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THE ROLE OF THE LAGRANGE CONSTANT IN SOME
NONLINEAR WAVES EQUATIONS

Sommario. Let M () be the Lagrange constant associated to an irrational number
«. In this note we point out how this constant plays a role inghaly of some
partial differential equations, more precisely nonlinearves equations.

1. Introduction and Motivation

In what follows we shall see how the study of solutions of sqragial differential equations
leads to problems in number theory.

Our motivation was the study of certain nonlinear wave dqunat The technic used to
solve such problems depend in an essential way on the spaeasion (for example the parity)
or/and on the rationality of the ratio between the period #ralinterval lenght (when one
search for periodic solutions). Hence some results in nanfit@ory, especially in diophantine
approximations are needed. It is an established fact, tddat/the diophantine approximations
play a fundamental role in dynamical systems. We begin bgidening two problems:

1.1. Problem 1

Consider the existence of weak solutions for the followieggdic-Dirichlet problem for a one-
dimensional semilinear wave equation

Utt —Uxx +gu) = f(t,x) on]0, 2 /a[x]0, [
ut,0)=ut,m) = 0 on[Q 27 /a]
u(0, X) — u(2r /a, X) ut(0,x) —ut(2r/a,x) =0 on]0 x],

whereq is a positive irrational number which is not the square rdatrointegerg : R — R is
continuous and e H := L2(]0, 27 /o[ x 10, 7]).

We shall denote by the abstract realization iHl of the wave operator with the periodic-
Dirichlet conditions on ]02r /«[ x 10, =[. ThusL is self-adjoint and its spectrum is the closure
of the set of the eigenvalues:

(L) ={nZ —a2m2:neNg,meN}.

Then it is essential to know the structure of the spectsuiin) and consequently the prop-
erties of the operatdr. Indeed, we have for the linear associated problem, theviollg simple
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result:

THEOREMZ2.1. The linear periodic-Dirichlet problem

ugt —uxx = f(t,x) on]0, 2 /o[ x]0, 7|
ut,0)=ut,m) = 0 on[Q 27 /a]
u©O,x) —u@r/a,x) = ut(0,x) —ut(2r/a,x) =0 on[0 n],

has a weak solution for each € H if and only if

[N inf (@2 —n?| > 0.
(m,n)eZxZg

We clearly see that the condition (1.1) which is crucial is rabem of diophantine
approximations. If (1.1) is satisfied, @ o (L), hencelL is invertible and we can solve the
nonlinear problem above by (for example) fixed point theéigr more details in this direction
we refer to [3].

1.2. Problem 2

We consider the Dirichlet problem for the semilinear equratif the vibrating string:

0, (X, y) € Q,
0,

@)

{ uxy + f(u)
ulspe

where ¢ R? is a bounded domain, convex relative to the characterisiésk + y = const

It is assumed thal = 0Q = U‘j‘zll“j, wherel'j € cK for eachj, for somek > 2, and the
endpoints of the curvE; are the so-called vertices bfwith respect to the lines + y = const
A point (Xg, Yo) € I is said to be a vertex df with respect to the lines + y = constif one of
the two linesx + y = xg £ yg has an empty intersection wifh. The domair2 can be regarded
as a “curved rectangle”. More precily:

The domain@ c R? is assumed to be bounded, with a boundary 92 satisfying:

A) I'=0Q = u‘j‘zlrj, Ij = {(xYj (x))|x? <x< le}, yj(x) € Ck([x?, le]) for any
j =1,2,3, 4and for somd > 2.

Ao) |y3 X)] >0,x e [x?, le], i=123,4

A3) The endpointsPj = (XJO, i (XJO)) of the curvesl'y, ..., T'4 are the vertices of' with
respect to the lines = const, y = const By this we mean that forany = 1, ..., 4
one of the two linex = x?, Y =Yj (XJO) has empty intersection witf2 and there are no
other points o™ with this property.

These conditions imply that the domaif2 is strictly convex relative to the lines
x = const, y = const Therefore, following [8], we can define homeomorphisiis, T~ on
the boundary" as follows:

T assigns to a point on the boundary the other boundary pothttive samey coordinate.
T~ assigns to a point on the boundary the other boundary potft thhé samex coordinate.
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Notice that each verteR; is fixed point of eithelT T or T~. We defineF := Tt o T~. Itis
easy to see thd preserves the orientation of the boundary. (See the faligigure).

YA

[
-

X

LetI" = {(X(s), y(s))| 0 < s < |} be the parametrization df by arc length, so thdtis
the total length of". For each pointP € T, we denote its coordinate (P) € [0, I[. Then
the homeomorphisnir can be lifted to a continuous mafg : R — R, which is an increasing
function ontoR such that 0< f1(0) < | and

fiis+1) = fi(s)+I, seR, and S(F(P)) = f1(S(P)) (modl), P eT.

The function f; is calledthe lift of F [13]. If we inductively setfx(s) := f1(fk_1(s)) for
integerk > 2, then it is known that the limit

k(s |

exists and is independent sfe R. The numbew (F) is calledthe winding numbeor rotation
numberof F. The following cases are possible:

(A) a(F) = % is a rational number, anB" = | wherel is the identity mapping of onto
itself.
(B) «(F) = T is arational number=" has a fixed point oiff, but F" s I.
(C) «a(F) is anirrational number, anB¥ has no fixed point o for anyk € N.
The solvability of problem (2) is quite different in the tlereases (A), (B), (C) (see [6] and
[3]). The cases (A) and (B) are classical. For the case (C)ave the following result due to
Fokin [6].

Let L be the linear differential operator dth := L2(R2) associated to problem (2) aadL )
its spectrum.

THEOREMZ2.2. [6]Suppose that for the domaihcondition (C) holds. Then L is selfadjoint
and the linear problem

{ qu + h(Xv Y) O’ (Xv Y) € Qv
upe = 0
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has a unique solution u in H for any & H if and only if for some Q) > 0 and any rational
number min,

€) le —m/n| > C(a)/n?

We see that this problem leads again to diophantine appdixinsa Moreover it has been
shown that the conditions 1 and 3 are equivalent. In the $@gughall characterize the irrational
numbers which satisfies these conditions and we shall gitleduresults. For the solvability of
the nonlinear problem and more details we refer to our repapérs [1], [2] and the works of
Lyashenko [9],[10], and Lyashenko and Smiley [11].

2. Diophantine Approximations

As we have seen, these existence theorems require somis ifsulmber theory. Those results
can essentially be found in [12] but we reproduce them herhéreader’s convenience, because
of the lack of availability of [12] and because our preseatats simpler [3].

Leta € R\ Q and letQ, be the quadratic form defined @hx Zg by

Qo (M, n) := (@m)? — n2.

We want to determine a class®fsuch that

|Qq (M, N)| > ¢y >0,

for somec, > 0 and all

(m,n) € Z x Zg,
such thatQy (m, n) # 0. Now, |Q (0, n)| = n2>1forallne Zg, and hence we can restrict
ourself to the(m, n) € Zg x Zg such thatQ, (m, n) # 0, i.e. to all(m, n) € Zg x Zg, because,
« being irrationnal Qy (M, n) # 0 for (m, n) € Zg x Zg. As

Qu (M, n) = Qg (IM], IN),

we can further assume, without loss of generality, that 0 and

(m, n) € Ng x Np.

DefineA, and A, respectively by

nf [Qu(m, )|, Al := liminf |Qg(m,n)|.

Ay = i
(m,n)#(0,0) |m|+|n|— o0

Clearly, Ay < A/, andA], > Oif and only if A, > 0. Indeed, ifA], > 0, there existR > 0
such that

inf m,n)| > A’ /2> 0,
|m\+|n|zR|Qa( )= A,/2>

and,a being irrationnal,

Qe (M, N)| = |am + nflam — n| # O,

for all (m, n) # (0, 0), and hence has a positive lower bound on the finitg ®atn) # (0, 0) :
Im| +n| < R}.
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Let
a=[ag,ay,.-.]
be the continuous fraction decompositioneof Recall that it is obtained as follows; pag =
[«], where [] denotes the integer part. Then= a; + a—ll with 1 > 1, and we sedy = [o1].

If ag,aq,...,an_1 anda, as, ..., an_1 are known, themn_1 = an_1 + % with ap > 1
and we setyp = [an]. It can be shown that this process does not terminate if andibi is
irrational. The integersg, a;, . .. are the partial quotients of; the numberse, ap, ... are the
complete quotients af and the rationals

Pn 1 1 1

™M —lagay,....an =g+ — — =,
g oA=L

with pn, gn relatively prime integers, are the convergents @nd are such thatn/gn — « as
n — oo. Itis well known that thepn, gn are recursively defined by the relations

Po:=ap, Oo:=1 p1:=apa+1 o1:=ay,

Pni=anPn-1+ Pn—2. On = anOn—1+ On—2.

The following Lemma is useful to find,.

LEMMA 2.1. To each irrational numbet corresponds a unique (extended) numbeiMe
[v/5, ] (called the Lagrange constant) having the following prdjesr

(i) Foreach positive number < M («) there exist infinitely many paikg;, g;) with g # 0,
such that

’a_ﬂ <L
G|~ ng?

(i) If M () is finite, then, for eachu > M(w), there are only finitely many pair&p;, g;j)
satisfying the inequality

-2 L
Gi MG
Dimostrazione.Let
2 |t 1 1
Wi =0 ‘a—q__ =0 “led — P77, Pi>1,
I

M(a) = IiAm supui € RU {+o0}.

I|—00
It then follows from the elementary properties of the upp@itithat M («) satisfies the condi-
tions of the lemma, with the exception of the estimistéx) > /5. But a well known theorem
of Hurwitz [14] asserts that for infinitely many paifp;, g;) one has
‘O, A1
G \/qu ’

so that the proof is complete.
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If we set

M(a) == 1M e RY : infinitely many(p;. g;) satisfy

IR
Gi |~ Mg?

then the above Lemma clearly states thlx) = supM ().

ProPOSITION2.1. M(«) is finite if and only if the sequencg; ); iy Of partial quotients of
« is bounded.

Dimostrazione.We have

-2 Pi -1
oo — f|

Hi o) = qi_zl(—l)i Gi (@i +10Gi + 0i—1)!

|
1
4+
[ai7ai—l!"'!al]
lai+1, @42, ... 1+[0,a,8-1,..., ]|

I[aj+1] + 6 +nil,

with 0 < 6;, n; < 1 for all positive integers. Thus, if (g ); <y is unbounded, one has

®jip1+ Q|q_—1 = ’[34+1,ai+2, oo
|

limsupp; > limsup([gj 1] — 2) = +oo,

i—o0 i—o00

andM («) = oo. If (& )jcn is bounded, say, b, then

M(a) = limsupu; <limsup((a+1] +2) < oc.

1—00 =00

PROPOSITION2.2. If « € RT \ Q, then
Al = 20/M(a).
Dimostrazione.We have

1Qa (Pi, G| = lagi — pilled + pil = ui e + (pi/g)l,

and hence
'!@L’lf [Qu (P, )| = 20/ M ().

Now let
N():={Me Rar : infinitely many pairs of integerép, q)
with g 0 satisfyle — (p/a)| < 1/M@?} > M().

It is known [14] (see also the interesting paper [15]) thaMif > 2 andM € AN'(a), then
M € M(«), and that, for each € R\ Q, +/5 € M(a). Thus,
M (@) = supM (o) = SUpN (a),

and hence, for > M(w), only finitely many pairs of integerép, q) with q # 0 satisfy the
inequalities
Qu(p. @) =t + (p/@) < ™ 2u + (1/ng?),
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which imply that

1
Al = liminf [ ,q) — —} > 20/
@ = o o Qu(p,q) quz /e

ConsequentlyA,, > 2a/M (), so that the equality holds.
|

Now, asA), > 0if and only if A, > 0, we also have the following characterizations.

COROLLARY 2.1. A, > 0if and only if M(e) < oo, i.e. if and only if the sequence
(@j)jen is bounded above.

Below we give a straightforward approach to Corollary 21it,yehich need much material.

Dimostrazione.Noting that the minimum\, is preserved under equivalence of forms, we con-
struct an equivalent form which is more natural. bet= [ag; a1, - - -]. The form of Q, al-
lows us to assume that > 0. Also, we have thaQ(x, y) = —a2Q 1 (y, X), implying that
Ay = ozzQ;. Whena < 1 we have% = [a1; @, - - - ]. Therefore, we may assume that- 1.

We consider the equivalent form

f(X, y) = Qu(y, X —agy) = —(X — (a + ag)y) (X — (—a + ag)y).

We note that this is of the form(x, y) = +£(x — ry)(x — sy) wherer = [cg; C1,--+] > 1
ands = —[0, c_1; C_2, - --]. In 1879 A. Markoff (see also T.Cusick and M. Flahive ’s book [4
Appendix 1) proved in his original paper that the minimum eélsg equals

r—s
supl[ci; Gy, - 1 +[0sG_q1,--- 1}

Noting that for alli,

G <[C:;Ciy1, - ]+[0;¢_1.--- ] <¢ +2
we obtain that the minimum of any form equivalentgds zero if and only ifc; is unbounded.
In our case we have= o + ag = [2ap; a1, ---]and—s=«o —ag = [0; a1, - - -]. |

For example, for the golden numher.= % we haver = [1,1,1---] and thenA, >
0. Finaly let
Yi={a:aeR\Q, M(a) < oo},

then it can be shown that is a dense, uncountable, and null subset of the real line.

3. Further Results

In this section we continue the study Bf Two reals numbers, B are said to be equivalent, if
there exist integers, b, c, d, such thatad — bc| = 1, and

ac +b

ca+d’

There is an old result which states thatrifand 8 are two equivalent irrational numbers, then
M(x) = M(B). This result was generalized by T.Cusick and M. Mendes Framd 979 [5]

ﬁ:




182 Abdou Kouider Ben-Naoum

proving (among others results) thatdf= &f‘—ﬂ with ad — bc # 0, anda, b, c,d € Z, then
M(a) < M(B)|ad — bc|. As consequencell («) is finite if and only if M(B) is finite (which
was already observed by O. Perron in the begining of thisucght

THEOREMZ2.3. Letw and 8 two irrational numbers such that

_aa+b
T ca+d

withad—bc#0,andab,c,d € Z. Then

M(a)
lad — bql < M(B8) < |ad — bc/M (@)

Dimostrazione.Let M € M(«). Then there exist infinitely many pai(®;, g;) with g # 0,
such that

1
Gi Mg?
Now
_ap +bq‘=|ad_bc| lo — (pi /0
cp +dg lc(p; /gi) + d]|ce +d|

Lete > 0. Then there exist. such that

1 1+¢

< , forall i >i
o +d| ~ Ic(pi /gi) +d ¢
and
‘ﬁ ap + bg ‘ - (1+e)ad—bc]  (1+e¢)lad —bc| 1
cp +dg | T M(c(pi /o) + d)20? M (cp +dg)?

forall i >i.. Therefore

M
T+ olad—bqg e N(B), forall € >0

Now if e — 0, we get

M < M(8)
lad — bc] —
and then

M (a)
m < M(B).

Rewritear = 70‘;’3_?’ Then the second inequality follows immediatly, so thatpheof is com-

plete.

|

As a first simple consequence of this theorem we have theafimitpclassical result

COROLLARY 2.2. If « and 8 are equivalent then i) = M(8).
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Dimostrazione.The proof is immediate. By the theorelh(e) < M(8). On the other hand, we

have
—dg+b
o= —

cB—a
where(—d)(—a) — bc = ad — bc. ThenM(8) < M(«), which finishes the proof.

)

Now using the above propositions we easily obtain the fdtowesult.
COROLLARY 2.3. Under the hypothesis of Theorem 2.3, we have

M(a) < o0 <= M(B) < ©

Ay >0&= Ag >0

i.e. the sequence of partial quotientsoois bounded above if and only if the sequence of partial
quotients of is bounded above.

To illustrate the results of this section we return to thebfnm 2 in the Introduction. Far
we consider the following domain:

Q@b :={(x,y)eR%2|0<x+y<a 0<Xx—y<h}.

In this particular case, the winding numhe¢F) of the corresponding diffeomorphisig for
Q(a, b) is given by

PrOPOSITION2.3. a(F) = ﬁB for all Q(a, b) where F is the corresponding diffeomor-
phism.

Dimostrazione.lt is easy to see tha@(F(P)) — S(P) = +/2 a, for all P € I'. Moreover the
function
g(s) = f1(s) —s—+2a

where f1 is the lift of F, is such thag(s+1) = g(s) andg(0) = f1(0) — JV2ace ] =1, 1[where
| = +/2(a+b). SinceS(F(P)) = f1(S(P)) (modl), we can write:
a(S(P)) = f1(S(P)) — S(P) — V2a=SF(P)—-S(P)-+v2a+np

wherenp € Z, and from aboveg(S(P)) = npl. If P = 0, thenngl = g(0) € ] —I,I[ and
ng = 0. Sinceg is continuousnp is constant and themp = ng = 0 and henceg(s) = 0 i.e.
f1(s) = s+ /2 a. Therefore

fik@  kv2a  a
kKl kv2@+b) a+b

a(F) = lim
k— o0

which finishes the proof.

O
Consequently we can writgF) = a—ﬁ% and if we sef8 :=a/b ¢ Q itis clear thaix(F)

andg are equivalent and from corollary 2.2,
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B¢

peX—uaF)ecX.

More generally ifx(F) can be written (F) = gg%jj’ witha, b, c,d € Z, ad—bc # 0 and
Q , then from corollary 2.3

peX i a(F)ecX.
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