it is overay, by, ¢ anddy for k = mp, ... , my: therefore, fors € (s, $p),

problem (15) has at leastM — 1) solutions.
An inductive argument implies that there eXgt< 5 < S < ... < n_1)—1 < (N-1)
such that for everg € (spi_1,5) (i =0,..., N —1,s_1 := 0) the pointPy s is “over” the

planesay, by, cx anddy for k = mj11, ..., my. Therefore, fors € (sp_1, Spj), the support
of any curve connectingg s and Pox must intersect at leas{t@ —i — 1) + 1) planes and this
proves the result. a

REMARK 2. Looking at the proof of Lemma 4, we observe that a more pecstatement on
the number of solutions to (15) could be obtained; indeddirspthe systems (75) and (76), itis
possible to compute the exact range of integesuch that (15) has a solution wilh«) € am.
An analogous remark holds for the plar®gs cm anddm.

We conclude the paper by considering a superlinear asyrimséiration; more precisely,
we assume that conditions

(77) im 1 o
X—>400 X

and

(78) lim M=

X—>—00 X
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hold. As before, suppose that there exists an integelN such that
(79) 12 <y < (412,
Moreover, let

)
(80) Nl Sl

and let us assume that there exists N such that

(81) iZ<h<(+12.

Finally, we denote byv the number of positive integers such that tn € [j + g + */75‘/ ﬁ-
jr11 3 _ M2 [ A j+l1
We can prove the following:

THEOREM4. Assume that f R — R is a continuous function satisfying (16), (77), (78)
and (80); moreover, suppose (79) and (81) are satisfied. ,Toevery B> A > 0 there exist
% >0(k=0,...,2M — 2) such that for every € (sj_1, i) (i =0,... ,M —1,s_1:=0)
problem (15) has at leagt(M — i) nontrivial solutions.

Some comments analogous to the ones developed in Remark/dligralso in the present
situation.

The proof of Theorem 4 is exactly the same of the proof of TéeoB; we only have to
give a Lemma which replaces Lemma 4. Indeed, with the samaramgt developed in the
asymptotically linear case, we are able to prove the folhgwi

LEMMA 5. For every se (0, 59), problem (15) has at leagitM solutions.

Proof. The proof follows the same lines of the one of Lemma 4. Indeedording to the
discussion contained in Section 2, problem (15) has a soluf energyF («) with T («) € am

if the points Py s and P belong to the opposite half-spaces generated by the stilaigram.
Leta®® = 2MXoo 4 (2M—1)yso +2Mzy and letal, = 2mTfs+(2m—1)T£S+2mT§)S. Again,
as in the asymptotically linear case, in order to obtain afsmi with the prescribed property, it
is sufficient that

(82) ay <7 <ay,

or

(83) ad <7 <al.

Now, according to Proposition 1 and to conditions (77), @& (79), we obtain that
2m 2m

84 —_— N < —7.

(84) 2" “fm =7

Moreover, as in the proof of Lemma 4, we have

4m—1 A1 o 4m-1 +ﬁ A1l
P A

85 A =z
(85) 20+ T8 F1 "< 3 2VB_A]
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Therefore, (82) is fulfilled if

dm—1 n A -
. T —_ = b
20+ Bj+1~
(86)
2m -
2| T =7,
while (83) is satisfied if
4m-1 V2 [ A1
— 74—\ o—=T <7
2] 2VB-A]
(87)
2m -
20+
Now, by some easy computations, it is easy to deduce thata{@¥)(86) are valid fom =
mg,...,My. O
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