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DIFFUSION LIMITS FOR THE INITIAL-BOUNDARY VALUE
PROBLEM OF THE GOLDSTEIN-TAYLOR MODEL

Sommario.

In the paper is studied, in the diffusive scaling, the lingtibehaviour of the
Goldstein-Taylor model in a box, for a large class of iniaald boundary condi-
tions. It is shown that, in the limit, the evolution of the reatensity is governed
by the heat equation, with initial conditions dependingyamh the initial data of
the hyperbolic system, and conditions on the boundary déipgronly on the ones
of the kinetic model.

1. Introduction

In the kinetic theory of rarefied gases, a challenging prokikegiven by the study of the transi-
tion from the full Boltzmann equation to the Euler or Navigiekes equation.

This problem was introduced by Hilbert in the first years df ttentury, but, until now, many
results were obtained only at a formal level [2].

For this reason, in recent years much attention has beenetdetm the so callediscrete
velocity model®f the Boltzmann equation and, in particular, to the twasedly ones, which
allow to achieve rigorous results.

Two velocity models describe the evolution of the velocitstidbution of a gas composed
of two kinds of particles moving parallel to theaxis with constant and equal speeds, either in
the positivex-direction with a densityl = u(x, t), or in the negativex-direction with a density
v =uv(X,1).

The most general one, which is in local equilibrium wheg v, has the following form:

ou +cau = k(u, v, X)( u)

at T Cax T v

ov v

— —Cc— = kU, v,X)(u—v) XeEQCR, t>0,
ot aX

wherek(u, v, X) is a nonnegative function which characterizes the intermastbetween gas par-
ticles, andc > 0. The most famous model of this kind was introduced by Caatefi] and it
corresponds to the choiégu, v, X) = u + v.

The mathematical theory of these models is well establigbed, for example, [9]); re-
cently, in some papers [7], [10], [3], [13], it has been shdiat several well known differential
equations of mathematical physics (the porous media emqyatie Burgers’ equation and some
kinds of diffusion equations) can be obtained as diffusivits of Cauchy problems of particular
kinetic models.

Moreover, these results have a very useful applicatioimgithe possibility to construct new
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kinds of numerical schemes for the target equations, asrslmweveral works (for example,
see [4], [5], [8]).

All the previously quoted papers deal with the full initi@lue problem, or with the initial-
boundary value problem with specular or periodic condgiahthe boundary. For this reason,
in the present paper, we will investigate the hydrodynahiicait (i.e. ass — 0T) of the
hyperbolic Goldstein-Taylor model [6], [11]

oUg 10ug 1
5t TEox — 2t
@ Rl 10
v v
—ate—;—a; = g%(ug—vg) e>0

in a bounded domai2 = (L, L), L € R*, with initial conditionsu.(x,0) = ug(x),
ve (X, 0) = vg(X) € L°°(2) and boundary conditions of type (—L,t) = ¢~ (1), ve(+L,t) =
et () e WL, T), T > 0.

The macroscopic variables for this model are the mass gepsit u, + ve, and the flux

Ug (X, 1) —ve(X, t)
I e—

je(x, 1) =

It is interesting to remark that, sinee andv, can be expressed in terms pf and j.,
system (1) is equivalent to the following macroscopic eiguatfor the mass density and the flux

0P e
ot + X
@ _
20le | 9pe
ot X
where the boundary conditions for the macroscopic varg&able partially unknown. We will

show that the density, = u, + v, converges weakly ih2, ase — 01, to p = u+ v whereu
andv are, respectively, the limits af; andv:. Moreoverp is governed by the heat equation

= —2j X, t) e Q2 x (0, T),

@) ap 132p _
ot 29x2

satisfying the initial and boundary conditions:

p (X, 0) = Ug(X) + vo(X)
and

p(=L,t) =207 ()

p(+L, 1) = 20F(1).
The paper is organized as follows: in the next section wegmogny preliminary results on
the hyperbolic model; in part 111, we study the limiting bef@ur of the macroscopic density on

the boundary. Section IV is devoted to the study of uniformarats for the flux and, finally, in
part V, we investigate the hydrodynamical limit.
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It is necessary to point out that many of the forthcoming ltssaare deeply connected to the
linearity of the problem, and they are not easily extendiblaonlinear situations. This will be
the object of our future research.

2. A maximum principle

In this section we prove a maximum principle for system (1dcél existence of solutions of
such kind of hyperbolic systems is well known (see, for exanii2] and the references within).
Therefore, a maximum principle implies that the solutiogla@bal and unigue. Since the problem
is linear, we will consider some different sub-problemsjchtare easier to study.

PrROBLEM5.1. We study the system

oup  louq 1
- = = — = —u
at & ox 21— Uy
@ 9 19
v1 v1 1
- - = — =(Uq — R
£ ox 22U —v)

with the initial and boundary conditions:

u1(x, 0) = ug(x) € L*(Q)
v1(X, 0) = vp(X) € L°(Q)
ui(-L,t)=0
vi(+L,t) =0.

PROBLEM5.2. We study the system

10up

T ax ﬁ(vz—uz)
®) 15
v2

Prvl 8%(”2_“2),

with boundary conditions:

up(—L, 1) = ¢~ () e WH®(0, T)
va(+L, 1) = ot (t) e W0, T).

PrROBLEM5.3. We study the system

dug 19dug 1

W"‘;W = ;(US—U3)+ fe(x, 1)
© 0 10

U3 v3 1

—=_- 2 = Lwuz- X, 1),

%z ax 2(U3 —v3) + (X, 1)

where f(x,t) and g (x, t) are suitable functions that will be specified later, with fhidowing
initial and boundary conditions:
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uz(x,00 =0

v3(X,0) =0

uz(—L,t)=0
v3(+L,t) =0.

The functions

US (X’ t) = Ul(X, t) + UZ(Xv t) + U3(X, t)v
ve (X, 1) = v1(X, t) + va(X, t) + v3(X, t)

satisfy, by linearity, the differential system (1), withethorrect initial-boundary conditions, pro-
vided that

auo
fe(X,t)) = ——=
e(X, 1) P
and
dvp
X, t) = ——=.
Oe (X, 1) ot

In addition, if a maximum principle holds separately for Blesm 5.1, 5.2, and 5.3, then the
original problem admits itself a maximum principle.

In order to obtain bounds for Problem 5.1, we multiply thetfaguation of system (4) by

2pu§p_1 and the second one b)pﬂfp_l (peN):

2p 2p
ou 10u _

1 1 2 ,2p-1
—+-——— = S5Spu —u
at e ax 2P (v =)

(7) 2 2
p p
81)1 } Bvl

ot e 0X

2p-1
8_22 pvlp (U —v1).

By integration over?, adding the resulting equations and using the boundaryitions, we
have:

d 2p , 2p 1r 2p 2p
®) a/Q(ul +0iPdx+ 2 [ufPL. b+ ofP-Lb] =
2 2p—-1  2p-1

Thus we deduce, at least formally, that

o [P+ oPlax <o

forallt > 0. Letting p go to+oo, we find that

©) max{[u1(t) loo, lvi(®llee} < Max{lluglico, llvolico} -
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This proves the following lemma.

LEMMA 5.1. Let iy(x,0) = ug(x), v1(X,0) = vg(x) € L*®°(Q) and w(—L,t) = 0,
v1(+L,t) =0, forallt > 0. Then y(x, t), v1(x,t) € L*®°(Q) and

max{|[ug(®llco, lv1(Dlloo} = Max{luglico, llvolloc} -

In order to study the so called “stationary problem”, we satitthe two equations of sys-
tem (5), finding
a
3x( 2—12)

this means that

(10) uz(x, t) = va(x, ) + a(t)

almost everywhere if2, wherea (t) is a function that will be determined later.
Moreover, adding the two equations of system (5), we find that

(u v ) - (U u )

2 e
(11) a—X(x,t)_— )

If we integrate (11) on the interval , x), we obtain

12) mmn=¢ﬂu—%2a—u.

Using (10) atx = —L, we haveva(—L,t) = ¢~ (1) — a(t); this result, joined to (12), leads
to conclude that

BECE A0
o=e—"or
Similarly, by integrating onf—L, x), we can prove that

t
Us(X,t)y = ¢ (t) — ?(X +L).

Thus we have proved the following lemma.

LEMMA 5.2. The solution of Problem 5.2 is given by the two functions

o~ () — T (D)

L
e oL (x+1L)

uz(x, 1) = ¢~ (1) -
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T U AR
v2(X, 1) =™ (D) Ty (x—1L).

Thanks to the hypotheses on the boundary conditiong@) and ¢t (t), us(x, t), va(x, t) €
wkooQ, T; C®(Q)), uniformly ine.

Problem 5.3 needs a slightly more complicated proof, whithb& given in several steps.

We first notice thatf,, g, belong toL (0, T; C*®($2)) by Lemma 5.2. Then, we multiply

the first equation of system (6) fonpzépfl and the second one b)payz,p*l; then we integrate

on 2 and add the two obtained equations:

d _ _
(13) a/(|u3|29+|v3|2p)dx52p/(|fe||u3|2p 14 1gellval2P~dx.
Q Q
Let M be
M= esssup {|fel.|gel}.
xeR, te(0,T)

Then, inequality (13) becomes

d _ _
a/ <|u3|29+|v3|2">dx52pM/ (lug?P~1 4 jug)2P~ydx.
Q Q
Now, by the Holder-inequality we have:

2p-1

2
/|u3|29*1dxs(2L>1/29[/ |u3|29dx] i
Q Q

By the algebraic inequality

1
a*+b°<4@+b° ab>0, Ssc=1,

we obtain

2p-1
2

d
a/ (lugl?P + |v32P)dx < 8pM(2L) /2P [/ (|u3|2"+|v3|29)dx}
Q Q
Letting

y(t) = /Q[|u3<x,t)|2"+ lva(x. H[2P]dx,

we must now solve the ordinary differential inequality:

d 2p-1
FradU) < 8pM@2L)Y?Py(t) % .

Its solution is

yOY2P < y(0)1/2P 1 am(2L) /2P,
i. e., thanks to the initial conditionsz(x, 0) = v3(x,0) =0
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1/2p
] < 4aM(2L)1/2pt,

(14) [/Q<|U3|2r> + [v3?P)dx

Finally, letting p — +o0, it is possible to show that, for any finite time, the solutn
Problem 5.3 is essentially bounded.

In conclusion, considering our global problem, by linearite have proved the following
theorem.

THEOREM 5.1. Let U (X, 0) = ug(X), ve(X,0) = vg(X) € L®°(Q) and w(-L,t) =

(M), ve(+L, ) =T (1) € W1’°°(0, T),forall T > 0. Then y(X, t), ve(X, t) € L(Q) for
all't € [0, T], uniformly ine.

3. The solution on the boundary

This section is devoted to the study of the limiting behawiofwu (+L, t) andv. (—L, t) on the
boundary.
If 1 < p < oo, equation (8) shows that

d 2p , 2p 1r 2p 2p
a/Q(u1 +uiPdx+ = [ufP(L. +0P-L.b] <0
and so, by Theorem 5.1
L [P, 0 +0EP(—L, 0] dt < (luoliZh + llvoll3h) = E
eJo L1 1 ’ = Mi¥ollzp 0ll2p '
whereE € RT. Then we have
lim_Jlug(L, )l r@,1) =0,
e—0
lim —L,t =0.
8%0”111( MiLeo,T)
Furthermore, by Lemma 5.2, we have that
lim up(L.t) =t (t)
e—0
lim vo(=L,t) = ¢~ (t)
e—0

almost everywhere.
Finally, if we choose 1= p < oo, system (6) also implies that

d 2 2 1r.2p 2p
gt L 0usi?? + ogi2Prax+ 2 [P+ 3P Lv] <
20M [ (Ul + 15 Dyax.
Q

By integration over0, T) we have
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11 2p 2p T 2p—1 2p—1
—/ [u3 (L, t) + v (—L,t)]dthpM/ /(|U3| P=1 4 |ug2P~Lydxdt+
e Jo 0 JQ

+/Q(|u3<x, 02 + [u3(x. 2P — Jug(x, T)[2P — Juz(x, T)[2P)dx.

By inequality (14), we know that thieP (Q)-norms ofuz andwvz are bounded by a linear function
of the time, and therefore all the integrals on the rightehaide of the above inequality are
bounded, provided that£ p < oo, forall T > 0. Also in this case, we then have

lim_Jus(L, ) p.T) = O,
e—0

lim [vg(—L,t =0.
8_)0”1)3( ILe©,T)

Therefore, since

3
pe =Y (Ui + i),
i=1
by using the properties of the norm we have proved the fotigwtheorem.

THEOREMS5.2. Let p, = ug + ve the macroscopic density of system (2) and 0. Then,
on the boundary,

lim pe(—=L,t) =297,
e—0
lim pe(+L,t) = 2p%
e—0

strongly in LP(0, T), provided thatl < p < oo.

4. Behaviour of the flux

In this section we show that the flux is bounded_i%(Q x (0, T)).

We repeat the splitting of system (1) and study separatelypéhaviour of the three fluxes:
i1, J2 and j3 respectively; by using the classical inequality

(15) (@a+b+02<3@+b2+c?, abceR

we will then derive a bound for the total flux (x, t).

We can indeed multiply the two equations of system (4) by &xd 21 respectively. Then
we add and integrate dn, obtaining:

d 2., 2 ir.2 2 _ up —v1)\?
a/ﬂ(ul—kvl)dx—l—g[ul(L,t)—f—vl(—L,t)]_—/Q L) x,

&

and so 1d
L2 2 2
/Q|11| dxg—ia/gz(u1+vl)dx



Diffusion limits 219

T 1 1
(16) /0 /Q|11|2dxdts E/Q[uéwé—ui(xﬁ)—v%(x,T)]dxs 5(Iuol3 + luol3).

Then, we must consider Problem 5.2: as usual, we use theiggoliution in Lemma 5.2 in
order to show that

A N e~ () —pT (M) n e~ () -9t
J2 = ;|:(/’ (U‘T(X'FL)—(P (U‘FT(X—L)}
_ 1 - — ot
(17) = ST [p” (1) —e™ V)]

Finally, we multiply the two equations of system (6) fars2and 2,3 respectively. Then we
add and integrate of?, obtaining:

d 2., 2 112 2 _
dt/ﬂ(u3+u3)dx+8 [WBL.0+vf-Lv] =

uz —u3 2
=—2/ (—) dX+2/(fEU3+ggv3)dx,
Q & Q

that is, by the maximum principle for Problem 5.3 and usirggloperties off, andge:

1d
P2 2 2
/Q|J3| dxs—E—dt/Q(u3+v3)dX+2Kt,

whereK is a positive constant. This means that

.
(18) / /|j3|2dxdt§ KTZ.
0 Q

Inequality (15), together with (16), (17) and (18), showatth = j; + jo + j3 is bounded
in L2(Q x (0, T)).

THEOREM5.3. Let u:(X, t), ve (X, t) be the unique solution of the initial-boundary prob-
lem 1. Then, for all T> Othere exists De R such that:

;
/ /Iislzdxdts D,
0 Q

uniformly ine.

5. The hydrodynamical limit

In this section, we study the limiting behaviour of the sot p,, j.) to system (2) as — 0. In

our passage to the limit, we will consider various relagvampact sequences. In these cases,
when we say that the sequence converges to a limit, we meaththa exists a subsequence
which converges to a limit.
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First, sinceps = Ug + v, is bounded inL*° (and hence irLZ) by Theorem 5.1, we notice
that there exists a subsequengesuch thatp, — p in L2. Moreover, by Theorem 5.3, we have
thatje — jinL2,.

Consider now system (2) with the following conditions:

Pe (X, 0) = Up(X) + vp(X)
pe(—L,t) = p«(—L,t, &)
pe(+L, 1) = px(+L, t, 8),

where the right-hand sides of the last two conditions arégigrunknown, but they approach
respectively 2~ and 2t ase — 0 by Theorem 5.2. We can conclude, by substitution, that

00¢ 10 [dpe 2ajs
19 RGN i EL Q)
(19) ot 28x[8x BT ’

at least at a formal level.

Let ¢(x, t) be a test function of clasgs*® that vanishes outside the rectanglelL, L) x
(0, T). Multiplying equation (19) byp and then integrating in—L, L) x (0, T), we obtain the
weak formulation:

9pe 1 3pe 2815 _
/ /L ot ¢pdxdt / /L ax[ ]qbdxdt

This equation coincides with the weak formulation of thetr&mlatlon, provided that

. e
e‘lipog / /L3X< >¢d xdt=0

and the initial-boundary conditions approach the correesas: — 0.
Indeed, we have that

3] Troje ¢ L 3je 0
/ / Je pdxdt = / Je / / 9)e ¢d dt
L 8x 0 at L L dt ax
where the first term on the right-hand side vanishes by thditions on the support af. There-
fore, it remains only the second term; we now prove that iregghes zero as— 0.

Since

T L L T L 2
82/ / e 09 4t = / [jga¢] dx—sZ/ / B0 22 it
0 L dt ax L o J—L ~ oxot

we may consider the two terms on the right-hand side searélfe have that

2TL
]
0 J-L

1
92¢

T L il 7, 924 2 2
je dxdt < &2 / / j2dxdt / / — 2| dxdt| —o0
axot o J-L o J—L \ oxot
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because of Theorem 5.3 and the smoothnegs fifrthermore, we obtain

L T L T
82/ [15%] dX=s/ [(Ué‘_v&‘)%] dx— 0
—L X 0 —L oX 0

because of the maximum principle (see Theorem 5.1) and thetamess of.

Sincej, is bounded inL2, we deduce thaj./9x belongs toH 1, and so we can derive
both members of the second equation in system (2) with respecThereforep, which satisfies
the boundary conditions(—L,t) = 2p~, p(L,t) = 2pT in LP(0, T) for p € [1, cc) and the
initial condition p (X, 0) = ug + vg, solves by subsequences the heat equation

ap 1 sz
(20) ot 2ax@ 0
in a weak sense, in the rectangex (0, T).

Since we have assumed the initial valugsvg € L°°(£2), also the initial densityg(x) =
p(X,t = 0) € L°(R). On the other hand, the heat equation (3), which is comatilith
the initial-boundary value problem for system (1), admitsnégue global solution irD’. The
uniqueness result guarantees the existence of a uniquddintihe whole family.

Therefore, the main results of this paper may be summarizéollaws:

THEOREMS5.4. Let (pg, jo) be a sequence of solutions to the initial-boundary valudpro
lem for system (2), where the initial valueg,ug € L°°(€2), and the boundary conditions
Ug(—L, 1) = o~ (), ve(+L, 1) = oF (1) € wlooQ, T). Then, there exists € L such that
s (X, t) converges te (X, t) in L2. Moreovere|, converges to zero strongly inf(2 x (0, T)).
The limit densityp (x, t) is the (unique) weak solution to the initial-boundary valueblem
for the heat equation (3), i®' (22 x (0, T)), with initial datumpg = ug + vg, and boundary
conditions

p(—L,t) =u(—=L,t) +v(-L,t) =2¢,
oL,y =u(L,t) +v(L,t) = 20"
inLP@O, T),1< p< .

6. Conclusions

The paper shows that the heat equation with initial-boundanditions can be obtained as the
hydrodynamical limit (in a weak sense) for the Goldsteigidamodel of the Boltzmann equa-
tion, provided that initial data belong 10> and boundary conditions belong 1>, There
are still two open problems. It seems, indeed, that it isiptessan-dimensional generalization,
which will be considered in a later work.

Even more interesting might be the nonlinear case, whicksheew techniques, not con-
nected to the properties of the linearity of the problem.
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