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BIFURCATION OF PERIODIC ORBITS OF TIME
DEPENDENT HAMILTONIAN SYSTEMS ON SYMPLECTIC
MANIFOLDS

Sommario. On a symplectic manifold, a 1-parameter family of time dependent
Hamiltonian vectors fields which possesses a known triveahthu, of 1-periodic
solution is considered. If the relative Conley Zehnder indéthe monodromy
path alongu,, (0) is defined and does not vanish it is shown that any neighbdrhoo
of the trivial branch contains 1-periodic solutions nothe branch. This result is
applied to bifurcation of fixed points of Hamiltonian symgiemorphisms when
the first Betty number oM vanishes.

1. Introduction

Existence and multiplicity of periodic trajectories of Hatonian vector fields on symplectic
manifolds is a traditional field of research, which recerilynd new input from the work on
Arnold’s conjecture. Bifurcation of periodic orbits atttad much interest as well. In the fifties
much of the research was concerned with the classificatitheofarious bifurcation phenom-
ena for generic families of autonomous vector fields (an leaereview is contained in [1]).
Topological methods introduced by Alexander and Yorke fB3Hbpf bifurcation and by Wein-
stein [20] and Moser [15] in their generalizations of thefiiaov center theorem permitted to
drop many of the genericity assumptions that are intrirsithe approach based on singularity
theory. Faddel and Rabinowitz [7] and more recently Bar{8¢lused various index theories
based on the&! invariance of the action functional in the case of an autamasrvector field.
The same property was used by Ize, Dancer and Rybakowski[R]2)ho studied bifurcation
of periodic orbits using thsl-equivariant degree. The methods mentioned above can tiecpp
to the autonomous case only. Bifurcation for time dependecior fields deserved very little at-
tention. Recently Fitzpatrick, Pejsachowicz and Rechufdhg their results relating the spectral
flow to the bifurcation of critical points of strongly indefie functionals [8] studied bifurcation
of periodic solutions of one-parameter families of (tim@eledent) periodic Hamiltonian sys-
tems inR2". The purpose of this paper is to extend their results to famof time dependent
Hamiltonian vector fields acting on symplectic manifoldsl 4o discuss the related problem of
bifurcation of fixed points of one parameter families of syagomorphisms.

Our main result can be stated as follows:

Let X,; A € [0, 1] be a one parameter family dfperiodic Hamiltonian vector fields on a
closed symplectic manifold M\ssume that the family ,}possesses a known, trivial, branch u
of 1-periodic solutions. Let p= u, (0) and let B. be the period map of the flow associated to
X,.. If the relative Conley-Zehnder index of the pathafong p, is defined and does not vanish,
then any neighborhood of the trivial branch of periodic simns containsl-periodic solutions
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not in the branch.

Notice that the hypothesis in our bifurcation theorem areafdocal nature. Most of the
difficulties of the extension to manifolds are due to thist.fad/e first extend to manifolds the
concept relative Conley-Zehnder index defined in [9]. Areiasting feature of this concept is
that in general it depends on the homotopy class of the patimanon the endpoints only. On
symplectic manifold one can have closed paths of orbits nathirivial Conley-Zehnder index.
This will be done in section 2. In section 4 following an idéd18] in the nonparametric case,
we construct Darboux coordinates adapted to a given paraedfamily of periodic solutions.
The new coordinates allow to reduce the proof of bifurcatieorem to the case considered in
[9].

In section 3 we state the main theorem and discuss some casasg regarding bifurcation
of fixed points of Hamiltonian symplectomorfisms. A sympteabrphism is called Hamilto-
nian if it can be realized as a time one map of a one-periodimilianian vector field. Fixed
points of a Hamiltonian symplectomorphisms are in one toammerespondence with 1-periodic
orbits of the corresponding vector field. The Arnold conjeetstates that a generic Hamiltonian
symplectomorphism has more fixed points that could be prediifrom the fixed point index.
More precisely, by the fixed point theory a symplectomonphisotopic to the identity with
non-degenerate fixed points must have at least as many fixets$ jas the Euler-Poincaré char-
acteristic of the manifold. But the number of fixed points ¢damiltonian symplectomorphism
verifying the same non-degeneracy assumptions is boureleshiby the sum of the Betti num-
bers. Roughly speaking, this can be explained by the preseina variational structure in the
problem. Fixed points viewed as periodic orbits of the cspomding vector field are critical
points of the action functional either if the orbits are cantible or when the symplectic form is
exact.

Applied to bifurcation of fixed points of one parameter féaslof Hamiltonian symplec-
tomorphisms our result shows a similar influence on the pasef a variational structure.
In order to illustrate the analogy, let us consider a onerpatar family of diffeomorphisms
¥ A € [0, 1] of an oriented manifoldV, assuming for simplicity thay, (p) = p and thatp
is a non degenerate fixed point ¢f;i = 0, 1. The work of [12] implies that the only homo-
topy invariant determining the bifurcation of fixed pointsterms of the family of linearizations
L = Tpy, atpis given by the parityr (L) = sign( deTpyo) - sign (delTpy1) € Zo = {1, —1}.
Here det is the determinant of an endomorphism of the ordewéetor spacdpM. In other
words bifurcation arise whenever the @gt/;, change sign at the end points of the interval.
Moreover, any family of diffeomorphisms close enough/ton the C1-topology and having
as fixed point undergoes bifurcation as well. On the contifdrgth sign coincide one can find a
perturbation as above with no bifurcation points at all.

On the other hand, on the base of our theorem, the integeed/@onley-Zehnder index
provides a stronger bifurcation invariant for one paramé&milies of Hamiltonian symplec-
tomorphisms. It forces bifurcation of fixed points whenel@ef (L) is non zero even when
7(L) = 1. The relation between the two invariantsrif.) = (—1)¢2(L) and it is easy to con-
struct examples with even non-vanishing Conley-Zehndig¥nOur assumption that the family
of symplectomorphisms is Hamiltonian is due to the methodroof only. It is reasonable to
expect that the same is true for an arbitrary path of symphectphisms with non-vanishing
Conley-Zehnder index. The proof could go either via gemegatinctions or by reduction to the
above case, but | was unable to complete all the detailsuadolOur results in the form treated
here do not apply directly to the autonomous case. In that tas always a Floquet multiplier
whenever the periodic orbit does not reduce to a singulantpaimodification of our arguments
using symplectic reduction much as in [14] are quite posilnlé will be treated separately. Yet
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another very interesting problem, in the vein of the analdggussed above, is to obtain mul-
tiplicity results for bifurcating fixed points similar to ¢hones for critical points of functionals
obtained by Bartsch [5].

I am deeply grateful to J. Pejsachowicz, to whom | am in debt.

2. The Maslov index and the Conley Zehnder index

Before going to the manifold setting let us shortly discues ¢ase ofR2" = T*R" with the
standard symplectic form = )" dx A dy;. The group of real & x 2n symplectic matrices will

be denoted byp(2n, R). The relative Conley-Zehnder index is a homotopy invaréasociated

to any pathy : [0, 1] — Sp(2n, R) of symplectic matrices with no eigenvectors corresponding
to the eigenvalue 1 at the end points. This invariant cougibaaically the number of param-
eterst in the open interva(0, 1) for which v/ (t) has 1 as an eigenvalue. One of the possible
constructions uses the Maslov index for non-closed pathes skl define it along the lines of
Arnold [4] for closed paths. For an alternative construttee [16]. An-dimensional subspace

| of (R?", w) is calledLagrangianprovided that the restriction @f to| is 0. The Lagrangian
Grassmaniam (n) consists of all Lagrangian subspace®&éf considered as a topological space
with the topology it inherits as a subspace of the ordinagsSmanian of n-planes. Létbe the
self adjoint endomorphism representing the fastwith respect to the standard scalar product in
R2". Namely,w(u, v) =< Ju, v > . ThenJ is a complex structure, itis indeed the standard one.
It coincides with multiplication by under the isomorphism sendiiig, y) € R? into x + iyin

C". In terms of this representation, a Lagrangian subspadesiscterized byll = |+. Using

the above description one can easily identifyn) with the homogeneous spathn)/O(n).
The identification is as follows: given any orthonormal kagi a lagrangian subspatehere
exist a unique unitary endomorphisie U (n) sending the canonical basislgf= R" x {0}

into the given one and in particular sendiggnto |. Moreover the isotropy group d¢f can be
easily identified withO(n). Hence we obtain a diffeomorphism betwdgm)/O(n) and A (n)
sending {I] into u(lp). Since the determinant of an elementQxin) is +1, the map sending

into the square of the determinantwofactorizes througii (n) = U (n)/O(n) and hence induces

a one form® e Q(A(n)) given by® = [det’]*d, wheres e Q1(Sh is the standard angular
form on the unit circle. This form is called the Keller-Magiérnold form. The Maslov index

of a closed patly in A(n) is the integer defined by (y) = fy ©®. In other wordsu(y) is the

winding number of the closed curte— detz(y(t)). The Maslov index induces an isomor-
phism betweenr(A) andZ. The construction can be extended to non-closed pathslaw/ol
fix ] € A(n). If I’ is any Lagrangian subspace transverdethenl’ can be easily identified with
the graph of a symmetric transformation frahhinto itself. It follows from this that the s€f

of all lagrangian subspacéstransverse tb is an affine space diffeomorphic to the space of all
symmetric forms orR" and hence contractible. We shall say that a path (n) is admissible
with respect td if the end points of the path are transversé.tdhe Maslov index.(y, 1) of an
admissible pathy with respect td is defined as follows: take any padtin T joining the end
points ofy and define

1) M()’il)EM(V/)=/l®-
Y

wherey’ is the pathy followed bys.

Clearly the result is independent of the choicesofMoreover, sinceT| is contractible,
w(y; 1) is invariant under homotopies keeping the end poinfg in
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Geometricaly, the Maslov index(y; 1) can be interpreted as an intersection index of the
pathy with the one codimensional analytic SBf = A(n) — T, (see [17]). From the above
definition it is easy to see that the index is additive undecatenation of paths. Namely, given
two admissible pathe andg with «(1) = 8(0)

(2 ulax B 1) = (s 1) + w(B; ).

SinceSp(2n, R) is connected it follows easily from the homotopy invariaticat ;. (Sy; Sl) =
u(y; 1) for any symplectic isomorphisr8. This allows to extend the notion of Maslov Index
to paths of Lagrangian subspacesAiV), where(V, w) is any finite dimensional symplectic
vector space. It is well known that symplectic endomorpkisme characterized by the following
property: their graphs are lagrangian subspaces of thelsgtigpvector spac&V = V x V
endowed with the symplectic forf® = (—w) x w. Clearly 1 is not an eigenvalue d&? <
Sp(2n, R) if and only if the graph ofP is transversal to the diagonal c V x V. A path
¢ [0, 1] — Sp(2n, R) will be called admissible if 1 is not in the spectrum of its guuints. For
such a path theelative Conley-Zehnder indéx defined by

3 CZ(¢) = n(Graphg, A).

It follows from the above discussion th@£(¢) is invariant under admissible homotopies
and it is additive with respect to the concatenation of pafisarlyC Z(¢) = 0 if the fixed point
subspace o (t) reduces td0} for all t.

There is one more property of the Conley-Zehnder index tleatwll need in the sequel.
Namely, that for any: [0, 1] — Sp(2n, R) and any admissible path

4 CZ(a Tpa) = CZ().

This can be proved as follows. Since the spectrum is invebiaonjugation, the homotopy
t,9) — a~L(9)¢t)a(s) shows thaC Z(a@ lpa) = CZ(@~1(0)¢pa(0)). Now (4) follows by
the same argument applied to any path joini@) to the identity.

The property (4) allows to associate a Conley-Zehnder indexny admissible symplectic
automorphism of a symplectic vector-bundle over an inferivat | be the interval [01], then
any symplectic bundler: E — | over | has a symplectic trivialization (see section 3). If
S: E — E is a symplectic endomorphism & over | well behaved at the end points, then we
can define the Conley-Zehnder index®#s follows: if T: E — | x R2" is any symplectic
trivialization, thenT ST1(t, v) has the form(t, ¢t (t)v) wheregt is an admissible path on
Sp(2n, R). Any change of trivialization induces a change @p that has the form of the left
hand side in (4) and hen¢Z (¢7) is independent of the choice of trivialization. Thus thifrea
CZ(9) is by definition the Conley-Zehnder index 8f

With this in hand we finally can define the relative Conley-@éér index of a path of sym-
plectomorphisms along a path of fixed points. Let M be a closgdplectic manifold and
let SymgM) be the group of all symplectomorphisms endowed with @letopology. Let
®: | — SymgM) be a smooth path of symplectomorphismsvbfLet 8: | — M be a path
in M such thag(t) is a fixed point of®d (t). Floquet multipliers ofb (t) at (t) are by definition
the eigenvalues o& = Tg)@(1): Tgt)(M) — Tgr)(M). A fixed point will be called non
degenerate if none of its Floquet multipliers is one. Cdasidy, we will call the pair(®, g)
admissible whenevet (i) is a non degenerate fixed point®fi) fori =0, 1.
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Let E = B*[T(M)] be the pullback by of the tangent bundle o (we use the same
notation for the bundle and its total space). The family afent mapsy = Tg ) @(t) induces
a symplectic automorphisi8: E — E over|. By definition therelative Conley-Zehnder index
of ® alongg is

(5) CZ(d; B) = CZ(S).

It follows easily from the properties discussed above th&t®; g) is invariant by smooth
(and evenCl) pairs of homotopieg® (s, t), (s, t)) such thatd (s, t)(8(s,t)) = B(s,t) and
such that fori = 0,1; J(s,i) is a non degenerate fixed point &f(s, i). The index is addi-
tive under concatenation. It follows from (4) that it has g interesting property, which for
simplicity we state in the case of a constant péth = p.

If ®, ¥: 1 — SymgM) are two admissible paths in the isotropy subgroup tfien

(6) CZWod®,p)=CZ(PoV,p).
In other word<C Z is a “trace”.

We close this section with yet another formula that allowsdmpute the individual con-
tribution of a regular point in the trivial branch to the CeydZehnder index. Assume thtis
isolated point in the set

¥ = {t/B(t)is a degenerate fixed point @b (t)}.

DefineCZty(®) = lim._,g CZ(®; B|[—¢,¢])- The pointty will be called regular (cf. [17]) if the
quadratic formQy, defined on the eigenspaég (&,) = Ker(&, — Id) corresponding to the
eigenvalue 1 byQ, (v) = w(Syv, v) is nondegenerate. Hef = Tg )P (t) as before andy,
denotes the intrinsic derivative of the vector bundle enoiguhismS (See [10] chap 1 sect 5). It
is easy to see thatff) is a regular point then it is an isolated pointinand moreover

(7 Czto(q)) = _U(Qto)

whereo denotes the signature of a quadratic form.

We shall not prove this formula here. It follows from the défom of the intrinsic derivative
and formula (2.8) in [9].

3. The Main Theorem and Some Consequences

Let M2" be a closed symplectic manifold of dimension ®ith symplectic forme. Every
smooth time dependent Hamiltonian functibit R x M — M gives rise to a time dependent
Hamiltonian vector fieldXt : R x M — T M defined by

@ (X(t,x), §) = dxH(t, )¢

for & € TxM. If H is periodic in time with period 1, then so . By compactness and
periodicity the solutionsu(t) of the initial value problem for the Hamiltonian differeaiti
equation

Fu® = X, uy),
u(s) = x

®)
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are defined for all times The flow (or evolution map) associated to eacls the two-parameter
family of symplectic diffeomorphismg : R2 — SympgM) defined by

Vs t(X) = u(t)

whereu is the unique solution of (8).

By the uniqueness and smooth dependence on initial valeeeims for solutions of differ-
ential equations the map: R2 x M — M is smooth. The diffeomorphismgs + verify the
usual cocycle property of an evolution operator. It folldnsm this property that for each fixed
s, the map sending into u(s) is a bijection between the set of 1-periodic solutions ofttire
dependent vector field and the set of all fixed points @fs s+1. Hence in order to find periodic
trajectories of(8) we can restrict our attention to the fixed pointsRot= v 1.

The mapP = v 1 is called the period or Poincaré map Xf A 1-periodic trajectory is
called non degenerdtéf p = u(0) is a non degenerate fixed point Bf i.e. if the monodromy
operatorSp = TpP: TpM — TpM has no 1 as eigenvalue. Consistently, the eigenvalues of
the monodromy operator will be called Floguet multipliefgte periodic trajectory. Although
we will not show it here, it is easy to see that the particutasice ofs = 0 is irrelevant to the
property of being non degenerate since the Floquet mudtiptlo not depend on this choice.

Let us consider now a smooth one parameter family of timerldgrg Hamiltonian functions
H: 1 xR x M — R, wherel = [0,1] and eachH, is one periodic in time. LeX =
{Xa}xe[0,1] be the corresponding one parameter family of Hamiltoniastorefields. Then the
flows v, st associated to eack, depend smoothly on the parametee |. Suppose also that
our 1-parameter family of Hamiltonian vector fiel®s, possesses a known smooth family of
1-periodic solutions,; u, (t) = uy (t + 1). Solutionsu, in this family will be calledtrivial
and we will seek for sufficient conditions in order to find narial solutions arbitrarily close to
the given family. IdentifyingR/Z with the circleSt we will regard the family of trivial solutions
either as a path: | — C1(S!; M) defined byr (1) = u; or as a smooth map: | x St — M.

A point A, € | is called abifurcation pointof periodic solutions from the trivial branaly,
if every neighborhood ofi«, uy,) in | x c(s!; M) contain pairs of the forngx, v;) whereu;,
is a nontrivial periodic trajectory aX;, .

It is easy to see that a necessary (but not sufficient) camditr a pointi, to be of bifur-
cation is that 1 is a Floquet multiplier of, . (See for example [4] Proposition 26.1). Thus non
degenerate orbits cannot be bifurcation points of the lbrahe what follows we will assume
thatu(0) andu(1) are non degenerate and we will seek for bifurcation pointséropen interval
0, 1).

Consider the patlp: | — M given by p(A) = u, (0). Eachp(%) is a fixed point of the
symplectomorphisnP, = v o.1. Under our hypothesis, the paiP, p) is admissible. The
numberC Z (P, p) constructed in the previous section will be called the iadaConley-Zehnder
index of X = {X;},¢[0,1] @long the trivial familyu. We will denote it byCZ (X, u). It is easy
to see that the particular choice ®& 0 is unmaterial for the definition of the Conley-Zehnder
index.

THEOREML.1. Let X = {X; }1¢[0,1] be a one parameter family afperiodic Hamiltonian
vector fields on a closed symplectic manifoM, =). Assume that the family ;)Xpossesses a
known, trivial, branch y of 1-periodic solutions such that(Q) and u1) are non degenerate.

*in Abraham Robbins terminology this corrresponds to thecephof a transversal period.
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If the relative Conley-Zehnder indekZ (X, u) # 0 then the interval | contains at least one
bifurcation point for periodic solutions from the triviatéanch u.

The proof will be given in the next section.

COROLLARY 1.1. Let X and u be as before. Lef S Tp(,) Py be the monodromy operator
at p(a). If A« € | is such thatl is an eigenvalue of ;S and the quadratic form §,(v) =
(S, v) is nondegenerate on the eigenspagg$;,) ando (Q,,) # 0theni, is a bifurcation
point for periodic solutions from the trivial branch u.

This follows from(7).

Let us discuss now the relationship with bifurcation of fixexdnts of symplectomorphisms.
We shall assume here that the first Betti numpgiM) of M vanishes. It is well known that in
this case any symplectic diffeomorphism belonging to theneated component of the identity
Symp(M) of the group of all symplectic diffeomorphisms can be realias the time one map
of a 1-periodic Hamiltonian vector field. Bellow we will skét the proof of the fact that for
smooth paths irBymp(M) the corresponding path of Hamiltonian functions can be sino
smoothly.

Given a path® in Symp(M) let us choose a symplectic isotogy with W1 = Id and
Vo = ®(0). Define nowE: | x | - Symp(M) by

d(L—1) fortr<xr & A+1t<1
EA,7)=W¥(t —A) fora<t & A+1<1
E(t,1—-1) fort,rel & A+7>1

Then E is continuous onl x | and moreoverE(A,0) = ®(1) and E(A,1) = Id. Let
«a be any smooth function with & « < 1 and such tha&(z) = 0for0 < t < 1/3 and
a(t) =1for2/3 <t < 1. ThenZ(x, t) = E(X, a(r)) coincides in a neighborhood bfx {0}
with @ and on a neighborhood ¢fx {1} with Id.

Using smooth partitions of unity the mapcan be approximated by a smooth m@p | x
I — Symp(M) having the same property. Now consider the parametrizedyfahtime
dependent vector fieldX = X;; A € | defined on [01] x M by X; (t,m) = u'(t) where
u(t) = O,(t, @;1(t, m)). By construction the ma is constant on vertical slices near to the
top and bottom side of? and therefore eack; vanishes there. This allows to exteXdto a
parametrized family of 1-periodic vector fields. Itis clé@m the definition ofX that the period
map for the fieldX,, is preciselyd; .

On the other hand, eaeh(r, 7) is symplectic. This implies that for each, t) the one form
(X, t)w is closed and therefore exact, since we are assumingithé®; R) = 0. Itis easy to
see that, fixing the value of the Hamiltonian function at aegipoint, one can choose a smooth
family of one periodic Hamiltonian functions f&;, .

With this in hand, using Theorem 1.1 and the correspondeateden 1-periodic orbits of
the Hamiltonian vector field with fixed points of the periodpnave obtain:

COROLLARY 1.2. Assume thap;(M) = 0. Let ®, be a path in Symg{M) such that
@, (p) = p for all » and such that as fixed point dfy and ®1, p is non degenerate. Then
if CZ(®, p) # O, there exist a\x € (0, 1) such that any neighborhood ¢f., p) in | x M
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contains a poin{, ) such that q is a fixed point @, _different from p (i.e\, is a bifurcation
point for fixed points ofp; from the trivial branch p).

Moreover the same is true for any close enough path in théopology lying in the isotropy
group of p.

For closed paths we have stronger results.

COROLLARY 1.3. Let ® be as before but witld(0) = & (1). If CZ(®, p) # 0then any
path W in the isotropy group of p that is freelylchomotopic to® must have nontrivial fixed
points arbitrarily close to p.

This follows from the homotopy invariance of the Conley-BAdéar index.

EXAMPLE 1.1. LetM be the symplectic manifol§% = C U {co}. Consider the closed path
of symplectic maps, : 2 — S?; 6 € [0, 1] defined by

d2n0-12) .7z ifzecC,

9) Dy(2) = )
if z= oo.

Since®dy is a rotation of angl® — 1/2 it leaves fixed only the points = 0 andz = oo
except ford = 1/2. In this case the fixed point set is the sphﬁ?e

For eachy the tangent mafig®y of &y at the fixed poinz = 0 equalsdy. The only value
of 6 for which 1 is an eigenvalue dfy®y is® = 1/2 for which the corresponding eigenspace is
C. Moreover 0 is a regular degenerate fixed poin®gf, because, as we will see, the quadratic

form Qy/2 = w((i)l/z—, —) is non degenerate on the eigenspigeds ).
We will use equation (7) to calculate the relative ConleywZder index of the symplectic
isotopy ® along the constant path of fixed poiris= 0. Since

d(1/2) =i2rld
it follows that

CZo(®;0) = —o[v — w(d>(1/2)v, V]=0v—>2r <v,v>]=2

Therefore by Corollary 3.4 any closed path of symplectorhizms of the sphere keeping 0
fixed and homotopic t@ has nontrivial fixed points close to zero. Notice that thisitziation
cannot be detected using parity.

4. Darboux Coordinates and the Proof of the Main Theorem

First we prove an elementary lemma about trivializationsyofhplectic vector bundles.

LEMMA 1.1. Any symplectic vector bundle & Z with base space a cylinder Z S! x
[0, 1] is symplectically isomorphic to the trivial bundle Z R?" endowed with the canonical
symplectic form.
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This lemma is a very special case of the Proposition 2.643hjlit since the proof in this
case is considerable simpler we sketch it here.

Dimostrazione.First of all any symplectic bundle admits a compatible cawr@tructure (see
[13]). Thus we have an automorphisin E — E such that)2 = —1d and such thabz(Jv, v)
is a positive definite quadratic form on each fiber. This ndy omakesE into a complex vec-
tor bundle, but also endows this complex bundle with a héamiscalar product defined by
[v, w]z = wz(Jv, w)+iwz(v, w). Leti: st — Z betheinclusion as! x0and letr: Z — St
be the projection. Sindeo 7 is homotopic to the identity of we have thatr*(i * E) is isomor-
phic to E as a complex vector bundle (see [11]). Sikb@) is a deformation retract &l (n, C)
the structure group can be reducedit@). It follows from this that we can find an isomorphism
preserving the hermitian products and hence the symplstiicture as well. In this way we
have reduced the problem to find a unitary trivializationhef bundld *(E) over the circlest.
This can be certainly found over an interval, which is caetitde, and then patch the obtained
isomorphisms at the end points using the fact théat) is connected. (See [19] for an explicit
trivialization).

O

We will need also the following parametrized version of Oark theorem.

LEMMA 1.2. Let Z be a smooth compact connected manifold (with or witboundary),
let U be an open convex neighborhooddf R2" and let$2; be a close®-form on W= Z x U
such thatif: U — W is the inclusion given by ix) = (z, x) then the smooth family of two
formswz = i5(Q1); z € Z verifieswz(0) = w(0), wherew is the standard symplectic form

on R2". Then there exist a smooth family,; z € Z of symplectomorphisms defined on an
eventually smaller neighborhood V @6uch thatwz(0) = 0 and ¥ (wz)jv = w}v -

Dimostrazione.We adapt to our situation the Weinstein method in [21]. petW — R2" be

the projection and2g = p*(w). Considerh: [0, 1] x W — W defined byh(t, z, X) = (z, tx)

thenhg(W) C Zg = Z x {0}, hy = Idy and the restriction dfit to Zg is the identity map of
Zp. Let Xt: W — TW be the vector field defined ¥ (z, X) = (z, X, 0, X). Thus Xt (z, X) is

the tangent vector to the palli—, x) at the timet.

Applying the Cartan’s formula to the for@ = Q1 — Qg we get

(10) %hm = h{ ((X0)dR) + dhf (L (Xp)R)

whereh{ (:(X¢)) is the one-form oW given atw = (z, x) by
hf (X)) (w)[v] = (Xt (w))2)(Ty (ht)v)

and:(Xt) denotes the interior product or contraction in the firstalale.
Integrating the right hand side from zero to one we obtain

1 1
(11) Q_h3s2=/ h{"(t(xt)dQ)dt—kd/ hi (1(X)S) dt.
0 0

If we define for anym-form ¢ them — 1-formHo = fol i (L(Xt)o) dt then (11) becomes

(12) Q —hjQ = HdQ + dHQ.
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Since the restriction of2 to Zg is zero it follows thahgsz =0.

On the other hand$2 = 0 since botit2, andQg are closed. Putting this information {@0)
we getQ = dA whereA = HQ. From this we obtain thatz;—w = i3(Q2) = iZ(dA) = dif (A).
Putting1z = i3 (A) we obtained a smooth family of one forms bnparametrized by such
that

(13) wz — W = d)\.z

ForO0<s < 1letus considews ; = w + S(wz — w) = w + Sdiz. Sincews, z(0) = w(0) is
non-degenerate there is a neighborhdodf 0 such that eacls 7 is non-degenerate oh. Thus
we can find a family of time dependent vector fields (here tme tiss) Xs z defined inV x R
and smoothly depending ane Z such that

(14) 1(Xs,2ws z = —Az.

By taking eventually smallev we can assume that the integral curves of the Cauchy problem

15) {&u(s) = Xs.2U(5)

u(0) = x
are defined for alk in [0, 1]. Let us consider the flowb : Z x [0,1] x V — V be defined
by ®(z, s, X) = u(s) whereu is the unique solution of (14). Using the smooth dependeince o
parameters of solutions of differential equations and leyubual flow properties we have that
®zs: V — U is afamily of diffeomorphisms smoothly depending on (zig}sthat®; gx = x.
Now let ®; = @ 1 be the time one map, then we have

14 1 1
(16) <D§wz—w= 0 d—s®§’swz,sds=‘/0' d>§,s(wz—w)ds+/;) d(L(Xs’z)ws’z)dSZ 0.

Here we are using (14) the fact théis z; = 0 and a generalization of (10), proved in [10]
(chapter 4 section 1), which states for any one-parameta@hfaf forms ws and one parameter
family of maps®s that

d d

d—scbgws = o 3o + ®L1(Xs)dws + dd§ (:(Xs)ws)

where as befor&s is the tangent vector to the curde(—, x) at times. The formula (16) shows
that®; is the family we are looking for.

a

REMARK 1.1. In the above Lemma the assumption thatis closed can be dropped, the
lemma holds for any parametrized family of symplectic foemsBut the proof (along the lines
sketched in [13]) is harder since it uses more elaborats tath as Hodge theory.

LEMMA 1.3. (compare with Lemma 2.9 in [18]) LéM, =) be a2n-dimensional symplec-
tic manifold. Let Z= [0, 1] x Slbea cylinder and letuZ — M be a map. Then there exist
an open neighborhood V @fin R2" and a family of diffeomorphisnts: V. — M smoothly
parametrized by £ Z such thabz(0) = u(z) and6; w = w.

Dimostrazione.We endowM with an almost complex structuecompatible wither. Then the
family of bilinear formsg(v, w) = @ (Jv, w) is a Riemannian metric and has an associated
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exponential diffeomorphisnexpy defined in a neighborhood of zero in the tangent space at
m € M. The vector bundl€E = u*(T M) is a symplectic vector bundle ovér and hence, by
Lemma 2.1 has a symplectic trivialization. The inverse i thvialization composed with the
natural bundle map fror& into T M is a vector bundle homomorphisgnoveru from the trivial
symplectic bundleZ x R2" into T M such that for eack € Z andx, y € R2"

@ (U(2) (YzX, YzY) = o (X, y) .

Take O an open neighborhood of the zero sectio ikl where the exponential map is defined
and letU be any neighborhood of 0 IR2" such thatj»(u) € O for all z € Z. DefineWw: Z x

U — M by ¥(z,x) = expy (¥z(X). Let Q1 = ¥*w. Sincew is closed it follows thaf;

is a closed form oW = Z x U. Moreover with the notations of Lemma 2.2.

02(0) =12Q1(0) = ¥ (U(2)) = w(0)

by (4) and the fact thalTgexp = Id. Thus the hypothesis of the lemma 2.2 are verified and
hence there exists a neighborhodédf 0 and a smooth family of difeomorphisnds, such that
dFwz = w. Now the familyd: Z x V — M defined bys; = ¥ o ® satisfies the requirements
of the lemma.

a

Proof of Theorem 1.1Choose local Darboux coordinateg, ¢, t) on the manifoldM near the
A-parameter familyy, (t) of periodic solutions of the Hamiltonian differential edgoa

Fup®) = Xt up (),

(17) uy(s) =x

i.e. V is an open neighborhood of 0 R2" andg, t: V — M satisfiesp, +(0) = uy(t) and
¢;‘,tw =wonV. '

Thus such a solution is sent by the inverse map,of into the trivial branchy; (t) = 0 in
R2", solution of the Hamiltonian differential equation

(18) Vo (1) = Ya(t, ya(h),
whereY, denotes the Hamiltonian vector field associated to the Hanién function
H~)»,t = H)\,t °¢)»,t 'V —->R.

Because ~
(Yo =dH; t = d(H; t o gt) = ¢35 ((dHy 1)
anddH; = ((X;)o it follows that

(o = ¢f ((X)w)

(T (X))
(Th; (X))

hence we get tharqs;}(xx) =Y,. This means that the Hamiltonian vector fielsand X,
areg, t-related, thus so are their integral flows and consequendly tespective Poincaré time
maps. Therefore we have that

r— Py = (¢)\,1)71 oPyogy1
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is a symplectic path.

By naturality of the Conley-Zehnder index (Cf. (4)) we card# thaC Z(P,) = CZ(P,).

On the other hand, writingV = V x R2" the induced vector fieldt,  takes the form
Y. t(X) = (X, Fy t(X)) whereF; {(x) = JoV Hy is the principal part of the field. Denote with
W, t the flow ofY; t. LetU, = DW, (0) be the Frechet derivative df,  atOe V. An easy
calculation shows that the matii, ¢ is a solution of the initial value problem

Uy =DFt(OU;

19
(19) Upo =Ild.

Takingt = 1 it follows that D P, coincide with the path of monodromy matrickb, used
in [9] in order to define the relative Conley-Zehnder indeora a branch of periodic orbits.

In the given trivialization
ToPs.(v) = DV, 1(0)v = My (v)

and from this follows that Z(P,) coincide with their definition of the Conley -Zehnder index.
Under our hypothesi€ Z(P,) # 0 and hence by the main theorem in [9] there are nonzero
1-periodic orbits of (18) that bifurcate from the branch ¥ial solutions of the Hamiltonian
equation (18).

But nontrivial periodic orbits of the Hamiltonian equati@8) bifurcating from the trivial
branchy; (t) = 0 corrrespond by the diffeomorphismg ¢+ to periodic orbits of the Hamiltonian
equation (17) different from,,.

This complete the proof of the Theorem.
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