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A TIME-MAP APPROACH FOR NON-HOMOGENEOUS

STURM-LIOUVILLE PROBLEMS ∗

Abstract. By means of a time-map approach, we study the existence of multiple
solutions to the boundary value problem

{

u′′ + f (u) = 0
u(0) = s A, u(π) = sB.

The results depend on the values of the real numberss, A and B, and on the
behaviour of the ratiof (u)/u for u near zero and near infinity. Both the asymptot-
ically linear and superlinear asymmetric growth conditions at infinity are consid-
ered.

1. Introduction

This paper is concerned with the existence of multiple solutions to a non-homogeneous Dirichlet
problem of the form

{

u′′ + f (u) = 0
u(0) = s A, u(π) = sB,

(1)

A, B ands being real numbers andf :
� −→ �

being a continuous function; we define the
potentialF(x) =

∫ x
0 f (t) dt and we assume that

f (x)x > 0 for all x 6= 0(2)

and

lim
|x|→+∞

F(x) = +∞ .(3)

It is well-known (see e.g. [1, 2, 5]) that in general the number of solutions to boundary value
problems associated to an equation as

u′′ + f (u) = 0(4)

strongly depends on the behaviour of the ratiof (u)/u for u → 0 andu → ∞. In this article, we
deal with two situations which are rather classical in literature: theasymptotically linearcase,
characterized by

lim
|u|→+∞

f (u)

u
= β ≥ 0 ,(5)

∗Work performed under the auspices of GNAFA, C.N.R. - Italy.

105
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and thesuperlinear asymmetriccase, for which we suppose

lim
u→+∞

f (u)

u
= +∞ , lim

u→−∞
f (u)

u
= γ ≥ 0 ;(6)

moreover, we shall always assume that

lim
u→0

f (u)

u
= h ≥ 0 .(7)

When (5) is assumed, then multiplicity results for various boundary value problems have been
obtained; more precisely, in [1, 9, 10, 11] the authors provethe existence of multiple solutions
for

u′′ + f (u) = q(t) ,(8)

with

u(0) = 0 = u(π) ,(9)

for large positive forcing termsq. More recently, in [7, 8], it was shown that for every continuous
functionh there are one, two or three solutions to (8) together with

u(0) = σ1, u(π) = σ2(10)

or

u′(0) = σ1, u′(π) = σ2 ,(11)

depending on the position of(σ1, σ2) with respect to the classical Fučik spectrum.

If, in addition to (5), also (7) is considered, then the existence of solutions to (4)–(9) can be
proved by studying the “gap” between the numbersβ andh. Indeed, see e.g. [5], the number of
solutions of (4)–(9) coincides with the number of eigenvalues of theu 7→ −u′′ operator (with
boundary conditions (9)) which fall betweenβ andh (or viceversa): this means that the number
of solutions depends on the number of eigenvalues crossed bythe nonlinearityf passing from
zero to infinity. For a similar discussion, relative to the more general case of the Laplacian
operator in

�n, we refer to [4].

Similar results have been obtained for the superlinear asymmetric case. Indeed, when only
(6) is assumed, the existence of multiple solutions to (8)–(9) for largeh has been proved in [13]
(in the caseh constant) and in [15] (for non constanth).

More recently, in [2] a result on the lines of the above quotedpaper [5] for (4)–(9), under
assumptions (6)–(7), has been obtained.

In this paper we shall prove the existence of a certain numberof solutions to (1) when (5)–
(7) or (6)–(7) are assumed. More precisely, suppose thatB > A > 0 and that there exist positive
integersl , j and p such that

l 2 < β < (l + 1)2 ,(12)

j 2 < h < ( j + 1)2(13)

and

p2 < γ < (p + 1)2 ;(14)
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moreover, we consider the intervalsI1 =
[

j + 5
2 +

√
2

2

√

A
B−A

j +1
j

1
π , l − 1

]

, I2 =
[

l + 2, j −
3
2 −

√
2

2

√

A
B−A

j +1
j

1
π

]

, I3 =
[

j + 5
2 +

√
2

2

√

A
B−A

j +1
j

1
π , 2p − 2

]

and I4 =
[

2p + 4, j − 3
2 −

√
2

2

√

A
B−A

j +1
j

1
π

]

and we denote byN (N ∈ � ) the number of the integersm such that 2m ∈ I1
or 2m ∈ I2 and byM the number of the integersm such that 2m ∈ I3 or 2m ∈ I4. We observe
that N andM, as well as the intervalsIk (k = 1, . . . , 4) depend on the assumptions onβ, h and
γ , i.e. on the behaviour of the nonlinearity at infinity and in zero. It could also happen that there
are no integersm satisfying one of the previous conditions: in this case we take N = 0 or M = 0
and no existence and multiplicity results can be obtained (indeed, also in the caseA = B = 0 it
can be shown that there are problems without nontrivial solutions).

Then, we will prove (see Theorem 3 and Theorem 4):

THEOREM 1. Assume (5) and (7); moreover, suppose (12) and (13) are satisfied. Then, for
every B> A > 0 there exist sk > 0 (k = 0, . . . , 2N − 2) such that for every s∈ (s2i−1, s2i )

(i = 0, . . . , N − 1; s−1 := 0) problem (1) has at least4(N − i ) nontrivial solutions.

THEOREM 2. Assume (6) and (7); moreover, suppose (14) and (13) are satisfied. Then, for
every B> A > 0 there exist sk > 0 (k = 0, . . . , 2M − 2) such that for every s∈ (s2i−1, s2i )

(i = 0, . . . , M − 1, s−1 := 0) problem (1) has at least4(M − i ) nontrivial solutions.

We point out that multiplicity results on the lines of Theorem 1 and Theorem 2 can be
obtained also whenA ≥ B. Moreover, the cases when (5) or (7) are replaced by

lim
u→±∞

f (u)

u
= β±

or

lim
u→0±

f (u)

u
= h±

can be considered as well. Similarly, multiple solutions can be obtained also when (12) (or (13)
or (14)) is not satisfied, i.e. when there exists an integerl∗ such thatβ = l 2∗. We remark that in
this case we are dealing with a resonant situation.

The proofs of Theorem 1 and Theorem 2 are based on the time-maptechnique introduced
in [3]. More precisely, in order to study (1) we need to introduce three time-mapsT1, T2 and
T3 and a functionT :

�+ −→ �3 (whose components areT1, T2 andT3) which describe the
solutions of our problem: indeed, there exists a setS ⊂ �3 (Sconsists of four families of planes)
such that (1) has a solution if and only ifT(α) ∈ S for someα > 0. This setS is a 3-dimensional
variant of the classical Fučik spectrum [6].

We refer to the papers [3, 14] for a more complete discussion on the use of the time-map
technique for the study of boundary value problems.

The structure of the paper is as follows.

In Section 2 we explain the time-map technique and we introduce the setS which is useful
in order to describe the solutions to (1). In Section 3 we prove our main results, both for the
asymptotically linear and the superlinear asymmetric case.

The author is grateful to Prof. A. Capietto for her valid support and encouragement.
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2. Definition and asymptotic properties of the time-maps

In this section we study the following Picard problem
{

u′′ + f (u) = 0
u(0) = s A, u(π) = sB,

(15)

A, B ands being real numbers andf :
� −→ �

being a continuous function; we define the
potentialF(x) =

∫ x
0 f (t) dt and we assume that

f (x)x > 0 for all x 6= 0(16)

and

lim
|x|→+∞

F(x) = +∞ .(17)

We will give a multiplicity result, depending on the values of A, B ands, for (15) in the case
whenB > A > 0 ands > 0; analogous results can be obtained in the other situations.

We introduce the energy associated to the equation in (15), namelyH(x, y) = 1
2 y2 + F(x).

Forα > 0 we denote byFα the sub-levels of energyF(α), i.e.

Fα = {(x, y) ∈ �2 : H(x, y) < F(α)}

(see Figure 1). Let0α be the boundary ofFα ; from now on, we shall assume thatα ≥ α0 = sB.
Therefore, the straight lines of equationsx = s A and x = sB intersect, in the phase-plane
(x, y) = (u, u′), the (closed) curve0α.

For everyα > 0, let−α1 < 0 be such thatF(−α1) = F(α) and let us define the following
time-maps:

τ+(α) =
√

2

2

∫ α

0

du
√

F(α) − F(u)
(18)

and

τ−(α) =
√

2

2

∫ 0

−α1

du
√

F(α) − F(u)
.(19)

It is straightforward to check thatτ+(α) and τ−(α) represent the time needed for a rotation,
along0α , in the upper half-plane or in the lower half-plane, from thepoint of abscissa 0 to the
point of abscissaα and from the point of abscissa−α1 to the point of abscissa 0, respectively.

Following the approach of [3], we define, for each energy level 0α , the following three
time-maps, which will enable us to describe the solutions ofenergyF(α). Indeed, we set:

T1(α) =
√

2

2

∫ α

s B

du
√

F(α) − F(u)
,(20)

T2(α) =
√

2

2

∫ s B

s A

du
√

F(α) − F(u)
(21)

and

T3(α) = τ−(α) +
√

2

2

∫ s A

0

du
√

F(α) − F(u)
.(22)
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Figure 1: Time-maps for non-homogeneous problems.

As before,T1(α) is the time needed by a solution of energyF(α) to rotate in the upper half-
plane from the point of abscissasB to the point of abscissaα. The quantitiesT2(α) andT3(α)

have a similar meaning. We also remark that the symmetry of the orbits with respect to the
x-axis implies that eachTi (α), i = 1, 2, 3, is also the time needed for a rotation between the
corresponding points in the half-planey < 0.

First of all, we observe that the functionsTi (i = 1, 2, 3) are continuous (this fact can be
easily proved); secondly, we give some asymptotic estimates onTi (i = 1, 2, 3) whenα goes to
infinity or to α0. To this aim, let us formally denote 1/0 = ∞ and 1/∞ = 0 and let us recall the
following celebrated result, due to Z. Opial [12]:

LEMMA 1. [[12], Corollaire 6] Let f be a continuous function satisfying conditions (16)
and (17). Then:

lim
x→+∞

f (x)

x
= k ∈ [0, +∞] H⇒ lim

α→+∞
τ+(α) =

π

2
√

k
(23)
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and

lim
x→−∞

f (x)

x
= k ∈ [0,+∞] H⇒ lim

α→+∞
τ−(α) =

π

2
√

k
.(24)

Analogously,

lim
x→0+

f (x)

x
= k+ ∈ [0,+∞] H⇒ lim

α→0
τ+(α) =

π

2
√

k+
(25)

and

lim
x→0−

f (x)

x
= k− ∈ [0, +∞] H⇒ lim

α→0
τ−(α) =

π

2
√

k−
.(26)

An application of Lemma 1 gives the following proposition, which is a variant of [3, Lemma
3.2]; we point out that the estimates we prove are independent on the parameters which appears
in the boundary conditions:

PROPOSITION1. Let us assume that

lim
x→±∞

f (x)

x
= β± ∈ [0,+∞] .

Then

lim
α→+∞

T1(α) =
π

2
√

β+
,(27)

lim
α→+∞

T2(α) = 0 ,(28)

lim
α→+∞

T3(α) =
π

2
√

β−
.(29)

Proof. First of all, we observe that the following inequality holds:

0 ≤ x ≤ u ≤ y < α ⇒
1

√
F(α) − F(x)

≤
1

√
F(α) − F(u)

≤
1

√
F(α) − F(y)

.(30)

Therefore
∫ s B

0

du
√

F(α) − F(u)
≤

sB
√

F(α) − F(sB)
−→ 0 as α → +∞ .(31)

Now, we are in position to obtain the needed estimates: since

T1(α) = τ+(α) −
√

2

2

∫ s B

0

du
√

F(α) − F(u)
,

from (31) and (23) we deduce (27).

As far as (28) is concerned, we observe that (30) implies

T2(α) ≤
√

2

2

s(B − A)
√

F(α) − F(sB)

and a trivial application of (31) gives (28).

Finally, since

T3(α) = τ−(α) +
√

2

2

∫ s A

0

du
√

F(α) − F(u)
,

again from (30) we obtain (29).
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Now, we will prove some other estimates on the three time-maps introduced above; they are
obtained by the study of the functionr :

�+ −→ �
defined by

r (s) =
√

2

2

∫ s A

0

du
√

F(sB) − F(u)
.(32)

We give the asymptotic estimates forTi (i = 1, 2, 3) for α → α0 (we recall thatα0 = sB); they
are trivial consequences of the continuity ofτ :

PROPOSITION2. The following estimates hold:

T0
1,s := lim

α→α0
T1(α) = 0 ,(33)

T0
2,s := lim

α→α0
T2(α) = τ+(α0) − r (s)(34)

and

T0
3,s := lim

α→α0
T3(α) = τ−(α0) + r (s) .(35)

By Proposition 2, in order to know the values ofT0
i,s (i = 2, 3) we must study the function

r ; to this aim, for everys ∈ �+ , let

r−(s) =
√

2

2

s A
√

F(sB)
(36)

and

r+(s) =
√

2

2

s A
√

F(sB) − F(s A)
.(37)

¿From (30) we immediately obtain that

r−(s) ≤ r (s) ≤ r+(s) ∀s ∈ �+ .(38)

Moreover, we can prove the following:

LEMMA 2. Let us assume that

lim
x→0

f (x)

x
= h .(39)

Then, for the function r defined in (32), we have:

A

B

1
√

h
≤ lim

s→0
r (s) ≤

√
2

2

√

A

B − A

1
√

h
.(40)

Proof. Since (38) holds, it is sufficient to prove that

lim
s→0

r−(s) =
A

B

1
√

h
(41)

and

lim
s→0

r+(s) =
√

2

2

√

A

B − A

1
√

h
.(42)
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Indeed, we have

lim
s→0

r−(s) =
√

2

2

A

B
lim
s→0

√

(sB)2

F(sB)
;

then, an application of De l’Hospital rule, together with (39), gives

lim
s→0

r−(s) =
√

2

2

A

B

√
2

1
√

h
.

Therefore, (41) is fulfilled.

Now, by the mean value theorem we infer that

F(sB) − F(s A) = f (sξ)s(B − A)(43)

for someA < ξ < B. Therefore,

r+(s) =
√

2

2

A
√

ξ(B − A)

√

sξ

f (sξ)
≤

√
2

2

√

A

B − A

√

sξ

f (sξ)
;

hence, from (39) we obtain (42).

Now, let us assume that (39) holds and that there exists an integer j ∈ � such that

j 2 < h < ( j + 1)2 .(44)

We immediately observe that (44) implies

1

j + 1
<

1
√

h
<

1

j
.(45)

We are ready to prove the following:

PROPOSITION3. Assume (39) and (44); then, there exists s0 > 0 such that for every s∈
(0, s0) we have

π

2( j + 1)
−

√
2

2

√

A

B − A

1

j
< T0

2,s <
π

2 j
−

A

B

1

j + 1
(46)

and

π

2( j + 1)
+

A

B

1

j + 1
< T0

3,s <
π

2 j
+

√
2

2

√

A

B − A

1

j
.(47)

Proof. By (25), (40) and (45), we deduce that

lim
s→0

T0
2,s ≤

π

2
√

h
−

A

B

1
√

h
<

π

2 j
−

A

B

1

j + 1
.

Let ε > 0 such that
π

2
√

h
−

A

B

1
√

h
+ ε <

π

2 j
−

A

B

1

j + 1
.(48)

By the definition of limit, there existss0 > 0 such that, for everys ∈ (0, s0), we have

T0
2,s <

π

2
√

h
−

A

B

1
√

h
+ ε ;

this relation, together with (48), implies the right inequality in (46). The left inequality in (46)
and (47) can be proved in a similar way.
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Now, let us assume that

lim
x→±∞

f (x)

x
= β± ;(49)

then, the following analogue of Lemma 2 holds:

LEMMA 3. Assume (49); then, for the function r defined in (32), we have:

A

B

1
√

β+
≤ lim

s→+∞
r (s) ≤

√
2

2

√

A

B − A

1
√

β+
.(50)

The proof of Lemma 3 is a straightforward variant of that of Lemma 2.

Now, suppose thatβ± = β and that there exists an integerl ∈ � such that

l 2 < β < (l + 1)2 .(51)

As before, we observe that (51) implies

1

l + 1
<

1
√

β
<

1

l
.(52)

The following result can be proved arguing as in Proposition3:

PROPOSITION4. Assume (49) and (51); then, there exists s∗ > 0 such that for every s> s∗

we have

π

2(l + 1)
−

√
2

2

√

A

B − A

1

l
< T0

2,s <
π

2l
−

A

B

1

l + 1
(53)

and

π

2(l + 1)
+

A

B

1

l + 1
< T0

3,s <
π

2l
+

√
2

2

√

A

B − A

1

l
.(54)

In the case when

lim
x→+∞

f (x)

x
= +∞(55)

and

lim
x→−∞

f (x)

x
= γ ,(56)

suppose that there exists an integerl ∈ � such that

l 2 < γ < (l + 1)2 .(57)

Then, from (23), (24), (34), (35) and (50) we obtain

lim
s→+∞

T0
2,s = 0

and
lim

s→+∞
T0

3,s =
π

2
√

γ
.

Hence, we have the following:
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PROPOSITION5. Assume (55), (56) and (57); then, for everyε > 0 there exists s∗ > 0
such that for every s> s∗ we have

T0
2,s < ε(58)

and
π

2(l + 1)
< T0

3,s <
π

2l
.(59)

Now, we recall from [3] that (15) has a solution of energyF(α) for someα > 0 if and only
if there exists an integerm ∈ � such that

2mT1(α) + (2m − 1)T2(α) + 2mT3(α) = π

or
2mT1(α) + (2m − 1)T2(α) + 2(m − 1)T3(α) = π

or
2mT1(α) + (2m + 1)T2(α) + 2(m + 1)T3(α) = π

or
2mT1(α) + (2m + 1)T2(α) + 2mT3(α) = π .

Let us introduce the setS= S1 ∪ S2, where

S1 = {(x, y, z) ∈ �3, x > 0, y ≥ 0, z > 0 : there existsm ∈ � such that

am : 2mx+ (2m − 1)y + 2mz= π or bm : 2mx+ (2m − 1)y + 2(m − 1)z = π}

and

S2 = {(x, y, z) ∈ �3, x > 0, y ≥ 0, z > 0 : there existsm ∈ � such that

cm : 2mx + (2m + 1)y + 2mz= π or dm : 2mx+ (2m + 1)y + 2(m + 1)z = π} .

In Figure 2 we have drawn the projection of the set
�

on the planey = 0, corresponding
to the boundary conditionsA = B. We note that in this case the set

�
reduces to a family of

straight lines; moreover, we observe that we find the same “generalized Fučik spectrum” already
used e.g. in [2] for the study of homogeneous Dirichlet problems.

¿From [3], we know that problem (15) has a solution of energyF(α) if and only if for
the triple T(α) = (T1(α), T2(α), T3(α)) we haveT(α) ∈ S. This means that there exists a
correspondence between the solutions of (15) and the intersections (in

�3) of the setS with the
support of the curveT : α 7→ T(α).

Hence, it is crucial to know the image ofT as a set in
�3; more precisely, let us denote by

P0,s the point of coordinates
(

T0
1,s, T0

2,s, T0
3,s

)

and byP∞ = (x∞, y∞, z∞) the point whose

coordinates are given by
x∞ = lim

α→+∞
T1(α) ,

y∞ = lim
α→+∞

T2(α) ,

and
z∞ = lim

α→+∞
T3(α) .

Then, T is a continuous curve connecting the pointsP0,s and P∞; moreover, the number of
solutions of (15) coincides with the number of planes (belonging to the setS) which are crossed
by any line fromP0,s andP∞.
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Figure 2: Some of the lines belonging to the set� for A = B.

3. The main results

First, we consider the asymptotically linear case, i.e. we assume that

lim
x→0

f (x)

x
= h(60)

and

lim
x→±∞

f (x)

x
= β .(61)

Moreover, we suppose that there exist two positive integersj andl such that

j 2 < h < ( j + 1)2(62)
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and

l 2 < β < (l + 1)2 .(63)

Finally, let N (N possibly zero) be the number of positive integersm such that 2m ∈
[

j + 5
2 +

√
2

2

√

A
B−A

j +1
j

1
π

, l − 1
]

or 2m ∈
[

l + 2, j − 3
2 −

√
2

2

√

A
B−A

j +1
j

1
π

]

.

We will prove the following result:

THEOREM 3. Assume that f:
� −→ �

is a continuous function satisfying (16), (60) and
(61); moreover, suppose (62) and (63) are satisfied. Then, for every B > A > 0 there exist
sk > 0 (k = 0, . . . , 2N − 2) such that for every s∈ (s2i−1, s2i ) (i = 0, . . . , N − 1; s−1 := 0)
problem (15) has at least4(N − i ) nontrivial solutions.

REMARK 1. 1. A result on the lines of Theorem 3 can be obtained also in the case the
ratio f (x)/x has no limit forx → 0 (but there exist the left and the right limit) or when
the limits at±∞ are different.

2. Multiplicity theorems for (15) can be obtained also whenA and B satisfy the condition
A ≥ B ≥ 0 or when they are negative. We omit these results, whose proof is a variant
of the one of Theorem 3; they are only based on slightly different computations on the
time-maps.

3. On the lines of [2], we might state a result similar to Theorem 3 for the case when the
numbersh or β do not satisfy conditions (62) or (63); indeed, letj , j ′, l andl ′ be positive
integers such that

j 2 < h < ( j ′ + 1)2(64)

or

l 2 < β < (l ′ + 1)2 ;(65)

then, Theorem 3 holds with 2m ∈
[

j ′ + 5
2 +

√
2

2

√

A
B−A

j ′+1
j ′

1
π , l − 1

]

or 2m ∈
[

l ′ +

2, j − 3
2 −

√
2

2

√

A
B−A

j +1
j

1
π

]

. We also observe that conditions like (64) or (65) mean

that the numbersh andβ can be eigenvalues of the operatoru 7→ −u′′ with Dirichlet
conditions in(0, π). For brevity, we omit the details.

Before proving Theorem 3, we recall that, by assumptions (60) and (61), in the present
situation we have

P∞ =
(

π

2
√

β
, 0,

π

2
√

β

)

(66)

andP0,s = (0, T0
2,s, T0

3,s), where for everys ∈ (0, s0) we have

π

2( j + 1)
−

√
2

2

√

A

B − A

1

j
< T0

2,s <
π

2 j
−

A

B

1

j + 1
(67)

and

π

2( j + 1)
+

A

B

1

j + 1
< T0

3,s <
π

2 j
+

√
2

2

√

A

B − A

1

j
(68)
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and for everys > s∗

π

2(l + 1)
−

√
2

2

√

A

B − A

1

l
< T0

2,s <
π

2l
−

A

B

1

l + 1
(69)

and

π

2(l + 1)
+

A

B

1

l + 1
< T0

3,s <
π

2l
+

√
2

2

√

A

B − A

1

l
.(70)

Then, we can prove the following result:

LEMMA 4. For every s∈ (0, s0), problem (15) has at least4N solutions.

Proof. First of all, we recall that we denote byN the number of integersm such that 2m ∈
[

j + 5
2 +

√
2

2

√

A
B−A

j +1
j

1
π , l − 1

]

or 2m ∈
[

l + 2, j − 3
2 −

√
2

2

√

A
B−A

j +1
j

1
π

]

. Moreover, let

m1, . . . , mN be these integers.

Let s0 > 0 be as in Proposition 3 and let us fixs ∈ (0, s0). According to the discussion con-
tained in Section 2, the solutions to problem (15) correspond to the intersections of the support
of the curveT with the set

�
; more precisely, problem (15) has a solution of energyF(α) with

T(α) ∈ am if the pointsP0,s andP∞ belong to the opposite half-spaces generated by the plane
am. Analogous remarks are valid for the planesbm, cm anddm.

Now, leta∞
m = 2mx∞+(2m−1)y∞+2mz∞ and leta0

m = 2mT0
1,s+(2m−1)T0

2,s+2mT0
3,s.

In order to obtain a solution with the prescribed property, it is sufficient that

a∞
m < π < a0

m(71)

or

a0
m < π < a∞

m .(72)

Using (63), (67) and (68), we can explicitate (71) and (72); more precisely, we have

2m

l + 1
π < a∞

m <
2m

l
π(73)

and

4m − 1

2( j + 1)
π +

A

B

1

j + 1
< a0

m <
4m − 1

2 j
π +

√
2

2

√

A

B − A

1

j
.(74)

Therefore, (71) is fulfilled if


















4m − 1

2( j + 1)
π +

A

B

1

j + 1
≥ π

2m

l
π ≤ π ,

(75)

while (72) is satisfied if


















4m − 1

2 j
π +

√
2

2

√

A

B − A

1

j
≤ π

2m

l + 1
π ≥ π .

(76)
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Now, by some easy computations, it is easy to deduce that (76)and (75) are fulfilled for every
integerm1, . . . , mN . This proves that there exist at leastN solutions to (15) corresponding to
the planesam.

Analogous computations show that any line between the points P0,s and P∞ intersects the
planesbm, cm anddm for m = m1, . . . , mN .

Proof of Theorem 3.We give the proof for the case

j +
5

2
+

√
2

2

√

A

B − A

j + 1

j

1

π
≤ l − 1 ,

the other case being similar.

From Lemma 4 we infer that fors ∈ (0, s0) there are at least 4N solutions to (15); more
precisely, we can say that fors ∈ (0, s0) the pointP0,s is “over” all the planesak, bk, ck anddk
for k = m1, . . . , mN , while the pointP∞ is “under” all these planes.

Moreover, using the same argument developed in the proof of Lemma 4 it is easy to prove
the following:

Claim. For every s> s∗ let Zs := [ P∞, P0,s] be the segment from P∞ and P0,s; then for every
k ∈ � we have

Zs ∩ ak = Zs ∩ bk = Zs ∩ ck = Zs ∩ dk = ∅ .

Roughly speaking, the above Claim means that for large values of s (i.e. for s > s∗) there
are no planes belonging to the setSbetween the pointsP0,s andP∞.

By the continuity ofT0
i,s (i = 1, 2) as functions ofs, we can deduce that the pointP0,s,

ass increases, crosses the planesak, bk, ck anddk for k = m1, . . . , mN . Indeed, there are
s2 > s1 > s0 (s2 < s∗) such that ifs ∈ (s1, s2) the pointP0,s is under the planesam1 , bm1 ,
cm1 anddm1, but it is overak, bk, ck anddk for k = m2, . . . , mN : therefore, fors ∈ (s1, s2),
problem (15) has at least 4(N − 1) solutions.

An inductive argument implies that there exists0 < s1 < s2 < . . . < s2(n−1)−1 < s2(N−1)

such that for everys ∈ (s2i−1, s2i ) (i = 0, . . . , N − 1, s−1 := 0) the pointP0,s is “over” the
planesak, bk, ck anddk for k = mi+1, . . . , mN . Therefore, fors ∈ (s2i−1, s2i ), the support
of any curve connectingP0,s andP∞ must intersect at least 4((N − i − 1) + 1) planes and this
proves the result.

REMARK 2. Looking at the proof of Lemma 4, we observe that a more precise statement on
the number of solutions to (15) could be obtained; indeed, solving the systems (75) and (76), it is
possible to compute the exact range of integersm such that (15) has a solution withT(α) ∈ am.
An analogous remark holds for the planesbm, cm anddm.

We conclude the paper by considering a superlinear asymmetric situation; more precisely,
we assume that conditions

lim
x→+∞

f (x)

x
= +∞(77)

and

lim
x→−∞

f (x)

x
= γ(78)
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hold. As before, suppose that there exists an integerl ∈ � such that

l 2 < γ < (l + 1)2 .(79)

Moreover, let

lim
x→0

f (x)

x
= h(80)

and let us assume that there existsj ∈ � such that

j 2 < h < ( j + 1)2 .(81)

Finally, we denote byM the number of positive integersm such that 2m ∈
[

j + 5
2 +

√
2

2

√

A
B−A ·

· j +1
j

1
π

, 2l − 2
]

or 2m ∈
[

2l + 4, j − 3
2 −

√
2

2

√

A
B−A

j +1
j

1
π

]

.

We can prove the following:

THEOREM 4. Assume that f:
� −→ �

is a continuous function satisfying (16), (77), (78)
and (80); moreover, suppose (79) and (81) are satisfied. Then, for every B> A > 0 there exist
sk > 0 (k = 0, . . . , 2M − 2) such that for every s∈ (s2i−1, s2i ) (i = 0, . . . , M − 1, s−1 := 0)
problem (15) has at least4(M − i ) nontrivial solutions.

Some comments analogous to the ones developed in Remark 1 arevalid also in the present
situation.

The proof of Theorem 4 is exactly the same of the proof of Theorem 3; we only have to
give a Lemma which replaces Lemma 4. Indeed, with the same argument developed in the
asymptotically linear case, we are able to prove the following:

LEMMA 5. For every s∈ (0, s0), problem (15) has at least4M solutions.

Proof. The proof follows the same lines of the one of Lemma 4. Indeed,according to the
discussion contained in Section 2, problem (15) has a solution of energyF(α) with T(α) ∈ am
if the pointsP0,s and P∞ belong to the opposite half-spaces generated by the straight line am.
Let a∞

m = 2mx∞ +(2m−1)y∞ +2mz∞ and leta0
m = 2mT0

1,s+(2m−1)T0
2,s+2mT0

3,s. Again,
as in the asymptotically linear case, in order to obtain a solution with the prescribed property, it
is sufficient that

a∞
m < π < a0

m(82)

or

a0
m < π < a∞

m .(83)

Now, according to Proposition 1 and to conditions (77), (78)and (79), we obtain that

2m

2(l + 1)
π < a∞

m <
2m

2l
π .(84)

Moreover, as in the proof of Lemma 4, we have

4m − 1

2( j + 1)
π +

A

B

1

j + 1
< a0

m <
4m − 1

2 j
π +

√
2

2

√

A

B − A

1

j
.(85)
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Therefore, (82) is fulfilled if


















4m − 1

2( j + 1)
π +

A

B

1

j + 1
≥ π

2m

2l
π ≤ π,

(86)

while (83) is satisfied if






















4m − 1

2 j
π +

√
2

2

√

A

B − A

1

j
≤ π

2m

2(l + 1)
π ≥ π.

(87)

Now, by some easy computations, it is easy to deduce that (87)and (86) are valid form =
m1, . . . , mM .
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