
Rend. Sem. Mat. Univ. Pol. Torino
Vol. 57, 2 (1999)

L. Levaggi – A. Tabacco

WAVELETS ON THE INTERVAL AND RELATED TOPICS

Abstract. We use an abstract framework to obtain a multilevel decomposition of
a variety of functional spaces, using biorthogonal waveletbases satisfying homo-
geneous boundary conditions on the unit interval.

1. Introduction

Wavelet bases and, more generally, multilevel decompositions of functional spaces are often
presented as a powerful tool in many different areas of theoretical and numerical analysis. The
construction of biorthogonal wavelet bases and decompositions ofL p(

�
), 1< p < +∞, is now

well understood (see [17, 11, 15] and also [5]).

We aim at considering a similar problem on the interval(0,1). Many authors have studied
this subject, but, to our knowledge, none of them gives a unitary and general approach. For
example, the papers [3, 12, 13, 10, 22] deal only with orthogonal multiresolution analyses; in
[2] the authors study biorthogonal wavelet systems, but they do not obtain polynomial exactness
for the dual spaces and fundamental inequalities such as thegeneralized Jackson and Bernstein
ones. Dahmen, Kunoth and Urban ([16]) get all such properties, but they address specifically the
construction arising from (biorthogonal) B-splines on thereal line. While their construction of
the scaling functions is similar to ours, the wavelets are defined in a completely different way
using the concept of stable completions (see [8]). Finally,we recall the work of Chiavassa and
Liandrat ([9]), which is concerned with the characterization of spaces of functions satisfying
homogeneous boundary value conditions (such as the SobolevspacesHs

0(0,1) = Bs
22,0(0, 1),

see (2) for a definition) with orthogonal wavelet systems.

In this paper, we shall build multilevel decompositions of functional spaces (such as scales
of Besov and Sobolev spaces) of functions defined on the unit interval and, possibly, subject to
homogeneous boundary value conditions. Moreover, we do notwork necessarily in an Hilbertian
setting (as all the papers cited above do), but more generally we deal with subspaces ofL p(0, 1),
1< p < +∞.

Working on subintervalsI of the real line, we cannot find, in general, a unique function
whose dilates and translates form a multilevel decomposition of L p(I ). Indeed, the main differ-
ence is the lack of translation invariance. We shall divide our construction in two steps. Firstly
we shall deal with the half-line(0,+∞); secondly, in a suitable way, we shall glue together two
such constructions (on(0,+∞) and(−∞,1)) to get the final result on the unit interval(0, 1).

The outline of the paper is as follows. In Section 2, we recallsome basic facts about abstract
multilevel decompositions and characterization of subspaces. In Section 3 and 5, we construct
scaling function and wavelet spaces for the half-line. In Section 4, we prove all the needed
properties, such as the Jackson- and Bernstein-type inequalities, to get the characterization of
Besov spaces. To get a similar result for spaces of functionssatisfying homogeneous boundary
value conditions (result contained in Section 7), in Section 6 we study the boundary values of
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the scaling functions and wavelets. In Section 8, we collectall our results to obtain a multilevel
decomposition of spaces of functions defined on the unit interval (0, 1). Finally, in Section 9, we
describe in detail how our construction applies to the B-spline case.

We set here some basic notation that will be useful in the sequel.

Throughout the paper,C will denote a strictly positive constant, which may take different
values in different places.

Given two functionsNi : V → �
+ (i = 1,2) defined on a setV , we shall use the notation

N1(v) � N2(v), if there exists a constantC > 0 such thatN1(v) ≤ C N2(v), for all v ∈ V . We
say thatN1(v) � N2(v), if N1(v) � N2(v) andN2(v) � N1(v).

Moreover, for anyx ∈ �
we will indicate bydxe (or bxc) the smallest (largest) integer

greater (less) than or equal tox.

Let � denote either
�

or the half-line(0,+∞) or the unit interval(0, 1). In this paper,
we will use the Besov spacesBs

pq(�) as defined in [23] (see also [21]) and the Sobolev spaces
Ws,p(�) (= Bs

pp(�), unlessp 6= 2 ands ∈ � ), and Hs(�) = Bs
22(�). For the sake of

completeness, we recall the definition of Besov spaceBs
pq(�). Forv ∈ L p(�), 1< p < +∞,

let us denote by1r
h the difference of orderr ∈ � \ {0} and steph ∈ �

, defined as

1r
hv(x) =

r∑

j =0

(−1)r+ j
(

r

j

)
v(x + jh), ∀x ∈ �rh = {x ∈ � : x + rh ∈ �} .

For t > 0, letω(r )
p be the modulus of smoothness of orderr defined as

ω
(r )
p (v, t) = sup

|h|≤t

∥∥1r
hv
∥∥

L p(�rh )
.

For s> 0 and 1< p, q < +∞, we sayv ∈ Bs
pq(�) whenever the semi-norm

|v|Bs
pq(�) =

(∫ +∞

0

[
t−sω

(r )
p (v, t)

]q dt

t

)1/q

is finite, providedr is any integer> s (different values ofr give equivalent semi-norm).Bs
pq(�)

is a Banach space endowed with the norm

‖v‖Bs
pq(�) := ‖v‖L p(�) + |v|Bs

pq(�) .

Moreover, we recall the following real interpolation result:
(
L p(�), Bs1

pq(�)
)

s2
s1

,q = Bs2
pq(�)(1)

where 1< p,q < +∞ and 0< s2 < s1.

Finally, we will be interested in spaces of functions satisfying homogeneous boundary value
conditions. To this end, letC∞

0 (�) denote the space ofC∞(�)-functions whose support is a
compact subset of�; here� is either(0,+∞) or (0,1), i.e., a proper subset of

�
. We consider

the Besov spacesBs
pq,0(�) (s ≥ 0, 1< p, q < +∞) defined as the completion ofC∞

0 (�) in

Bs
pq(�). One can show that, ifs ≤ 1

p , Bs
pq,0(�) = Bs

pq(�), while, if s > 1
p , Bs

pq,0(�) is

strictly contained inBs
pq(�). In this second case one also has

Bs
pq,0(�) =

{
v ∈ Bs

pq(�) :
d j v

dx j
= 0 on∂� if 0 ≤ j < s − 1

p

}
.(2)
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Moreover, fors ≥ 0, 1< p, q < +∞, let

Bs
pq,00(�) =

{
v ∈ Bs

pq(
�
) : suppv ⊆ �

}
;(3)

then, ifs − 1
p /∈ � ,

Bs
pq,00(�) = Bs

pq,0(�) .(4)

For these spaces, we have the real interpolation result:
(

L p(�), Bs1
pq,0(�)

)
s2/s1,p

= Bs2
pq,00(�) ,(5)

where 1< p,q < +∞ and 0< s2 < s1. In particular, if 1< p < +∞, 0< s2 < s1, we have

(
L p(�),Ws1,p

0 (�)
)

s2/s1,p
=





Ws2,p
00 (�) if s2 − 1

p ∈ � ,
Bs2

pq,0(�) if s2 ∈ � ,
Ws2,p

0 (�) if s2, s2 − 1
p /∈ � ,

(6)

whereWs,p
0 (�), Ws,p

00 (�) are defined similarly to the Besov spaces (2) and (3). We will also
consider negative values ofs. For s < 0, 1 < p, q < +∞, let us denote byp′ andq′ the
conjugate index ofp andq respectively (i.e.1p + 1

p′ = 1
q + 1

q′ = 1). Then, we set

Bs
pq(�) =

(
B−s

p′q′,0(�)
)′
.

2. Multilevel decompositions

We will recall how to define an abstract multilevel decomposition of a separable Banach space
V , with norm denoted by‖·‖, and how to obtain, using Jackson- and Bernstein-type inequalities,
characterization of subspaces ofV . For more details and proofs we refer, among the others, to
[5, 6, 15].

2.1. Abstract setting

Let {Vj } j ∈� (� = � or � = { j ∈ � : j ≥ j0 ∈ �}) be a family of closed subspaces ofV
such thatVj ⊂ Vj +1, ∀ j ∈ � . For all j ∈ � , let Pj : V → Vj be a continuous linear operator
satisfying the following properties:

‖Pj ‖�(V,Vj )
≤ C (independent ofj ) ,(7)

Pj v = v , ∀v ∈ Vj ,(8)

Pj ◦ Pj +1 = Pj .(9)

Observe that (7) and (8) imply

‖v − Pj v‖ ≤ C inf
u∈Vj

‖v − u‖ , ∀v ∈ V ,

whereC is a constant independent ofj . ThroughPj , we define another set of operatorsQ j :
V → Vj +1 by

Q j v = Pj +1v − Pj v , ∀v ∈ V , ∀ j ∈ � ,
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and the detail spaces
Wj := Im Q j , ∀ j ∈ � .

If � is bounded from below, it will be convenient to setPj0−1 = 0 andVj0−1 = {0}; thus,
Q j0−1 = Pj0 and Wj0−1 = Vj0. In this case, let us also set� = � ∪ { j0 − 1}, otherwise
� = � . Thanks to the assumptions (7)-(8)-(9), everyQ j is a continuous linear projection
on Wj , the sequence{Q j } j ∈� is uniformly bounded in�(V,Vj +1) and each spaceWj is a
complement space ofVj in Vj +1, i.e.,

Vj +1 = Vj ⊕ Wj .(10)

By iterating the decomposition (10), we get for any two integers j1, j2 ∈ � such thatj1 < j2

Vj2 = Vj1 ⊕




j2−1⊕

j = j1

Wj


 ,(11)

so that every element inVj2 can be viewed as a rough approximation of itself on a coarse level
plus a sum of refinement details. Making some more assumptions on the operatorsPj , we obtain
a similar result for anyv ∈ V . In fact, if

Pj v → v as j → +∞ ,(12)

and
{

Pj0−1 = 0 if � = { j ∈ � : j ≥ j0 ∈ �},
Pj v → 0 as j → −∞ if � = � ,(13)

then

V =
+∞⊕

j =inf �
Wj ,(14)

and

v =
∑

j ≥inf �
Q j v , ∀v ∈ V .(15)

The decomposition (15) is said to beq-stable, 1< q < ∞, if

‖v‖ �


 ∑

j ≥inf �
‖Q j v‖q




1/q

, ∀v ∈ V .(16)

For eachj ∈ � , let us fix a basis for the subspacesVj

8 j =
{
ϕ j k : k ∈ �̆

j

}
,(17)

and for the subspacesWj

9 j =
{
ψ j k : k ∈ �̂

j

}
,(18)

with
�̆

j and
�̂

j suitable sets of indices.
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We can represent the operatorsPj andQ j in the form

Pj v =
∑

k∈ ˘� j

v̆ j kϕ j k , Q j v =
∑

k∈ ˆ
�

j

v̂ j kψ j k , ∀v ∈ V .(19)

Thus, if (12) and (13) hold, (15) can be rewritten as

v =
∑

j ≥inf �

∑

k∈ ˆ
�

j

v̂ j kψ j k , ∀v ∈ V .(20)

The bases chosen for the spacesVj (and Wj ) are calleduniformly p-stableif, for a certain
1< p < ∞,

Vj =
{ ∑

k∈ ˘
�

j

αkϕ j k : {αk}k∈ ˘� j
∈ `p

}

and ∥∥∥∥
∑

k∈ ˘
�

j

αkϕ j k

∥∥∥∥ �
∥∥∥{αk}k∈ ˘

�
j

∥∥∥
`p
, ∀ {αk} ∈ `p ,

the constants involved in the definition of� being independent ofj .

If the multilevel decomposition isq-stable, the bases (18) of eachWj are uniformly p-
stable, (12) and (13) hold, we can further transform (16) as

‖v‖ �




∑

j ≥inf �



∑

k∈ ˆ
�

j

|v̂ j k |p




q/p



1/q

, ∀v ∈ V .

2.2. Characterization of intermediate spaces

Let us consider a Banach spaceZ ⊂ V , whose norm will be denoted by‖ · ‖Z . We assume that
there exists a semi-norm| · |Z in Z such that

‖v‖Z � ‖v‖ + |v|Z , ∀v ∈ Z .(21)

In addition, we assume that

Vj ⊂ Z , ∀ j ∈ � .(22)

Thus,Z is included inV with continuous embedding.

We recall that the real interpolation method ([4]) allows usto define a family of intermediate
spacesZα

q , with 0< α < 1 and 1< q < ∞, such that

Z ⊂ Zα2
q2 ⊂ Zα1

q1 ⊂ V , 0< α1 < α2 < 1 , 1< q1,q2 < ∞ ,

with continuous inclusion. The spaceZα
q is defined as

Zα
q = (V, Z)α,q =

{
v ∈ V : |v|qα,q :=

∫ ∞

0
[t−α K (v, t)]q

dt

t
< ∞

}
,
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where
K (v, t) = inf

z∈Z
{‖v − z‖ + t |z|Z} , v ∈ V, t > 0 .

Zα
q is equipped with the norm‖v‖α,q =

(
‖v‖q + |v|qα,q

)1/q
. We note that one can replace the

semi-norm|v|α,q by an equivalent, discrete version as follows:

|v|α,q �


∑

j ∈�
bαq j K (v,b− j )q




1/q

, ∀v ∈ V ,

whereb is any real number> 1.

We can characterize the spaceZα
q in terms of the multilevel decomposition introduced in the

previous Subsection (see [5, 6] and also [20]). This generalresult is based on two inequalities
classically known as Bernstein and Jackson inequalities. In our framework, these inequalities
read as follows: there exists a constantb > 1 such that theBernstein inequality

|v|Z � b j ‖v‖ , ∀v ∈ Vj , ∀ j ∈ �(23)

and theJackson inequality

‖v − Pj v‖ � b− j |v|Z , ∀v ∈ Z , ∀ j ∈ �(24)

hold. The Bernstein inequality is also known as aninverse inequality, since it allows the stronger
norm‖v‖Z to be bounded by the weaker norm‖v‖, providedv ∈ Vj . The Jackson inequality is
an approximation result, which yields the rate of decay of the approximation error byPj for an
element belonging toZ. Note that, if we assumeZ to be dense inV , then the Jackson inequality
implies the consistency condition (12). The following characterization theorem holds.

THEOREM 1. Let{Vj , Pj } j ∈� be a family as described in Section 2.1. Let Z be a subspace
of V satisfying the hypotheses (21) and (22). If the Bernstein and Jackson inequalities (23) and
(24) hold, then for all0< α < 1, 1< q < ∞ one has

Zα
q =



v ∈ V :

∑

j ≥inf �
bαq j ‖Q j v‖q < +∞





with

|v|α,q �


 ∑

j ≥inf �
bαq j ‖Q j v‖q




1/q

, ∀v ∈ Zα
q .

If in addition both (12) and (13) are satisfied, the bases (18)of each Wj ( j ∈ � ) are uniformly
p-stable (for suitable1 < p < ∞) and the multilevel decomposition (15) is q-stable, then the
following representation of the norm of Zα

q holds:

‖v‖α,q �



∑

j ∈�
(1 + bαq j )



∑

k∈ ˆ� j

|v̂ j k |p




q/p



1/q

, ∀v ∈ Zα
q , if � = � ,
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or

‖v‖α,q � ‖Pj0v‖ +



∑

j ∈�
bαq j



∑

k∈ ˆ
�

j

|v̂ j k |p




q/p



1/q

, ∀v ∈ Zα
q ,

if � = { j ∈ � : j ≥ j0 ∈ �}.

It is possible to prove a similar result for dual topologicalspaces (see e.g. [5]). Indeed, letV
be reflexive and〈 f, v〉 denote the dual pairing between the topological dual spaceV ′ andV . For
eachj ∈ � , let P̃j : V ′ → V ′ be the adjoint operator ofPj andṼj = Im P̃j ⊂ V ′. It is possible
to show that the family{Ṽj , P̃j } satisfies the same abstract assumptions of{Vj , Pj }. Moreover,

let 1< q < ∞ and letq′ be the conjugate index ofq
(

1
q + 1

q′ = 1
)
. SetZ−α

q =
(

Zα
q′

)′
, for

0< α < 1, then one has:

THEOREM 2. Under the same assumptions of Theorem 1 and with the notations of this
Section, we have

Z−α
q =



 f ∈ Z′ :

∑

j ≥ j0

b−αq j ‖Q̃ j f ‖q
V ′ < +∞



 ,

with

‖ f ‖Z−α
q

�
∥∥P̃j0 f

∥∥
V ′ +


∑

j ≥ j0

b−αq j ‖Q̃ j v‖
q
V ′




1/q

, ∀ f ∈ Z−α
q .

2.3. Biorthogonal decomposition in
�

The abstract setting can be applied to construct a biorthogonal system of compactly supported
wavelets on the real line and a biorthogonal decomposition of L p(

�
) (1< p < ∞). We will be

very brief and we refer to [5, 6, 11, 17] for proofs and more details.

We suppose to have a couple of dual compactly supported scaling functionsϕ ∈ L p(
�
) and

ϕ̃ ∈ L p′

(
�
)
(

1
p + 1

p′ = 1
)

satisfying the following conditions. There exists a coupleof finite

real filtersh = {hn}n1
n=n0 , h̃ =

{
h̃n
}ñ1

n=ñ0
with n0, ñ0 ≤ 0 andn1, ñ1 ≥ 0, so thatϕ and ϕ̃

satisfy the refinement equations:

ϕ(x) =
√

2
n1∑

n=n0

hnϕ(2x − n) , ϕ̃(x) =
√

2
ñ1∑

n=ñ0

h̃nϕ̃(2x − n) ,(25)

and
suppϕ = [n0,n1] , supp̃ϕ =

[
ñ0, ñ1

]
.

From now on, we will only describe the primal setting, the parallel ˜ construction following by
analogy; it will be understood that therep has to be replaced by the conjugate indexp′.

Setting, as usual, forj , k ∈ �, ϕ j k(x) = 2 j /pϕ(2 j x − k), we have the biorthogonality
relations

〈ϕ j k, ϕ̃ j k′ 〉 =
∫
� ϕ j k(x)ϕ̃ j k′ (x) dx = δkk′ , ∀ j , k, k′ ∈ � .
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Thus8 j = {ϕ j k : k ∈ �} are uniformlyp-stable bases for the spaces

Vj = Vj (
�
) = spanL p{ϕ j k : k ∈ �} =




∑

k∈�
αkϕ j k : {αk}k∈� ∈ `p



 ,

and, for anyv ∈ Vj , we can write

v =
∑

k∈�
αkϕ j k =

∑

k∈�
v̆ j kϕ j k with v̆ j k = 〈v, ϕ̃ j k〉

and

‖v‖L p(
�

) �


∑

k∈�
|v̆ j k |p




1/p

.(26)

We have

Vj ⊂ Vj +1 ,
⋂

j ∈�
Vj = {0} ,

⋃

j ∈�
Vj = L p(

�
) .

We suppose there exists an integerL ≥ 1 so that, locally, the polynomials of degree up toL − 1
(we will indicate this set� L−1) are contained inVj . It is not difficult to show thatL must satisfy
the relation

L ≤ n1 − n0(27)

(see [6], equation (3.2)).
We set

ψ(x) =
√

2
1−ñ0∑

n=1−ñ1

gnϕ(2x − n) , with gn = (−1)nh̃1−n ,

andψ j k(x) = 2 j /pψ(2 j x −k), ∀ j , k ∈ �. Then〈ψ j k, ψ̃ j ′k′ 〉 = δ j j ′δkk′ , ∀ j , j ′, k, k′ ∈ �. The
wavelet spaces

Wj =




∑

k∈�
αkψ j k : {αk}k∈� ∈ `p



 , ∀ j ∈ � ,

satisfyL p(
�
) = ⊕ j ∈�Wj . For anyv ∈ L p(

�
), this implies the expansion

v =
∑

j ,k∈�
v̂ j kψ j k , with v̂ j k = 〈v, ψ̃ j k〉 ;(28)

in addition, if p = 2,

‖v‖L2(
�

) �


 ∑

j ,k∈�
|v̂ j k |2




1/2

, ∀v ∈ L2(
�
) .(29)

Next, let us recall that ifϕ ∈ Bs0
pq(

�
) (s0 > 0, 1< p, q < +∞) then the Bernstein and Jackson

inequalities hold for every spaceZ = Bs
pq(

�
) with 0 ≤ s< min(s0, L). Indeed, we have

|v|Bs
pq(

�
) � 2 j s‖v‖L p(

�
) , ∀v ∈ Vj , ∀ j ∈ �(30)
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and

‖v − Pj v‖L p(
�

) � 2− j s|v|Bs
pq(

�
) , ∀v ∈ Bs

pq(
�
) , ∀ j ∈ � .(31)

Thus, taking into account (1), we can apply the characterization Theorems 1 and 2 to the Besov
spaceZ.

3. Scaling function spaces for the half-line

Starting from a biorthogonal decomposition on
�

as described in Subsection 2.3, we aim to the
construction of dual scaling function spacesVj

(�+
)

andṼj
(�+

)
which will form a multilevel

decomposition ofL p (�+
)

and ofL p′ (�+
)
, respectively. For simplicity, we will work on the

scale j = 0 and again we will not explicitly describe the dual˜ construction. Without loss of
generality, we shall supposeL ≤ L̃ andñ0 ≤ n0 ≤ 0 ≤ n1 ≤ ñ1 so that suppϕ ⊆ supp̃ϕ; if
this is not the case, it is enough to exchange the role of the primal and the dual spaces.

From now on, we will append a suffix
�

to all the functions defined on the real line. Note
that if k ≥ −n0, ϕ

�

0k have support contained in [0,+∞). More precisely

suppϕ
�

0k = [n0 + k,n1 + k] .

Let us fix a nonnegative integerδ and setk∗
0 = −n0 + δ; observe that

k∗
0 = min

{
k ∈ � : suppϕ

�

0k ⊆ [δ,+∞)
}
.

Let us define

V (+) = span
{
ϕ
�

0k

∣∣
[0,+∞)

: k ≥ k∗
0

}
;(32)

this space will be identified in a natural way with a subspace of V0(
�
) and will not be modified

by the subsequent construction. To obtain the right scalingspaceV0
(�+

)
for the half-line, we

will add to the basis
{
ϕ
�

0k

∣∣
[0,+∞)

: k ≥ k∗
0

}
of V (+) a finite number of new functions. These

functions will be constructed so that the property of reproduction of polynomials is maintained.
In fact we know that for any polynomialp ∈ � L−1 and every fixedx ∈ �

,

p(x) =
∑

k∈�
p̆0k ϕ

�

0k(x) .

So, if {pα : α = 0, . . . , L − 1} is a basis for� L−1, for everyx ≥ 0, we have

pα(x) =
∑

k≥−n1+1

cαkϕ
�

0k(x)

=
k∗

0−1∑

k=−n1+1

cαkϕ
�

0k(x) +
∑

k≥k∗

0

cαkϕ
�

0k(x) ,

(33)

where

cαk := ( p̆α)0k =
∫
� pα(y)ϕ̃(y − k)dy , α = 0, . . . , L − 1 .(34)
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Since the second sum in (33) is a linear combination of elements of V (+), in order to locally
generate all polynomials of degree≤ L − 1 on the half-line, we will add to this space all the
linear combinations of the functions

φα(x) =
k∗

0−1∑

k=−n1+1

cαkϕ
�

0k(x) , α = 0, . . . , L − 1 .(35)

REMARK 1. Let{pα|α = 0, . . . , L −1} and{p?
α|α = 0, . . . , L −1} be two bases of� L−1.

Let us denote byφα andφ?
α the functions defined by the previous argument and byM the matrix

of the change of basis of� L−1, then one can prove that

φ?
α =

L−1∑

β=0

Mαβφβ

for everyα.

PROPOSITION1. The functionsφα , α = 0, . . . , L − 1 are linearly independent.

Proof. If δ is strictly positive, the linear independence of the boundary functions is obvious.
Indeed, on [0, δ], they coincide with linearly independent polynomials. Ifδ = 0 let us observe
that the functionsϕ

�

0k

∣∣
[0,+∞)

involved in (35) have staggered support, i.e., suppϕ
�

0k

∣∣
[0,+∞)

=
[0, n1+k], thus they are linearly independent. To obtain the linear independence of the functions
φα it is sufficient to prove that the matrix

C = (cαk)
k=−n1+1,... ,−n0−1
α=0,... ,L−1

induces an injective transformation. Thanks to Remark 1, wecan choose any polynomial bases
to prove the maximality of rank(C); if pα(x) = xα for anyα, one has

cαk =
α∑

β=0

(
α

β

)
kβ M̃α−β ,

where M̃i =
∫
� xi ϕ̃(x)dx is the i -th moment of̃ϕ on

�
. Let v be a vector in

� L such that
CT v = 0, then the polynomial of degreeL − 1

L−1∑

β=0

L−1∑

α=β

(
α

β

)
vα M̃α−βxβ

hasn1 − n0 − 1 distinct zeros; thus, recalling the relation (27), it is identically zero. This means
Mv = 0 whereM = (Mi j ) is an upper triangular matrix withMi j =

( j
i

)
M̃ j −i if j ≥ i . M is

non-singular, in fact det(M) = (
∫
� ϕ̃(x)dx)L 6= 0 and the proof is complete.

The building blocks of our multiresolution analysis on(0,+∞) will be the border functions
(35) and the basis elements ofV (+). Using Proposition 1 and the linear independence on

�
of

the functionsϕ
�

0k, one can easily check that

PROPOSITION2. The functionsφα , α = 0, . . . , L−1 andϕ
�

0k

∣∣
[0,+∞)

, k ≥ k∗
0, are linearly

independent.
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Thus, it is natural to define

V0
(�+

)
= span{φα : α = 0, . . . , L − 1} ⊕ V (+) .(36)

We rename the functions in the following way

ϕ0k =
{
φk if k = 0, . . . , L − 1,
ϕ
�

0,k∗

0+k−L if k ≥ L .(37)

Observe that

V (+) = span{ϕ0k : k ≥ L} .(38)

We study now the biorthogonality of the dual generators ofV0
(�+

)
andṼ0

(�+
)
. Setting

k∗ = max
{
k∗
0, k̃

∗
0
}

= max
{
−n0 + δ,−ñ0 + δ̃

}
,(39)

let us observe that{ϕ0k : k ≥ k∗} and{ϕ̃0k : k ≥ k∗} are already biorthogonal. In order to get a
pair of dual systems using our “blocks” we have therefore to match the dimensions of the spaces
spanned by

{φα : α = 0, . . . , L − 1} ∪
{
ϕ
�

0k : k = k∗
0, . . . , k

∗ − 1
}

and by {
φ̃β : β = 0, . . . , L̃ − 1

}
∪
{
ϕ̃
�

0k : k = k̃∗
0, . . . , k

∗ − 1
}
.

This requirement can be translated into an explicit relation betweenδ and δ̃; indeed, we must
haveL − k∗

0 = L̃ − k̃∗
0, i.e.,

δ̃ − δ = L̃ − L + ñ0 − n0 .(40)

SinceL̃ ≥ L , we getk∗ = −ñ0 + δ̃.

REMARK 2. The two parametersδ andδ̃ have been introduced exactly because we want the
equality of the cardinality of the sets previously indicated. On the other hand, we want to choose
them as small as possible in order to minimize the perturbation due to the boundary. Thus, it
will be natural to fix one, betweenδ and δ̃, equal to zero and determine the other one from the
relation (40). In particular, if̃L − L + ñ0 − n0 ≥ 0, we setδ = 0 andδ̃ = L̃ − L + ñ0 − n0; in
this casẽδ < L̃ ; whereas if̃L − L + ñ0 − n0 < 0, we choosẽδ = 0 andδ = L − L̃ + n0 − ñ0.
In analogy with the previous case, we will suppose

0 ≤ δ < L .(41)

Let us define the spacesV B
0 and Ṽ B

0 spanned by the so calledboundary scaling functions
as

V B
0 := span

{
ϕ0k : k = 0, . . . , L̃ − 1

}
, Ṽ B

0 = span
{
ϕ̃0k : k = 0, . . . , L̃ − 1

}
,(42)

and the spacesV I
0 andṼ I

0 spanned by theinterior scaling functionsas

V I
0 := span

{
ϕ0k : k ≥ L̃

}
, Ṽ I

0 := span
{
ϕ̃0k : k ≥ L̃

}
.(43)
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Thus we have

V0
(�+

)
= V B

0 ⊕ V I
0 , Ṽ0

(�+
)

= Ṽ B
0 ⊕ Ṽ I

0 .(44)

Note that, ifL < L̃ , the subspaceV I
0 is strictly contained inV (+) (see (38)). In other words,

some of the functions inV (+) (which are scaling functions on
�

supported in [0,+∞)) are
thought as boundary scaling functions, i.e., are included in V B

0 . As we already observed, the

basis functions ofV I
0 andṼ I

0 are biorthogonal. Recalling (35) and (37), if 0≤ k ≤ L̃ − 1 there

exist coefficientsαkm such thatϕ0k =
∑

m<k∗ αkmϕ
�

0m; thus, if l ≥ L̃, due to the position of
the supports, we have

〈ϕ0k, ϕ̃0l 〉 =
∑

m<k∗

αkm

∫
� ϕ

�

0m ϕ̃
�

0,k∗+l−L̃
dx = 0 ,

i.e., V B
0 ⊂

(
Ṽ I

0

)⊥
. The only functions that we have to modify in order to obtain biorthogonal

systems are the border ones. The problem is to find a basis ofV B
0 , say

{
η0k : k = 0, . . . , L̃ −1

}
,

and one of̃V B
0 , say

{
η̃0l : l = 0, . . . , L̃ − 1

}
, such that

〈η0k, η̃0l 〉 = δkl , k, l = 0, . . . , L̃ − 1 .

Settingη0k =
∑L̃−1

m=0 dkmϕ0m andη̃0k =
∑L̃−1

m=0 d̃kmϕ̃0m, and callingX the Gramian matrix of
components

Xkl = 〈ϕ0k, ϕ̃0l 〉 , k, l = 0, . . . , L̃ − 1 ,(45)

this is equivalent to the problem of finding twõL × L̃ real matrices, sayD = (dkm) and D̃ =(
d̃km

)
, satisfying

DXD̃T = I .(46)

A necessary and sufficient condition for (46) to have solutions is clearly the non-singularity

of X, or equivalentlyV B
0 ∩

(
Ṽ B

0

)⊥
= {0}. If this is the case, there exist infinitely many

couples which satisfy equation (46); indeed if we chooseD̃ non-singular then it is sufficient to

set D =
(

XD̃T
)−1

. We know at present of no general result establishing the invertibility of

X, although it can be proved, e.g., for orthogonal systems andfor systems arising from B-spline
functions (see Section 9 and also [16]). From now on we will assume this condition is verified
and we suppose (renaming if necessary) that{ϕ0k}k≥0 and{ϕ̃0l }l≥0 are dual biorthogonal bases.

Let us prove that the functionsϕ0k, k ≥ 0, form ap-stable basis ofV0
(�+

)
.

PROPOSITION3. We have

V0
(�+

)
=



v =

∑

k≥0

αkϕ0k : {αk}k∈� ∈ `p





with

‖v‖L p(
�

+) � ‖{αk}k∈� ‖`p , ∀v ∈ V0
(�+

)
.(47)
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Proof. Let v be any function inV0
(�+

)
; by (44) it can be written asv = vB + vI with vB =

∑L̃−1
k=0 αkϕ0k andvI =

∑
k≥L̃ αkϕ0k. The sequence{αk}k≥L̃ is p-summable thanks to the

“inclusion” of V I
0 in V0(

�
) and by (26), so the first part of the Proposition is proved.

To show (47), let us setK = max
{
|suppϕ0k| : k = 0, . . . , L̃ − 1

}
and note that

‖vB‖p
L p(0,K )

�
L̃−1∑

k=0

|αk|p � ‖v‖p
L p(

�
+)
.(48)

Indeed, since for anyN ∈ � \ {0}, the application

x = (x0, . . . , xN ) ∈ �N+1 7−→

∥∥∥∥∥∥

N∑

n=0

xnϕ0n

∥∥∥∥∥∥
L p(0,K )

,

defines a norm on
�N+1 (for a proof see, e.g., [5], Proposition 6.1), and every two norms on

a finite dimensional space are equivalent, the first equivalence is proven. The second inequality
follows from

|αk|p =
∣∣∣∣∣

∫

suppϕ̃0k

v(x)ϕ̃0k(x) dx

∣∣∣∣∣

p

≤
∫

suppϕ̃0k

|v(x)|p dx ·
(∫

suppϕ̃0k

|ϕ̃0k(x)|p
′

dx

)p/p′

� ‖v‖p
L p(

�
+)
.

Thus, by (48) and thep-stability ofϕ0k on the line (26), we have

‖v‖p
L p(

�
+)

= ‖vB + vI ‖
p
L p(

�
+)

� ‖vB‖p
L p(0,K )

+ ‖vI ‖
p
L p(

�
+)

�
∑

k≥0

|αk|p .

On the other hand, we have

‖vI ‖L p(0,K ) = ‖v − vB‖L p(0,K ) ≤ ‖v‖L p(0,K ) + ‖vB‖L p(0,K ) � ‖v‖L p(
�

+)

and so

‖vI ‖
p
L p(

�
+)

� ‖vI ‖
p
L p(0,K )

+ ‖vI ‖
p
L p([K ,+∞))

= ‖vI ‖
p
L p(0,K )

+ ‖v‖p
L p([K ,+∞))

� ‖v‖p
L p(

�
+)
.

Then

∑

k≥0

|αk|p =
L̃−1∑

k=0

|αk|p +
∑

k≥L̃

|αk|p � ‖vB‖p
L p(0,K )

+ ‖vI ‖
p
L p(

�
+)

� ‖v‖p
L p(

�
+)
,

and the result is completely proven.

Similarly, it is possible to show that the dual basis{ϕ̃0k}k≥0 of Ṽ0
(�+

)
is a p′-stable basis.

Let us introduce the isometriesTj : L p (�+
)

→ L p (�+
)

and T̃j : L p′ (�+
)

→ L p′ (�+
)

defined as

(Tj f )(x) = 2 j /p f (2 j x) ,
(
T̃j f

)
(x) = 2 j /p′

f (2 j x) .(49)
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and setϕ j k = Tj ϕ0k, ϕ̃ j k = T̃j ϕ̃0k, ∀ j , k ≥ 0. We define thej -th level scaling function spaces
as

Vj
(�+

)
:= Tj

(
V0
(�+

))
, Ṽj

(�+
)

:= T̃j
(
Ṽ0
(�+

))
.(50)

Let us now show that these are families of refinable spaces.

PROPOSITION4. For any j ∈ � , one has the inclusions Vj
(�+

)
⊂ Vj +1

(�+
)

and
Ṽj
(�+

)
⊂ Ṽj +1

(�+
)
.

Proof. As before, we will only prove the result for the primal setting.

By (50), we can restrict ourselves toj = 0 and show thatV0
(�+

)
⊂ V1

(�+
)
. Fork ≥ L ,

rewriting (25), one has

ϕ0k(x) = ϕ
�

0,k∗

0+k−L (x) = 2

(
1
2− 1

p

)∑

m
hm−2(k∗

0+k−L)

(
T1ϕ

�

0m

)
(x) .

As the filter {hn} is finite, we see that the first non vanishing term in the sum corresponds to
ϕ
�

0,k∗

0+δ+2(k−L)
, which belongs toV (+) for anyk ≥ L , so that the function on the left hand side

belongs toV1
(�+

)
.

Suppose nowk < L ; without loss of generality we can choosepα(x) = xα for anyα, so
that, by (33), (34) and (35), one has, forx ≥ 0,

21/p(2x)k = 21/p


φk(2x) +

∑

m≥k∗

0

ckmϕ
�

0m(2x)




= ϕ1k(x)+
∑

m≥k∗

0

ckm

(
T1ϕ

�

0m

)
(x) .

Again, using (35),

ϕ0k = 2−(k+1/p)


ϕ1k +

∑

m≥k∗

0

ckmϕ
�

1m


−

∑

m≥k∗

0

ckmϕ
�

0m

= 2−(k+1/p)


ϕ1k +

∑

m≥L

ck,k∗

0+m−Lϕ1m


−

∑

m≥L

ck,k∗

0+m−Lϕ0m ,

which completes the proof.

REMARK 3. Note that, choosing the basis of monomials for� L−1, therefinement equation
for the modified border functions inV B

0 takes the form

φα = 2−(α+1/p)T1φα +
∑

k≥k∗

0

Hαkϕ
�

1k(51)

where

Hαk = cαk2−(α+1/p) − 2

(
1
2− 1

p

) ∑

l≥k∗

0

cαl hk−2l ,(52)

involving only the respective modified border function inV B
1 .
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4. Projection operators

Following the guiding lines of the abstract setting, we willdefine a sequence of continuous linear
operatorsPj : L p (�+

)
→ Vj for j ∈ � , satisfying (7), (8) and (9).

By (50), it is obvious that the definition ofP0 gives naturally the complete sequence, by
posingPj = Tj ◦ P0 ◦ T−1

j , whereTj is the isometry defined in (49). Forv ∈ L p (�+
)
, let us

set

P0v =
∑

k≥0

v̆0kϕ0k , with v̆0k =
∫
� v(x)ϕ̃0k(x) dx .

We will first prove thatP0 is a well-defined and continuous operator.

PROPOSITION5. We have

‖P0v‖
p
L p(

�
+)

�
∑

k≥0

|v̆0k|p � ‖v‖p
L p(

�
+)
, ∀v ∈ L p (�+

)
.

Proof. Let us write

P0v =
L̃−1∑

k=0

v̆0kϕ0k +
∑

k≥L̃

v̆0kϕ0k .

Observe that, by the Hölder inequality,

L̃−1∑

k=0

|v̆0k|p ≤ ‖v‖p
L p(

�
+)




L̃−1∑

k=0

‖ϕ̃0k‖p
L p′
(
�

+)


 = C ‖v‖p

L p(
�

+)
.

Thus, by thep-stability property on the line (26),

∑

k≥0

|v̆0k|p � ‖v‖p
L p(

�
+)
.

This impliesP0v ∈ V0
(�+

)
and the result follows by (47).

SinceTj is an isometry for anyj , we immediately get (7). Equality (8), follows by the
biorthogonality of the systems. Equality (9) is a consequence of the inclusionVj

(�+
)

⊂
Vj +1

(�+
)
, proven in Proposition 4. Similarly, one can define a sequence of dual operators,

P̃j : L p′ (�+
)

→ Ṽj
(�+

)
, satisfying the same properties of the primal sequence.

4.1. Jackson and Bernstein inequalities

The main property of the original decomposition on the real line we have inherited, is the way
polynomials are reconstructed through basis functions. This is what we call the approximation
property, and it is fundamental for the characterization offunctional spaces. In this section we
will exploit it to prove Bernstein- and Jackson-type inequalities on the half-line and then apply
the general characterization results of the abstract setting (Theorems 1 and 2).

As in Section 2.2, we consider a Banach subspaceZ of L p (�+
)

and suppose that the
scaling functionϕ belongs toZ. In the following, Z will be the Besov spaceBs0

pq
(�+

)
, with

s0 > 0 and 1< p,q < +∞.
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PROPOSITION6. For any0 ≤ s ≤ s0, the Bernstein-type inequality

|v|Bs
pq(

�
+) � 2 j s‖v‖L p(

�
+) , ∀v ∈ Vj

(�+
)
, ∀ j ∈ � ,(53)

holds.

Proof. Applying the definition of the operatorTj , it is easy to see that

|Tj v|Bs
pq(

�
+) = 2 j s|v|Bs

pq(
�

+) , ∀v ∈ Bs
pq
(�+

)
, ∀ j ∈ � ;(54)

so, by (50), it is enough to prove the inequality forj = 0. Proceeding as in Proposition 3, we
choosev ∈ V0

(�+
)

and writev = vB + vI . Let us estimate separately the semi-norms of the
two terms. We have

|vB|pBs
pq(

�
+)

=

∣∣∣∣∣∣

L̃−1∑

k=0

v̆0kϕ0k

∣∣∣∣∣∣

p

Bs
pq(

�
+)

≤




L̃−1∑

k=0

|v̆0k| |ϕ0k|Bs
pq(

�
+)




p

�
L̃−1∑

k=0

|v̆0k|p ,

the constants depending on the semi-norms of the basis functions and the equivalence of norms

in
� L̃ . Observe thatvI is an element ofV0 = V0(

�
); using the Bernstein inequality (30) and

the p-stability on the line (26), we get

|vI |Bs
pq(

�
+) � ‖vI ‖L p(

�
) �


∑

k≥L̃

|v̆0k|p



1/p

.

Thus, by (47),

|v|pBs
pq(

�
+)

�
(

|vB|pBs
pq(

�
+)

+ |vI |
p
Bs

pq(
�

+)

)
� ‖{v̆0k}k∈� ‖p

`p � ‖v‖L p(
�

+) .

Next, we prove the generalized Jackson inequality, following the same ideas used in show-
ing the analogous property (31) on the real line (see [5]).

PROPOSITION7. For each0 ≤ s < min(s0, L), we have

‖v − Pj v‖L p(
�

+) � 2− j s|v|Bs
pq(

�
+) , ∀v ∈ Bs

pq
(�+

)
, ∀ j ∈ � .(55)

Proof. As before (see (54)), it is enough to prove that

‖v − P0v‖L p(
�

+) � |v|Bs
pq(

�
+) , ∀v ∈ Bs

pq
(�+

)
.

Let us divide the half-line into unitary intervals,
�+ = ∪l≥0Il whereIl = [l , l +1], and estimate

‖v− P0v‖L p(Il ). Recalling that polynomials up to degreeL −1 are locally reconstructed through
the basis ofV0

(�+
)
, it is easy to see that for anyq ∈ � L−1 there existsvq in V0

(�+
)

such that
vq = q on Il . Then, using (8), we have

‖v − P0v‖L p(Il ) = ‖v − q + P0q − P0v‖L p(Il )

≤ ‖v − q‖L p(Il ) + ‖P0(v − q)‖L p(Il ) .
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Moreover, from the compactness of the supports of the basis functions, settingRl = {k ∈ � :
suppϕ0k ∩ Il 6= ∅} andJl = ∪k∈Rl supp̃ϕ0k, for any f ∈ L p (�+

)
, one gets

‖P0 f ‖p
L p(Il )

=
∫

Il

∣∣∣∣
∑

k∈Rl

f̆0kϕ0k(x)

∣∣∣∣
p
dx

≤
(

max
k∈Rl

‖ f ‖L p(supp̃ϕ0k)‖ϕ̃0k‖L p′
(
�

+)

)p ∫

Il

( ∑

k∈Rl

|ϕ0k(x)|
)p

dx

� ‖ f ‖p
L p(Jl )

.

Thus
‖v − P0v‖L p(Il ) � ‖v − q‖L p(Jl ) , ∀q ∈ � L−1 .

Taking the infimum over allq ∈ � L−1, we end up with

‖v − P0v‖L p(
�

+) �
∑

l≥0

inf
q∈� L−1

‖v − q‖L p(Jl ) .(56)

A local version of Whitney’s Theorem (see [21]) for a given interval of the real lineJ, states
that, for anyv ∈ L p(J),

inf
q∈� L−1

‖v − q‖L p(J) � w(L)(v, J) ,(57)

where

w(L)(v, J) =
[

1

2|J|

∫ |J |

−|J |
dh

(∫

J(Lh)
|1L

h v|
pdx

)]1/p

and J(s) = {x ∈ J : x + s ∈ J}. Observing thath∗ = |Jl | (independent ofl ) and using (57),
we have

‖v − P0v‖
p
L p(

�
+)

�
∑

l≥0

(
w(L)(v, Jl )

)p

= 1

2h∗

∫ h∗

−h∗

dh
∑

l≥0

∫

Jl (Lh)
|1L

h v|
pdx

� sup
|h|≤h∗

∫
�

+

|1L
h v|

pdx

=
(
ω

(L)
p (v,h∗)

)p
,

whereω(L)
p is the modulus of smoothness (see [21]). To conclude the proof, it is enough to

observe that, for any 1< q < ∞,

ω
(L)
p (v,h∗) �


∑

j ∈�
2 j sq

(
ω

(L)
p (v,2− j )

)q




1/q

� |v|Bs
pq(

�
+) .

SinceBs
pq
(�+

)
is dense inL p (�+

)
, the following property immediately follows.

COROLLARY 1. The union∪ j ∈� Vj
(�+

)
is dense in Lp

(�+
)
.
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5. Wavelet function spaces for the half-line

We now have all the tools to build the detail spaces and the wavelets on the half-line. Recalling
the abstract construction, we start from levelj = 0 and look for a complement spaceW0

(�+
)

such thatV1
(�+

)
= V0

(�+
)
⊕ W0

(�+
)

(note that the sum is not, in general, orthogonal) and
W0

(�+
)

⊥ Ṽ0. To this end, let us consider the basis functions ofV1
(�+

)
and let us write them

as a sum of a function ofV0
(�+

)
and a function which will be an element ofW0

(�+
)
. Since

we have based our construction on the existence of a multilevel decomposition on the real line,
we report two equations that will be largely used in the sequel (see, e.g., [6]):

ϕ
�

1k = 2
1
p− 1

2


 ∑

ñ0≤k−2m≤ñ1

h̃k−2mϕ
�

0m +
∑

1−n1≤k−2m≤1−n0

g̃k−2mψ
�

0m


 ,(58)

ψ
�

0m = 2
1
2− 1

p

1+2m−ñ0∑

l=1+2m−ñ1

gl−2mϕ
�

1l .(59)

Interior wavelets. SinceV0
(�+

)
contains the subspaceV (+) defined in (32),V1

(�+
)

contains

the subspaceT1V (+) =
{
ϕ
�

1k

∣∣
[0,+∞)

: k ≥ k∗
0

}
. Considering equation (59), let us determine the

integerm such that all the indicesl in the sum are greater or equal tok∗
0. This is equivalent to

2m ≥ k∗
0 + ñ1 − 1, so we set

m ≥
⌈

k∗
0 + ñ1 − 1

2

⌉
=: m∗

0 .(60)

Since, (see (2.9) in [11]),

∑

n∈�
h̃nhn−2k = δ0k , ∀k ∈ � ,(61)

it is easy to see that̃n1 − n0 is always odd; thus, by (39),

m∗
0 = ñ1 − n0 − 1

2
+
⌈
δ

2

⌉
.(62)

Let us set

WI
0 := span

{
ψ
�

0m

∣∣
[0,+∞)

: m ≥ m∗
0

}
;(63)

we observe thatWI
0 can be identified with a subspace ofW0(

�
), thus it is orthogonal tõV0 and

WI
0 ⊆ W0

(�+
)
. The functions

ψ0m := ψ
�

0m

∣∣
[0,+∞)

are calledinterior wavelets.
Border wavelets. Let us now callWB

0 a generic supplementary space ofWI
0 in W0

(�+
)

and

setV B
1 = T1V B

0 .

PROPOSITION8. The dimension of the space WB0 is m∗
0.
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Proof. Let K > 0 be an integer such that on [K ,+∞) all non-vanishing wavelets and scaling
functions are interior ones. Then

V B
1 ⊕ span

{
ϕ
�

1k : k∗
0 ≤ k < −n0 + 2K

}
=

[
V B

0 ⊕ span
{
ϕ
�

0k : k∗
0 ≤ k < −n0 + K

}]
⊕
[
WB

0 ⊕ span
{
ψ
�

0m : m∗
0 ≤ m ≤ K − 1

}]
,

since, by (58), the first interior wavelet used to generateϕ
�

1,−n0+2K is ψ
�

0K . Then the result
easily follows.

To build WB
0 we need some functions that, added toWI

0 , will generate bothV B
1 and the

interior scaling functions that cannot be obtained in (58) using V (+)) andWI
0 . Thanks to (51),

we only have to consider the problem of generating interior scaling functions. Let us now look
for the functionsϕ

�

1k generated byϕ
�

0m, for m ≥ k∗
0, and byψ

�

0m, with m ≥ m∗
0. Let us work

separately on the two sums of (58):

(a) we must havem ≥ (k − ñ1)/2. Imposingm ≥ k∗
0 and seeking for integer solutions, we

get
⌈

k − ñ1

2

⌉
≥ k∗

0 = −n0 + δ ;(64)

(b) similarly, we obtainm ≥ (n0 − 1 + k)/2. Again, we wantm ≥ m∗
0, so we must have

⌈
n0 − 1 + k

2

⌉
≥ m∗

0 .

Using (62), this means
⌈

n0 − 1 + k

2

⌉
≥ −n0 + ñ1 − 1

2
+
⌈
δ

2

⌉
.(65)

Since (64) and (65) have to be both satisfied, we obtain the following condition

k ≥ −2n0 + ñ1 + 2δ − 1 = 2k∗
0 + ñ1 − 1 .(66)

Indeed, this can be seen considering all possible situations. For instance, ifn0 andδ are even,

thenñ1 is odd and
⌈

δ
2

⌉
= δ

2 . If k satisfies both (64) and (65), so doesk−1; thus we can look for

the leastk as an even integer. In this case
⌈

k−ñ1
2

⌉
= k−ñ1

2 + 1
2 and

⌈
n0−1+k

2

⌉
= n0−1+k

2 + 1
2 ,

and (66) easily follows. The other cases are dealt with similarly. Let us set

k = 2k∗
0 + ñ1 − 1 ,(67)

so that
span

{
ϕ
�

1k

∣∣
[0,+∞)

: k ≥ k
}

⊆ V (+) ⊕ WI
0 .

We are left with the problem of generating some functions ofV1
(�+

)
, preciselyϕ

�

1k with k∗
0 ≤

k < k. Observe that we have to generatek − k∗
0 functions using a space of dimensionm∗

0 =⌈
k−k∗

0
2

⌉
. In fact one can show that one out of twoϕ

�

1k, for k = k∗
0, . . . , k − 1, depends on the

previous ones through elements of level zero.
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PROPOSITION9. Let e= 0 if δ is even, e= 1 if δ is odd. For all1 ≤ m ≤ m∗
0 − e, one has

ϕ
�

1,k−2m

∣∣
[0,+∞)

∈ Sm ⊕ V I
0 ⊕ WI

0 ,

with
Sm := span

{
ϕ
�

1,k−2l+1

∣∣
[0,+∞)

: 1 ≤ l ≤ m
}
.

Proof. Let us setñ1 − n0 = 2r + 1 with r > 0 (recall thatñ1 − n0 is odd). Indeed, it is not
difficult to see that forr = 0 there is nothing to prove. Observe that, by (58), for anyl ∈ �, we
have

ϕ
�

1,k−2l
=2

(
1
p− 1

2

)



∑

n≥k∗

0−l

h̃k−2l−2nϕ
�

0n +
∑

n≥m∗

0+
⌊

δ
2

⌋
−l

g̃k−2l−2nψ
�

0n




=2

(
1
p− 1

2

)(
h̃ñ1−1ϕ

�

0,k∗

0−l + h̃ñ1−3ϕ
�

0,k∗

0−l+1 + . . .

+ g̃−n0ψ
�

0,m∗

0+
⌊

δ
2

⌋
−l

+ g̃−n0−2ψ
�

0,m∗

0+
⌊

δ
2

⌋
−l+1

+ . . .
)

(68)

and

ϕ
�

1,k−2l+1
=2

(
1
p− 1

2

)



∑

n≥k∗

0−l

h̃k−2l+1−2nϕ
�

0n +
∑

n≥m∗

0+
⌊

δ
2

⌋
−l

g̃k−2l+1−2nψ
�

0n




=2

(
1
p− 1

2

)(
h̃ñ1

ϕ
�

0,k∗

0−l + h̃ñ1−2ϕ
�

0,k∗

0−l+1 + . . .

+ g̃−n0+1ψ
�

0,m∗

0+
⌊

δ
2

⌋
−l

+ g̃−n0−1ψ
�

0,m∗

0+
⌊

δ
2

⌋
−l+1

+ . . .
)
.

(69)

Let us prove the stated result by induction onm. Form = 1 we consider the linear combination

hn0ϕ
�

1,k−2
+ hn0+1ϕ

�

1,k−1

= 2

(
1
p − 1

2

)


(
hn0h̃ñ1−1 + hn0+1h̃ñ1

)
ϕ
�

0,k∗

0−1 +
∑

n≥k∗

0

c1nϕ
�

0n

+
(
hn0 g̃−n0 + hn0+1g̃−n0+1

)
ψ
�

0,m∗

0+
⌊

δ
2

⌋
−1

+
∑

n≥m∗

0+
⌊

δ
2

⌋
d1nψ

�

0n


 ,

for some coefficientsc1n andd1n. Writing (61) withk = n0−ñ1+1
2 6= 0 and

∑

n∈�
g̃nhn−2k = 0

(see (3.29) in [11]) withk = −n0, we have

hn0h̃ñ1−1 + hn0+1h̃ñ1
= 0 , hn0 g̃−n0 + hn0+1g̃−n0+1 = 0 .
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Thus we have
hn0ϕ

�

1,k−2

∣∣
[0,+∞)

+ hn0+1ϕ
�

1,k−1

∣∣
[0,+∞)

∈ V I
0 ⊕ WI

0 ,

and the result follows becausehn0 6= 0.

Set now 1< m ≤ m∗
0 − e. As before, we choose a certain linear combination of the scaling

functionsϕ
�

1,k−2l
andϕ

�

1,k−2l+1
with 1 ≤ l ≤ m. Then we use (68), (69) to represent them

through functions of level 0. More precisely

hn0ϕ
�

1,k−2m
+ hn0+1ϕ

�

1,k−2m+1
+ . . .+ hn0+2m−2ϕ

�

1,k−2
+ hn0+2m−1ϕ

�

1,k−1

=
(
hn0h̃ñ1−1 + hn0+1h̃ñ1

)
ϕ
�

0,k∗

0−m

+
(
hn0h̃ñ1−3 + hn0+1h̃ñ1−2 + hn0+2h̃ñ1−1 + hn0+3h̃ñ1

)
ϕ
�

0,k∗

0−m+1

+ . . .

+
(
hn0h̃ñ1−2m+1 + hn0+1h̃ñ1−2m+2 + . . .+ hn0+2m−1h̃ñ1

)
ϕ
�

0,k∗

0−1

+
∑

n≥k∗

0

cmnϕ
�

0n

+
(
hn0 g̃−n0 + hn0+1g̃−n0+1

)
ψ
�

0,m∗

0+
⌊

δ
2

⌋
−m

+
(
hn0 g̃−n0−2 + hn0+1g̃−n0−1 + hn0+2g̃−n0 + hn0+3g̃−n0+1

)
ψ
�

0,m∗

0+
⌊

δ
2

⌋
−m+1

+ . . .

+
(
hn0 g̃−n0−2m+2 + hn0+1g̃−n0−2m+1 + . . .+ hn0+2m−2g̃−n0+1

)
ψ
�

0,m∗

0+
⌊

δ
2

⌋
−1

+
∑

n≥m∗

0+
⌊

δ
2

⌋
dmnψ

�

0n ,

(70)

for somecmn anddmn. The coefficients of the functionsϕ
�

0,k∗

0−m, . . . , ϕ
�

0,k∗

0−1 can be written
as

∑

n∈�
hnh̃n−2k = δ0k ,(71)

with k = n0−ñ1+1
2 , . . . ,

n0−ñ1+1
2 + m− 1 = −r, · · · ,−r + m− 1, respectively. Similarly, the

coefficients of the functionsψ
�

0,m∗

0+
⌊

δ
2

⌋
−m
, . . . , ψ

�

0,m∗

0+
⌊

δ
2

⌋
−1

can be written as

∑

n∈�
hn−2kg̃n = 0 ,

with k = −n0, · · · ,−n0 − m + 1, respectively. Observe now thatm ≤ m∗
0 − e = r +

⌊
δ
2

⌋
. If

m ≤ r , all indicesk in (71) are negative, so
(
hn0ϕ

�

1,k−2m
+ hn0+1ϕ

�

1,k−2m+1

)∣∣∣
[0,+∞)

∈

−
(
hn0+2ϕ

�

1,k−2m+2
+ hn0+3ϕ

�

1,k−2m+3
+ . . .

+ hn0+2m−2ϕ
�

1,k−2
+ hn0+2m−1ϕ

�

1,k−1

)∣∣∣
[0,+∞)

+ V I
0 ⊕ WI

0
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and the result is proven by induction sincehn0 6= 0. If m> r (i.e.,δ ≥ 2), we get

(
hn0ϕ

�

1,k−2m
+ hn0+1ϕ

�

1,k−2m+1

)∣∣∣
[0,+∞)

∈

−
(
hn0+2ϕ

�

1,k−2m+2
+ hn0+3ϕ

�

1,k−2m+3
+ . . .

+ hn0+2m−2ϕ
�

1,k−2
+ hn0+2m−1ϕ

�

1,k−1

)∣∣∣
[0,+∞)

+2

(
1
p− 1

2

)

ϕ
�

0,k∗

0−m+r

∣∣
[0,+∞)

+ V I
0 ⊕ WI

0 .

Therefore, by the induction hypothesis, we only have to prove that

ϕ
�

0,k∗

0−m+r

∣∣
[0,+∞)

∈ Sm ⊕ V I
0 ⊕ WI

0 .

We immediately getm − r ≤ m∗
0 − e− r =

⌊
δ
2

⌋
, so we show that

ϕ
�

0,k∗

0−l

∣∣
[0,+∞)

∈ Sl , 1 ≤ l ≤
⌊
δ

2

⌋
,(72)

by induction onl . If l = 1, from (69) we have

ϕ
�

0,k∗

0−1

∣∣
[0,+∞)

= 2

(
1
2− 1

p

)

h̃ñ1
ϕ
�

1,k−1

∣∣
[0,+∞)

+
∑

n≥k∗

0

c1nϕ
�

0n

∣∣
[0,+∞)

+
∑

n≥m∗

0+
⌊

δ
2

⌋
−1

d1nψ
�

0n

∣∣
[0,+∞)

∈ S1 ⊕ V I
0 ⊕ WI

0

(for somec1n andd1n). If l > 1, using induction, we similarly get

ϕ
�

0,k∗

0−l

∣∣
[0,+∞)

= 2

(
1
2− 1

p

)

h̃ñ1
ϕ
�

1,k−2l+1

∣∣
[0,+∞)

+
∑

n≥k∗

0−l+1

cl ,nϕ
�

0n

∣∣
[0,+∞)

+
∑

n≥m∗

0+
⌊

δ
2

⌋
−l

dl ,nψ
�

0n

∣∣
[0,+∞)

∈ Sl ⊕ V I
0 ⊕ WI

0

(againcln and dln are fixed coefficients). Thus we have proven (72), and this completes the
proof.

Using this result, setting

ψ0,m∗

0−l := ϕ
�

1,k−2l+1

∣∣
[0,+∞)

− P0

(
ϕ
�

1,k−2l+1

∣∣
[0,+∞)

)
, l = 1, . . . ,m∗

0 ,(73)

and

WB
0 = {ψ0m | m = 0, . . . ,m∗

0 − 1} ,(74)

we get

W0
(�+

)
= WB

0 ⊕ WI
0 ,(75)
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with WI
0 as defined in (63). With the same process we can build

W̃0
(�+

)
= W̃B

0 ⊕ W̃I
0 .

As for the scaling functions, we must find a couple of biorthogonal bases for the spacesW0
(�+

)

andW̃0
(�+

)
. To fix notations, we suppose that̃m∗

0 ≤ m∗
0 (otherwise we only have to exchange

m̃∗
0 andm∗

0 in what follows). From the biorthogonality properties on the real line we have

〈ψ0m, ψ̃0n〉 = δmn , ∀m,n ≥ m∗
0 .

Note, however, that the modified wavelets we have defined are no longer orthogonal to the inte-
rior ones. In fact, from definition (73), it follows that

〈ψ0m, ψ̃0n〉 =
〈
ϕ
�

1,k−2(m∗

0−m)+1
, ψ̃0n

〉
, m = 0, . . . ,m∗

0 − 1 , n ≥ m∗
0 .

Using the refinement equation for wavelets on the real line, we easily show that

〈ψ0m, ψ̃0n〉 = 0, n = 0, . . . , m̃∗
0 − 1 if m ≥

⌈
k̃ + ñ1 − 1

2

⌉
=: m∗

〈ψ0m, ψ̃0n〉 = 0, m = 0, . . . ,m∗
0 − 1 ifn ≥

⌈
k + n1 − 1

2

⌉
=: m̃∗ .

(76)

Observing thatm∗ ≥ m̃∗, it is sufficient to find twom∗ ×m∗ matricesE = (emr) andẼ = (ẽns)

such that
〈m∗−1∑

r=0

emrψ0r ,

m∗−1∑

s=0

ẽnsψ̃0s

〉
= δmn , ∀m,n = 0, . . . ,m∗ − 1 .

CallingY them∗ × m∗ matrix of componentsYmn = 〈ψ0m, ψ̃0n〉, this condition is equivalent to

EYẼT = I .

Again, it is enough to prove that the matrixY is non-singular. In fact this follows from the
assumed invertibility of the matrixX (defined in (45)); since

detY 6= 0 iff W0
(�+

)
∩ W̃0

(�+
)⊥ = {0} ,

we immediately get the result observing that

W0
(�+

)
∩ W̃0

(�+
)⊥ ⊂ V1

(�+
)
∩ Ṽ⊥

1 = {0} .

Moreover
W0

(�+
)

⊂ Ṽ⊥
0 ;

indeed, for anyv ∈ L p (�+
)
, we have

〈v − P0v, ϕ̃0k〉 = v̆0k −
∑

l≥0

v̆0l 〈ϕ0l , ϕ̃0k〉 = 0 .

Finally, for any j ∈ � , we set

Wj
(�+

)
= Tj W0

(�+
)

and W̃j
(�+

)
= T̃j W̃0

(�+
)

;(77)
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settingψ jm = Tjψ0m, ψ̃ jm = T̃j ψ̃0m for every j ,m ∈ � , it is easy to check that the biorthog-
onality relations

〈ψ jm, ψ̃ j ′n〉 = δ j j ′δmn , ∀ j , j ′,m,n ≥ 0 ,

hold. Moreover, with a proof similar to the one of Proposition 3, one has

PROPOSITION10. The bases9 j = {ψ jm : m ∈ �} of Wj
(�+

)
, are uniformly p-stable

bases and the bases̃9 j =
{
ψ̃ jm : m ∈ �} of W̃j

(�+
)
, are uniformly p′-stable bases for all

j ≥ 0.

Moreover, let us state a characterization theorem for Besovspaces based on the biorthogonal
multilevel decomposition

(
Vj
(�+

)
, Ṽj

)
j ≥0 as described in Section 3. With the notation of the

Introduction, for 1< p, q < +∞, let us set

Xs
pq :=

{
Bs

pq
(�+

)
if s ≥ 0 ,(

B−s
p′q′

(�+
))′

if s< 0 ,

and denote by�
(�+

)
the space of distributions.

THEOREM 3. Let ϕ ∈ Bs0
pq
(�+

)
for some s0 > 0, 1 < p, q < +∞. For all s ∈ S :=

(− min(s0, L),min(s0, L)) \ {0}, the following characterization holds:

Xs
pq =





{
v ∈ L p (�+

)
:
∑

j ≥0 2sq j (∑
k≥0 |v j k |p

)q/p
< +∞

}
if s > 0 ,

{
v ∈ �

(�+
)

: v ∈ Xs
pq, for somes ∈ S and

∑
j ≥0 2sq j (∑

k≥0 |v j k |p
)q/p

< +∞
}

if s < 0 ,

where

v j k =
{
v̂ j k = 〈v, ψ̃ j k〉 if s > 0 ,
ˆ̃v j k = 〈v, ψ j k〉 if s < 0 .

In addition, for all s∈ S andv ∈ Xs
pq, we have

|v|Xs
pq

�



∑

j ≥0

2sq j


∑

k≥0

|v j k |p



q/p



1/q

.(78)

Finally, if p = q = 2, the characterization and the norm equivalence hold for allindex s ∈
(− min(s0, L),min(s0, L)).

Proof. It is sufficient to apply Theorems 1 and 2 (since the Bernstein- and Jackson- type in-
equalities have been proven in Proposition 6 and 7, respectively) and remember the interpolation
result (1).

REMARK 4. It is possible to obtain a characterization result using the same representation

of a functionv ∈ Xs
pq for both positive and negatives. Indeed, ifϕ ∈ Bs0

pq(
�
), ϕ̃ ∈ Bs̃0

pq(
�
),

given anys ∈ (− min(s̃0, L̃),min(s0, L)) \ {0} andv =
∑

j ,k≥0 v̂ j kψ j k ∈ Xs
pq, we have the

same norm equivalence as in (78) withv̂ j k instead ofv j k (see, e.g., [14]). We also observe that,
in general,̃s0 < s0 and thus Theorem 3 gives characterization for a larger interval.
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6. Boundary values of scaling functions and wavelets

The aim of this section is to construct scaling functions andwavelets satisfying certain boundary
value conditions, in view of the characterization of spacesarising from homogeneous boundary
value problems. More precisely, we will see that it is possible to construct a basis of scaling
functions in such a way that only one scaling function is non-zero at zero both for the primal and
the dual systems. A similar property will be shown for the wavelet basis.

Let us start considering the scaling function case. Observethat all the interior scaling
functions are zero at zero, while the value at zero of the boundary scaling functions depends
upon the choice of the polynomial basis{pα} of � L−1 and the biorthogonalization. If we
start with a properly chosen polynomial basis (e.g.,pα(x) = xα ), only ϕ00 and ϕ̃00 (see
(35)) do not vanish at zero. Thus, the idea is to biorthogonalize first the functions in the sets
8∗ = {ϕ0k : k = 1, . . . , L̃ − 1} and8̃∗ =

{
ϕ̃0k : k = 1, . . . , L̃ − 1

}
, so that the resulting sys-

tems contain functions which all vanish at zero. To do this, we need to check the non-singularity
of the Gramiam matrix

{
〈ϕ0k, ϕ̃0k′ 〉

}
k,k′=1,... ,L̃−1 obtained from the matrixX (see (45)) by

deleting the first row and column. As for the non-singularityof the whole matrix we have to
check this case by case. For example, for the B-splines case,this property is satisfied due to
the total positivity of the associated matrixX (see Proposition 12 and also [16]). From now on
we suppose this property is verified and biorthogonalize8∗ and8̃∗. For simplicity, we will
maintain the same notations for the new basis functions.

The second step consists in the biorthogonalization of the complete systems, keeping invari-
ant the functions in8∗ and8̃∗. Precisely, we have the following general result.

PROPERTY1. Let8∗ and8̃∗ be the two biorthogonal systems described above. Consider

8 = {ϕ00} ∪8∗ , 8̃ = {ϕ̃00} ∪ 8̃∗

and suppose that the matrix(〈ϕ0k, ϕ̃0k′ 〉), k, k′ = 0, . . . , L̃ − 1, is non-singular. Then, it is
possible to construct new biorthogonal systems spanning the same sets as8 and8̃, respectively,
in which only the two functionsϕ00, ϕ̃00 have been modified.

Proof. Let us set

ϕ#
00 =

L̃−1∑

k=1

αkϕ0k + α0ϕ00 , ϕ̃#
00 =

L̃−1∑

l=1

βl ϕ̃0l + β0ϕ̃00 .

We want to prove that we can findαk, βl , k, l = 0, . . . , L̃ − 1 so thatα0β0 6= 0,

〈ϕ#
00, ϕ̃0l 〉 = 〈ϕ0k, ϕ̃

#
00〉 = 0 , k, l = 1, . . . , L̃ − 1 ,(79)

and

〈ϕ#
00, ϕ̃

#
00〉 = 1 .(80)

Imposing the conditions (79) and using the biorthogonalityof the systems8∗, 8̃∗, we get

αk = −α0〈ϕ00, ϕ̃0k〉 and βl = −β0〈ϕ̃0l , ϕ̃00〉 , k, l = 1, . . . , L̃ − 1 .

Substituting these relations in (80), we end up with the identity

Kα0β0 = 1 where K =
〈
ϕ00, ϕ̃00 −

L̃−1∑

k=1

〈ϕ̃00, ϕ0k〉ϕ̃0k

〉
.
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To conclude the proof it is enough to show thatK 6= 0. Indeed, ifK = 0, the functionη = ϕ̃00−∑L̃−1
k=1 〈ϕ̃00, ϕ0k〉ϕ̃0k ∈ (span8∗)⊥, would also be orthogonal toϕ00; moreoverη ∈ spañ8 and

the systems8 and8̃ are biorthogonalizable, i.e.,(span8)⊥ ∩ (spañ8) = {0}; this would mean
η = 0, contradicting the linear independence of the functions in 8̃.

Next we consider the wavelet case. Suppose we have constructed biorthogonal wavelets
{ψ j k}k≥0,

{
ψ̃ j k

}
k≥0 starting from biorthogonal scaling systems{ϕ j k}k≥0,

{
ϕ̃ j k

}
k≥0 such that

ϕ j 0(0)ϕ̃ j 0(0) 6= 0 and ϕ j k(0) = ϕ̃ j k(0) = 0 , ∀k ≥ 1 , ∀ j ≥ 0 .(81)

Recalling thatϕ j +1,k = T1ϕ j k , one has

ϕ j +1,0(0) = 21/pϕ j 0(0) , ϕ̃ j +1,0(0) = 21/p′

ϕ̃ j 0(0) .(82)

We want to prove that we can modify the wavelet systems and obtain a property similar to (81).

To this end, we report general observations about biorthogonal bases that can be found in the
Appendix of [7]. LetS, S̃ be two spaces of functions defined on some set� with biorthogonal
basesE = {ηl }l∈� and Ẽ = {η̃l }l∈� (here� is some set of indices) with respect to some
bilinear formS〈·, ·〉S̃ on S× S̃. Let F = {νl }l∈� and F̃ = {ν̃l }l∈� be two other bases such that
νl = Klmηm, ν̃l = K̃lmη̃m, whereK andK̃ are suitable generalized matrices. It is easy to check
that, to preserve the biorthogonality, we must haveK̃ = K−T .

LEMMA 1. With the previous notation, suppose the elements of E andẼ are continuous
functions, then the quantity ∑

l∈�
ηl (x)η̃l (x), ∀x ∈ �

is invariant under any change of biorthogonal basis.

Proof. Let us denote bye(x) the vector(ηl (x))l∈� , and similarly for̃e(x), f (x), f̃ (x). Note
that f (x) = Ke(x) and f̃ (x) = K−T ẽ(x); thus
∑

l∈�
νl (x)ν̃l (x) = f (x)T · f̃ (x) = e(x)T K T · K−T ẽ(x) = e(x)T · ẽ(x) =

∑

l∈�
ηl (x)η̃l (x) .

We will apply this result to our biorthogonal wavelets.

COROLLARY 2. Suppose the scaling functionsϕ, ϕ̃ are continuous on
�

, then
∑

k≥0

ψ0k(0)ψ̃0k(0) 6= 0 .(83)

Proof. Let S = V1
(�+

)
, S̃ = Ṽ1

(�+
)
. Using the relationsV1

(�+
)

= V0
(�+

)
⊕ W0

(�+
)

and Ṽ1
(�+

)
= Ṽ0

(�+
)
⊕ W̃0

(�+
)
, we have two couples of biorthogonal bases onS and S̃:

E = {ϕ1k}k≥0, Ẽ = {ϕ̃1k}k≥0 and F = {ϕ0k}k≥0 ∪ {ψ0k}k≥0, F̃ = {ϕ̃0k}k≥0 ∪
{
ψ̃0k

}
k≥0.

Using the previous Lemma, (81) and (82), we have

ϕ10(0)ϕ̃10(0) = 2ϕ00(0)ϕ̃00(0) = ϕ00(0)ϕ̃00(0)+
∑

k≥0

ψ0k(0)ψ̃0k(0) .
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Thus ∑

k≥0

ψ0k(0)ψ̃0k(0) = ϕ00(0)ϕ̃00(0) 6= 0 .

This implies that we can always findk ≥ 0 such thatψ0k(0)ψ̃0k(0) 6= 0. Without loss of
generality, we can supposek = 0. Let us define, fork ≥ 1,

ψ∗
0k(x) := ψ0k(x)− ψ0k(0)

ψ00(0)
ψ00(x) =: ψ0k(x)− ckψ00(x)(84)

and

ψ̃∗
0k(x) := ψ̃0k(x)− ψ̃0k(0)

ψ̃00(0)
ψ̃00(x) =: ψ̃0k(x) − c̃kψ̃00(x) .(85)

Observe thatψ∗
0k(0) = ψ̃∗

0k(0) = 0, ∀k ≥ 1; moreover only a finite number of wavelets are
modified, since all the interior ones vanish at the origin. Thus, to end up our construction, it
is enough to show that it is possible to biorthogonalize the systems

{
ψ∗

0k

}
k≥1 and

{
ψ̃∗

0k

}
k≥1.

Indeed

LEMMA 2. The matrix Y∗ =
{〈
ψ∗

0k, ψ̃
∗
0l

〉}m∗−1
k,l=1 is non-singular.

Proof. Let us setM = m∗ − 1; for k, l = 1, . . . ,M we have

〈
ψ∗

0k, ψ̃
∗
0l
〉
=
{

1 + ckc̃k if k = l
ckc̃l if k 6= l .

It is easy to see thatY∗ has only two different eigenvalues:λ1 = 1, with multiplicity M − 1 and
λ2 = 1 +

∑M
k=1 ckc̃k, with multiplicity 1. Thus, by Corollary 2,

detY∗ = 1 +
M∑

k=1

ckc̃k =
∑

k≥0ψ0k(0)ψ̃0k(0)

ψ00(0)ψ̃00(0)
6= 0 .

Finally we construct our wavelet systems as described in Property 1.

7. Characterization of Besov spacesBs
pq,00

(�+
)

We now prove that we can build multiresolution analyses onL p (�+
)

of functions satisfying
homogeneous boundary value conditions in zero. This can be done by choosing sufficiently
regular scaling functionsϕ and ϕ̃ and by building boundary functions starting from particular
bases of polynomials.

Supposeϕ ∈ Bs0
pq(

�
) (or Ws0,p(

�
)) andS = [s0] < L . Let us consider the basisp(x) =

xα of the monomials, and let us build the functions on the boundary as in (35). We remove the
first Sboundary functions and define (see (42))

0V B
0
(�+

)
= span

{
ϕ0k : S≤ k ≤ L̃ − 1

}
:= span080(86)



150 L. Levaggi – A. Tabacco

and

0Ṽ B
0
(�+

)
= span

{
ϕ̃0k : S≤ k ≤ L̃ − 1

}
:= span08̃0 .(87)

The systems080 and 08̃0 can be biorthogonalized if the matrix0X = (〈ϕ0k, ϕ̃0l 〉), with
k, l = S, . . . , L̃ − 1 is non-singular. For example, this condition is verified inthe B-spline case
(see Proposition 12 and also [16]).

As before, we set

0Vj
(�+

)
:= Tj

(
0V0

(�+
))

and 0Ṽj
(�+

)
:= T̃j

(
0Ṽ0

(�+
))
.

Let us define0P0 : L p (�+
)

−→ 0V0
(�+

)
as

0P0v =
∑

k≥S

v̆0kϕ0k , ∀v ∈ L p (�+
)
.(88)

For any levelj > 0, let us set

0Pj = Tj ◦ 0P0 ◦ T−1
j .(89)

Similar definitions hold for the dual operators0P̃j . These sequences of operators satisfy the
requirements (7), (8) and (9). Following the same construction as in Sections 3 and 5, we build
a multiresolution analysis that will be used to characterize the Besov spacesBs

pq,00 (see (3)).
For the scaling spaces the situation is basically the same, in fact we have only dropped some
functions on the boundary.

Many results hold in this context; for example, since0V0
(�+

)
is a subspace ofV0

(�+
)
,

one has

‖v‖L p(
�

+) �


∑

k≥S

|v̆0k|p



1/p

,

for anyv ∈ 0V0
(�+

)
(see Proposition 5).

We note that while the number of boundary wavelets does not change, they are defined in a
different way since their definition depends on the projector 0P0. In fact, one has

0ψ0,m∗

0−k := ϕ
�

1,k−2k+1

∣∣
[0,+∞)

− 0P0ϕ
�

1,k−2k+1

∣∣
[0,+∞)

= ψ0,m∗

0−k +
S−1∑

l=0

〈
ϕ
�

1,k−2k+1
, ϕ̃0l

〉
ϕ0l

for k = 1, . . . ,m∗
0.

7.1. Bernstein and Jackson inequalities

In order to use the characterization Theorems 1 and 2, we willprove Jackson- and Bernstein-type
inequalities for Besov spacesBs

pq,0

(�+
)

or Sobolev spacesWs,p
0

(�+
)
. Let us observe that

the Bernstein inequality follows from (53), because0V0
(�+

)
⊂ V0

(�+
)

and Bs
pq,0

(�+
)

⊂
Bs

pq
(�+

)
with the same semi-norms. It only remains to prove a Jackson-type inequality, that

cannot be deduced directly from (55) because it depends on the projectors (88).
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PROPOSITION11. For each s such that0< S≤ s ≤ s0 < L, we have

‖v − 0Pj v‖L p(
�

+) � 2− j s|v|Bs
pq(

�
+) , ∀v ∈ Bs

pq,0
(�+

)
, ∀ j ∈ � .

Proof. We can proceed as in Proposition 7, the only difference beingon the first intervalI0 =
[0, 1] and on the space of polynomials to be considered. Indeed, we consider the subspace

0� L−1 of � L−1, i.e., the space of polynomials which are zero at zero with all their derivatives
of order less thanS. Then, inequality (57) holds for everyv ∈ Bs

pq,0

(�+
)

(straightforward
modifications of the proof of Theorem 4.2, p. 183, in [19]).

Finally, we state a characterization theorem for Besov spaces Bs
pq,00

(�+
)

based on the

biorthogonal multilevel decomposition
(
0Vj

(�+
)
, 0Ṽj

(�+
))

as described before. This result
immediately follows from Theorem 1.

THEOREM 4. Letϕ ∈ Bs0
pq
(�+

)
for some0< s0 < L, 1< p,q < ∞. For all 0< s< s0,

we have

Bs
pq,00

(�+
)

=




v ∈ L p (�+

)
:
∑

j ≥0

2sq j


∑

k≥S

|v̂ j k |p



q/p

< ∞





(90)

and

|v|Bs
pq(

�
+) �



∑

j ≥0

2sq j


∑

k≥S

|v̂ j k |p



q/p



1/p

, ∀v ∈ Bs
pq,00

(�+
)
.(91)

REMARK 5. Since, for anys ∈ �
, 1< p,q < ∞, 1

p + 1
p′ = 1

q + 1
q′ = 1,

(
Bs

pq,00
(�+

))′
= B−s

p′q′

(�+
)
,

(see [23] p. 235) the extension of the previous theorem to thedual spaces (negatives) gives the
same result of Theorem 3.

REMARK 6. As usual, ifp = q = 2, s can assume the value 0. In this particular case, if
0 ≤ s0 < L , we get

Hs
00
(�+

)
=

{
v ∈ L2 (�+

)
:
∑

j ≥0

∑

k≥S

22s j |v̂ j k |2 < +∞
}

=





Hs
0

(�+
)

if s − 1
2 /∈ � ,

Hs
00

(�+
)

if s − 1
2 ∈ � ,

and

‖v‖Hs(
�

+) �


∑

j ≥0

∑

k≥S

(1 + 22s j)|v̂ j k |2



1/2

, ∀v ∈ Hs
00
(�+

)
.(92)
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REMARK 7. In Theorem 4, we have described how to characterize the family of Besov
spacesBs

pq,00

(�+
)

using a scaling fuctionϕ ∈ Bs0
pq
(�+

)
and removingS = [s0] boundary

scaling functions. Of course, one can remove onlyS< S boundary scaling functions and pro-
ceed as before to construct a multiresolution analysis. In this case we characterizeBs

pq,00

(�+
)

with 0< s ≤ SandBS
pq,00

(�+
)
∩ Bs

pq
(�+

)
for everyS< s< s0.

8. Biorthogonal decomposition of the unit interval

In the previous sections, we have carried out the construction of a multiresolution analysis taking
into account the presence of a boundary point. Now we want to exploit it to build a multilevel
decomposition of the bounded interval(0,1). Intuitively one easily sees that, provided the scale
is finer enough, the presence of the left boundary point does not influence the construction at the
right one. More precisely, we will choose a levelj0 such that

Vj (0, 1) = span
{
ϕ

(0)
j l : l ∈ � L

}
⊕ span{ϕ j k : k ∈ � I } ⊕ span

{
ϕ

(1)
j r : r ∈ � R

}
, ∀ j ≥ j0 ,

with � I 6= ∅ and where the boundary functionsϕ(0)
j l andϕ(1)

j r are constructed independently.

Here, and from now on, the suffix(0) or (1) refers to the boundary point 0 or 1, respectively.

The basic idea is to start from two multiresolution analyseson the half-linesI0 = (0,+∞)

andI1 = (−∞, 1), and paste them together in a suitable way to get the spacesVj (0, 1). In turns,
to obtain a decomposition onI1, we first consider a decomposition on

�− = (−∞,0) and then
we translate it of a unit.

Let us choose two bases for� L−1 and� L̃−1, say
{

p(1)
α : α = 0, . . . , L − 1

}
and

{
q̃(1)
β

:

β = 0, . . . , L̃ − 1
}
, possibly different from the ones used to buildV B

0 and Ṽ B
0 for (0,+∞).

Fixing two nonnegative integersδ1 andδ̃1, let us define the boundary functions as in (35)

φ
(0−)
α (x) =

−n0−1∑

k=1−δ1−n1

c(1)
αk ϕ

�

0k(x) , x ≤ 0 , ∀α = 0, . . . , L − 1 .

Matching the dimensions ofV0
(�−

)
andṼ0

(�−
)
, we obtain a relation similar to (40):

δ̃1 − δ1 = L̃ − L − (ñ1 − n1) .(93)

Recalling the definition of the isometriesTj (see (49)), we define

Vj
(�−

)
= span

{
φ

(0−)
j α = Tj

(
φ

(0−)
α

)
: α = 0, . . . , L − 1

}
⊕ span

{
ϕ
�

j k : k ≤ −δ1 − n1

}
;

using the operatorτ : x 7→ x − 1, we translate the origin into the right edge of our interval. It is
easy to see that, calling

φ
(1)
j α (x) =

2 j −n0−1∑

k=2 j +1−δ1−n1

c(1)

α,k−2 j ϕ
�

j k(x) , x ≤ 1 ,

we have

Vj (−∞, 1) = span
{
φ

(1)
j α : α = 0, . . . , L − 1

}
⊕ span

{
ϕ
�

j k : k ≤ 2 j − δ1 − n1

}
.
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As said before, we wish to maintain the situation at the two boundary points decoupled. This
means we want to have at least one interior function inVj (0,1). This requirement yields the
condition

−n0 + δ0 ≤ 2 j − δ1 − n1 .

Keeping also into account the dual relation, we have to set a coarsest levelj0 such that for all
j ≥ j0,

2 j ≥ max
{
n1 − n0 + δ0 + δ1, ñ1 − ñ0 + δ̃0 + δ̃1

}
.(94)

By (40) and (93), we have
(
ñ1 − ñ0 + δ̃0 + δ̃1

)
− (n1 − n0 + δ0 + δ1) = 2

(
L̃ − L

)
≥ 0 ,

so we must fix

j0 ≥
⌈

log2

(
ñ1 − ñ0 + δ̃0 + δ̃1

)⌉
.(95)

Thus, we have, forj ≥ j0,

Vj (0, 1) = span
{
φ

(0)
j k : k = 0, . . . , L − 1

}
⊕

⊕ span
{
ϕ
�

j k : k = −n0 + δ0, . . . ,2
j − δ1 − n1

}
⊕

⊕ span
{
φ

(1)
j k : k = 0, . . . , L − 1

}
,

and similarly for the dual spaces̃Vj (0, 1). By construction, and thanks to the choice ofj0, all
the biorthogonality properties are maintained. Finally, we observe that

dim Vj (0,1) = 2 j + 2L + 1 − δ0 − δ1 − ñ1 + ñ0 , ∀ j ≥ j0 .

SinceVj +1(0,1) = Vj (0,1)⊕ Wj (0, 1), this implies

dim Wj (0, 1) = 2 j +1 − 2 j = 2 j .

Going through the construction in Section 5, one easily proves that, setting

m#
0 :=

⌈
δ1 + n1 − ñ0 + 1

2

⌉

one has
{
ϕ
�

1k : k ≤ 2(−δ1 − n1)+ ñ0 + 1
}

⊆ V0
(�−

)
⊕ span

{
ψ
�

0m : m ≤ −m#
0

}
.

As before, one out of twoϕ1k, k = −δ1 − n1, . . . ,2(−δ1 − n1)+ ñ0 + 2 is linearly dependent
modulusV0

(�−
)

on the previous ones; observe then that dimWB
0

(�−
)

= m#
0 − 1. Therefore,

defining the projection operatorP(0−)
0 on V0

(�−
)

and

ψ
(0−)

0,m#
0−k

:= ϕ
�

1,−2(δ1+n1)+n0+2k

∣∣
(−∞,0] − P(0−)

0 ϕ
�

1,−2(δ1+n1)+n0+2k

∣∣
(−∞,0] ,

k = 1, . . . ,m#
0 − 1
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one gets

W0
(�−

)
= span

{
ψ
�

0m : m ≤ −m#
0

}
⊕ span

{
ψ

(0−)
0m : m = 1, . . . ,m#

0 − 1
}
.

As in Section 5, we observe that

〈
ψ
�

0m, ψ̃0n

〉
= 0 , ∀n = 1, . . . , m̃#

0 − 1 if m ≤ −
⌈

2(ñ1 + δ̃1)− n0 − ñ0

2

⌉
=: −m#

〈
ψ0m, ψ̃

�

0n

〉
= 0 , ∀m = 1, . . . ,m#

0 − 1 if n ≤ −
⌈

2(n1 + δ1)− n0 − ñ0

2

⌉
=: −m̃# .

Through the operatorsTj we can defineWj
(�−

)
= Tj W0

(�−
)

and operating with the trans-
lation τ : x 7→ x − 1 we finally have

Wj (−∞,1) = span
{
ψ
�

jm : m ≤ −m#
0 + 2 j

}
⊕

⊕ span
{
ψ

(1)
jm := τ

(
Tjψ

(0−)
0m

)
: m = 1, . . . ,m#

0 − 1
}
.

As for the scaling spaces, we can paste the wavelet spaces at each level and we obtain

Wj (0,1) = span
{
ψ

(0)
jm : m = 0, . . . ,m∗

0 − 1
}

⊕

⊕ span
{
ψ jm : m = m∗

0, . . . ,2
j − m#

0

}
⊕

⊕ span
{
ψ

(1)
jm : m = 1, . . . ,m#

0 − 1
}
.

The minimum levelj0 must be taken in order to avoid intersection between the supports of the
modified border wavelets corresponding to two different edges. It is not possible to have an easy
and general formulation for it, but it will be computed lateron for B-spline scaling functions.

REMARK 8. Obviously, we can state characterization theorems for the scales of Besov
spacesBs

pq(0, 1) and Bs
pq,00(0,1) (see Theorems 3, 4 and subsequent Remarks). Moreover,

we can also characterize spaces of functions possibly satisfying different boundary conditions at
the two edges 0 and 1.

9. The B-spline multiresolution

We will detail here the construction of biorthogonal systems on the unit interval starting from
B-splines multiresolution analyses on

�
. Using particular properties of the basis functions, we

will show that in this case we can prove, for example, the non-singularity of the matrixX (see
(45)).

For any positive integerl > 0, let ϕ be a particular B-spline function of orderl with in-
teger nodes (see, e.g., [18] for definition and basic properties). More precisely, denoting by
[x1, . . . , xn] f then-th order divided difference off with respect to the nodesx1, . . . , xn and
by f+(x) = max{ f (x),0}, we have

ϕ(l)(x) = l [0,1, . . . , l ]

(
· − x −

⌊
l

2

⌋)l−1

+

.
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It is easy to see that

suppϕ(l) =
[
−
⌊

l

2

⌋
,

⌈
l

2

⌉]
=: [n0,n1] ,

and thatϕ(l) satisfies the refinement equation

ϕ(l)(x) =
n1∑

k=n0

21−l
(

l

k +
⌊ l

2

⌋
)
ϕ(l)(2x − k) .

It has been shown in [11] that for any integerl̃ ≥ l such thatl + l̃ is even, there exists a function

ϕ̃

(
l ,l̃
)

∈ L2(
�
) that satisfies the conditions in Section 2.3 withL = l and L̃ = l̃ . This is a

compactly supported function such that

supp̃ϕ
(
l ,l̃
)

=
[
−
⌊

l

2

⌋
− l̃ + 1,

⌈
l

2

⌉
+ l̃ − 1

]
=: [ñ0, ñ1] .

Let us consider a fixed couple
(
l , l̃
)

and drop, for a moment, the superscripts. Substituting in
(40) we must have

δ̃0 − δ0 = 1 − l .(96)

For l = l̃ = 1, we obtain the orthogonal Haar basis and we can obviously chooseδ̃0 = δ0 = 0.
In all the other cases, observing thatñ1 − ñ0 − 1 = 2l̃ + l − 3 ≥ l̃ , we can choosẽδ0 = 0 and
δ0 = l − 1, sok∗

0 =
⌊ l

2

⌋
+ l − 1 andk̃∗

0 =
⌊ l

2

⌋
+ l̃ − 1. Considering now (93), we must have

δ̃1 − δ1 = 1 − l ,

and again we can setδ̃1 = 0 andδ1 = l − 1. Recalling the definition (94), we must fix a coarsest
level j0 such that

j0 ≥
⌈

log2

(
l + 2l̃ − 2

)⌉
.

For j ≥ j0, we have (see Section 8)

Vj (0, 1) = span
{
φ

(0)
j k : k = 0, . . . , l − 1

}
⊕

⊕ span

{
ϕ
�

j k : k = l +
⌊

l

2

⌋
− 1, . . . , 2 j − l −

⌈
l

2

⌉
+ 1

}
⊕

⊕ span
{
φ

(1)
j k : k = 0, . . . , l − 1

}
.

From the definition, it is easy to see that, for any integerp,

ϕ(2p)(−x) = ϕ(2p)(x) , ϕ(2p+1)(1 − x) = ϕ(2p+1)(x) , ∀x ∈ �
,

and these properties are in fact maintained by the dual functions, i.e.,

ϕ̃(2p,l̃)(−x) = ϕ̃(2p,l̃)(x) , ϕ̃(2p+1,l̃)(1 − x) = ϕ̃(2p+1,l̃)(x) , ∀x ∈ �
,

for any suitable integer̃l . These symmetry features can be used to generate boundary functions.

In fact, if we choosep(1)
α (y) = p(0)

α (−y), it is straightforward to see that

φ
(0)
j α (1 − x) = φ

(1)
j α (x) , ∀x ∈ [0, 1] .
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As we said before, in this setting we can prove that the matrixwe get imposing the biorthogonal-
ity conditions is non-singular. To simplify matters, we carry out the proof for the left boundary
point only, the other one being treated analogously. To thisend, let us set

ϕ

(
l ,l̃
)

0k =




φ

(0)
0k k = 0, . . . , l − 1 ,

ϕ
(l)

0,
⌊

l
2

⌋
+k−1

k = l , . . . , l̃ − 1 ,

ϕ̃

(
l ,l̃
)

0k = φ̃
(0)
0k k = 0, . . . , l̃ − 1 ,

and

X
(
l , l̃
)

=
(〈
ϕ

(
l ,l̃
)

0α
, ϕ̃

(
l ,l̃
)

0β

〉)

α,β=0,... ,l̃−1
.

We prove now a stronger proposition about the non-singularity of X
(
l , l̃
)
. As the proof is done

using induction, when necessary we will keep track of the dependence of the variables on the
parametersl and l̃ . Let I = {i1, . . . , ik} and J = { j1, . . . , jk} be two selections of row and
column indices, respectively; supposek ≥ 2, in 6= im for everyn 6= m and jn+1 = jn + 1. Let
us denote byXJ

I the correspondingk × k submatrix ofX
(
l , l̃
)
.

PROPOSITION12. For all l , l̃ ≥ 1 such that l+ l̃ is even, every submatrix Xj1,... , jk
i1,... ,ik

of

X(l , l̃ ) is non-singular.

Proof. Using biorthogonality on the line and the definition of the modified functions on the
boundary, it is easy to see that, ifl̃ ≥ l ,

〈
ϕ

(
l ,l̃
)

0α
, ϕ̃

(
l ,l̃
)

0β

〉
=
〈
ϕ

(
l ,l̃
)

0α
, (·)β

〉

for all α, β = 0, . . . , l̃ − 1 and any couple
(
l , l̃
)
.

We will prove the result by induction onl . First, let us compute the matrix arising from the
Haar functionϕ = χ[0,1), that is the B-spline of orderl = 1 (observe that in this case we do not
have boundary scaling functions of the form (35)). Choosingδ0, δ̃0 = 0 one has

〈
ϕ

(
l ,l̃
)

0α
, ϕ̃

(
l ,l̃
)

0β

〉
=
∫ α+1

α
xβdx = 1

β + 1

[
(α + 1)β+1 − αβ+1

]
.

SettingPβ (x) = xβ+1

β+1 we have, for any odd̃l ,

X
(
1, l̃
)

=
(
Pβ (α + 1)− Pβ (α)

)
α,β=0,...l̃−1 .

If, starting from the second, we add to any row the preceding one and multiply thej -th column
by j , we obtain the Vandermonde matrixV = (Vi j ) = (i j ), for i , j = 1, . . . , l̃ . It is easy to

prove thatV has the property stated in the proposition, which in turn means thatX(1, l̃ ) has it as
well.

Secondly, let us suppose that the proposition is true for allmatricesX(n,m) with n + m
even andn < l and observe that

〈
ϕ

(
l ,l̃
)

0α
, (·)β

〉
= −

〈
d

dx
ϕ

(
l ,l̃
)

0α
, Pβ

〉
.



Wavelets on the interval 157

Using the relations (see [18])

d

dx
ϕ(l)(x) = ϕ(l−1)(x + r l−1)− ϕ(l−1)(x + r l−1 − 1)

(wherers = s mod 2),

c

(
l ,l̃
)

α,k − c

(
l ,l̃
)

α,k−1 = α c(l−1,l̃+1)
α−1,k−rl−1

(see (34)) and the definition of boundary functions, we get




d
dxϕ

(
l ,l̃
)

00 = ϕ
(l−1,l̃+1)
0l

d
dxϕ

(
l ,l̃
)

0α
= αϕ

(l−1,l̃+1)
0,α−1 − c

(
l ,l̃
)

α,k∗−1ϕ
(l−1,l̃+1)
0α

α = 1, . . . , l − 1 ,

d
dxϕ

(
l ,l̃
)

0α
= ϕ

(l−1,l̃+1)
0,α−1 − ϕ

(l−1,l̃+1)
0α

α = l , . . . , l̃ − 1 .

We can now express the elements ofB = X
(
l , l̃
)

in terms of the components ofA = X(l −
1, l̃ + 1) as follows:

Bαβ = 1

β + 1





−Al ,β+1 α = 0 ,

−αAα−1,β+1 + c

(
l ,l̃
)

α,k∗−1Al ,β+1 α = 1, . . . , l − 1 ,

−Aα−1,β+1 + Aα,β+1 α = l , . . . , l̃ − 1 .

With elementary operations on the rows and columns ofB, we can transform it in the matrix
obtained deleting the last two rows and the first and last column of A. These operations never
switch columns and do not affect the singularity of the minors of B, so by induction the proof is
complete.

Finally, with the notation of Section 8, we have

m∗
0 = m#

0 − 1 = l + l̃

2
+ l + r

2
− 1 , m̃∗

0 = m̃#
0 − 1 = l + l̃

2
+ r − 1 ,

and

m∗ = m# − 1 = l + r + l̃ − 2 +
⌈

l̃ − 1

2

⌉
, m̃∗ = m̃# − 1 = 2l + r − 2 +

⌈
l̃ − 1

2

⌉
,

wherer is 1 if l is odd, zero otherwise. Then it is easy to see thatm̃∗ ≤ m∗ for all couples
(
l , l̃
)
.

Therefore, one has

Wj (0,1) = span
{
ψ

(0)
jm : m = 0, . . . ,m∗ − 1

}
⊕

⊕ span
{
ψ jm : m = m∗, . . . ,2 j − m∗

}
⊕

⊕ span
{
ψ

(1)
jm : m = 1, . . . ,m∗ − 1

}
.

Since the border wavelets have the same supports at the two edges, we only have to compute
their lengths once. From the definition (74), substituting the values ofn0, ñ0 andn1, ñ1 it is
easy to see that

max
m=0,... ,m∗−1

∣∣∣suppψ (0)
jm

∣∣∣ = 2− j
(

2l̃ + 3l

2
+ r − 3

)
.
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To obtain a lower limit forj0 it is enough to require 2− j0
(
2l̃ + 3l

2 + r − 3
)

≤ 1
2 . In this way

we obtain

j0 ≥
⌈

log2

(
2l̃ + 3l

2
+ r − 3

)
+ 1

⌉
.(97)
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