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LINEARIZATION OF NONHOLONOMIC SYSTEMS AT

EQUILIBRIUM POINTS

Sommario. We discuss linearization for nonholonomic dynamics at equilibria,
using an approach that although more complicated than the usual should be more
convincing and yields more information.

1. Introduction

Linearization of nonholonomic systems at equilibrium positions has been plagued from the very
beginning by mistakes and misunderstandings. Bottema [3] corrected Whittaker’s originary pro-
cedure [8]; and Naimark and Fufaev [7] developed Bottema’s idea, deriving a scheme which
is the currently accepted one. Something nagging however remains about the derivation of the
characteristic equation for a nonholonomic system: the equations of such a system, with the
undetermined multipliers thrown in, donot form a system of ordinary differential equations, in
spite of what is said in [7]; and the multipliers arenot independent variables. The linearization
being essentially an approximation, one can say that it is validated experimentally by the results
it gives; but a satisfactory approach should be convincing also from the theoretical viewpoint.

Here we try to do that by making use of the well–known fact thatthe equation of a nonholo-
nomic system may be put in normal form, and the system then is equivalent to an holonomic
system, in which only the initial conditions in phase space which satisfy the constraint are al-
lowed. This fact has recently been used (see [9]) from Gaetano Zampieri, whom I thank for
pointing out the question, and for many helpful discussions.

The linearization of the equivalent holonomic system is a well understood procedure; we
prove that the characteristic polynomial so obtained factors asds2mβ(s), whereβ(s) is the
Bottema polynomial, andd is a nonzero constant. Our approach is more complicated, butgives
more insight into the question of stability, clarifies the insurgence of vanishing roots and makes
possible the discovery of facts not apparent from the easierbut more formal usual treatment.
In particular, some instability results (see section 6) areconsequence of this approach; we also
discover that the characteristic equation has at least 2m vanishing roots, independently on any
manifold structure of the set of equilibria.

Equilibria of a nonholonomic system form, in the generic case, a manifold; but this is not
always the case, as we show in section 7; and nonholonomic systems can have isolated equilibria
(section 8).

Finally, it is well–known that Whittaker’s procedure is acceptable for equilibria of the non-
holonomic system which are also equilibria of the unconstrained system; some authors maintain
that these are the only acceptable equilibria (see [4]); now, a skier on a slope can remain at rest
when his skis are orthogonal to the slope’s gradient, even ifthe component of the gravity tangent
to the slope is nonzero; this is obvious, and should end any further speculation on this matter.
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2. Reduction to an holonomic problem

We make use of the following well known concept: ifE, F, G are normed linear spaces,U
open inE, the differential of a mapA : U → L(F, G) at a pointu ∈ U is identified with a
bilinear, in general nonsymmetric, mapA′(u)[·, ·] : E × F → G, so thatA(u + 1u)[v] =

A(u)[v] + A′(u)[1u, v] + o(1u)[v], for eachv ∈ F , and1u ∈ E small enough. The linear
dependence on some variables is sometimes indicated by enclosing these in square brackets; this
is always the case for bilinear maps, less often so for just linear ones. We have an open region
� of the euclideann−spaceX ≈ Rn, and sufficiently regular functionsK : � → Sym(X),
Q : � × X → X, B : � → L(X,3), where3 ≈ Rm is another euclidean space, andm, n
integers, 0< m < n; for everyq ∈ � the rank ofB(q) is m, and K (q) is positive definite;
T(q)[q̇, q̇] = q̇ · (K (q)q̇) is the kinetic energy,Q(q, q̇) is the generalized force. We have
Lagrange’s equations with nonholonomic constraints:

(1)

{

d
dt

(

∂T
∂q̇ (t, q, q̇)

)

− ∂T
∂q − Q(q, q̇) = B∗(q)λ

B(q)q̇ = 0

B∗(q) ∈ L(3, X) is the adjoint ofB(q) with respect to the given scalar products. By a
solution, or an admissible motion, we naturally meanC2 functionsq : I → X,
lambda : I → 3, whereI is an interval ofR (time interval) which substituted into the above
make them identically true.

These equations rewrite as

K (q)(q̈ + 0(q)[q̇, q̇]) = Q(q, q̇) + B∗(q)λ, B(q)q̇ = 0;

q 7→ 0(q) is a map from� into the space of symmetric bilinear maps fromX × X into X
(Christoffel symbols). DifferentiatingB(q)q̇ = 0 with respect to timet ,

B′(q)[q̇, q̇] + B(q)q̈ = 0

and putting equations together:

{

K (q)(q̈ + 0(q)[q̇, q̇]) = Q(q, q̇) + B∗(q)λ

B′(q)[q̇, q̇] + B(q)q̈ = 0

that is

(2)

{

K (q)q̈ − B∗(q)λ = Q(q, q̇) − K (q)0(q)[q̇, q̇]
−B(q)q̈ = B′(q)[q̇, q̇]

Using a block-defined linear operator ofX × 3 into itself the equations may be written (we
omit indication of the dependence onq, q̇, unless this last is bilinear):

(3)

(

K −B∗

−B 0

) (

q̈
λ

)

=

(

Q − K0[q̇, q̇]
B′[q̇, q̇]

)

Recall now thatV = ker(B) has the image of the adjointB∗ as its orthogonal,V⊥ =

Im(B∗), and thatK (V)∩V⊥ = {0}, sinceK is definite; this readily implies thatD = BK−1B∗

is an authomorphism of3 (we haveλ ∈ ker(D) iff K−1(B∗λ) ∈ V , equivalentlyB∗λ ∈ K (V));
it is now a non difficult exercise of linear algebra to verify that
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(4)

(

K −B∗

−B 0

)−1
=

(

K−1(1X − B∗D−1BK−1) −K−1B∗D−1

−D−1BK−1 −D−1

)

Put P = 1X − B∗D−1BK−1. We obtain:

(5)

{

q̈ = K−1PQ − K−1PK0[q̇, q̇] − B∗B′[q̇, q̇]
λ = −D−1BK−1Q + D−1BK−10[q̇, q̇] − D−1B′[q̇, q̇]

Assume that the generalized force may be split asQ(q, q̇) = S(q)−F(q)q̇, into a positional
term S(q) and a dissipative term−F(q)q̇, where F(q) is a symmetric positive semidefinite
matrix.

This assumption shall hold through all the remaining part ofthe paper.

The preceding rewrite

(6)

{

q̈ = K−1PS− K−1PF[q̇] − K−1PK0[q̇, q̇] − B∗B′[q̇, q̇]
λ = −D−1BK−1S+ D−1BK−1F [q̇] + D−1BK−10[q̇, q̇] − D−1B′[q̇, q̇]

or else, setting

f (q) = K−1(q)P(q)S(q); R(q) = K−1(q)P(q)F(q),

we obtain

(7)

{

q̈ = f (q) − R(q)q̇ + g(q)[q̇, q̇]
λ = h(q) + σ(q)[q̇] + k(q)[q̇, q̇]

with obvious definitions forg, h, σ , k; notice in particular that we have

(8) f (q) = K−1(q)(S(q) + B∗(q)h(q)); R(q) = K−1(q)(F(q) − B∗(q)σ (q)).

System (7) is equivalent to the preceding one, and the secondequation can be eliminated; it
shows that nonholonomic dynamics is reduced to the study of the Cauchy problem

(9) q̈ = f (q) − R(q)[q̇] + g(q)[q̇, q̇] q(t0) = q0; q′(t0) = q̇0,

where the initial conditions are restricted byB(q0)[q̇0] = 0. The system is in the subspace
of the phase space(q, p) given by{(q, p) : B(q)[ p] = 0}: it is a (locally trivial) vector bundle,
whose fiber atq is the linear space kerB(q). Notice that in any caseB(q)q̇ is a first integral for
the preceding second order equation. In phase space the equation writes

(10)

{

q̇ = p
ṗ = f (q) − R(q)[ p] + g(q)[ p, p]

; B(q)p = 0.

If the positional force is conservative,S(q) = −∇U(q) for someU : � → R, it is not
difficult to see that the total energyE = T(q)[ p, p] + U(q) is a Liapunov function for the
nonholonomic system, and a first integral in the absence of dissipation; in fact one haṡE =

−p · (F(q)p) ≤ 0 (recall thatF is positive semidefinite, and that if(q(t), p(t)) is a motion, then
p(t) · (B∗(q(t))λ) = 0 for all λ ∈ 3).

All of the above is essentially in [9].
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3. Equilibrium points

The equilibria of a nonholonomic system correspond to constant solutions, and are to be found
at the pointsq0 ∈ � such that for someλ0 ∈ 3 we have

−S(q0) = B∗λ0.

Notice that when the system is written in the form (10) the equilibria are exactly the zeroes of
f ; andλ = h(q) is found from the second equation in (7): the set of equilibria is a subset of
the graph of the functionh : � → 3, ann−dimensional submanifold ofX × 3 diffeomorphic
to �. If S(q0) = 0, then the preceding equation is satisfied byλ0 = 0; an unconstrained
equilibrium remains of course an equilibrium when velocityconstraints are added, but there are
other equilibria, as remarked in the introduction. In the generic case, the set of equilibria

{(q, λ) ∈ X × 3 : Q(q, 0) + B∗(q)λ = 0}

will be an m−dimensional submanifold ofX × 3, contained in the graph ofh, which then
projects onto anm−dimensional submanifold ofX. This is certainly the case if the solution set
is non–empty, and the linear operatorQ′(q, 0)[ · ] + (B∗)′[ · , λ] ∈ L(X) has rankn for every
(q, λ) in the solution set;λ acts then as a system of parameters for the manifold. This is the
generic situation, but exceptions are not hard to find (sections 7, 8).

4. Linearization at an equilibrium

If 8(q, p) = (p, f (q) − R(q)[ p] + g(q)[ p, p]), the differential of8 at an equilibrium point
(q0, 0) is

(11) 8′(q0, 0) =

(

0 1X
f ′(q0) −R(q0)

)

.

We want to studyf ′(q0) (see section 2 for the definition off , R, etc.). For this, the following
is a crucial result:

PROPOSITION3.1. P(q) is a projector onto the space K(q)(ker(B(q)) and K(q)−1P(q)

hasker(B(q)) as image,ker(B(q))⊥ as kernel.

Dimostrazione.For simplicity, omitq from the operators;P is a projector iff it is idempotent,
and this is true iffB∗D−1BK−1 is idempotent, which is immediate to check:

(B∗D−1BK−1)(B∗D−1BK−1) = B∗D−1BK−1B∗D−1BK−1 =

B∗D−1DD−1BK−1 = B∗D−1BK−1;

B∗D−1BK−1 is a projector onto the spaceB∗(3), with kernelK (ker(B)): all this is im-
mediate. This implies that 1X − B∗D−1BK−1 has kernelB∗(3) = ker(B)⊥, andK (ker(B))

as image.



Linearization of nonholonomic systems 191

From f (q) = K−1(q)P(q)S(q) we get

f ′(q)[ · ] = −K−1(q)K ′[ · , K−1(q)P(q)S(q)] +

K−1(q)
(

P′(q)[ · , S(q)] + P(q)S′(q)[ · ]
)

The idempotence ofP implies that

P′(q)[ · , S(q)] = P′(q)[ · , P(q)S(q)] + P(q)P′[ · , S(q)];

substituting in the above we get

f ′(q)[ · ] = −K−1(q)K ′[ · , f (q)]

K−1(q)
(

P′(q)[ · , P(q)S(q)] + P(q)P′[ · , S(q)] + P(q)S′(q)[ · ]
)

,

and at an equilibrium pointq0 we haveP(q0)S(q0) = K (q0) f (q0) = 0 = f (q0); at
equilibria we are then able to write:

f ′(q0)[ · ] = K−1(q0)P(q0)
(

P′[ · , S(q0)] + S′(q0)[ · ]
)

.

COROLLARY 3.1. At an equilibrium point q0 the images of f′(q0) and of R(q0) are con-
tained inker(B(q0)).

Dimostrazione.See above forf ′(q0); for R, simply recall thatR = K−1PF.

It will also be useful to differentiatef (q) written in the form f (q) = K−1(q)(S(q) +

B∗(q)h(q)); we get

f ′(q)[ · ] = −K−1(q)K ′[ · , K−1(q)(S(q) + B∗(q)h(q))] +

K−1(q)(S′(q)[ · ] + B∗′
(q)[ · , h(q)] + B∗(q)h′(q)[ · ]),

which at equilibria becomes

(12) f ′(q0)[ · ] = K−1(q0)(S′(q0)[ · ] + B∗′
(q0)[ · , h(q0)] + B∗(q0)h′(q0)[ · ]).

5. Linear algebra for the characteristic equations

In the sequel,q0 is an equilibrium point; for simplicity, putM = f ′(q0)), R = R(q0); M, R
are both linear operators inX, whose image is contained inV = ker B, an(n − m)-dimensional
subspace ofX; W is the operator

8′(q0, 0) =

(

0 1X
f ′(q0) −R(q0)

)

=

(

0 1X
M −R

)

of X × X. We assume orthonormal coordinates, thus identifyingX with Rn. We shall
speak of the eigenvalues ofW and other linear operators; it is understood that we go to the
complexificationsXC ≈ Cn, or XC × XC ≈ Cn × Cn of these spaces when we speak of
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complex eigenvalues, but we still denoteX or X × X these spaces. The following contains what
we are able to say about the characteristic polynomial ofW:

PROPOSITION3.2. Letα be a complex number,(u, v) a non zero vector in X× X. Thenα
is an eigenvalue of the n× n matrix

W =

(

0 1X
M −R

)

,

with (u, v) as an associated eigenvector if and only if u∈ X is a non–zero vector in the
kernel ofα21X + αR − M; and the characteristic polynomialχ(s) = det(s1X×X − W) of W
coincides withdet(s21X + sR− M). Moreover, assume that the image spaces M(X), R(X) are
both contained in a subspace V of X of dimension n− m. Thendim kerW ≥ m,dim kerW2 ≥

2m, anddim ker(W) is strictly smaller thandim ker(W2); hence the characteristic polynomial
of W has s2mas a factor, and W is not semisimple.

Dimostrazione.The first statement asserts thatv = αu, Mu − Rv = αv, equivalent toMu −

αRu = α2u; and ifu = 0 then alsov = αu = 0. To get the remaining statement, consider

s1X×X − W =

(

s1X −1X
−M s1X + R

)

.

Multiplying the lastn columns bys and adding to the firstn columns we get the operator

(13)

(

0 −1X
−M + sR+ s21X s1X + R

)

.

whose determinantχ(s) = det(s21X + sR− M) coincides with det(s1X×X − W).

The assertions on the kernels are immediate:W(X × X) ⊆ X × V implies dim kerW ≥ m;
andW2(X × X) ⊆ V × V implies dim kerW2 ≥ 2m; moreover, it is plain that the projection
onto the first factor of the image ofW is all of X, whereas the image ofW2 projects intoV ;
then the image ofW is strictly larger than the image ofW2, which implies the reverse inclusion
between the kernels. The generalized kernel ofW has then dimension≥ 2m, which implies that
s2m divides the characteristic polynomial; and the minimum polynomial ofW hass2 as a factor.

We now clarify the relation between this characteristic equation and that in [7]. Clearly the
kernel of (13) in the above proof coincides with the kernel of

(14)

(

s21X + sR− M 0
0 1X

)

.

and also the determinants are the same. We now forget in (14) the lastn − m rows and
columns, obtaining the block matrix

(15)

(

s21X + sR− M 0
0 1m

)

.
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whose kernel is clearly{(u, λ) ∈ Rn × Rm : u ∈ ker(s21X + sR− M), λ = 0}, and whose
determinant isχ(s). Right-multiplying (15) by the invertible(n + m) × (n + m) matrix used in
section 2 we get:

(16)

(

K −B∗

−B 0

) (

s21X + sR− M 0
0 1X

)

=

(

s2K + s PF − N −B∗

−s2B 0

)

(recall thatBM = B R = 0, sinceM, R have images contained in ker(B)); we put N =

K M; we haveN = S′(q0) + (B∗)′[ · , h0] + B∗h′(q0), as from the last statement in section 3.
Clearly the determinant of (16) is that of (15) multiplied bya nonzero constant factord, and
coincides with

(17) s2m det

(

s2K + s PF − N B∗

B 0

)

.

We want to prove that both the kernel and the determinant of the operators

(18)

(

s2K + s P R− S′(q0) − (B∗)′[·, h0] − B∗h′(q0) B∗

B 0

)

,

(19)

(

s2K + sR− S′(q0) − (B∗)′[ · , h0] B∗

B 0

)

,

are equal; the matrix (19) is the one appearing in [7]. The difference of the operators in the
left upper corner is−s(1X − P)R− B∗h′(q0), an operator whose image is contained inB∗(3);
the conclusion follows immediately from the following easyobservation:

Let H, E ∈ L(X) be linear operators; if the image ofE is contained in the image ofB∗,
then the operators of L(X × 3) given by

(

H + E B∗

B 0

) (

H B∗

B 0

)

have the same kernel and the same determinant.

Dimostrazione.(u, λ) is in the kernel of the operator on the left if and only ifu ∈ ker B and
Hu + Eu = −B∗λ; in other words,u ∈ X is the first component of an element of the kernel of
the operator if and only ifHu+ Eu ∈ B∗(3); and similarly,Hu ∈ B∗(3) if and only if u is the
first component of an element of the kernel of the operator on the right. But sinceEu ∈ B∗(3)

for everyu ∈ X, this subset of vectors ofX is the same. SinceB∗(3) has the columns ofB∗ as
a basis, the hypothesis onE is verified if and only if the columns ofE are linear combinations
of the columns ofB∗, and this implies that the matrices are column equivalent, by elementary
operations; thus determinants are equal.



194 G. De Marco

We have proved:
dχ(s) = s2mβ(s),

whereβ(s) (the “Bottema polynomial”) is the determinant described in[7]

β(s) = det

(

s2K + sR(q0) − S′(q0) − (B∗)′[ · , h0] B∗

B 0

)

andd = det

(

K B∗

B 0

)

.

The equationβ(s) = 0 should be called the reduced characteristic equation of the given
nonholonomic system, at the equilibriumq0. Its roots are then exactly the eigenvalues of the
linearization of the system, except for 2m zero roots; it should be noted thatβ has degree 2n−2m,
and not necessarily has zero as a root.

6. Instability

Since, in general, equilibria of a nonholonomic system are not isolated it has been suggested
that one should not speak of the stability of single equilibria, but of the entire ”manifold” of
equilibria; a theory has been developed in [7]. The theory uses the unstated assumption that the
rank of S′(q0) + (B∗)′[ · , h0] is n at all points of the equilibrium set, or at least that the set of
equilibria is a manifold. The notion of instability for an equilibrium should then be the following:
let Z be the set of equilibria (a closed set, essentially the zero-set of f ); a point(q0, 0) ∈ Z is
Z−unstable if there exists an open setV ⊇ Z such that, for every neigborhoodU of (q0, 0) there
is a point(q, p) ∈ U such that the trajectory starting at(q, p) exitsV at some future instant.

If the characteristic equation at an equilibrium point has aroot with strictly positive real part,
is the equilibrium unstable, also in this more general sense? It is stated without proof in [7] that
this is the case. Here we prove it (a part of the following argument is due to Gaetano Zampieri),
dispensing with any assumptions concerning the manifold structure of the equilibrium set. First,
note that ifc > 0 is smaller than the minimum positive real part of an eigenvalue of W, then
there is a solutionϕ(t) = (q(t), p(t)) of (10), defined on ]− ∞, 0], such that:

ϕ(t) 6= (q0, 0) for all t ≤ 0, lim
t→−∞

|ϕ(t) − (q0, 0)|e−ct = 0

(see [H], remark to Corollary 6.1, pag. 243). Such a solutionis admissible:B(q(t))p(t) is
constant, and has limitB(q0)0 = 0 ast → −∞, hence it is identically zero.

PROPOSITION3.3. If the characteristic equation of a nonholonomic system at an equilib-
rium point has a root with stricly positive real part, then this equilibrium is unstable.

Dimostrazione.Using the solutionϕ :] − ∞, 0] → � × X as above, pick an open setV con-
taining Z but notϕ(0) (Z, as above, is the set of equilibria, a closed set); for every neighborhood
U of (q0, 0) there ist̄ < 0 such thatϕ(t̄) ∈ U ; butϕ(t + t̄), at timet = −t̄ , is outside ofV .

Recall that, in the absence of dissipation (F = R = 0) the eigenvalues ofW are exactly
the square roots of the eigenvalues off ′(q0) (Proposition 3.2); since nonzero square roots are
in opposite pairs, the only case in which we do not necessarily have instability is that in which
all eigenvalues off ′(q0) are real and negative (≤ 0), which corresponds to all roots of the
characteristic equation being purely imaginary (or zero).
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As a corollary, we obtain an instability theorem due to Barone (see [1]), which we state in a
more general form:

COROLLARY 3.2. Assume that there is no dissipation. Let(q0, λ0) be an equilibrium point
such that K(q0) = 1X ; assume thatv 7→ v ·

(

S′(q0)v + B∗′[v, λ0]
)

is a positive definite form
on the spaceker(B(q0)). Then q0 is unstable.

Dimostrazione.We have seen in Corollary 3 that the image of

f ′(q0)[ · ] = S′(q0)[ · ] + B∗′
(q0)[ · , h(q0)] + B∗(q0)h′(q0)[ · ]

is contained inV = ker(B(q0)); sinceB∗(3) = V⊥, we have (λ0 = h(q0))

v · ( f ′(q0)v) = v · (S′(q0)v) + v · (B∗′[v, λ0]) + v · (B∗(q0)h′(q0)v)

= v · (S′(q0)v) + v · (B∗′[v, λ0]),

that is, the quadratic form of the statement concides withv 7→ v · ( f ′(q0)v). Positivity of this,
together with f ′(q0)(X) ⊆ V , implies thatall eigenvalues off ′(q0), except form trivial ones,
have stricly positive real part.

7. An example

We consider:� = R3; kinetic energyT(q)[q̇, q̇] = |q̇|2/2, potential energyU(q) = ε|q|2/2,
whereε ∈ R/{0} andq = (x, y, z) ∈ R3, with viscous resistanceR(q)q̇ = −ρq̇, ρ > 0 a scalar;
the constraint on the velocities isB(q)q̇ = xẋ + yẏ+ (1+x − y)ż. The system is nonholonomic
(d B ∧ B = −(x + y) dx ∧ dy ∧ dz 6= 0). Differentiating the constraint with respect to time we
getxẍ + yÿ + (1 + x − y)z̈ + ẋ2 + ẏ2 + (ẋ − ẏ)ż = 0; the equations are

(20)















ẍ + ρ ẋ + εx = xλ

ÿ + ρ ẏ + εy = yλ

z̈ + ρż + εz = (1 + x − y)λ

xẍ + yÿ + (1 + x − y)z̈ + ẋ2 + ẏ2 + (ẋ − ẏ)ż = 0

Next we look for equilibria, the solutions of the system

εx = xλ; εy = yλ; εz = (1 + x − y)λ;

if x = y = 0, the third givesz = λ/ε; hence thez−axis is made of equilibria; if eitherx,
or y is nonzero we getλ = ε; for this λ the first two are true for allx, y, and the third gives
z = (1 + x − y)/ε, a plane of equilibria. Notice that the matrixU ′′(q) − (B∗)′[ · , λ] is





ε 0 0
0 ε 0
0 0 ε



 −





λ 0 0
0 λ 0
λ −λ 0



 =





ε − λ 0 0
0 ε − λ 0

−λ λ ε



 ,

with rank always 3, except forλ = ε, which corresponds to the equilibria of the plane
z = (1 + x − y)/ε. Notice also that at(0, 0, ε) the set of equilibria does not have any manifold
structure.

The characteristic polynomial at the point(0, 0, 0) is

χ(s) = s2(s2 + ρs + ε)2.
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The system has the total energyE(q, q̇) = (|q̇|2 + ε|q|2)/2 as a Liapunov function, which
is also a first integral ifρ = 0: this is true both for the holonomic system obtained forgetting
the velocity constraints, and the non–holonomic one given.Assumingε > 0, the energy is a
proper function (it tends to+∞ at infinity) and is positive definite; then the holonomic associated
system has the origin as unique point of stable equilibrium,which if ρ > 0 is also asymptotically
stable and a global attractor. Stability is of course in thiscase not destroyed by adding the velocity
constraint, sinceE is still a Liapunov function; but asymptotic stability of the origin vanishes.
Observe in fact that the first two equations in (20) are the same; the solution with initial value
x0 = y0 = u, ẋ0 = ẏ0 = v will then be the same functionξ(t), for all t ≥ 0; from the relation
xẋ + yẏ + (1 + x − y)ż = 0 we get 2ξ ξ̇ + ż = 0; we then havez + ξ2 = 2u2 + z0 along the
solution, andz, ξ cannot both tend to 0 ast → ∞. Asymptotic stability has been destroyed from
the constraint on the velocities.

8. An isolated equilibrium

Consider the system

T(q) = |q̇|2/2; F(q)q̇ = ρq̇ (ρ ∈ R, ρ ≥ 0);

U(q) =
(x−1)2+(y−1)2

2 ; B(q)q̇ = −yẋ + xẏ + ((y − 1)2 + z2)ż

(observe thatB has rank 1 for everyq, and thatd B(q)∧B(q) = (z2−2y+1) dx∧dy∧dz 6=

0) whose equilibria are the solution of the system∇U(q) = B∗(q)λ, that is

x − 1 = −yλ y − 1 = xλ 0 = ((y − 1)2 + z2)λ

If λ = 0 we have the solutions{(1, 1, z) : z ∈ R}; it is a line of equilibria; ifλ 6= 0 we get the
solution(0, 1, 0), λ = 1, an isolated equilibrium.

The characteristic polynomial at the point(0, 1, 0) is χ(s) = det(s16 − W) = s3(s+ρ)(1+

ρs + s2). Of course the energy is a Liapunov function for the system, but this timeE is not
proper, since it does not depend onz.

9. Nonlinear constraints

We sketch here how the method can be applied also to not necessarily linear nonholonomic
constraints (a nice mechanical example is, for instance, in[2]). These areb(q, q̇) = 0, with
b : � × X → 3 a sufficiently regular function; we assume thatb(q, 0) = 0 for everyq ∈

�, an hypothesis satisfied by a large class of constraints, e.g. homogeneous ones of positive
degree ([6]). We putA(q, p) = ∂qb(q, p) , B(q, p) = ∂pb(q, p) (A(q, p), B(q, p) are both
elements of L(X,3)); assume that for every(q, p) ∈ � × X such thatb(q, p) = 0 the rank of
B(q, p) is m (full rank hypothesis). Differentiatingb(q, p) = 0 with respect to timet we obtain:

A(q, q̇)q̇ + B(q, q̇)q̈ = 0.

Observe that since we assumed thatb(q, 0) = 0 identically, we haveA(q, 0) = 0 for every
q ∈ �. We then proceed exactly as in section 2, withA(q, q̇)[q̇] replacing the termB′(q)[q̇, q̇],
andB(q, q̇)q̈ replacingB(q)q̈. We obtain again (10), except that nowB, and hence alsoD, P,
f , h etc. depend also onp = q̇, and not only onq.

In phase space the equation writes



(21)

{

q̇ = p
ṗ = f (q, p) − R(q, p)[ p] + g(q, p)[ p, p]

; b(q, p) = 0.

where

f (q, p) = K−1(q)P(q, p)S(q);

R(q, p) = K−1(q)P(q, p)F(q) − D−1(q, p)A(q, p);

g(q, p) = −K−1(q)P(q, p)K (q);

P(q, p) = 1X − B∗(q, p)D−1(q, p)B(q, p)K−1(q).

Calling again8(q, p) the second member of (21), we have to show that at an equilibrium
point (q0, 0) we still have a structure for8′(q0, 0) as in section 5, that is

8′(q0, 0) =

(

0 1X
M N

)

with M, N operators such thatM(X), N(X) are contained inV = ker(B(q0, 0)). It is not
difficult to follow the proof given in section 5 to show that this is the case; forN, recall also that
A(q0, 0) = 0.

Riferimenti bibliografici

[1] BARONE A., A Liapounov Instability Theorem, Dynamical Systems (edited by M.M.
Peixoto), Academic Press (1973), 289–292.

[2] BENENTI S.,Geometrical aspects of the dynamics of non–holonomic systems, Rend. Sem.
Mat. Univ. Pol. Torino54 (1996), 203–212.

[3] BOTTEMA O., On the small vibrations of non–holonomic systems, Indagationes Math.11
(1949), 296–298.

[4] CAI , L ILONG, On the stability of the equilibrium state and small oscillations of non-
holonomic systems, Dinam. Stability Systems9 (1994) n.1, 3–17.

[5] HARTMANN P.,Ordinary Differential Equations, Wiley&Sons (1964).

[6] GORNI G. AND ZAMPIERI G.,Time reversibility and energy conservation for Lagrangian
systems with nonlinear nonholonomic constraints, Rep. Math. Phys.45 (2000), 217–227.

[7] NAIMARK JU. I. AND FUFAEV F.A.,Dynamics of Nonholonomic Systems, Translations of
Mathematical Monographs33, Amer. Math. Society, Providence R.I. (1972).

[8] WHITTAKER E.T.,A Treatise on Analytical Dynamics of Particles and Rigid Bodies, Cam-
bridge University Press, 4th edition, American Reprint (1961).

[9] ZAMPIERI G.,Nonholonomic versus vakonomic dynamics, to appear in Journal of Differ-
ential Equations.

AMS Subject Classification: 37J25, 37J60, 70F25.

Giuseppe DE MARCO
Università di Padova
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