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BIFURCATION OF PERIODIC ORBITS OF TIME

DEPENDENT HAMILTONIAN SYSTEMS ON SYMPLECTIC

MANIFOLDS

Sommario. On a symplectic manifoldM, a 1-parameter family of time dependent
Hamiltonian vectors fields which possesses a known trivial branchuλ of 1-periodic
solution is considered. If the relative Conley Zehnder index of the monodromy
path alonguλ(0) is defined and does not vanish it is shown that any neighborhood
of the trivial branch contains 1-periodic solutions not in the branch. This result is
applied to bifurcation of fixed points of Hamiltonian symplectomorphisms when
the first Betty number ofM vanishes.

1. Introduction

Existence and multiplicity of periodic trajectories of Hamiltonian vector fields on symplectic
manifolds is a traditional field of research, which recentlyfound new input from the work on
Arnold’s conjecture. Bifurcation of periodic orbits attracted much interest as well. In the fifties
much of the research was concerned with the classification ofthe various bifurcation phenom-
ena for generic families of autonomous vector fields (an excellent review is contained in [1]).
Topological methods introduced by Alexander and Yorke [3] in Hopf bifurcation and by Wein-
stein [20] and Moser [15] in their generalizations of the Liapunov center theorem permitted to
drop many of the genericity assumptions that are intrinsic to the approach based on singularity
theory. Faddel and Rabinowitz [7] and more recently Bartsch[5] used various index theories
based on theS1 invariance of the action functional in the case of an autonomous vector field.
The same property was used by Ize, Dancer and Rybakowski [12], [6] who studied bifurcation
of periodic orbits using theS1-equivariant degree. The methods mentioned above can be applied
to the autonomous case only. Bifurcation for time dependentvector fields deserved very little at-
tention. Recently Fitzpatrick, Pejsachowicz and Recht [9]using their results relating the spectral
flow to the bifurcation of critical points of strongly indefinite functionals [8] studied bifurcation
of periodic solutions of one-parameter families of (time dependent) periodic Hamiltonian sys-
tems inR2n. The purpose of this paper is to extend their results to families of time dependent
Hamiltonian vector fields acting on symplectic manifolds and to discuss the related problem of
bifurcation of fixed points of one parameter families of symplectomorphisms.

Our main result can be stated as follows:

Let Xλ; λ ∈ [0,1] be a one parameter family of1-periodic Hamiltonian vector fields on a
closed symplectic manifold M. Assume that the family Xλ possesses a known, trivial, branch uλ

of 1-periodic solutions. Let pλ = uλ(0) and let Pλ be the period map of the flow associated to
Xλ. If the relative Conley-Zehnder index of the path Pλ along pλ is defined and does not vanish,
then any neighborhood of the trivial branch of periodic solutions contains1-periodic solutions
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not in the branch.

Notice that the hypothesis in our bifurcation theorem are not of local nature. Most of the
difficulties of the extension to manifolds are due to this fact. We first extend to manifolds the
concept relative Conley-Zehnder index defined in [9]. An interesting feature of this concept is
that in general it depends on the homotopy class of the path and not on the endpoints only. On
symplectic manifold one can have closed paths of orbits withnontrivial Conley-Zehnder index.
This will be done in section 2. In section 4 following an idea of [18] in the nonparametric case,
we construct Darboux coordinates adapted to a given parametrized family of periodic solutions.
The new coordinates allow to reduce the proof of bifurcationtheorem to the case considered in
[9].

In section 3 we state the main theorem and discuss some consequences regarding bifurcation
of fixed points of Hamiltonian symplectomorfisms. A symplectomorphism is called Hamilto-
nian if it can be realized as a time one map of a one-periodic Hamiltonian vector field. Fixed
points of a Hamiltonian symplectomorphisms are in one to onecorrrespondence with 1-periodic
orbits of the corresponding vector field. The Arnold conjecture states that a generic Hamiltonian
symplectomorphism has more fixed points that could be predicted from the fixed point index.
More precisely, by the fixed point theory a symplectomorphism isotopic to the identity with
non-degenerate fixed points must have at least as many fixed points as the Euler-Poincaré char-
acteristic of the manifold. But the number of fixed points of aHamiltonian symplectomorphism
verifying the same non-degeneracy assumptions is bounded bellow by the sum of the Betti num-
bers. Roughly speaking, this can be explained by the presence of a variational structure in the
problem. Fixed points viewed as periodic orbits of the corresponding vector field are critical
points of the action functional either if the orbits are contractible or when the symplectic form is
exact.

Applied to bifurcation of fixed points of one parameter families of Hamiltonian symplec-
tomorphisms our result shows a similar influence on the presence of a variational structure.
In order to illustrate the analogy, let us consider a one parameter family of diffeomorphisms
ψλ; λ ∈ [0, 1] of an oriented manifoldM, assuming for simplicity thatψλ(p) = p and thatp
is a non degenerate fixed point ofψi ; i = 0, 1. The work of [12] implies that the only homo-
topy invariant determining the bifurcation of fixed points in terms of the family of linearizations
L ≡ Tpψλ at p is given by the parityπ(L) = sign( detTpψ0) · sign (detTpψ1) ∈ Z2 = {1,−1}.
Here det is the determinant of an endomorphism of the oriented vector spaceTpM. In other
words bifurcation arise whenever the detTpψλ change sign at the end points of the interval.
Moreover, any family of diffeomorphisms close enough toψ in theC1-topology and havingp
as fixed point undergoes bifurcation as well. On the contraryif both sign coincide one can find a
perturbation as above with no bifurcation points at all.

On the other hand, on the base of our theorem, the integer valued Conley-Zehnder index
provides a stronger bifurcation invariant for one parameter families of Hamiltonian symplec-
tomorphisms. It forces bifurcation of fixed points wheneverCZ(L) is non zero even when
π(L) = 1. The relation between the two invariants isπ(L) = (−1)CZ(L) and it is easy to con-
struct examples with even non-vanishing Conley-Zehnder index. Our assumption that the family
of symplectomorphisms is Hamiltonian is due to the method inproof only. It is reasonable to
expect that the same is true for an arbitrary path of symplectomorphisms with non-vanishing
Conley-Zehnder index. The proof could go either via generating functions or by reduction to the
above case, but I was unable to complete all the details involved. Our results in the form treated
here do not apply directly to the autonomous case. In that case 1 is always a Floquet multiplier
whenever the periodic orbit does not reduce to a singular point. A modification of our arguments
using symplectic reduction much as in [14] are quite posibleand will be treated separately. Yet
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another very interesting problem, in the vein of the analogydiscussed above, is to obtain mul-
tiplicity results for bifurcating fixed points similar to the ones for critical points of functionals
obtained by Bartsch [5].

I am deeply grateful to J. Pejsachowicz, to whom I am in debt.

2. The Maslov index and the Conley Zehnder index

Before going to the manifold setting let us shortly discuss the case ofR2n = T∗Rn with the
standard symplectic formω =

∑

dxi ∧ dyi . The group of real 2n × 2n symplectic matrices will
be denoted bySp(2n,R). The relative Conley-Zehnder index is a homotopy invariantassociated
to any pathψ : [0, 1] → Sp(2n,R) of symplectic matrices with no eigenvectors corresponding
to the eigenvalue 1 at the end points. This invariant counts algebraically the number of param-
eterst in the open interval(0, 1) for which ψ(t) has 1 as an eigenvalue. One of the possible
constructions uses the Maslov index for non-closed paths. We shall define it along the lines of
Arnold [4] for closed paths. For an alternative construction see [16]. An-dimensional subspace
l of (R2n, ω) is calledLagrangianprovided that the restriction ofω to l is 0. The Lagrangian
Grassmanian3(n) consists of all Lagrangian subspaces ofR2n considered as a topological space
with the topology it inherits as a subspace of the ordinary Grassmanian of n-planes. LetJ be the
self adjoint endomorphism representing the formω with respect to the standard scalar product in
R2n.Namely,ω(u, v) ≡< Ju, v > . ThenJ is a complex structure, it is indeed the standard one.
It coincides with multiplication byi under the isomorphism sending(x, y) ∈ R2n into x + i y in
Cn. In terms of this representation, a Lagrangian subspace is characterized byJl = l⊥. Using
the above description one can easily identify3(n) with the homogeneous spaceU(n)/O(n).
The identification is as follows: given any orthonormal basis of a lagrangian subspacel there
exist a unique unitary endomorphismu ∈ U(n) sending the canonical basis ofl0 = Rn × {0}

into the given one and in particular sendingl0 into l . Moreover the isotropy group ofl0 can be
easily identified withO(n). Hence we obtain a diffeomorphism betweenU(n)/O(n) and3(n)
sending [u] into u(l0). Since the determinant of an element inO(n) is ±1, the map sendingu
into the square of the determinant ofu factorizes through3(n) ≡ U(n)/O(n) and hence induces
a one form2 ∈ �1(

3(n)
)

given by2 = [det2]∗θ , whereθ ∈ �1(S1) is the standard angular
form on the unit circle. This form is called the Keller-Maslov-Arnold form. The Maslov index
of a closed pathγ in 3(n) is the integer defined byµ(γ ) =

∫

γ 2. In other wordsµ(γ ) is the

winding number of the closed curvet → det2
(

γ (t)
)

. The Maslov index induces an isomor-
phism betweenπ1(3) andZ. The construction can be extended to non-closed paths as follows:
fix l ∈ 3(n). If l ′ is any Lagrangian subspace transverse tol thenl ′ can be easily identified with
the graph of a symmetric transformation fromJl into itself. It follows from this that the setTl
of all lagrangian subspacesl ′ transverse tol is an affine space diffeomorphic to the space of all
symmetric forms onRn and hence contractible. We shall say that a path in3(n) is admissible
with respect tol if the end points of the path are transverse tol . The Maslov indexµ(γ, l ) of an
admissible pathγ with respect tol is defined as follows: take any pathδ in Tl joining the end
points ofγ and define

(1) µ(γ ; l ) ≡ µ(γ ′) =

∫

γ ′
2.

whereγ ′ is the pathγ followed byδ.

Clearly the result is independent of the choice ofδ. Moreover, sinceTl is contractible,
µ(γ ; l ) is invariant under homotopies keeping the end points inTl .
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Geometricaly, the Maslov indexµ(γ ; l ) can be interpreted as an intersection index of the
pathγ with the one codimensional analytic set6l = 3(n) − Tl (see [17]). From the above
definition it is easy to see that the index is additive under concatenation of paths. Namely, given
two admissible pathsα andβ with α(1) = β(0)

(2) µ(α ? β; l ) = µ(α; l )+ µ(β; l ).

SinceSp(2n,R) is connected it follows easily from the homotopy invariancethatµ(Sγ ; Sl) =

µ(γ ; l ) for any symplectic isomorphismS. This allows to extend the notion of Maslov Index
to paths of Lagrangian subspaces in3(V), where(V, ω) is any finite dimensional symplectic
vector space. It is well known that symplectic endomorphisms are characterized by the following
property: their graphs are lagrangian subspaces of the symplectic vector spaceW = V × V
endowed with the symplectic form� = (−ω) × ω. Clearly 1 is not an eigenvalue ofP ∈

Sp(2n,R) if and only if the graph ofP is transversal to the diagonal1 ⊂ V × V. A path
φ : [0, 1] → Sp(2n,R) will be called admissible if 1 is not in the spectrum of its endpoints. For
such a path therelative Conley-Zehnder indexis defined by

(3) CZ(φ) = µ(Graphφ,1).

It follows from the above discussion thatCZ(φ) is invariant under admissible homotopies
and it is additive with respect to the concatenation of paths. ClearlyCZ(φ) = 0 if the fixed point
subspace ofφ(t) reduces to{0} for all t .

There is one more property of the Conley-Zehnder index that we will need in the sequel.
Namely, that for anyα : [0,1] → Sp(2n,R) and any admissible pathφ

(4) CZ(α−1φα) = CZ(φ).

This can be proved as follows. Since the spectrum is invariant by conjugation, the homotopy
(t, s) → α−1(s)φ(t)α(s) shows thatCZ(α−1φα) = CZ(α−1(0)φα(0)). Now (4) follows by
the same argument applied to any path joiningα(0) to the identity.

The property (4) allows to associate a Conley-Zehnder indexto any admissible symplectic
automorphism of a symplectic vector-bundle over an interval. Let I be the interval [0,1], then
any symplectic bundleπ : E → I over I has a symplectic trivialization (see section 3). If
S: E → E is a symplectic endomorphism ofE over I well behaved at the end points, then we
can define the Conley-Zehnder index ofS as follows: if T : E → I × R2n is any symplectic
trivialization, thenT ST−1(t, v) has the form(t, φT (t)v) whereφT is an admissible path on
Sp(2n,R). Any change of trivialization induces a change onφT that has the form of the left
hand side in (4) and henceCZ(φT ) is independent of the choice of trivialization. Thus this value
CZ(S) is by definition the Conley-Zehnder index ofS.

With this in hand we finally can define the relative Conley-Zehnder index of a path of sym-
plectomorphisms along a path of fixed points. Let M be a closedsymplectic manifold and
let Symp(M) be the group of all symplectomorphisms endowed with theC1 topology. Let
8 : I → Symp(M) be a smooth path of symplectomorphisms ofM. Let β : I → M be a path
in M such thatβ(t) is a fixed point of8(t). Floquet multipliers of8(t) atβ(t) are by definition
the eigenvalues ofSt = Tβ(t)8(t) : Tβ(t)(M) → Tβ(t)(M). A fixed point will be called non
degenerate if none of its Floquet multipliers is one. Consistently, we will call the pair(8, β)
admissible wheneverβ(i ) is a non degenerate fixed point of8(i ) for i = 0, 1.
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Let E = β∗[T(M)] be the pullback byβ of the tangent bundle ofM (we use the same
notation for the bundle and its total space). The family of tangent mapsSt = Tβ(t)8(t) induces
a symplectic automorphismS: E → E over I . By definition therelative Conley-Zehnder index
of8 alongβ is

(5) CZ(8; β) ≡ CZ(S).

It follows easily from the properties discussed above thatCZ(8; β) is invariant by smooth
(and evenC1) pairs of homotopies(8(s, t), β(s, t)) such that8(s, t)(β(s, t)) = β(s, t) and
such that fori = 0, 1; β(s, i ) is a non degenerate fixed point of8(s, i ). The index is addi-
tive under concatenation. It follows from (4) that it has another interesting property, which for
simplicity we state in the case of a constant pathβ(t) ≡ p.

If 8,9 : I → Symp(M) are two admissible paths in the isotropy subgroup ofp then

(6) CZ(9 ◦8, p) = CZ(8 ◦9, p).

In other wordsCZ is a “trace”.

We close this section with yet another formula that allows tocompute the individual con-
tribution of a regular point in the trivial branch to the Conley-Zehnder index. Assume thatt0 is
isolated point in the set

6 = {t/β(t)is a degenerate fixed point of8(t)}.

DefineCZ t0(8) ≡ limε→0 CZ(8;β|[−ε,ε]). The pointt0 will be called regular (cf. [17]) if the
quadratic formQt0 defined on the eigenspaceE1(St0) = Ker(St0 − Id) corresponding to the
eigenvalue 1 byQt0(v) = ω(Ṡt0v, v) is nondegenerate. HereSt = Tβ(t)8(t) as before anḋSt0
denotes the intrinsic derivative of the vector bundle endomorphismS (See [10] chap 1 sect 5). It
is easy to see that ift0 is a regular point then it is an isolated point in6 and moreover

(7) CZ t0(8) = −σ(Qt0)

whereσ denotes the signature of a quadratic form.

We shall not prove this formula here. It follows from the definition of the intrinsic derivative
and formula (2.8) in [9].

3. The Main Theorem and Some Consequences

Let M2n be a closed symplectic manifold of dimension 2n with symplectic form$ . Every
smooth time dependent Hamiltonian functionH : R × M → M gives rise to a time dependent
Hamiltonian vector fieldXt : R × M → T M defined by

$(X(t, x), ξ) = dx H(t, x)ξ

for ξ ∈ Tx M. If H is periodic in time with period 1, then so isX. By compactness and
periodicity the solutionsu(t) of the initial value problem for the Hamiltonian differential
equation

(8)

{

d
dt u(t) = X(t,u(t)),

u(s) = x



166 Eleonora Ciriza

are defined for all timest . The flow (or evolution map) associated to eachX is the two-parameter
family of symplectic diffeomorphismsψ : R2 → Symp(M) defined by

ψs,t(x) = u(t)

whereu is the unique solution of (8).

By the uniqueness and smooth dependence on initial value theorems for solutions of differ-
ential equations the mapψ : R

2 × M → M is smooth. The diffeomorphismsψs,t verify the
usual cocycle property of an evolution operator. It followsfrom this property that for each fixed
s, the map sendingu into u(s) is a bijection between the set of 1-periodic solutions of thetime
dependent vector fieldX and the set of all fixed points ofψs,s+1. Hence in order to find periodic
trajectories of(8) we can restrict our attention to the fixed points ofP = ψ0,1.

The mapP = ψ0,1 is called the period or Poincaré map ofX. A 1-periodic trajectory is
called non degenerate∗ if p = u(0) is a non degenerate fixed point ofP, i.e. if the monodromy
operatorSp ≡ Tp P : TpM → TpM has no 1 as eigenvalue. Consistently, the eigenvalues of
the monodromy operator will be called Floquet multipliers of the periodic trajectory. Although
we will not show it here, it is easy to see that the particular choice ofs = 0 is irrelevant to the
property of being non degenerate since the Floquet multipliers do not depend on this choice.

Let us consider now a smooth one parameter family of time dependent Hamiltonian functions
H : I × R × M → R, where I = [0,1] and eachHλ is one periodic in time. LetX ≡

{Xλ}λ∈[0,1] be the corresponding one parameter family of Hamiltonian vector fields. Then the
flowsψλ,s,t associated to eachXλ depend smoothly on the parameterλ ∈ I . Suppose also that
our 1-parameter family of Hamiltonian vector fieldsXλ possesses a known smooth family of
1-periodic solutionsuλ; uλ(t) = uλ(t + 1). Solutionsuλ in this family will be calledtrivial
and we will seek for sufficient conditions in order to find nontrivial solutions arbitrarily close to
the given family. IdentifyingR/Z with the circleS1 we will regard the family of trivial solutions
either as a pathτ : I → C1(S1; M) defined byτ(λ) = uλ or as a smooth mapu : I × S1 → M.

A point λ∗ ∈ I is called abifurcation pointof periodic solutions from the trivial branchuλ
if every neighborhood of(λ∗,uλ∗

) in I × C1(S1; M) contain pairs of the form(λ, vλ) wherevλ
is a nontrivial periodic trajectory ofXλ.

It is easy to see that a necessary (but not sufficient) condition for a pointλ∗ to be of bifur-
cation is that 1 is a Floquet multiplier ofuλ∗

. (See for example [4] Proposition 26.1). Thus non
degenerate orbits cannot be bifurcation points of the branch. In what follows we will assume
thatu(0) andu(1) are non degenerate and we will seek for bifurcation points inthe open interval
(0, 1).

Consider the pathp : I → M given by p(λ) = uλ(0). Each p(λ) is a fixed point of the
symplectomorphismPλ = ψλ,0,1. Under our hypothesis, the pair(P, p) is admissible. The
numberCZ(P, p) constructed in the previous section will be called the relative Conley-Zehnder
index of X ≡ {Xλ}λ∈[0,1] along the trivial familyu. We will denote it byCZ(X,u). It is easy
to see that the particular choice ofs = 0 is unmaterial for the definition of the Conley-Zehnder
index.

THEOREM1.1. Let X ≡ {Xλ}λ∈[0,1] be a one parameter family of1-periodic Hamiltonian
vector fields on a closed symplectic manifold(M, $). Assume that the family Xλ possesses a
known, trivial, branch uλ of 1-periodic solutions such that u(0) and u(1) are non degenerate.

∗ in Abraham Robbins terminology this corrresponds to the concept of a transversal period.
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If the relative Conley-Zehnder indexCZ(X,u) 6= 0 then the interval I contains at least one
bifurcation point for periodic solutions from the trivial branch u.

The proof will be given in the next section.

COROLLARY 1.1. Let X and u be as before. Let Sλ = Tp(λ)Pλ be the monodromy operator
at p(λ). If λ∗ ∈ I is such that1 is an eigenvalue of Sλ∗

and the quadratic form Qλ0(v) =

ω(Ṡt0v, v) is nondegenerate on the eigenspace E1(Sλ∗
) andσ(Qλ0) 6= 0 thenλ∗ is a bifurcation

point for periodic solutions from the trivial branch u.

This follows from(7).

Let us discuss now the relationship with bifurcation of fixedpoints of symplectomorphisms.
We shall assume here that the first Betti numberβ1(M) of M vanishes. It is well known that in
this case any symplectic diffeomorphism belonging to the connected component of the identity
Symp0(M) of the group of all symplectic diffeomorphisms can be realized as the time one map
of a 1-periodic Hamiltonian vector field. Bellow we will sketch the proof of the fact that for
smooth paths inSymp0(M) the corresponding path of Hamiltonian functions can be choosen
smoothly.

Given a path8 in Symp0(M) let us choose a symplectic isotopy9 with 91 = Id and
90 = 8(0). Define now4 : I × I → Symp0(M) by

4(λ, τ) =











8(λ− τ) for τ ≤ λ & λ+ τ ≤ 1

9(τ − λ) for λ ≤ τ & λ+ τ ≤ 1

4(τ,1 − τ) for τ, λ ∈ I & λ+ τ ≥ 1

Then4 is continuous onI × I and moreover4(λ,0) = 8(λ) and4(λ,1) = Id. Let
α be any smooth function with 0≤ α ≤ 1 and such thatα(τ) ≡ 0 for 0 ≤ τ ≤ 1/3 and
α(τ) ≡ 1 for 2/3 ≤ τ ≤ 1. Then4̃(λ, τ) = 4(λ, α(τ)) coincides in a neighborhood ofI × {0}

with 8 and on a neighborhood ofI × {1} with Id.

Using smooth partitions of unity the map̃4 can be approximated by a smooth map2 : I ×

I → Symp0(M) having the same property. Now consider the parametrized family of time
dependent vector fieldsX ≡ Xλ; λ ∈ I defined on [0,1] × M by Xλ(t,m) = u′(t) where
u(τ) = 2λ(τ,2

−1
λ
(t,m)). By construction the map2 is constant on vertical slices near to the

top and bottom side ofI 2 and therefore eachXλ vanishes there. This allows to extendX to a
parametrized family of 1-periodic vector fields. It is clearfrom the definition ofX that the period
map for the fieldXλ is precisely8λ.

On the other hand, each2(λ, τ) is symplectic. This implies that for each(λ, t) the one form
ι(Xλ,t )$ is closed and therefore exact, since we are assuming thatH1(M; R) = 0. It is easy to
see that, fixing the value of the Hamiltonian function at a given point, one can choose a smooth
family of one periodic Hamiltonian functions for4λ.

With this in hand, using Theorem 1.1 and the correspondence between 1-periodic orbits of
the Hamiltonian vector field with fixed points of the period map, we obtain:

COROLLARY 1.2. Assume thatβ1(M) = 0. Let8λ be a path in Symp0(M) such that
8λ(p) = p for all λ and such that as fixed point of80 and81, p is non degenerate. Then
if CZ(8, p) 6= 0, there exist aλ∗ ∈ (0,1) such that any neighborhood of(λ∗, p) in I × M
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contains a point(λ,q) such that q is a fixed point of8λ different from p (i.eλ∗ is a bifurcation
point for fixed points of8λ from the trivial branch p).

Moreover the same is true for any close enough path in the C1-topology lying in the isotropy
group of p.

For closed paths we have stronger results.

COROLLARY 1.3. Let8 be as before but with8(0) = 8(1). If CZ(8, p) 6= 0 then any
path9 in the isotropy group of p that is freely C1-homotopic to8 must have nontrivial fixed
points arbitrarily close to p.

This follows from the homotopy invariance of the Conley-Zehnder index.

EXAMPLE 1.1. LetM be the symplectic manifoldS2 = C ∪ {∞}. Consider the closed path
of symplectic maps8θ : S2 → S2; θ ∈ [0,1] defined by

(9) 8θ (z) =

{

ei2π(θ−1/2) · z if z ∈ C,

∞ if z = ∞.

Since8θ is a rotation of angleθ − 1/2 it leaves fixed only the pointsz = 0 andz = ∞

except forθ = 1/2. In this case the fixed point set is the sphereS2.

For eachθ the tangent mapT08θ of 8θ at the fixed pointz = 0 equals8θ . The only value
of θ for which 1 is an eigenvalue ofT08θ is θ = 1/2 for which the corresponding eigenspace is
C. Moreover 0 is a regular degenerate fixed point of81/2 because, as we will see, the quadratic
form Q1/2 = ω(8̇1/2−,−) is non degenerate on the eigenspaceE1(81/2).

We will use equation (7) to calculate the relative Conley-Zehnder index of the symplectic
isotopy8 along the constant path of fixed pointsp = 0. Since

8̇(1/2) = i 2π Id

it follows that

CZ0(8; 0) = −σ [v → ω(8̇(1/2)v, v)] = σ [v → 2π < v, v > ] = 2.

Therefore by Corollary 3.4 any closed path of symplectomorphisms of the sphere keeping 0
fixed and homotopic to8 has nontrivial fixed points close to zero. Notice that this bifurcation
cannot be detected using parity.

4. Darboux Coordinates and the Proof of the Main Theorem

First we prove an elementary lemma about trivializations ofsymplectic vector bundles.

LEMMA 1.1. Any symplectic vector bundle E→ Z with base space a cylinder Z= S1 ×

[0, 1] is symplectically isomorphic to the trivial bundle Z× R
2n endowed with the canonical

symplectic form.
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This lemma is a very special case of the Proposition 2.64 in [13] but since the proof in this
case is considerable simpler we sketch it here.

Dimostrazione.First of all any symplectic bundle admits a compatible complex structure (see
[13]). Thus we have an automorphismJ : E → E such thatJ2 = −Id and such thatωz(Jv, v)
is a positive definite quadratic form on each fiber. This not only makesE into a complex vec-
tor bundle, but also endows this complex bundle with a hermitian scalar product defined by
[v, w]z = ωz(Jv,w)+iωz(v,w). Let i : S1 → Z be the inclusion asS1×0 and letπ : Z → S1

be the projection. Sincei ◦ π is homotopic to the identity ofZ we have thatπ∗(i ∗E) is isomor-
phic toE as a complex vector bundle (see [11]). SinceU(n) is a deformation retract ofGl(n,C)
the structure group can be reduced toU(n). It follows from this that we can find an isomorphism
preserving the hermitian products and hence the symplecticstructure as well. In this way we
have reduced the problem to find a unitary trivialization of the bundlei ∗(E) over the circleS1.

This can be certainly found over an interval, which is contractible, and then patch the obtained
isomorphisms at the end points using the fact thatU(n) is connected. (See [19] for an explicit
trivialization).

We will need also the following parametrized version of Darboux theorem.

LEMMA 1.2. Let Z be a smooth compact connected manifold (with or withoutboundary),
let U be an open convex neighborhood of0 in R2n and let�1 be a closed2-form on W= Z ×U
such that if iz : U → W is the inclusion given by iz(x) = (z, x) then the smooth family of two
formsωz = i ∗z (�1); z ∈ Z verifiesωz(0) = ω(0), whereω is the standard symplectic form

on R2n. Then there exist a smooth family9z; z ∈ Z of symplectomorphisms defined on an
eventually smaller neighborhood V of0 such that9z(0) = 0 and9∗

z (ωz)|V = ω|V .

Dimostrazione.We adapt to our situation the Weinstein method in [21]. Letp : W → R2n be
the projection and�0 = p∗(ω). Considerh : [0,1] × W → W defined byh(t, z, x) = (z, t x)
thenh0(W) ⊂ Z0 = Z × {0}, h1 = IdW and the restriction ofht to Z0 is the identity map of
Z0. Let Xt : W → T W be the vector field defined byXt (z, x) = (z, x, 0, x). ThusXt (z, x) is
the tangent vector to the pathh(−, x) at the timet .

Applying the Cartan’s formula to the form� = �1 −�0 we get

(10)
d

dt
h∗

t � = h∗
t (ι(Xt )d�)+ dh∗

t (ι(Xt )�)

whereh∗
t (ι(Xt )�) is the one-form onW given atw = (z, x) by

h∗
t (ι(Xt )�)(w)[v] = (ι(Xt (w))�)(Tw(ht )v)

andι(Xt ) denotes the interior product or contraction in the first variable.

Integrating the right hand side from zero to one we obtain

(11) �− h∗
0� =

∫ 1

0
h∗

t (ι(Xt )d�)dt + d
∫ 1

0
h∗

t (ι(Xt )�)dt.

If we define for anym-form σ them − 1-form Hσ =
∫ 1
0 h∗

t (ι(Xt )σ )dt then (11) becomes

(12) �− h∗
0� = Hd�+ d H�.
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Since the restriction of� to Z0 is zero it follows thath∗
0� = 0.

On the other handd� = 0 since both�1 and�0 are closed. Putting this information in(10)
we get� = d3where3 = H�. From this we obtain thatωz−ω = i ∗z (�) = i ∗z (d3) = di∗z (3).
Puttingλz = i ∗z (3) we obtained a smooth family of one forms onU parametrized byZ such
that

(13) ωz − ω = dλz.

For 0≤ s ≤ 1 let us considerωs,z = ω + s(ωz − ω) = ω + sdλz. Sinceωs,z(0) = ω(0) is
non-degenerate there is a neighborhoodV of 0 such that eachωs,z is non-degenerate onV . Thus
we can find a family of time dependent vector fields (here the time iss) Xs,z defined inV × R
and smoothly depending onz ∈ Z such that

(14) ι(Xs,z)ωs,z = −λz.

By taking eventually smallerV we can assume that the integral curves of the Cauchy problem

(15)

{

d
dsu(s) = Xs,zu(s)

u(0) = x

are defined for alls in [0,1]. Let us consider the flow8 : Z × [0, 1] × V → V be defined
by 8(z, s, x) = u(s) whereu is the unique solution of (14). Using the smooth dependence on
parameters of solutions of differential equations and by the usual flow properties we have that
8z,s : V → U is a family of diffeomorphisms smoothly depending on (z,s) such that8z,0x = x.
Now let8z = 8z,1 be the time one map, then we have

(16) 8∗
zωz − ω =

∫ 1

0

d

ds
8∗

z,sωz,s ds =

∫ 1

0
8∗

z,s(ωz − ω) ds+

∫ 1

0
d(ι(Xs,z)ωs,z) ds = 0.

Here we are using (14) the fact thatdωs,z = 0 and a generalization of (10), proved in [10]
(chapter 4 section 1), which states for any one-parameter family of formsωs and one parameter
family of maps8s that

d

ds
8∗

sωs = 8∗
s

d

ds
ωs +8∗

sι(Xs)dωs + d8∗
s
(

ι(Xs)ωs
)

where as beforeXs is the tangent vector to the curve8(−, x) at times. The formula (16) shows
that8z is the family we are looking for.

REMARK 1.1. In the above Lemma the assumption that�1 is closed can be dropped, the
lemma holds for any parametrized family of symplectic formsωz. But the proof (along the lines
sketched in [13]) is harder since it uses more elaborate tools such as Hodge theory.

LEMMA 1.3. (compare with Lemma 2.9 in [18]) Let(M, $) be a2n-dimensional symplec-
tic manifold. Let Z= [0,1] × S1 be a cylinder and let u: Z → M be a map. Then there exist
an open neighborhood V of0 in R2n and a family of diffeomorphismsθz : V → M smoothly
parametrized by z∈ Z such thatθz(0) = u(z) andθ∗

z$ = ω.

Dimostrazione.We endowM with an almost complex structureJ compatible with$. Then the
family of bilinear formsg(v,w) = $(Jv,w) is a Riemannian metric and has an associated



Bifurcation of periodic orbits 171

exponential diffeomorphismexpm defined in a neighborhood of zero in the tangent space at
m ∈ M. The vector bundleE = u∗(T M) is a symplectic vector bundle overZ and hence, by
Lemma 2.1 has a symplectic trivialization. The inverse of this trivialization composed with the
natural bundle map fromE into T M is a vector bundle homomorphismψ overu from the trivial
symplectic bundleZ × R2n into T M such that for eachz ∈ Z andx, y ∈ R2n

$(u(z))(ψzx, ψzy) = ω(x, y) .

TakeO an open neighborhood of the zero section inT M where the exponential map is defined
and letU be any neighborhood of 0 inR2n such thatψz(u) ∈ O for all z ∈ Z. Define9 : Z ×

U → M by 9(z, x) = expu(z)
(

ψz(x)
)

. Let�1 = 9∗$. Since$ is closed it follows that�1
is a closed form onW = Z × U . Moreover with the notations of Lemma 2.2.

ωz(0) = iz�1(0) = 9∗
z$(u(z)) = ω(0)

by (4) and the fact thatT0exp = Id. Thus the hypothesis of the lemma 2.2 are verified and
hence there exists a neighborhoodV of 0 and a smooth family of difeomorphisms8z such that
8∗

zωz = ω. Now the familyθ : Z × V → M defined byθz = 9z ◦8z satisfies the requirements
of the lemma.

Proof of Theorem 1.1.Choose local Darboux coordinates(V, φλ,t ) on the manifoldM near the
λ-parameter familyuλ(t) of periodic solutions of the Hamiltonian differential equation

(17)

{

d
dt uλ(t) = Xλ(t,uλ(t)),

uλ(s) = x

i.e. V is an open neighborhood of 0 inR2n andφλ,t : V → M satisfiesφλ,t (0) = uλ(t) and
φ∗
λ,t$ = ω on V .

Thus such a solution is sent by the inverse map ofφλ,t into the trivial branchyλ(t) ≡ 0 in
R2n, solution of the Hamiltonian differential equation

(18) ẏλ(t) = Yλ(t, yλ(t)),

whereYλ denotes the Hamiltonian vector field associated to the Hamiltonian function

H̃λ,t := Hλ,t ◦ φλ,t : V → R .

Because
ι(Yλ)ω = dH̃λ,t = d(Hλ,t ◦ φλ,t ) = φ∗

λ,t (d Hλ,t )

andd Hλ,t = ι(Xλ)σ it follows that

ι(Yλ)ω = φ∗
λ,t (ι(Xλ)$)

= ι(Tφ−1
λ,t (Xλ))φ

∗
λ,t$

= ι(Tφ−1
λ,t (Xλ))ω

hence we get thatTφ−1
λ,t (Xλ) = Yλ. This means that the Hamiltonian vector fieldsYλ and Xλ

areφλ,t -related, thus so are their integral flows and consequently their respective Poincaré time
maps. Therefore we have that

λ → P̃λ = (φλ,1)
−1 ◦ Pλ ◦ φλ,1
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is a symplectic path.

By naturality of the Conley-Zehnder index (Cf. (4)) we conclude thatCZ(P̃λ) = CZ(Pλ).

On the other hand, writingT V = V × R
2n the induced vector fieldYλ,t takes the form

Yλ,t (x) = (x, Fλ,t (x)) whereFλ,t (x) = J0∇ H̃λ is the principal part of the field. Denote with
9λ,t the flow ofYλ,t . LetUλ,t = D9λ,t (0) be the Frechet derivative of9λ,t at 0∈ V . An easy
calculation shows that the matrixUλ,t is a solution of the initial value problem

(19)

{

U ′
λ,t = DFλ,t (0)Uλ,t

Uλ,0 = Id.

Taking t = 1 it follows that DP̃λ coincide with the path of monodromy matricesMλ used
in [9] in order to define the relative Conley-Zehnder index along a branch of periodic orbits.

In the given trivialization

T0 P̃λ(v) = D9λ,1(0)v = Mλ(v)

and from this follows thatCZ(P̃λ) coincide with their definition of the Conley -Zehnder index.
Under our hypothesisCZ(P̃λ) 6= 0 and hence by the main theorem in [9] there are nonzero
1-periodic orbits of (18) that bifurcate from the branch of trivial solutions of the Hamiltonian
equation (18).

But nontrivial periodic orbits of the Hamiltonian equation(18) bifurcating from the trivial
branchyλ(t) ≡ 0 corrrespond by the diffeomorphismsφλ,t to periodic orbits of the Hamiltonian
equation (17) different fromuλ.

This complete the proof of the Theorem.
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