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LINEARIZATION OF NONHOLONOMIC SYSTEMS AT
EQUILIBRIUM POINTS

Sommario. We discuss linearization for nonholonomic dynamics at ldaia,
using an approach that although more complicated than thed abould be more
convincing and yields more information.

1. Introduction

Linearization of nonholonomic systems at equilibrium fiosis has been plagued from the very
beginning by mistakes and misunderstandings. Bottemaf8gcted Whittaker’s originary pro-
cedure [8]; and Naimark and Fufaev [7] developed Bottenes| deriving a scheme which
is the currently accepted one. Something nagging howeveaires about the derivation of the
characteristic equation for a nonholonomic system: theagguos of such a system, with the
undetermined multipliers thrown in, deotform a system of ordinary differential equations, in
spite of what is said in [7]; and the multipliers ametindependent variables. The linearization
being essentially an approximation, one can say that itlidated experimentally by the results
it gives; but a satisfactory approach should be convinclag fiom the theoretical viewpoint.

Here we try to do that by making use of the well-known fact thatequation of a nonholo-
nomic system may be put in normal form, and the system theqguiaent to an holonomic
system, in which only the initial conditions in phase spadecW satisfy the constraint are al-
lowed. This fact has recently been used (see [9]) from GaeZampieri, whom | thank for
pointing out the question, and for many helpful discussions

The linearization of the equivalent holonomic system is 3 wederstood procedure; we
prove that the characteristic polynomial so obtained factnsdszmﬁ(s), where 8(s) is the
Bottema polynomial, and is a nonzero constant. Our approach is more complicatedjizes
more insight into the question of stability, clarifies theungence of vanishing roots and makes
possible the discovery of facts not apparent from the edsiemore formal usual treatment.
In particular, some instability results (see section 6)anesequence of this approach; we also
discover that the characteristic equation has at leastahishing roots, independently on any
manifold structure of the set of equilibria.

Equilibria of a nonholonomic system form, in the genericegas manifold; but this is not
always the case, as we show in section 7; and nonholonontensgsan have isolated equilibria
(section 8).

Finally, it is well-known that Whittaker’'s procedure is aptable for equilibria of the non-
holonomic system which are also equilibria of the uncomstighsystem; some authors maintain
that these are the only acceptable equilibria (see [4]); moskier on a slope can remain at rest
when his skis are orthogonal to the slope’s gradient, eviirei€omponent of the gravity tangent
to the slope is nonzero; this is obvious, and should end atiyefuspeculation on this matter.
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2. Reduction to an holonomic problem

We make use of the following well known concept: Bf F, G are normed linear spaced,
open inE, the differential of a mapA : U — L(F, G) at a pointu € U is identified with a
bilinear, in general nonsymmetric, mag(u)[-,-] : E x F — G, so thatA(u + Au)[v] =
A(W[v] + A'(u)[Au, v] + o(Aw)[v], for eachv € F, andAu € E small enough. The linear
dependence on some variables is sometimes indicated lysamgthese in square brackets; this
is always the case for bilinear maps, less often so for jnsgli ones. We have an open region
Q of the euclideam—spaceX ~ R", and sufficiently regular function& : @ — Sym(X),
Q:Qx X = X,B:Q — L(X, A), whereA =~ R™M is another euclidean space, amgdn
integers, O< m < n; for everyq € Q the rank ofB(q) is m, andK (q) is positive definite;
T[4G.4] = g - (K(@Q) is the kinetic energyQ(q, g) is the generalized force. We have
Lagrange’s equations with nonholonomic constraints:

@ { & (tan)--ea o = B @
B(@4 =0

B*(g) € L(A, X) is the adjoint ofB(g) with respect to the given scalar products. By a
solution, or an admissible motion, we naturally m&hfunctionsq : | — X,
lambda: | — A, wherel is an interval ofR (time interval) which substituted into the above
make them identically true.

These equations rewrite as

K@@+ T @lg.dD = Q. §) + B* (@2, B@qg=0;

g — I'(g) is a map fromQ into the space of symmetric bilinear maps frofnx X into X
(Christoffel symbols). Differentiatin®(q)q = O with respect to time,

B'(a)[q, q] + B()g =0

and putting equations together:

Q(d, @) + B*(m)Ar

{ K (@) + ' (@[dg, )

B'@[g,41+B@d = 0
that is
@ { K@g—-B*@r = Q. ¢ — K(@I(Ig, d]
—B(m)g = B(lg,4q]

Using a block-defined linear operator ¥fx A into itself the equations may be written (we
omit indication of the dependence qnd, unless this last is bilinear):

@ K —B* d\_( Q-KIgq
-B 0 A B'[d. d]
Recall now thaty = ker(B) has the image of the adjoi@* as its orthogonaly+ =
Im(B*), and that (V) NV~ = {0}, sinceK is definite; this readily implies thdd = BK~1B*

is an authomorphism of (we have. e ker(D) iff K ~1(B*A) € V, equivalentlyB*A € K (V));
it is now a non difficult exercise of linear algebra to verifyat
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4)

K —B* *1_ K-1l(1x —B*D1BK1) —k-1B*p-?
-B 0 - -p-1Bk-! -p1

PutP = 1yx — B*D~1BK~1. We obtain:

g K~1PQ— K~'PKTI[q, ¢] - B*B'[¢, q]
®) _ —1lpk-1 “1pk—-1rrg ¢ —1R/Mg A
A = -D7"BK™T'Q+D7"BK™I[g.q] — D™"B'[q, d]
Assume that the generalized force may be spl®ag, ) = S(q) — F(q)q, into a positional

term S(q) and a dissipative term-F(q)g, where F(q) is a symmetric positive semidefinite
matrix.

This assumption shall hold through all the remaining pathefpaper.
The preceding rewrite

4 = K 1PS—K-1PF[g] - K~1PKI[g,q] — B*B'[4, q]
(6) A = DilBKilS—l— D1l KilF[' -1 —1rra A 1o/ra A
= - d]+ D "BK™-I'[q,q] — D™"B'[q, d]

or else, setting

f(@ =KL @P@S@:; R@ =K X@P@F@),
we obtain

@ { g f(@ — R@q + g(@lg, d]
A= h(@+o@[d] + k@4, ql

with obvious definitions fog, h, o, k; notice in particular that we have
® f@=K Y@@ +B*@h@):  R@ =K Y@ F@ - B* @0 (@).

System (7) is equivalent to the preceding one, and the sesqumtion can be eliminated; it
shows that nonholonomic dynamics is reduced to the studyso€auchy problem

9) d=f(@— R4 +9@[4.4]  ato) =do: '(tg) = dp.

where the initial conditions are restricted Bygg)[do] = 0. The system is in the subspace
of the phase spadg, p) given by{(q, p) : B(q)[p] = 0}: itis a (locally trivial) vector bundle,
whose fiber ag] is the linear space kd(q). Notice that in any casB(q)q is a first integral for
the preceding second order equation. In phase space thiéoeqwates

a = p
10 K ; B =0.
(10) { p = f@— R@P+9@Ip. pl @e
If the positional force is conservativ&(q) = —VU(q) for someU : Q@ — R, itis not

difficult to see that the total enerdg = T(q)[p, p] + U(q) is a Liapunov function for the
nonholonomic system, and a first integral in the absencessfigition; in fact one ha =
—p-(F(@)p) < 0 (recall thatF is positive semidefinite, and that(d(t), p(t)) is a motion, then
p(t) - (B*(q(t))A) =0 forallx € A).

All of the above is essentially in [9].



190 G. De Marco

3. Equilibrium points

The equilibria of a nonholonomic system correspond to @msolutions, and are to be found
at the pointgyg €  such that for somgg € A we have

—S(do) = B*o.

Notice that when the system is written in the form (10) theildayia are exactly the zeroes of
f; andA = h(q) is found from the second equation in (7): the set of equdilisia subset of
the graph of the functioh : @ — A, ann—dimensional submanifold ok x A diffeomorphic

to Q. If S(qp) = O, then the preceding equation is satisfiedMgy = 0; an unconstrained
equilibrium remains of course an equilibrium when velocinstraints are added, but there are
other equilibria, as remarked in the introduction. In theeyé case, the set of equilibria

{@ 1) € Xx A: Q(q,0) + B*(q)r =0}

will be an m—dimensional submanifold oK x A, contained in the graph df, which then
projects onto am—dimensional submanifold oK. This is certainly the case if the solution set
is non—empty, and the linear opera®f(q, 0)[ -] + (B*)'[ -, A] € L(X) has rankn for every
(9, A) in the solution setj acts then as a system of parameters for the manifold. Thieis t
generic situation, but exceptions are not hard to find (sestv, 8).

4. Linearization at an equilibrium

If ®(q, p) = (p, f(@ — R@I[p] + g@1ip, pD, the differential of® at an equilibrium point
(0o, 0) is

i 0 1
(11) ®'(%. 0) =< (@) —R(@) )

We want to studyf ' (qp) (see section 2 for the definition &f R, etc.). For this, the following
is a crucial result:

PrRopPosITION3.1. P(q) is a projector onto the space (§)(ker(B(q)) and K(q)*lP(q)
hasker(B(q)) as imageker(B(q))* as kernel.

Dimostrazione.For simplicity, omitq from the operatorsP is a projector iff it is idempotent,
and this is true iffiB* D~1BK ~1 is idempotent, which is immediate to check:

B*D- 1Bk 1(B*D1BK 1) = B*D-1BK1B*D1BK 1 =
B*D DD 1Bk 1= B*D 1BK 1

B*D~1BK~1is a projector onto the spad&*(A), with kernel K (ker(B)): all this is im-
mediate. This implies thatyl — B*D~1BK =1 has kerneB*(A) = ker(B)L, andK (ker(B))
as image.

|
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From f(q) = K~1(q) P(q)S(q) we get

f'@l-] = —K Y@K, K" @P@S@)]+
K~Y@) (P’ @I -, S@] + P@S @I -]1)

The idempotence dP implies that

P/ -, S@] = P'@I[-. P@S@)] + P@PT-, S@I;

substituting in the above we get

@] = —-K X @K'[-. f@]
K@ (P'@[-. P@S@] + P@P'[-, S@] + P@S @[1).

and at an equilibrium poingg we haveP(qg)S(gp) = K(gg) f(dg) = 0 = f(qp); at
equilibria we are then able to write:

(o) -1 = K ~1(a0) P(@o) (P'[ -, S(ao)] + S @o)l -1).-

COROLLARY 3.1. At an equilibrium point g the images of f(qg) and of Rqg) are con-
tained inker(B(qp)).

Dimostrazione.See above foff ' (qg); for R, simply recall thaiR = K —-1pF.
|

It will also be useful to differentiatef (q) written in the form f(q) = K—l(q)(S(q) +
B*(@)h(q)); we get

@1 = —K XK', K 1@)(S@) + B*@h@)] +
K=Y@ (S @[ -1+ B* @l -, h(@] + B*(@h'@l[ -],

which at equilibria becomes

(12) /(o) -1 = K~ 1(@0)(S(@o)[ -1 + B*'(@o)[ - , h(ao)] + B* (@o)h’ (o)l - -

5. Linear algebra for the characteristic equations

In the sequelgg is an equilibrium point; for simplicity, puM = f’(qg)), R = R(qp); M, R
are both linear operators X, whose image is contained \h = ker B, an(n — m)-dimensional
subspace oK; W is the operator

, B 0 1x (0 1k
<I>(q0,0)_( /(o) —R(Go) )‘( M —R)

of X x X. We assume orthonormal coordinates, thus identifyihgvith R". We shall
speak of the eigenvalues ®¥ and other linear operators; it is understood that we go to the
complexificationsX¢c &~ C", or X¢ x Xg ~ C" x C" of these spaces when we speak of
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complex eigenvalues, but we still denofeor X x X these spaces. The following contains what
we are able to say about the characteristic polynomiaV/of

PROPOSITION3.2. Leta be a complex numbey, v) a non zero vector in % X. Thenu
is an eigenvalue of the r n matrix
0 1x
v=(w %)

with (u, v) as an associated eigenvector if and only ieuX is a non—zero vector in the
kernel ofa?1x + «R — M; and the characteristic polynomiagl (s) = det(slx, x — W) of W
coincides witrdet(szlx + sR— M). Moreover, assume that the image spacasXi R(X) are
both contained in a subspace V of X of dimensionm. Therdim kerW > m,dim kerw?2 >
2m, anddim ker(W) is strictly smaller thardim ker'W?2); hence the characteristic polynomial
of W has éMas a factor, and W is not semisimple.

Dimostrazione.The first statement asserts that «u, Mu — Rv = «v, equivalent toMu —
aRu= azu; and ifu = 0 then alsa = «u = 0. To get the remaining statement, consider

_( slx —1x
SlXXX_W‘( M sly +R )

Multiplying the lastn columns bys and adding to the first columns we get the operator

0 —1x
(13) ( —M + sR+ s21x slx—l—R)'

whose determinant(s) = det(szlx + sR— M) coincides with dgslyx — W).

The assertions on the kernels are immedis#¢ X x X) € X x V implies dimkeW > m;
andWZ(X x X) €V x V implies dim keiw? > 2m; moreovetr, it is plain that the projection
onto the first factor of the image & is all of X, whereas the image a2 projects intoV;
then the image oW is strictly larger than the image &2, which implies the reverse inclusion
between the kernels. The generalized kernéNdfias then dimension 2m, which implies that
s2M divides the characteristic polynomial; and the minimumypommial of W hass? as a factor.

Od

We now clarify the relation between this characteristicatiun and that in [7]. Clearly the
kernel of (13) in the above proof coincides with the kernel of

(14) <321X+SR—M 0 )

0 1x

and also the determinants are the same. We now forget in i&4)astn — m rows and
columns, obtaining the block matrix

21y +SR—M 0
s (Frrgrom 0
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whose kernel is clearly(u, 1) € R x R™ : u € ker(s?1yx + sR— M), A = 0}, and whose
determinant is¢ (s). Right-multiplying (15) by the invertiblén + m) x (n 4+ m) matrix used in
section 2 we get:

(16) K -B* 1y +sR—-M 0 \_ [ ?K+sPF-N -B*
-B 0 0 x )~ -’B 0

(recall thatBM = BR = 0, sinceM, R have images contained in K&)); we putN =
KM; we haveN = S'(qg) + (B*)'[ -, hg] + B*h’(qg), as from the last statement in section 3.
Clearly the determinant of (16) is that of (15) multiplied &ynonzero constant facter, and
coincides with

2 *
2m s°K+sPF—-N B
17) S det( B 0 )

We want to prove that both the kernel and the determinanteobperators

s’K +sPR—S(qo) — (B*)'[-,ho] — B*h(qp) B*
(18) ( B 0 ) ’
s?K +sR—S(qo) — (B*)[-,hg] B*
(19) ( c 5 ) :

are equal; the matrix (19) is the one appearing in [7]. Thiehce of the operators in the
left upper corner is-s(1x — P)R — B*h/(qg), an operator whose image is containedif(A);
the conclusion follows immediately from the following easlyservation:

Let H, E € L(X) be linear operators; if the image &f is contained in the image d&&*,
then the operators of(IX x A) given by
H B*
B 0

H+E B*
B 0
have the same kernel and the same determinant.

Dimostrazione.(u, A) is in the kernel of the operator on the left if and onlyife kerB and
Hu + Eu= —B*A; in other wordsu € X is the first component of an element of the kernel of
the operator if and only iHu+ Eu € B*(A); and similarly,Hu € B*(A) if and only if u is the
first component of an element of the kernel of the operatoherright. But sinceEu € B*(A)

for everyu e X, this subset of vectors of is the same. SincB*(A) has the columns d8* as

a basis, the hypothesis dhis verified if and only if the columns o are linear combinations
of the columns ofB*, and this implies that the matrices are column equivalenglbmentary
operations; thus determinants are equal.

|
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We have proved:
dx(s) = MB(S),
whereg(s) (the “Bottema polynomial”) is the determinant describe7ih

3 s?K +sRdo) — S'(dp) — (B*)'[-,hg]  B*
B(s) = det( B >

0
K B*
andd =det( B 0 )

The equationg(s) = 0 should be called the reduced characteristic equationeofjiven
nonholonomic system, at the equilibrivgg. Its roots are then exactly the eigenvalues of the
linearization of the system, except fanZero roots; it should be noted thahas degreer?—2m,
and not necessarily has zero as a root.

6. Instability

Since, in general, equilibria of a nonholonomic system areisplated it has been suggested
that one should not speak of the stability of single equdibbut of the entire "manifold” of
equilibria; a theory has been developed in [7]. The theogsubke unstated assumption that the
rank of S'(qg) + (B*)'[ -, hg] is n at all points of the equilibrium set, or at least that the et o
equilibria is a manifold. The notion of instability for anugtibrium should then be the following:
let Z be the set of equilibria (a closed set, essentially the get®f f); a point(gg,0) € Z is
Z—unstable if there exists an open $eD Z such that, for every neigborhoddl of (qg, 0) there

is a point(g, p) € U such that the trajectory starting@, p) exitsV at some future instant.

If the characteristic equation at an equilibrium point hasat with strictly positive real part,
is the equilibrium unstable, also in this more general seiiisis stated without proof in [7] that
this is the case. Here we prove it (a part of the following argnt is due to Gaetano Zampieri),
dispensing with any assumptions concerning the manifolettre of the equilibrium set. First,
note that ifc > 0 is smaller than the minimum positive real part of an eigkrvaf W, then
there is a solutiog(t) = (q(t), p(t)) of (10), defined on } oo, 0], such that:

@(t) # (qo, 0) forallt <0, lim |o(t) — (go, 0)je °t = 0
t——oc0

(see [H], remark to Corollary 6.1, pag. 243). Such a soluttboadmissible: B(q(t)) p(t) is
constant, and has limB(gg)0 = 0 ast — —oo, hence it is identically zero.

PrRopPOsSITION3.3. If the characteristic equation of a nonholonomic systemraequilib-
rium point has a root with stricly positive real part, therigkequilibrium is unstable.

Dimostrazione.Using the solutiory ] — oo, 0] — Q x X as above, pick an open sétcon-
taining Z but noty(0) (Z, as above, is the set of equilibria, a closed set); for eveighiborhood
U of (qg, 0) there ist < 0 such thatp(f) € U; bute(t + f), at timet = —t, is outside ofV.

|

Recall that, in the absence of dissipatidh £ R = 0) the eigenvalues dfV are exactly
the square roots of the eigenvaluesfdtqg) (Proposition 3.2); since nonzero square roots are
in opposite pairs, the only case in which we do not necegdaaie instability is that in which
all eigenvalues off’(qg) are real and negative<( 0), which corresponds to all roots of the
characteristic equation being purely imaginary (or zero).
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As a corollary, we obtain an instability theorem due to Bar(see [1]), which we state in a
more general form:

COROLLARY 3.2. Assume that there is no dissipation. gy, o) be an equilibrium point
such that Kgg) = 1x; assume that — v - (S'(do)v + B*'[v, Ag]) is a positive definite form
on the spacé&er(B(qp)). Then g is unstable.

Dimostrazione.We have seen in Corollary 3 that the image of
@[ -1 = S@[-1+ B (@) h(do)] + B*(do)h’@o)[ -]
is contained iV = ker(B(qp)); sinceB*(A) = VL, we have {g = h(dp))

v-(f'(@)v) = v-(S(Go)v) +v- (B*[v, 2o]) + v - (B*(Go)h’ (qo)v)
v- (S @)v) + v - (B¥[v, 1)),

that is, the quadratic form of the statement concides with v - (f'(qg)v). Positivity of this,
together withf’(gg)(X) € V, implies thatall eigenvalues off’(qg), except form trivial ones,
have stricly positive real part.

|

7. An example

We consider:Q = R3; kinetic energyT (q)[d, §] = |G2/2, potential energy (q) = ¢|q|2/2,
wheres € R/{0} andq = (X, Y, Z) € R3, with viscous resistancB(q)q = —p(, p > 0 a scalar;
the constraint on the velocities B(q)q = XX+ yy + (14X — y)z. The system is nonholonomic
(dBAB=—(x+y)dxAdynadz=#0). Differentiating the constraint with respect to time we
getxX + Yy + (L+x — y)Z+ X2 4+ y2 + (X — y)z = 0; the equations are

X + pX + ex = XA
Y+ py+ey = Yy

XK+ Y+ L+ X — Y2+ X2+ §2 + (X — )2 0

Next we look for equilibria, the solutions of the system
eEX=XA; ey=yr ez=(14+X—-Y)A;

if x =y = 0, the third givesz = A/¢; hence thez—axis is made of equilibria; if eithex,
or y is nonzero we get = ¢; for this A the first two are true for alk, y, and the third gives
z= (1+x —Yy)/e, a plane of equilibria. Notice that the mattik’(q) — (B*)'[ -, A] is

e 0 O A 0 O e—A 0 0
0 ¢ O)]—1 O X O0|= 0 e—Ar 0],
0 0 ¢ A -2 0 A A £

with rank always 3, except fat = &, which corresponds to the equilibria of the plane
z= (1+ x —y)/e. Notice also that a0, O, ¢) the set of equilibria does not have any manifold
structure.

The characteristic polynomial at the poii® 0, 0) is

x(s) = S2(s? + ps + ).
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The system has the total enerByq, ) = (|q|2 + s|q|2)/2 as a Liapunov function, which
is also a first integral ifp = O: this is true both for the holonomic system obtained fdmegt
the velocity constraints, and the non—holonomic one givkssuminge > 0, the energy is a
proper function (it tends te-co at infinity) and is positive definite; then the holonomic asated
system has the origin as unique point of stable equilibriwhich if o > 0 is also asymptotically
stable and a global attractor. Stability is of course in¢hise not destroyed by adding the velocity
constraint, sincee is still a Liapunov function; but asymptotic stability ofelorigin vanishes.
Observe in fact that the first two equations in (20) are theesahe solution with initial value
X = Yo = U, Xg = Yo = v will then be the same functiof(t), for allt > 0; from the relation
XX 4+ yY + (1+ X — y)z = 0 we get 2§ + z = 0; we then have + £2 = 2u? + 7y along the
solution, andz, & cannot both tend to 0 as— oco. Asymptotic stability has been destroyed from
the constraint on the velocities.

8. Anisolated equilibrium

Consider the system

T(@ = IQI2/22; F@d=p4 (peR, p=>0);
U(q) = X200 B(@)d = —yX + Xy + ((y — D2 + )z

(observe thaB has rank 1 for every, and thatd B(q) AB(q) = (22—2y+1) dxAndyndz #
0) whose equilibria are the solution of the syst®id (q) = B*(q)A, that is

X—1=-yr y—1l=xr 0=(y-D*+79%

If . = 0 we have the solution§1, 1, 2) : z € R}; itis a line of equilibria; ifA # 0 we get the
solution(0, 1, 0), > = 1, an isolated equilibrium.

The characteristic polynomial at the poit 1, 0) is x (s) = def(slg — W) = s3(s+ o)1+
ps + s2). Of course the energy is a Liapunov function for the systemthis timeE is not
proper, since it does not depend on

9. Nonlinear constraints

We sketch here how the method can be applied also to not reitgdmear nonholonomic
constraints (a nice mechanical example is, for instancg]in These areb(q, ) = 0, with
b: Q x X — A a sufficiently regular function; we assume tlwit), 0) = 0 for everyq €
2, an hypothesis satisfied by a large class of constraints, leognogeneous ones of positive
degree ([6]). We puiA(g, p) = dqb(d, p) , B(q, p) = dpb(a, p) (A, p), B(g, p) are both
elements of (X, A)); assume that for everg, p) € 2 x X such thab(q, p) = 0 the rank of
B(q, p) is m (full rank hypothesis). Differentiatiniy(q, p) = 0 with respect to timé we obtain:

A@. 99+ B(q,9)d =0.

Observe that since we assumed th@t, 0) = O identically, we haveA(q, 0) = O for every
g € Q. We then proceed exactly as in section 2, wittg, )[q] replacing the ternB’(g)[d, d],
andB(q, §){ replacingB(q)¢§. We obtain again (10), except that ndy and hence als®, P,
f, h etc. depend also op = ¢, and not only org.

In phase space the equation writes



a = p . ~
@ { P f@.p-Rapipl+o@pipp * OP=0

where
f@p = K l@P@ pSa);
R@. p = K l@P@ pF@ - D 1@q, pAQ, p);
9a.p = -Kl@P@ pK@):;
P(@p = 1x—B*@a, pD @ pB@ pK1@.

Calling again®(q, p) the second member of (21), we have to show that at an equitibri
point (gg, 0) we still have a structure fab’(qg, 0) as in section 5, that is

va@wo-( 5 )

with M, N operators such tha#l (X), N(X) are contained itv = ker(B(qgp, 0)). It is not
difficult to follow the proof given in section 5 to show thatghs the case; foN, recall also that
A(gg, 0) = 0.
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