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WAVELETS ON THE INTERVAL AND RELATED TOPICS

Abstract. We use an abstract framework to obtain a multilevel decoitiposof
a variety of functional spaces, using biorthogonal wavietetes satisfying homo-
geneous boundary conditions on the unit interval.

1. Introduction

Wavelet bases and, more generally, multilevel decompuositof functional spaces are often
presented as a powerful tool in many different areas of #texal and numerical analysis. The
construction of biorthogonal wavelet bases and deconiposibfL P(R), 1 < p < 400, is now
well understood (see [17, 11, 15] and also [5]).

We aim at considering a similar problem on the interi@ll). Many authors have studied
this subject, but, to our knowledge, none of them gives aatyiand general approach. For
example, the papers [3, 12, 13, 10, 22] deal only with ortmagonultiresolution analyses; in
[2] the authors study biorthogonal wavelet systems, but tleenot obtain polynomial exactness
for the dual spaces and fundamental inequalities such agetieralized Jackson and Bernstein
ones. Dahmen, Kunoth and Urban ([16]) get all such propertiet they address specifically the
construction arising from (biorthogonal) B-splines on thal line. While their construction of
the scaling functions is similar to ours, the wavelets afindd in a completely different way
using the concept of stable completions (see [8]). Finalyrecall the work of Chiavassa and
Liandrat ([9]), which is concerned with the characteriaatof spaces of functions satisfying
homogeneous boundary value conditions (such as the smﬁg(o, 1) = BSZ,O(O, 1),
see (2) for a definition) with orthogonal wavelet systems.

In this paper, we shall build multilevel decompositions wfiétional spaces (such as scales
of Besov and Sobolev spaces) of functions defined on the nteitval and, possibly, subject to
homogeneous boundary value conditions. Moreover, we dewoidt necessarily in an Hilbertian
setting (as all the papers cited above do), but more gepevalbeal with subspaces b (0, 1),
1< p<+oo.

Working on subintervald of the real line, we cannot find, in general, a unique function
whose dilates and translates form a multilevel decompmwsitf L P(1). Indeed, the main differ-
ence is the lack of translation invariance. We shall divide @onstruction in two steps. Firstly
we shall deal with the half-lin€0, +-00); secondly, in a suitable way, we shall glue together two
such constructions (of®, +00) and(—oo, 1)) to get the final result on the unit intervd, 1).

The outline of the paper is as follows. In Section 2, we rezzathe basic facts about abstract
multilevel decompositions and characterization of subspaln Section 3 and 5, we construct
scaling function and wavelet spaces for the half-line. leoti®a 4, we prove all the needed
properties, such as the Jackson- and Bernstein-type iligegiato get the characterization of
Besov spaces. To get a similar result for spaces of funcatisfying homogeneous boundary
value conditions (result contained in Section 7), in Seciove study the boundary values of
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the scaling functions and wavelets. In Section 8, we col#i@ur results to obtain a multilevel
decomposition of spaces of functions defined on the unitvat€0, 1). Finally, in Section 9, we
describe in detail how our construction applies to the Bagptase.

We set here some basic notation that will be useful in theedequ

Throughout the pape€ will denote a strictly positive constant, which may takdetiént
values in different places.

Given two functions; : V — R4 (i = 1, 2) defined on a se¥, we shall use the notation
N1 (v) < Na(v), if there exists a constaf > 0 such thalN; (v) < CNo(v), forallv € V. We
say thatNq (v) < Na(v), if N1(v) < No(v) andNa(v) < Np(v).

Moreover, for anyx € R we will indicate by [x] (or [x]) the smallest (largest) integer
greater (less) than or equalxo

Let @ denote eitheR or the half-line(0, +00) or the unit interval(0, 1). In this paper,
we will use the Besov spacéi%q(sz) as defined in [23] (see also [21]) and the Sobolev spaces
WSP(Q) (= ng(sz), unlessp # 2 ands € N), andH3(Q) = B3,(Q2). For the sake of
completeness, we recall the definition of Besov spﬁgg(sz). Forv e LP(Q),1< p < +o0,
let us denote b)A[] the difference of order € N\ {0} and stefh € R, defined as

r
Afu(X) = Z(—l)“rl <;>v(x +jh), VX € Qmh={XeQ:x+rheQ}.
j=0

Fort > 0, Ietwg) be the modulus of smoothness of ordetefined as

") (v, t) = sup || Al .
wp’ (v, 1) lmfﬁ” h””LP(Qm)

Fors > O0and 1< p, q < +o0, we sayv € B%q(Q) whenever the semi-norm

+00 1/q
—s () q dt
|U|B%q(g) = (/0 [t Sa)p (v,t):l T )

is finite, provided is any integer- s (different values of give equivalent semi-normB%q(Q)
is a Banach space endowed with the norm
IvliBgy) = IvliLe@) + IvliBs, (@) -
Moreover, we recall the following real interpolation retsul
@ (LP(), B‘E;lqm))%,q = BR(Q)

where 1< p,q < +ooand 0< s < .

Finally, we will be interested in spaces of functions sgtigjf homogeneous boundary value
conditions. To this end, le€3°(<2) denote the space @ (2)-functions whose support is a
compact subset a®; hereQ is either(0, +00) or (0, 1), i.e., a proper subset &. We consider
the Besov spaceB;q,o(Q) (s> 0,1< p,qg < +oo) defined as the completion 61‘80(9) in
Bq(2). One can show that, & < lp B3q.0(?) = Bpq(®), while, if s > % B30 is
strictly contained irB,SJq(Q). In this second case one also has

d 1
) BSq.0(?) = veBqu(Q):ﬁzOonaQifOSj <s—ot
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Moreover, fors > 0, 1 < p, g < +oo, let
3 qu,oo(g) = {v € Bpg®) : suppy € 5} :
then, ifs — % ¢ N,

@ B3q.00(%) = Bq ().

For these spaces, we have the real interpolation result:

S1 _ RS>
5) (LP@. B o) =B oo @.

/81,p

where 1< p,q < +ooand 0< sy < s1. In particular, if 1< p < 400, 0 < S < $1, We have

Wé%’p(sz) ifsp— 5 €N,
qu,o(Q) if ) e N,

®) (LP@). wWotP()
W P@) if sy s -5 ¢ N,

/5P

whereWy P (), W5, (©2) are defined similarly to the Besov spaces (2) and (3). We Veid a
consider negative values of Fors < 0,1 < p,q < 400, let us denote by’ andq’ the
conjugate index op andq respectively (i.e% + % = % é = 1). Then, we set

+
B3q(®) = (BE,Z,,O(Q))/ .

2. Multilevel decompositions

We will recall how to define an abstract multilevel decomfioni of a separable Banach space
V, with norm denoted by - ||, and how to obtain, using Jackson- and Bernstein-type al&ms,
characterization of subspaces\6f For more details and proofs we refer, among the others, to
[5, 6, 15].

2.1. Abstract setting

Let{Vi}ljeg (U =ZorJ ={j € Z: ] > jo € Z})be afamily of closed subspaces\¢f
such thaVj C Vjy1,¥j € J. Forallj € J, letPj : V — Vj be a continuous linear operator
satisfying the following properties:

(7) IPilizev.vy) =€ (independent of),
(8) Pjv=v, Yu e Vj,
©) PjoPjt1=Pj.

Observe that (7) and (8) imply
lv—Pjull <C inf |lv—ull, YveV,
UEVJ'
whereC is a constant independent pf ThroughPj, we define another set of operatdpg :

V — Vji1 by
Qjv = Pjy1v — Pjv, YveV,VjeJ,
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and the detail spaces

Wj :=ImQj, VieJ.
If J is bounded from below, it will be convenient to -1 =10 andeO,l = {0}; thus,
Qjo—1 = Pj, andWj,_1 = Vj,. In this case, let us also sét= J U {jg — 1}, otherwise
Z = J. Thanks to the assumptions (7)-(8)-(9), evédy is a continuous linear projection
on Wj, the sequenc¢Q)j Yeg is uniformly bounded inC(V, Vj1) and each spac#; is a
complement space &fj in Vj 1, i.e.,

(10) Vizi=VjeWw.
By iterating the decomposition (10), we get for any two imtej,, jo> € Z such thatj; < jo
j2—1
(11) Vi, =V, e | P Ww|.
i=i1
so that every element i, can be viewed as a rough approximation of itself on a coaves le

plus a sum of refinement details. Making some more assungiotthe operatorR;, we obtain
a similar result for any € V. In fact, if

(12) Piv—v as j— +oo,
and
13) Pjp—1=0 it7=(jeZ:j>joe),
PjU—)O&Sj—)—oo ity =2,
then
400
(14) v= P w.
j=infZ
and
(15) v= Y Qjuv. VveV.

j=infZ

The decomposition (15) is said to fgestable 1 < q < oo, if

1/q
(16) |v|x(2 Iijllq) . VueV.

j=infZ

For eachj € 7, let us fix a basis for the subspadéjs

a7 d)j:{gajkjkeléj},
and for the subspacé;
(18) \I/j={1//jk:kelﬁj},

with K} andK; suitable sets of indices.
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We can represent the operatésand Qj in the form

(19) Pjv = Z Vjk@jk » Qjv= Z Dk ¥k » YveV.

keKj keK

Thus, if (12) and (13) hold, (15) can be rewritten as

(20) V= Z Zf}jkl//jk, YveV.

jZiankelaj

The bases chosen for the spasgs(and Wj) are calleduniformly p-stableif, for a certain
1< p<oo,

Vi = { Z akPijk - {ak}keﬁj € Ep}
keKj
and

H > ak¢jk” =< |ty |, Vi €€,
keKCj

the constants involved in the definition efbeing independent df.

If the multilevel decomposition ig-stable, the bases (18) of eaety are uniformly p-
stable, (12) and (13) hold, we can further transform (16) as

q/p\ /4

i< | > | D 1jlP ., YveV.
izinfZ \kek;
2.2. Characterization of intermediate spaces

Let us consider a Banach spagec V, whose norm will be denoted by || z. We assume that
there exists a semi-norm |z in Z such that

(21) lvllz < vl + vlz, YveZ.
In addition, we assume that
(22) Vicz, VieJ.

Thus, Z is included inV with continuous embedding.

We recall that the real interpolation method ([4]) allowgaigefine a family of intermediate
space¥d, with0 < o < 1 and 1< g < oo, such that

ZCZgZZCZgllCV, O<ar<ar<l, 1<qp, 0 <00,

with continuous inclusion. The spa«Z@‘ is defined as

7% = (V, Z)gq = Vg = oot_‘"K tth
=N, 2)aq={veV:|vggi= A [ W, O+ <oor,
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where
K@, t) = inf{|lv—2z|| +t]|z|z}, veV,t>0.
zeZ

. . . 1/q
Za‘ is equipped with the norv|lq,q = (||v||q + |u|g,q) . We note that one can replace the
semi-normjv]q,q by an equivalent, discrete version as follows:

1/q
Wleg =< | D b*UK @, b71) ., YveVv,
jegd
whereb is any real number 1.

We can characterize the spazg in terms of the multilevel decomposition introduced in the
previous Subsection (see [5, 6] and also [20]). This gerremallt is based on two inequalities
classically known as Bernstein and Jackson inequalitiesour framework, these inequalities
read as follows: there exists a constant 1 such that th&ernstein inequality

(23) iz S, YveVy, VjieJ
and theJackson inequality
(24) lv—Pjul Sb Iz,  Ywez, VjieJ

hold. The Bernstein inequality is also known asrarerse inequalitysince it allows the stronger
norm|jv||z to be bounded by the weaker nofiml|, providedv € Vj. The Jackson inequality is
an approximation result, which yields the rate of decay efahproximation error by; for an
element belonging t@. Note that, if we assumé to be dense iV, then the Jackson inequality
implies the consistency condition (12). The following cerization theorem holds.

THEOREM1. Let{Vj, Pj}jc 7 be afamily as described in Section 2.1. Let Z be a subspace
of V satisfying the hypotheses (21) and (22). If the Bemsted Jackson inequalities (23) and
(24) hold, thenforalD <« < 1,1 < q < oo one has

z¢={veV: Y b¥Qju)9 < +oo
j=infZ
with
1/q
Wlag= | > b2 UQjui%| . wwezl.
j=infZ

If in addition both (12) and (13) are satisfied, the bases (@&ach W (j € J) are uniformly
p-stable (for suitabld < p < oo) and the multilevel decomposition (15) is g-stable, then th
following representation of the norm ogZhoIds:

q/p\ /4

Ivlla,q = Z A+ [ Y 19jlP . VveZ§ g =12,
jeg kelej
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or
q/p\ /a

Ivlle,q = IPjoull + Z b S [P . Wwezg,
jeg keléj
fT={jeZ:j>|joeZ}

Itis possible to prove a similar result for dual topologisphces (see e.qg. [5]). Indeed, Vet
be reflexive and f, v) denote the dual pairing between the topological dual spa@andV. For
eachj € 7, letPj : V/ — V' be the adjoint operator ¢% andVj = Im Pj c V'. Itis possible
to show that the familyV;, P;} satisfies the same abstract assumption&/pf P;}. Moreover,
let 1 < g < oo and letq’ be the conjugate index af (% + % = 1). SetZq® = (Za‘,)/, for
0 < a < 1, then one has:

THEOREM2. Under the same assumptions of Theorem 1 and with the nosatibthis
Section, we have

g% = {f ezt Y bt 9, < +oo},
i=jo

with

1/q
11750 = [Piofly + (Z bl ||5jv||3,,) . viezge

i=jo

2.3. Biorthogonal decomposition inR

The abstract setting can be applied to construct a biortregeystem of compactly supported
wavelets on the real line and a biorthogonal decompositidnfgR) (1 < p < oo). We will be
very brief and we refer to [5, 6, 11, 17] for proofs and moreadst

We suppose to have a couple of dual compactly supporteagdalictionsy € LP(R) and

7elP® (% + % = 1) satisfying the following conditions. There exists a coupldinite

real filtersh = {hn}ﬂlzno, h = {ﬁn}?:ﬁo with ng, ig < 0 andnq, fiy > 0, so thaty andg
satisfy the refinement equations:

ny Ny
(25) 9() =2 ) hnpx—n),  FO=+v2) Mag2x—n),
nN=ng n=fop
and

suppy = [no, 1], suppg = [fg, fig] .
From now on, we will only describe the primal setting, theghiat ~ construction following by
analogy; it will be understood that thepehas to be replaced by the conjugate ingéx
Setting, as usual, foj, k € Z, Pjk(x) = ZJ/p(p(ZJX — k), we have the biorthogonality
relations

(‘/’jk»ajk’>=/R</)jk(x)(7jk’(x)dx=5kk’» Vi.k,K €Z.
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Thus®; = {pjk : k € Z} are uniformly p-stable bases for the spaces

Vj =Vj®) = span plpjk 1k € Z} = § > akpjk : lewdkez € €P ¢
keZ

and, for any € Vj, we can write

U=Zak(ﬂjk=zijk‘/’jk with vjk = (v, Pjk)

keZ keZ

and

1/p
(26) i@y =< | D 10jkIP | -

keZ
We have
VicViz,  (Vvi=0. JVvi=L"®.
J€Z J€Z

We suppose there exists an integier 1 so that, locally, the polynomials of degree up.-te- 1
(we will indicate this seP| _1) are contained iV . Itis not difficult to show that must satisfy
the relation

27) L<ni—ng
(see [6], equation (3.2)).
We set
17
YX)=v2 Y gnp@x—n),  withgy=(-D"h1_y,
n=17ﬁ1

andy/jk(x) = 2/ Py (2Ix —k), V], k € Z. Then(¥jk, ¥j) = 8jj ki, ¥, i’ k. K € Z. The
wavelet spaces

keZ
satisfyL P(R) = ®jczW;. For anyv € LP(R), this implies the expansion

Wi = {Zak‘ﬁjk Hoklkez e@p}, VjeZ,

(28) v=>" Djk¥ik. with D, = (v, ¥jk) :
j,keZ

in addition, ifp = 2,
1/2
(29) vl 2y = ( > |ﬁjk|2) . Wwel?®.
j,KeZ

Next, let us recall that i € BEOq(R) (so >0, 1< p, g < +oo) then the Bernstein and Jackson
inequalities hold for every spaceé = Bqu(R) with 0 < s < min(sp, L). Indeed, we have

(30) lvlBs,®) < 25l er) - YveVj,VjeZ



Wavelets on the interval 131

and
(31) lv—PjvliLpmr) S 2—JS|u|ng(R) , Vv e Byq®), Vj € Z.

Thus, taking into account (1), we can apply the charactgoizd heorems 1 and 2 to the Besov
spaceZ.

3. Scaling function spaces for the half-line

Starting from a biorthogonal decomposition Rras described in Subsection 2.3, we aim to the
construction of dual scaling function spasgs(R*) andVj (R*) which will form a multilevel

decomposition ofP (R*) and of LP' (R*), respectively. For simplicity, we will work on the
scalej = 0 and again we will not explicitly describe the duatonstruction. Without loss of
generality, we shall suppode < L andfig < ng < 0 < n1 < fi; so that supp C suppg; if
this is not the case, it is enough to exchange the role of theapand the dual spaces.

From now on, we will append a suffi® to all the functions defined on the real line. Note
that ifk > —ng, (p%i have support contained in,[@-cc). More precisely

supp(pgi =[ng+k,ny+KkK].

Let us fix a nonnegative integérand sek® = —ng + §; observe that
k§ = min{k eZ: suppq%i c s, +00)} .

Let us define

(32) v — span{¢§(|[0’+oo) k> ké} ;

this space will be identified in a natural way with a subspdcéygR) and will not be modified
by the subsequent construction. To obtain the right scalpareVy (R+) for the half-line, we
will add to the bags{¢§k|[o,+m k> kg} of V() a finite number of new functions. These

functions will be constructed so that the property of repiditbn of polynomials is maintained.
In fact we know that for any polynomigl € | _1 and every fixek € R,

PX) =Y Bok ¢y () -
keZ

So, if{py:@=0,...,L —1}is abasis foi?|__1, for everyx > 0, we have

P = Y Gk

k>—n1+1
(33) ky—1
= Y Gk )+ D Cak@B(X) .
k=—n1+1 kzk(*)

where

(34) Cuk :=<p“a>0k=/Rpa<y>¢'(y—k>dy, @=0....L-1.
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Since the second sum in (33) is a linear combination of elésnefV (), in order to locally
generate all polynomials of degree L — 1 on the half-line, we will add to this space all the
linear combinations of the functions

ké‘fl
(35) ()= > ke ). @=0...,L-1.
k:—n1+1

REMARK 1. Let{pyle =0,...,L—1}and{p}le =0, ..., L—1} betwo bases dP| _;.
Let us denote by, and¢;; the functions defined by the previous argument aniothe matrix
of the change of basis & _4, then one can prove that

L-1
36 =D Mapdp
=0
for everya.

PrRopPosITION1. The functiongy, @ =0, ..., L — 1 are linearly independent.

Proof. If § is strictly positive, the linear independence of the boupdanctions is obvious.
Indeed, on [04], they coincide with linearly independent polynomials sl O let us observe
that the functionsoE)R*k| 0,-400) invqlved in (35) have staggered_ supp_ort, ie., sqa‘% 0,400) =
[0, n1+K], thus they are linearly independent. To obtain the linedependence of the functions
¢ it is sufficient to prove that the matrix

k=—n1+1,...,—ng—1
C=(Caklgmo,. L1 °

induces an injective transformation. Thanks to Remark 1carechoose any polynomial bases
to prove the maximality of raniC); if py(X) = x¥ for any«, one has

Cak = Z (Z)kﬂ M(x—ﬂ )

=0

whereM; = [ x'@(x)dx is thei-th moment ofy onR. Let v be a vector inR" such that
CTv = 0, then the polynomial of degrde— 1

L-1L-1

393 (ﬂ)”"‘ oy

B=00a=p
hasn; — ng — 1 distinct zeros; thus, recalling the relation (27), it isritically zero. This means
Mv = 0 whereM = (M;j) is an upper triangular matrix with;; = (f)ﬂj,i if j >i.Mis
non-singular, in fact déM) = (fR &'(x)dx)'— # 0 and the proof is complete. O

The building blocks of our multiresolution analysis @ +oo) will be the border functions
(35) and the basis elements'sf™). Using Proposition 1 and the linear independenc&anf
the functionspﬂoi, one can easily check that

ProPOsITION2. The functiong,,a =0, ..., L—landwélﬁ(ho +o0)? k> kg, are linearly
independent.
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Thus, it is natural to define
(36) Vo (RT) = span{¢e i =0,...,L -1 @ V.

We rename the functions in the following way

- Pk ifk=0,...,L—1,
(37) Yok = ¢%§:k8+k_L ifk>L.

Observe that

(38) V) = spanfgo k> L}

We study now the biorthogonality of the dual generatorsfR™) andVp (RT). Setting
(39) k* = max{kg, ki } = max{—ng + 8, —fig + 8},

let us observe thdipgy : k > k*} and{@gk : k > k*} are already biorthogonal. In order to get a
pair of dual systems using our “blocks” we have therefore &baimthe dimensions of the spaces
spanned by

(o :a=o,...,L—1}u{¢(ﬂ§j(:k=k3,... ,k*—l}
and by
T T ~R .| _ [* *
(Bpip=0.. . T-1uldg k=K. ...k -1}
This requiremeNnt can be translated into an explicit relatietweens and §: indeed, we must
havelL — kg =L - kg, ie.,
(40) §—s=LC—L+ng—ng.

Sincell > L, we getk* = —fig + 5.

REMARK 2. The two parametessands have been introduced exactly because we want the
equality of the cardinality of the sets previously indicht®n the other hand, we want to choose
them as small as possible in order to minimize the pertwhbadue to the boundary. Thus, it
will be natural to fix one, betweehands, equal to zero and determine the other one from the
relation (40). In particular, it — L+ fig — ng > 0, we seB = 0 ands = L-L+ fig — Ng; in
this caseS < L; whereas iflL — L + fig — ng < 0, we choosé = 0 ands = L — L + ng — fAg.

In analogy with the previous case, we will suppose

(41) 0<é<L.

Let us define the space/%B and\70B spanned by the so calldsbundary scaling functions
as

42) V& :=spanfpok:k=0,....,.L -1}, VE=span|@ok:k=0....,L -1},
and the spaced; andV} spanned by thinterior scaling functionsas

(43) Vv = span{gox i k> L}, V) = span{gok 1 k > L}.
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Thus we have
+) _ vB | 7. (pt+) — 7B &~ !
(44) VoRT) =V eVy. VWRY)=VieV;.

Note that, ifL < L, the subspac¥ is strictly contained iV (*) (see (38)). In other words,

some of the functions iv(*) (which are scaling functions aR supported in [0+oc0)) are
thought as boundary scaling functions, i.e., are includeﬂo'?. As we already observed, the

basis functions o¥/} andV} are biorthogonal. Recalling (35) and (37), itOk < L — 1 there

exist coefficientsymy such thatpoxk = Y < akmgagkm; thus, ifl > L, due to the position of
the supports, we have

(oK @01} = Otkm/ <p(ﬂ$m<7£1$k*+|_[ dx =0,
R s
m<k*
~ L
ie, Ve c (VA) . The only functions that we have to modify in order to obtaiorthogonal
systems are the border ones. The problem is to find a ba‘s’@ psﬁay{nOk ‘k=0,...,L— 1},

and one o/ B, say{iig :1 =0,..., L — 1}, such that

{(nok» 701) = Skl > k,l=0,...,L—-1.

Settingnok = Zr';;%) dkmeom andijok = Zr';];(l) dim@om, and callingX the Gramian matrix of
components

(45) Xk = (wok,> @0l » k,|=0,...,t—1,

this is equivalent to the problem of finding tiox L real matrices, sap = (dgm) andD =

(dkm), satisfying

(46) DXD' =1.

A necessary and sufficient condition for (46) to have sohgits clearly the non-singularity
~ eyl

of X, or equivalentIyVOB N (VOB> = {0}. If this is the case, there exist infinitely many

couples which satisfy equation (46); indeed if we choﬁsaon-singular then it is sufficient to

setD = (XDT) ~. We know at present of no general result establishing theriifility of

X, although it can be proved, e.g., for orthogonal systemdamslstems arising from B-spline
functions (see Section 9 and also [16]). From now on we wgliage this condition is verified
and we suppose (renaming if necessary) that} k>0 and{@g }1>o are dual biorthogonal bases.

Let us prove that the functiongy, k > 0, form ap-stable basis 0¥/ (R+).
PrRoPOSITION3. We have

VoRT) ={v="> okpok : {aklken € £P
k>0

with

47) loliLp@+) = Howkenller, Vv e Vo (RT) .
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Proof. Let v be any function invp (R*); by (44) it can be written as = vg + v| with vg =
Zl'(‘;oloekq)ok andv; = ), . akpok- The sequencéuy},. i is p-summable thanks to the
“inclusion” of Vd in Vo(R) and by (26), so the first part of the Proposition is proved.

To show (47), let us se€ = max{|suppeok| : k =0, ..., L — 1} and note that

L-1
(48) 1B P po.k) = D lel® S IV p sy -
k=0

Indeed, since for anil € N\ {0}, the application

N
X = (X0, .., Xn) € RNTL — I3 xngon ’
n=0 LP(0,K)

defines a norm o®RN+1 (for a proof see, e.g., [5], Proposition 6.1), and every twonms on

a finite dimensional space are equivalent, the first equicalés proven. The second inequality
follows from

p

lo P =

/ _ (@K (X) dx
suppgok

p/p
/ } Iv(X)Ide-</ 3 |¢0k(X)|de> < ||v||Ep(R+)'
SuppFok SUppPGok

Thus, by (48) and the-stability of pgx on the line (26), we have

IA

1P pgey = 108 + 011 oy S 1WBIT a1+ 101 1P oy = D Lol P
k>0

On the other hand, we have

lvillLeo,k) = llv —veliLe,k) = llvliLe.k) + llvelliLeo.k) < IvliLer+)

and so

o egey S 11120k + 101 120K o0

1o 10,1 + 101K o0y S 101D pRe) -
Then

L-1
Do laadP = el + D lend® < B IE (o k) + 101 1D pgry S 1T pge) -
k>0 k=0 k>

and the result is completely proven. |
Similarly, itis possible to show that the dual basy k=0 of Vo (RT) is a p'-stable basis.

Let us introduce the isometrigg : LP (R*) — LP(R") and fj LM (RT) — L (RT)
defined as

(49) T Ho=2/Pt@lx), (Tl =2/"f@lx).
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and sebjk = Tjpok, Pjk = fj ok, Vj, k > 0. We define thg -th level scaling function spaces
as
(50) Vi (RY):=Tj (Vo (RY)).  Vj (RF):=Tj (Vo (RY)).

Let us now show that these are families of refinable spaces.

PROPOSITION4. For any j € N, one has the inclusions;(R") c Vji1(R") and
Vi (RT) € Vj41(RT).
Proof. As before, we will only prove the result for the primal segtin

By (50), we can restrict ourselves o= 0 and show tha¥p (R*) C Vq (RT). Fork > L,
rewriting (25), one has

1.1
ok (X) = wéRfkéJrk,L(X) = 2(2 ") Z hm—2(it +k—L) (T1<p(ﬂ$m) (x).
m

As the filter {hp} is finite, we see that the first non vanishing term in the sumesponds to
¢]C13§:k6‘+8+2(k7L)’ which belongs to/ (*) for anyk > L, so that the function on the left hand side
belongs tovy (RT).

Suppose novk < L; without loss of generality we can choopg(x) = x¥ for any«, so
that, by (33), (34) and (35), one has, for 0,

2YP20k = 2YP 20+ Y cum@in(2X)
mzkg
= 00+ Y (Taohn) 0.
mzk(*)
Again, using (35),
gok = 27C VP lop+ 3 ametn | = D ckmvten
m=>Kkg m=>kg

—(k+1,
2P oy + Z Ok ks+m—LP1m | — Z Ok, k3 -+m—L ¥om »
m>L m>L

which completes the proof. |

REMARK 3. Note that, choosing the basis of monomialser_1, therefinement equation
for the modified border functions MOB takes the form

(51) po =27 YPT 0 + 3 Horel
kzkg
where
1_1
(52) Hyk = Cakz_(a+l/p) - 2(2 p) Z Cal hk72l ,
Izkg

involving only the respective modified border function\lﬁ.
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4. Projection operators

Following the guiding lines of the abstract setting, we wéfine a sequence of continuous linear
operatorsPj : LP (RT) — V; for j € N, satisfying (7), (8) and (9).

By (50), it is obvious that the definition d?y gives naturally the complete sequence, by
posingPj = Tj o Pgo Tj’l, whereT; is the isometry defined in (49). Fore LP (R*), letus
set

Pov =) iokpok.  with g = / v(X)gok () dX.
k=0 R
We will first prove thatPy is a well-defined and continuous operator.

PrROPOSITIONS. We have

1PV I o ey = D BokI® S IVl psy . Vv e LP(RY).
k>0

Proof. Let us write

£-1
Pov =) Tiokpok + »_ Jok®ok -
k=0 kzt

Observe that, by the Holder inequality,

-1 -1

s 1P p > P — p
kZ|v0k| < ol o) kX:”QDOkHLp/(Rﬂ = CllvlPp ey -
=0 =0

Thus, by thep-stability property on the line (26),

2 1ool® S0l p ey -
k>0

This impliesPov € Vg (RT) and the result follows by (47). O

SinceT; is an isometry for anyj, we immediately get (7). Equality (8), follows by the
biorthogonality of the systems. Equality (9) is a consegeeaf the inclusionV; (R+) C
Vi1 (RT), proven in Proposition 4. Similarly, one can define a seqeiefadual operators,

P : LF (R*) — Vj (R*), satisfying the same properties of the primal sequence.

4.1. Jackson and Bernstein inequalities

The main property of the original decomposition on the rad ive have inherited, is the way
polynomials are reconstructed through basis functiongs iBhwhat we call the approximation
property, and it is fundamental for the characterizatiofuottional spaces. In this section we
will exploit it to prove Bernstein- and Jackson-type inel@ies on the half-line and then apply
the general characterization results of the abstrachggffiheorems 1 and 2).

As in Section 2.2, we consider a Banach subspacef LP (R*) and suppose that the
scaling functiony belongs toZ. In the following, Z will be the Besov spacB,SJOq (RT), with
so > 0and 1< p,q < +oo.
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PROPOSITIONG. For any0 < s < g, the Bernstein-type inequality
(53) lvlgs () S < 2ls lvlcpmey,  YveVj(RY), VjeN,
holds.
Proof. Applying the definition of the operatdr;, it is easy to see that
. _ ols S + i .
(54) |T] le?)qGR+) =2! |U|B%q(R+) , Vv e qu (R ) , V] e N;

so, by (50), it is enough to prove the inequality foe= 0. Proceeding as in Proposition 3, we
choosev € Vg (R+) and writev = vg + v|. Let us estimate separately the semi-norms of the
two terms. We have

p -1 p

L—

5 G | P

IvBIBs R+) = ZUOkfﬂOk < Z|v0k||¢0klsgq(R+) $Z|v0k| ;
B5q(RT) k=0 k=0

the constants depending on the semi-norms of the basisdosand the equivalence of norms

in RL. Observe that, is an element oo = Vo(R); using the Bernstein inequality (30) and
the p-stability on the line (26), we get

1/p

v IBs&+) S ot llLeary = | D 1okl
k>L

Thus, by (47),
p p p - p
|U|B’§q(R+) < <|UB|BBq(R+) + Iy |B%q(R+)) < ”{ka}kEN”gp S ||v||Lp(R+) .
O

Next, we prove the generalized Jackson inequality, folhgithe same ideas used in show-
ing the analogous property (31) on the real line (see [5]).

PROPOSITION?. For eachO < s < min(sg, L), we have
(55) v = Pjvll pg+) S 2*J'S|v|B%q(R+), Vv e Bjq (RT), Vj eN.
Proof. As before (see (54)), itis enough to prove that
lv—PovliLp®+) S Vg3, (R+) > Vv € Byq (RT).

Let us divide the half-line into unitary interval®;" = Uy ol wherel; = [I,1+1], and estimate
lv—PovllLr(1,)- Recalling that polynomials up to degree- 1 are locally reconstructed through
the basis of/p (RT), it is easy to see that for amye P|__; there existagq in Vo (RT) such that
vg = gonl. Then, using (8), we have

lv—a+ Pog — PovliLeq))
lv—allLeq) + 1Pow — DllLeqy) -

lv— PovliLeqy)

IA
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Moreover, from the compactness of the supports of the baaigibns, settingy = {k € N :
supppok N 1| # @} andJ; = Uker SUppgok, for any f € LP (RT), one gets

. p
IRl hg, = / Y fokwok (0| dx
hTer
5 p p
< (E;%X”f||Lp(supp$0k)||§00k|||_p’(R+)> /I<Zl<p0k(X)l> dx
I YkeR,
< P
SO Iflleeg) -
Thus
lv— PovliLeqy S llv—dliLeeg) vgePL_1.
Taking the infimum over alj € | _1, we end up with
(56) lv— Povll pr+y S inf v —dllLe) -
o S ot @

A local version of Whitney’s Theorem (see [21]) for a givereival of the real lineJ, states
that, for anyv € LP(J),

(57) inf v —qllLpy SwP, ),
gePr—_1

el

o 1 131 Lo 1/p
w'-(v,J) = —/ dh(/ |AR | dX)
2131 J-3 J(Lh) h

andJ(s) = {x € J : x+s € J}. Observing thab* = |J;| (independent of) and using (57),

we have
> (v, J|)>p
1>0

DN
— dh [AFv[Pdx
2h* J_px g;: any "

sup |A,';v|pdx
lh|<h* JR*

(“)%L)(v, h*)) i
(L

wherewp ) is the modulus of smoothness (see [21]). To conclude thefpitois enough to
observe that, for any £ q < oo,

1/q

L isq(, (L), o—j\4 -

wp” (v.h*) < (%2’ (o w.27) ) = [ulgg, @) -
je

where

N

lv — PO”l'Ep(R+)

N

SinceBjq (R*) is dense irL P (RT), the following property immediately follows.

COROLLARY 1. The uniorujcyVj (R) is dense in IP (R™).
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5. Wavelet function spaces for the half-line

We now have all the tools to build the detail spaces and theslets/on the half-line. Recalling
the abstract construction, we start from leyek 0 and look for a complement spa#, (R*)
such thatvy (RT) = Vo (RT) & Wp (R*) (note that the sum is not, in general, orthogonal) and
Wp (RT) L Vp. To this end, let us consider the basis function¥'pfR™) and let us write them
as a sum of a function ofp (R™) and a function which will be an element ¥l (R™). Since

we have based our construction on the existence of a madtittacomposition on the real line,
we report two equations that will be largely used in the sk(pe, e.g., [6]):

11
R 55 - R ~ R
(58) @ = 2P 2 Z hk—2megm + Z Ok—2m¥om | -
Ag<k—2m=<ny 1-n;<k—2m<1-ng
11 1+2m—Afg
(59) 'pg%m = 22° Z gl—2m§0]11$-
I=1+2m7ﬁ1

Interior wavelets. SinceVp (R*) contains the subspasé*) defined in (32)V; (R*) contains
the subspacg,V(H) = {<pﬂl§i‘(\[0’+oo) -k = k§}. Considering equation (59), let us determine the
integerm such that all the indicélsin the sum are greater or equalk@. This is equivalent to
2m > ki +fip — 1, so we set

k* 4+ —1
(60) m > (%—‘ =m§.
Since, (see (2.9) in [11]),

(61) > hnhp_ok=dk.  VkeZ,
nez

it is easy to see thalt; — ng is always odd; thus, by (39),

g —ng—1 )
62 mi= ——"F— .
(62) o= 2+ 5]
Let us set
. . )
(63) Wy = span{ wéRm‘[0,+m) ‘m> mg} ;

we observe thaw(') can be identified with a subspaceW(R), thus it is orthogonal t&/ and
W) < Wo (RF). The functions
— R
1ﬁOm = WOm’[o,Jroo)

are callednterior wavelets
Border wavelets Let us now caINVOB a generic supplementary spaceVUé in Wo (R+) and

B _ B
setvV® = TvE.

PrRoOPOSITION8. The dimension of the spaceo% mg
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Proof. Let K > 0 be an integer such that oK [+oc0) all non-vanishing wavelets and scaling
functions are interior ones. Then

VlBeaspan{<pﬂfi‘(:k§ <k<-ng+2K}=
[VOBeaspan{ga%i:kS <k< —n0+K}]@[W[)B@span{wékm:mggmg K —1}],

since, by (58), the first interior wavelet used to genev%fe_noJFZK is wggK_ Then the result
easily follows. ' O

To build WE we need some functions that, addedg), will generate both2 and the
interior scaling functions that cannot be obtained in (58hgV ")) andW}. Thanks to (51),
we only have to consider the problem of generating intergalisg functions. Let us now look
for the functionsy}y, generated byl , for m > k¥, and byy & , with m > mj. Let us work
separately on the two sums of (58):

(@) we must haven > (k — fi)/2. Imposingm > k§ and seeking for integer solutions, we
get

‘o
(64) { Z”ﬂ > k= —no+3;

(b) similarly, we obtairm > (ng — 1 + k)/2. Again, we wantn > m#%, so we must have

np—1+Kk
[70 > + —‘ >mg.
Using (62), this means

ngp—1+k —ng+h;—1 )
(65) [ > Wz > +15|

Since (64) and (65) have to be both satisfied, we obtain thafivlg condition

(66) kz—2n0+ﬁ1+28—1=2k5‘+ﬁ1—1.

Indeed, this can be seen considering all possible situmtibor instance, ifg andé are even,
thenfiq is odd and{%w = % If k satisfies both (64) and (65), so ddes 1; thus we can look for

no—1+k | _ n0—1+k+;
2 - 2 27

the leask as an even integer. In this ¢ Efzﬂ—‘ = k;;l + % and{
and (66) easily follows. The other cases are dealt with airyil Let us set

(67) K=2kb+fp —1,

so that " |
kT +
span{¢1k|[0’+oo) k> k} cvPow.

We are left with the problem of generating some functiony'pfR™), preciselyq)ﬂfi( with k§ <
k < k. Observe that we have to generate kg functions using a space of dimensiory =

k;ko—‘. In fact one can show that one out of twﬁ*‘(, fork = k*,...  k—1, depends on the

previous ones through elements of level zero.
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PrROPOSITIONY. Lete=0if §iseven,e= 1if §isodd. Foralll <m < mg — e, one has

R I I
91 %_2ml[0.1o00) € SM® Vo ®Wp .
with R
Sn = Span{‘/’l,R72|+1’[0,+oo) 1<l < m} .
Proof. Let us sefi; — ng = 2r + 1 withr > 0O (recall thatfi; — ng is odd). Indeed, it is not

difficult to see that for = 0 there is nothing to prove. Observe that, by (58), for bayZ, we
have

11 3
g”ﬂfﬁlez (p 2) > Ak_21_2n%0n + > Gc_o1_onVien

n>ks— nzmg+L%J—|
(68) 1.1\, "
_o(3-3) (hﬁrlga%‘:kSA + hﬁ173¢%§:k8—l+1 T
- R ~ R
L TRR A NTTRTA
and
R _o(3-3) i X 0 on
P1k-2+1 =2 Z hg_2141-2n%0n + Z %-21-+1-2nYon
>kt~ nzm{ﬁ{ﬂfl
(69)

=2(T13‘%)(ﬁ

R - R
®Poks— A —200 ks 141t -

~ R N R
+ ginOJrle,mEHVJ—I + gfn071w0,m§,+L%J7I+1 +.. ) .

2

Let us prove the stated result by inductionranForm = 1 we consider the linear combination

R R
Moy g_p + Mo 191 gy

= 2( ll)i%) (hnoﬁﬁlfl + hno—i-lﬁﬁl) ¢§k8—1 + Z Cln‘/)g

n>ks
+ (hnogfno + hno+1gfno+1) wggm*JrLéJfl + Z dlnd%% s
0 2 anB+L%J

for some coefficients;, anddy,. Writing (61) withk = %21“ # 0 and

> Gnhn_2k =0
nez

(see (3.29) in [11]) wittk = —ng, we have

hnohfi;—1 + hng+1ha, =0, NngG—ng + hng118-ne41 = 0.
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Thus we have
h“O‘pH1§:R72|[0,+oo) + h”0+1¢§R71|[0,+oo) € Vo & W .
and the result follows becaubg, # 0.
Setnow 1< m < mg — e. As before, we choose a certain linear combination of thirgra

functionswﬂﬁi% andﬁ%ﬁul with 1 < | < m. Then we use (68), (69) to represent them

through functions of level 0. More precisely
R R R R
Mno®y k_om + Mo+191 k_omya t -+ Pnotam—203 g5 +Mngr2m-101 ¢4
~ = R
= (hnohﬁl—l + hno+lhﬁ1) 90.k3-m
= = = = R
+ (hnohﬁ173 + Png+1ha,—2 + hngg2ha, —1 + hno+3hﬁ1) 0.k3 ~m+1
+...
= - - R
+ (hnohﬁ1—2m+1 + Png+1ha,—omi2 +-- - + hn0+2m—lhﬁl) Y0k -1
+ ) cmnegy
(70) n>kg
+ (hn O-ng + hng+10-n, 1) WR
0Y—No o+19—no+ 0!m3+L%J_m
hng8—no—2 + Nno+18-n0—1 + Pnot28-ng + hno+36- R
+ ( no9—ng—2 + Nng+19—ny—1 + Nng+29-ng + Nng+39 no+1) WO,mS+L%J_m+1
+...

hngG—no— hng+10—no— .. +h G R
+( no9—ng—2m+2 + Nng+19—ng—2m+1 + - - . + Nng+2m—29 n0+1) wO,m(*)Jrl_%Jfl

+ Z dmn‘/f%% )
nzm3+|_%J
for somecmn anddmn. The coefficients of the functiom%gksfm, e g%%kéfl can be written
as
(71) > hnhn o = dok -
nez
with k = nO*glJ“l, o ”O*gﬁl +m—1=—r,.--,—r +m— 1, respectively. Similarly, the
coefficients of the functiongR ... yR can be written as
o3 ]-m " Vo] 31

Z hn_2kGn =0,

nez
with k = —ng, - -- , —ng — m + 1, respectively. Observe now that< m§ —e=r + L%J If

m <, all indicesk in (71) are negative, so

R R
(hno(pl,R—Zm + hn0+1(p1,R—2m+1) ‘[O,+oo) €
R R
- (h”0+2¢1,R72m+2 + hn0+3‘/’1,R72m+3 T

R R | |
+ hno+2m—2§01,E_2 + hno+2m—1§01,E_1) ‘[0 to0) +Vy & W



144 L. Levaggi — A. Tabacco

and the result is proven by induction sirfgg, # 0. If m > r (i.e.,§ > 2), we get

R R
(h”("/’lﬁfzm + h“0+1‘p1,R72m+1) ’[O,Jroo) ©
R R
- (h”0+2‘/’1,R72m+2 +Mng13¢01 % omyg T

+ hno+2m—2§0inE_2 + hno+2m—1§0ﬂfi_1)‘
11
+2( P 2)

Therefore, by the induction hypothesis, we only have to ptbat

[0,+00)

R !
90.k5—mr [0, 400) + Vo & Wo -

R | |
90,4 —m+ |[0,+00) € Sm® Vg & Wp -

We immediately gem —r <m§ —e—r = L%J so we show that

R 3
(72) ¢0’k8_| |[0’+oo) €S, 1<l< LEJ ;

by induction onl. If | = 1, from (69) we have

1_1)
_ s ")hmfﬂlﬁk—ﬂ[o,m) + 2 canétnlpo.+o0)
n>ks
+ Z dln¢§1|[o,+oo) € Sl@v(; GBW(I)
n=mg+|5]-1

R
‘/’o,kg—1|[o,+oo)

(for somecy, anddyy). If | > 1, using induction, we similarly get

1 1
R _ 37%)r R R
“oig-l0.400) = 2< p)hnlwl,k_z|+1’[o,+oo>+ 2. An¢onlo, o)
n>kg—I+1
R | |
+ Y dnVonlp e €SO Vo B W

nomgt 4]

(againgp andd, are fixed coefficients). Thus we have proven (72), and thisptetes the
proof. |

Using this result, setting

. R _ R _ *
(73) Yot =5 a il ~ P (Faptloe) . 1= M
and
(74) WE = (yomIm=0,...,m—1},
we get

(75) Wo (RY) =wWE e W,
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with Wc'] as defined in (63). With the same process we can build
Wo (BT) = WS @ W, .

As for the scaling functions, we must find a couple of bioritrog) bases for the spacé (RT)
andWy (]R+). To fix notations, we suppose thaf, < m{ (otherwise we only have to exchange
r’ﬁg andmg in what follows). From the biorthogonality properties oe tieal line we have

(Yom. Yon) = dmn. vm,n > mg.
Note, however, that the modified wavelets we have definedatenger orthogonal to the inte-
rior ones. In fact, from definition (73), it follows that

~ _ R ~ _ ko k
(¢Om» 1/IOI’I) - <('01,E72(m67m)+1’ 1/IOI’\> ) m= 0» sy mO 1, n=> mO .

Using the refinement equation for wavelets on the real lireeeasily show that

~ K+fp—1
(Yom. ¥on) =0, n=0,... Mj—1 ifmz[%—‘z:m*

(76)

~ k -1
(Yom:Yon) =0, m=0,....,my—1 ifnz’r—’—nizl—‘ = ",

Observing tham* > m*, it is sufficient to find twam* x m* matriceskE = (emr) andE = (Ens)
such that

m*—1 m*—1
<Z emrlﬂor, Z éjswos>=5mn, Vm,n=0,...,m*—1.
r=0 s=0

CallingY them* x m* matrix of component¥mn = (¥om, %n), this condition is equivalent to
EYE' =1.

Again, it is enough to prove that the matrikis non-singular. In fact this follows from the
assumed invertibility of the matriX (defined in (45)); since

detY £ 0 iff Wo (R')NWo (RY)" = (0},
we immediately get the result observing that
Wo (RT) N W (RY) " € vy (RT) N Vit = (0}

Moreover

Wo (RF) < V'
indeed, for any € LP (RT), we have
(v — Pov, Gok) = ok — Y _, ol (¢al» Pok) = 0.
>0

Finally, for anyj € N, we set

(77) W (RT) = TjWo (RT) and W (RT) = TjWp (RT) ;
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settingy'jm = Tj¥om, ¥jm = Tj¥om for everyj, m € N, itis easy to check that the biorthog-
onality relations _

(¥jm, ¥jn) = 8jjsdmn. vj,j’,mn =0,
hold. Moreover, with a proof similar to the one of Propositi&y one has

PROPOSITION10. The baseslj = {y/jm : m € N} of W; (R), are uniformly p-stable
bases and the basas; = {/jm : m € N} of W; (R*), are uniformly p-stable bases for all
j>0.

Moreover, let us state a characterization theorem for Bepaues based on the biorthogonal
multilevel decompositiorfV;j (RT) ., V; )0 as described in Section 3. With the notation of the
Introduction, for 1< p, q < +oo0, let us set

XSy = { Bf,igw) , el
P (Bpy ®%)) it s<o,
and denote b (R*) the space of distributions.

THEOREM3. Letg € Bf,oq (R*) forsomeg > 0,1 < p,q < +oo. Foralls € S:=
(—min(sy, L), min(sp, L)) \ {0}, the following characterization holds:

{“ELp(R+):ijozsqj(Zkzolijp)Q/p<+oo} if s>0,

s _ _
Xpq = {v eDRM):ve X%q, for somes € S and

2202 (Do ok P)YP < 400} if s <0,

where ~
I bjk = (v, ¥jk) If s>0,
k= ﬁjkz(v,wj'k) if s<0.

In addition, for allse S andv € X%q, we have

a/p\ 1/d
(78) lxsg =< | 22259 [ D 1vjklP

i=0 k>0

Finally, if p = q = 2, the characterization and the norm equivalence hold foriradlex s €
(= min(sp, L), min(sp, L)).

Proof. It is sufficient to apply Theorems 1 and 2 (since the Bernstaimd Jackson- type in-
equalities have been proven in Proposition 6 and 7, resedgtiand remember the interpolation
result (1). O

REMARK 4. Itis possible to obtain a characterization result usirggdame representation
of a functionv € X%q forPoth positive and negative Indeed, ifp € B,Sjoq(R), Q€ B,S;Oq(R),
given anys € (—min(%, L), min(sg, L)) \ {0} andv = Zj,kzo DjkVik € X‘Bq, we have the
same norm equivalence as in (78) witfx instead ofvjk (see, e.g., [14]). We also observe that,
in general§y < 59 and thus Theorem 3 gives characterization for a largeniater
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6. Boundary values of scaling functions and wavelets

The aim of this section is to construct scaling functions watelets satisfying certain boundary
value conditions, in view of the characterization of spaaésing from homogeneous boundary
value problems. More precisely, we will see that it is pagstb construct a basis of scaling
functions in such a way that only one scaling function is mers at zero both for the primal and
the dual systems. A similar property will be shown for the alavbasis.

Let us start considering the scaling function case. Obstaeall the interior scaling
functions are zero at zero, while the value at zero of the 8agnscaling functions depends
upon the choice of the polynomial badip,} of P _1 and the biorthogonalization. If we
start with a properly chosen polynomial basis (ejg.(x) = x%), only ¢gg and ggg (see
(35)) do not vanish at zero. Thus, the idea is to biorthogpedirst the functions in the sets
®* = {pok :k=1,...,L -1 and®* = {Pok : k=1, ..., L — 1}, so that the resulting sys-
tems contain functions which all vanish at zero. To do thisnsed to check the non-singularity
of the Gramiam matrix (pok. Po') }, w—y T, Obtained from the matrix (see (45)) by
deleting the first row and column. As for the non-singuladfythe whole matrix we have to
check this case by case. For example, for the B-splines taiseproperty is satisfied due to
the total positivity of the associated matik (see Proposition 12 and also [16]). From now on
we suppose this property is verified and biorthogonatiZeand ®*. For simplicity, we will
maintain the same notations for the new basis functions.

The second step consists in the biorthogonalization ofdhgtete systems, keeping invari-
ant the functions irb* and®*. Precisely, we have the following general result.

PROPERTY1. Let®* and &* be the two biorthogonal systems described above. Consider
® = {poo} UD*. @ = {Fpo} U D

and suppose that the matriXpok, o)), K. k' = 0, ... ,L—1is non-singular. Then, it is
possible to construct new biorthogonal systems spannimgdme sets ab and @, respectively,
in which only the two functionggg, ¥gg have been modified.

Proof. Let us set

f-1 f-1
# i ~ ~
P50= Y akeok +@0po0.  Pgo= D Aol + PoBoo-
k=1 =

We want to prove that we can firg, g, k,1 =0, ..., L-1so thatxgBg # O,

(79) (0ho- Po) = (vok. Pgg) =0.  klI=1,....L-1,
and
(80) (¥00 Pop) = L-

Imposing the conditions (79) and using the biorthogonaiftthe systems*, o*, we get
ak = —aolpoo Pok)  and B =—po@a. o).  kI=1...C-1.
Substituting these relations in (80), we end up with thefitien

f-1

Kapfo=1  where K= <¢oov Poo— Y _ (@o0. <P0k>§30k>-
k=1
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To conclude the proof it is enough to show that# 0. Indeed, ifK = 0, the functiory = @go—
Zl'(‘;ll(aoo, vok)Pok € (spand*), would also be orthogonal tay; moreover, € spand and

the system® and® are biorthogonalizable, i.e(.span<1>)L n (s~pan5) = {0}; this would mean
n = 0, contradicting the linear independence of the function®.i |

Next we consider the wavelet case. Suppose we have comstroimirthogonal wavelets
{¥jkIk=0s {¥jk )= Starting from biorthogonal scaling systefagk k=0, {@jk } - o SUch that

(81) ?j0(0@j0(0) #0 and ¢jk(0) =gjk@0 =0, Vk>1,Vj=>0.

Recalling thatpj ;1 k = T1gjk, One has

(82) 0j+1.000) = 2YPgi0(0),  Fj11.00) =2YP F0(0).

We want to prove that we can modify the wavelet systems aralrobtproperty similar to (81).

To this end, we report general observations about biorthaldmases that can be found in the
Appendix of [7]. LetS, § be two spaces of functions defined on someSsetith biorthogonal
baseskE = {n}jc, and E = {mhec (herel is some set of indices) with respect to some
bilinear formg(:, -)g on S x S. LetF = hec andF = {7} };c. be two other bases such that
V= Kimmm, U = K|mnm, whereK andK are suitable generalized matrices. It is easy to check
that, to preserve the biorthogonality, we must hifve= KT

LEMMA 1. With the previous notation, suppose the elements of Efarde continuous
functions, then the quantity
D om0, VxeQ
lel
is invariant under any change of biorthogonal basis.

Proof. Let us denote bye(x) the vector(n) (X)), and similarly forg(x), f(x), f(x) Note
that f (x) = Ke(x) and f (x) = K~ T&(x); thus

Y w00 =0T F0 =e)TKT - KTT8(x) = e()T - 8x) = Y n ()i (x).
lel lel

We will apply this result to our biorthogonal wavelets.
COROLLARY 2. Suppose the scaling functiopsg are continuous oiR, then

(83) > Yok(O Yok (0) # 0.
k>0

Proof. LetS=V; (RT), S= Vl Q}U Using the relation&/1 (R*) = Vo (RT) & Wo (RT)
andV (Rt) = Vo R+ ) ® Wo (R), we have two couples of biorthogonal basesand S:

E = {pwlk=0. E = {P1clk=0 aﬂdF {Pok}k=0 U {¥oklk=0, F = {Poklk=0 U {Vok} o
Using the previous Lemma, (81) and (82), we have

1000710(0) = 2¢00(0)#00(0) = $00(0F00(0) + Y _ Yok(0) Yok (0) -
k>0
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Thus 5
> vok(0)Yok(0) = ¢oo(0F00(0) # 0.
k>0
Od

This implies that we can always fird> 0 such than//()k(O)%k(O) # 0. Without loss of
generality, we can suppoge= 0. Let us define, fok > 1,

0
(84) V() 1= Yo(X) zg';io; Yo%) = Yok(X) — Cevioo(X)
and
- - v (0) ~ - ~
(85) T 0 1= Toex) — KO T 00 = Toe®) — o).
Y00(0)

Observe that/ja"k(O) = ‘ng(o) = 0, Vk > 1; moreover only a finite number of wavelets are
modified, since all the interior ones vanish at the origin.ughto end up our construction, it
is enough to show that it is possible to biorthogonalize ystesns{v§ },-, and {vg },- ;-
Indeed B B

LEMMA 2. The matrix Y = {{y§,. ‘ZSI)}ET;ll is non-singular.

Proof. Letus seM = m* —1;fork,| =1,..., M we have
x ey | I+l if k=1
<‘”0k"”0|>—{ o0 if k1.

Itis easy to see that* has only two different eigenvalues; = 1, with multiplicity M — 1 and
A2 =1+Y M, k&, with multiplicity 1. Thus, by Corollary 2,

M 070
dety* =1+ otk = 2 k=0 Yok OV ok(0)
k=1 ¥00(0)¥00(0)

Finally we construct our wavelet systems as described ipd?ty 1.

7. Characterization of Besov spaceﬁ%?)q’00 (RT)

We now prove that we can build multiresolution analyses_cﬁ’r(R*) of functions satisfying
homogeneous boundary value conditions in zero. This canohe 8y choosing sufficiently
regular scaling functiong and@ and by building boundary functions starting from particula
bases of polynomials.

Supposey € BEOq(R) (or WS-P(R)) andS = [sg] < L. Let us consider the basigx) =
x% of the monomials, and let us build the functions on the bognda in (35). We remove the
first Sboundary functions and define (see (42))

(86) oVE (RT) = span{gok : S<k < L — 1} := spanyy
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and
(87) oVE (RT) = span{@ok : S<k < L — 1} := spany®p .

The systemsg®g and o®o can be biorthogonalized if the matrigX = ((¢ok. Poi)), With
k,1 =S, ..., L —1isnon-singular. For example, this condition is verifiedhia B-spline case
(see Proposition 12 and also [16]).

As before, we set
oVj (RT) :=Tj (Vo (R)) and oVj (RT) :=T; (oVo (R")).
Let us defingPy : LP (RT) — oV (RT) as

(88) oPov = Z YOk POk » Yve LP (R+) .
k>S

For any levelj > 0, let us set
(89) oPj=Tjo OPOOijl.

Similar definitions hold for the dual operatq;ﬁj. These sequences of operators satisfy the
requirements (7), (8) and (9). Following the same constods in Sections 3 and 5, we build
a multiresolution analysis that will be used to charactetlze Besov spacdszq,oo (see (3)).
For the scaling spaces the situation is basically the samfact we have only dropped some
functions on the boundary.

Many results hold in this context; for example, singé (R*) is a subspace ofp (R*),

one has
1/p

lollipgey =< [ D okl ]
k>S

for anyv € gV (R*) (see Proposition 5).
We note that while the number of boundary wavelets does ravigda they are defined in a
different way since their definition depends on the projegt. In fact, one has

R _ R
oVoms-k = ¢1,R72k+1’[0,+00) 0P0¢1,E—2k+1’[0,+oo)
s-1
R ~
Yo,my—k + IZ <¢1,R—2k L1 %0 > ¢ol
—0
—_ *
fork=1,... , Mg

7.1. Bernstein and Jackson inequalities

In order to use the characterization Theorems 1 and 2, werile Jackson- and Bernstein-type
inequalities for Besov space&f)q o (RT) or Sobolev spacewg’ P(RT). Let us observe that

the Bernstein inequality follows from (53), becaugé (R™) c Vo (R™) and ng,o R") c

B%q (R*) with the same semi-norms. It only remains to prove a Jackgme-inequality, that
cannot be deduced directly from (55) because it dependseoprtfjectors (88).
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PrRoOPOSITION11. For each s suchthdd < S<s < g < L, we have
lv = oPjullLp@s) S 2*15|u|53q(R+), Yo e B;q,O(RJ“) , Vj eN.

Proof. We can proceed as in Proposition 7, the only difference bemthe first intervaly =
[0, 1] and on the space of polynomials to be considered. Indeedcomsider the subspace
oPL_1 0of P__4, i.e., the space of polynomials which are zero at zero witthair derivatives
of order less tharB. Then, inequality (57) holds for eveny € BS_ ,(R*) (straightforward

pa.0
modifications of the proof of Theorem 4.2, p. 183, in [19]). |

Finally, we state a characterization theorem for Besovmﬁéq 00 (R+) based on the

biorthogonal multilevel decompositiofaV; (R*) . oV;j (R*)) as described before. This result
immediately follows from Theorem 1.

THEOREM4. Lety € Bf,oq (R*)forsomed < sp <L, 1< p,q < oo. Forall0 <s < s,
we have

a/p
+) _ +\ . ' .
(90) Bpg.oo(RT) = {veLlP(®Y): Y 2591 "joP <00
j=0 k=S
and
a/p\ ¥/P
O Julgg,@+y =< | 222V | X 10jklP . YveB3go0[®").
j=0 k>S
REMARK 5. Since, forang e R, 1 < p,q<oo,%+% =%+$=1,

/ —
(Bqu,oo (R+)) =By (R*),

(see [23] p. 235) the extension of the previous theorem taltiaé spaces (negatie gives the
same result of Theorem 3.

REMARK 6. As usual, ifp = q = 2, s can assume the value 0. In this particular case, if
0<g < L,weqget

Hgo (R)

{v e LZ(RY): D 3" 2B < 400

j=0k>=s
HS(RT) if s—3¢N,
HS(RY) if s—3eN,
and

1/2
(92) llps@ey = [ XD @+28hij?| . v e H§(RT).
j>0k>=S
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REMARK 7. In Theorem 4, we have described how to characterize thédyfaihBesov
spacest)q 00 (R") using a scaling fuctiop € By (RT) and removingS = [sg] boundary

scaling functions. Of course, one can remove dly S boundary scaling functions and pro-
ceed as before to construct a multiresolution analysishitndase we characteriﬁgq 00 (R+)

with 0 < s < Sand ngyoo (RT) N Byq (RT) for everyS < s < .

8. Biorthogonal decomposition of the unit interval

In the previous sections, we have carried out the constructi a multiresolution analysis taking
into account the presence of a boundary point. Now we wankpto it to build a multilevel
decomposition of the bounded intery@l 1). Intuitively one easily sees that, provided the scale
is finer enough, the presence of the left boundary point doemfiuence the construction at the
right one. More precisely, we will choose a leyglsuch that

Vj(@©0,1 =span{<p}?) o eIL} @ sparfpjk : K eL}easpan{(pﬁ) r eIR} , Vi >o,

and (pﬁ) are constructed independently.

Here, and from now on, the suffi®) or (1 refers to the boundary point 0 or 1, respectively.
The basic idea is to start from two multiresolution analy@eshe half-linedg = (0, +00)
andly = (—o0, 1), and paste them together in a suitable way to get the spgebsl). In turns,
to obtain a decomposition dn, we first consider a decomposition &7 = (—oo, 0) and then
we translate it of a unit.
@ .

Let us choose two bases fBf _1 andPy_;, say{ p(gl) ta=0,...,L-1} and{qﬂ
B =0,....L -1}, possibly different from the ones used to buil® and V.2 for (0, +o0).
Fixing two nonnegative integefig andd, let us define the boundary functions as in (35)

with Z; # ¢ and where the boundary functio IO)

_ —np—1
&0 = > CélﬁwéRk(X), x<0, Va=0,...,L—-1.
k=1-81—n1

Matching the dimensions ofp (R™) andVp (R™), we obtain a relation similar to (40):
(93) 51—81=E—L—(ﬁ1—n1).

Recalling the definition of the isometrid@$ (see (49)), we define

_ 0 0~
Vv (R )=span{¢}a ) =T (¢é )) ta=0,... ,L—l}@span{galﬁ‘( :k§—61—n1};
using the operator : X — X — 1, we translate the origin into the right edge of our interliails
easy to see that, calling

2l —ng—1

Dy _ D R

MO _Z Cokai PO X =1,
k=2l 4+1-8§1—ny

we have

Vj(—oo,l)zspan{qﬁ(l) :oz:O,...,L—1}®span{<p]j1§(:k§2j —51—n1}.

o
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As said before, we wish to maintain the situation at the twoniary points decoupled. This
means we want to have at least one interior functiol/jii0, 1). This requirement yields the
condition .

—ng+8g <2 —81—nyg.

Keeping also into account the dual relation, we have to seiassest levelg such that for all
i >io

(94) 21 > max{ny — ng + 8o + 81, iy — fig + 0 + 31}
By (40) and (93), we have
(ﬁl—ﬁ0+SO+Sl) —(—-no+do+d)=2(C—L)>0,
so we must fix
(95) jo = [logz (A1 = Ro+ 8o +51) |
Thus, we have, fof > jo,

Viey = spanfgR k=0...L-1}a

@

span{¢jk:k=—n0+50,... 2] —81—n1}®

2]

span{zp(l) =0,...,L— 1},

and similarly for the dual space%* (0,1). By construction, and thanks to the choicejgf all
the biorthogonality properties are maintained. Finallg,abserve that

dimVj(0,1) =2 +2L +1—8y— 81—y +fg,  ¥j = jo.
Sincer +1(0,1) = Vj(0,1) ® W; (0, 1), this implies
dimw; 0, 1) = 21+ — 2] — 21,
Going through the construction in Section 5, one easily @sdhat, setting

mﬁ:: [61+n1—n0+1"‘
2

one has
{¢§(:k52(—51—n1)+ﬁ0+1} gVo easpan m< mo}

As before, one out of tweq, k = =81 — nq, ..., 2(—81 — ny) + fig + 2 is linearly dependent
modulusVg (R™) on the previous ones; observe then that Wil (R~) = mf — 1. Therefore,

defining the projection operat(ﬂéof) onVp (R™) and

w(o ) . R ‘ _ P(Oi) R ’
omi—k #1,—-2(814n1)+no+2k | (—00,0] 0  %1,-2(51+n1)+no+2kl(—00,0]°
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one gets
Wo (R™) = Span{ngm ‘m< -mg} o span{wé?ni) m=1,...,mf— 1} ,

As in Section 5, we observe that

2

2(ng +481) —ng — ﬁo—‘ e _ai
5 = .

~ 2(A1 +381) —ng — N
(Wng,WOn>=O’ Vn:l,...,rﬁg—l if mg—’r(nl—ml) No no—‘zz—m#

<1//0m,{/7£1§1>=0, vm=1,...,mp—1 if nf—{

Through the operator; we can definaVj (R~) = T;Wo (R™) and operating with the trans-
lationt : X — x — 1 we finally have

Wcon ~spafof,  msone2l]o
@ span{wj(#):zr(Tjwég)>:m=1,_”,mg_l}.

As for the scaling spaces, we can paste the wavelet spacashalegel and we obtain

W;j (0, 1) span{v/(o):m=0,_,_,m3_1}@

jm
) span{l//jm m=mg, ... ,2j —mg}ea

span{wjgﬁ:m:l,... ,mg—l}.

S

The minimum leveljg must be taken in order to avoid intersection between theastgppf the
modified border wavelets corresponding to two differentesddt is not possible to have an easy
and general formulation for it, but it will be computed later for B-spline scaling functions.

REMARK 8. Obviously, we can state characterization theorems fersttales of Besov
spacest,q(O, 1) and ng,oo(o, 1) (see Theorems 3, 4 and subsequent Remarks). Moreover,
we can also characterize spaces of functions possiblyiysagigifferent boundary conditions at
the two edges 0 and 1.

9. The B-spline multiresolution

We will detail here the construction of biorthogonal systeom the unit interval starting from
B-splines multiresolution analyses @ Using particular properties of the basis functions, we
will show that in this case we can prove, for example, the siogularity of the matrixX (see
(45)).

For any positive integelr > 0, let be a particular B-spline function of ordemith in-
teger nodes (see, e.g., [18] for definition and basic pr@srt More precisely, denoting by
[X1,...,Xn] f then-th order divided difference of with respect to the nodes, ... , X, and
by f+(x) = max f (x), 0}, we have

oV =1[0,1,....1] ( —x— BJ)?



Wavelets on the interval 155

It is easy to see that

wwot =[5 [} s

and thatp() satisfies the refinement equation

Ny
My — - 0
Vo= 3 2 ( )w XK.
22 (y 1)

k= No

It has been shown in [11] that for any inteder | such that + ['is even, there exists a function

&'("r) € L2(R) that satisfies the conditions in Section 2.3 with= | andL = I. Thisis a
compactly supported function such that

supp@'("r) = [— {%J —41 E—‘ +1- 1} =: [fig, A1] .

Let us consider a fixed coup(dz,D and drop, for a moment, the superscripts. Substituting in
(40) we must have

(96) So—dg=1—1.

Forl = I = 1, we obtain the orthogonal Haar basis and we can obviouslgsady = §g = O.

In all the other cases observing ttnqt— no —1=2+1-3>1,we can choosé = 0 and

so=1—1,sokj = J +1 — 1 andkj |_ | +T - 1. Considering now (93), we must have
Sl — 81 =1- I N

and again we can s&f = 0 ands; = | — 1. Recalling the definition (94), we must fix a coarsest

level jg such that
o> {Iogz (I +2 - 2)—‘ .
Forj > jo, we have (see Section 8)

Vi0,1) = span{qs(o) O,...,I—l}ea
I ; |
R.k= A |
® span{wjk-k—l+L2J 1,...,20 —1 ’72—‘—#1}@
@ span{qs(l) O,...,I—l}.

From the definition, it is easy to see that, for any integer
g0(2p)(—X) — (p(Zp)(X) . (p(ZP-‘rl)(l —X) = (p(ZP-‘rl)(X) i vx eR,
and these properties are in fact maintained by the dualibsti.e.,
FEPD (0 =g®PD0e0, G = P00, vxeR,

for any suitable integdr. These symmetry features can be used to generate boundatjofis.
In fact, if we choosqo(l)(y) (0)( y), it is straightforward to see that

p00-x =90, vxe[o.1].
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As we said before, in this setting we can prove that the mateiget imposing the biorthogonal-
ity conditions is non-singular. To simplify matters, we rgaout the proof for the left boundary
point only, the other one being treated analogously. Toghd let us set

Ly ¢5{? k=0,....1—-1,

Pok - (/)()l =1, ,|~—1,
0|5 ]+k-1

(N ~ _

¢(§k) = 3 k=o0,....-1,

and r J
X(1,1) = ((%ﬁlﬁl),‘7c(>lél)>>a,ﬂ:0,,_,,r—1 '

We prove now a stronger proposition about the non-singylafi X (1, D As the proof is done
using induction, when necessary we will keep track of theeddpnce of the variables on the
parameter$ andi. Let| = {i1,...,ix}andJ = {j1,..., jk} be two selections of row and
column indices, respectively; suppdse- 2,in # im for everyn = mandjn1 = jn + 1. Let
us denote b)le the corresponding x k submatrix ofX(I , F)

PROPOSITION12. For all |, [ > 1 such that I+ [ is even, every submatrix ijlk'_'.'_’i{(k of
X(l,T) is non-singular.

Proof. Using biorthogonality on the line and the definition of thedified functions on the
boundary, it is easy to see that| if- |,

<¢§L;r),¢‘c(,l§r)> = <¢§L;r), (~)ﬁ>

foralla, p=0,... ., —1and any coupld, ).

We will prove the result by induction dn First, let us compute the matrix arising from the
Haar functionp = x[o,1), that is the B-spline of orddr= 1 (observe that in this case we do not
have boundary scaling functions of the form (35)). Choosidg = 0 one has

(L) 0DV _ [ sy — 2 1 _ B+l
<9000l !900’3 >—/; XdX—m[((X‘l’l) — :|

p+1 -
X 7 we have, for any odf,

SettingPg(x) = BT

X(L1) = (Pgle+1) ~ Pg(@), 401"

If, starting from the second, we add to any row the precedirgand multiply thej-th column
by j, we obtain the Vandermonde matNk = Mij) = @il), fori, j =1,...,l. Itiseasyto
prove thatv has the property stated in the proposition, which in turnmsehatX (1, 1) has it as
well.

Secondly, let us suppose that the proposition is true fomalricesX (n, m) with n + m
even anch < | and observe that

<‘ﬂ((>lo§r)’ (.)ﬂ> _ _<%¢(§L’I~)’ pﬂ>_
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Using the relations (see [18])
V0 =0 Pocniy — ! Pxtrg -1
(wherers = smod 2),

(1) () B B W

Cok’ ~Cak—1=%C 1kor_,
(see (34)) and the definition of boundary functions, we get

a (D) S1-1T4D

ﬁ‘/’c(Jo) %ol o

d (I -+ () a-vivy

37¢(Ea)— 00 4—1  — Cok—1%04 a=1...,1-1,
—1,1+1 1,141 -

3 oy ) — el Y w=I,. .. -1

We can now express the elementsBf= X(I f) in terms of the components & = X( —
1,1+ 1) as follows:

s () o
|
Bop = 571 —@Pa-ipr1tCuid Mg @=L 1-1,
Ao(—l,ﬂ-‘rl_l—AOl.,ﬂ"rl a:l,...,l—l.

With elementary operations on the rows and column8pfve can transform it in the matrix
obtained deleting the last two rows and the first and lastronlof A. These operations never
switch columns and do not affect the singularity of the ménafrB, so by induction the proof is
complete. |

Finally, with the notation of Section 8, we have

L+0 1 +r N I +T
and
_ [—1 -1

wherer is 1if| is odd, zero otherwise. Then itis easy to see ffiat< m* for all couples(l, I).
Therefore, one has

W;©0,1) = span{l//(o):mzo,... ,m*—l}ea
® span{l//jm:mzm*,... ,2) —m*}ea
D span{xp(l):mzl,...,m*—l}.

Since the border wavelets have the same supports at the tyes,ede only have to compute
their lengths once. From the definition (74), substituting values ohg, fig andnq, fi1 it is
easy to see that
max |suppy© (a2
§ ’ ppw ’_2 2I+2+r 3).

m=0,..., m*—
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To obtain a lower limit forjg it is enough to require*2jo (2f+ 3—2' +r — 3) < % In this way
we obtain

(97) jo > (Iogz <2f+ 3—2| +r— 3) + 1—‘ )
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