Rend. Sem. Mat. Univ. Pol. Torino
\ol. 57, 4 (1999)

C. Cattaneo'

THE SPREAD OF THE POTENTIAL ON A WEIGHTED
GRAPH

Abstract.

We compute explicitly the solution of the heat equation oreigivted grapi”
whose edges are identified with copies of the segmerif [@ith the condition that
the sum of the weighted normal exterior derivatives is O atyewode (Kirchhoff
type condition).

1. Introduction

In our previous papers [1], [2] we studied the diffusion epra
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at — 9x2
on a continuous structure defined on a weighted gfaph(V, E) whose vertices satisfy Kirch-

hoff type conditions. This model arises in neurobiologymiidels the spread of the potential
along the ramifications of a neuron.

In [2] we determined the heat kernel on the above mentionatremus structure whehn
is a homogeneous tree. The purpose of this note is to extendsults of [2] to the case of a
generic countable graph whose vertices have uniformly éedmlegrees (for finite graph see J.P.
Roth, ref. [8]). This wider generality is achieved essdiytiay the same techniques developed
in the case of the homogeneous tree. Its main interest ligeifact that we are able to describe
the heat kernel for all the general structures we studied]inlp that paper we determined the
spectrum of the continuous Laplacianwith only mild assumptions off and its weights. The
present note, because of its greater generality, is thukexr kempanion to [1] than the previous
paper [2] was. Moreover, at the best of our knowledge, it Setenmepresent the state of the art
of the subject at this level of generality.

We remark that our entire approach to the subject (in [1]af#] in the present note) is in the
line of previous work by J.P. Roth (see [8]). A different belated kind of analysis can be found
in papers by B. Gaveau, M. Okada and T. Okada (see [3], [6]kyHBtudy the heat kernel on
several examples of-ddimensional structures. Some of these structures, nanseipgeneous
trees (and skew homogeneous trees in [6] example 4) and riest({{8] modelsX1g and X12),
after maybe some renormalization, are particular casesrafeighted graphs. So, for example,
in [6], T. Okada considers homogeneous trees of degree 3meitlihts distributed in a periodic
(but not symmetric) fashion. For that example, nice asytiptstimares are proved and the
generalization to homogeneous trees of any degrees wittiotpe weights” is easily within
reach by the same techniques.
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Our estimates are much cruder, but they apply to all graplts rindomly distributed
weights. Even for homogeneous trees, Okada’s techniquestdeeem to work once we deal
with general (non periodic, non symmetric) weight disttibns. To improve our estimates on
the general setting further work and new ideas seem negessar

In order to keep this note (we stress again that it should begft as an improved and
completed version of [2]) relatively selfcontained, inti&e 2 we introduce notation and basic
facts. Namely, we describe the grabphas a CW-complex, so that we can introduce a natural
topology onI". We assign conductances to the edgeE ahd require them to satisfy a suitable
uniformity condition. We set Kirchhoff type conditions &aetvertices of”, we define the spaces
LZ(F, ¢) and H™(T", ¢) and describe the domain of the continuous Laplaciaand its basic
properties. Finally we prove Lemma 1. It was by realizing tha estimate in Lemma 1 of [2]
actually holds in the general setting of the present notédumly bounded degrees) that the
whole generalization became possible. We remark, howéarliemma 1 is far from being
optimal. We believe that substantial improvement of thahbea would allow a deeper analysis
of the subject especially with regard to the behaviar as oco.

Section 3, where we determine the heat kernel'@md the solution of the Cauchy problem
associated to the diffusion equation (1), is mainly a listesfults and it strictly parallels [2]. We
omit the proofs since they are similar to the correspondimgsan [2] with the new version of
Lemma 1 replacing its analogous in [2].

2. Notation and Preliminaries

LetI" = (V, E) be a countable, connected graph with no self-loops and nmijobounded
degrees (i.e. there exists a constdusuch that 1< d, < d < oo for every vertex in V, where
dy is the degree ob).

We say that two edgesande’ are neighbours and we write~ € if they have a common
endpoint (i.e. a common vertex).

We identify every edge of I" with the real interval [01]. In this way we associate with
an one-dimensional CW-complex (see e.g. J.R. Munkreg[5i¢f.Note thatl™ is a metric space
in a natural way.

We can orient every edgeof T in two opposite ways. For every edgewe denote bye
and —e the two opposite orientations and b | the edgee (unoriented). If no confusion can
arise, we denote by both the oriented and the unoriented edg€&or every oriented edge (arc)
e we denote by (e) the initial vertex ofe, by T (e) the terminal vertex.

We define a pati€ to be a finite sequence of ars, . . ., em) (m > 1) such thafl (¢j) =
I(ej41) forl < j <m—1. We call length of the patZ, denoted by (C), the number of the
arcs ofC. We denote byC the set of all the paths dn.

Leteande’ be two edges of . We denote b m (e, €) the set of all the paths having length
m whose first arc is one of two arcs obtaineddnd whose last arc is one of two arcs obtained
by € i.e.

2) Cme,€)={CeC:I(C)=m and C=(xeey,...,en_2 +€)}

LEMMA 1. Forallm
cardCnm(e, €)) < 2d™1

where d= sup,cy dy
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Proof. Let Cm(e) be the set of all the paths having lengthand whose first arc is one of two
arcs obtained by the edge.e.

Cme={CeC:I(C)=m and C=(xee,..., em—1)}

The paths ofCm (e, €) are particular paths cm(e), so it is enough to evaluate the cardinal-
ity of Cm(e). We observe thaC;(e) has exactly 2 elements. Every path@f,1(e) comes
from a path ofCy(e). Moreover if we fix a path(+e, eq, .. ., en—1) of Cm(e), then there ex-

ist at mostd paths ofCp,11(e) coming from it (each of these paths is obtained by adding to
(+e, ey, ..., n—1) any one of the arcs branching out frohte,_1)). So

cardCm(e, €)) < cardCm(e)) < 2d™1
Od

If x andy are points of the same edge, let us denoté ky- y | the (euclidean) distance
betweerx andy.

For every poini of I, we denote b\Ey the set of all the edges containirg

Let x andy be points ofl". We call geodesic path joining to y any path of minimum
length whose first and last arcs are obteined from edgéscaind Ey respectively. Geodesic
paths fromx to y may not be unique, but we denote Idytheir common length.

Set

0 if x andy belong to the same edge

3) pX,y) = { |* —2 otherwise

or
p(x,y) = maxo, (I* —2)}

We assign to every edgeof ' a positive conductanage) in such a way that

c(e . .
4) «© <« ifthe edges, € are neighbours
c(e)
wherex > 1.
For every vertex of I' we denote byc(v) the sum of the conductances of all the edges

branching out fronmv i.e.
c(v) = Z c(e)

eck,

We call the following quantity transfer coefficient from thece to the arce/

2c(] e )/c(T () ifT(e) = 1 (¢),€ # —e
(%) cee =1 2c(le]/c(T(e) —1 ifT(e)=1(¢), € =—e
0 ifT(e) £ 1 (€)

We observe that
leee| <k
and
cle) tege =€ |=)te_e e
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As consequence of this equality the heat kernel turns outeteymmetric with respect to the
space variables.

For every pattC = (e, ..., em) (m > 1) onI", we denote by the product of the transfer
coefficients of all the pairs of consecutive arcgoie.

m—-1
(6) EC = l_[ Sej,eHl
j=1

We denote byR the set of the real numbers which are strictly positive.
Letk(t, X) be the source solution of the heat equatioriRon

@ Kt 30 = 2—¢1H exp(—x2/4t) if(t,x) e Ry xR
' 0 otherwise

and set

®) h(t, x) = %k(t,x)

We will identify any functionu on I" with a collection{ue}ecg Of functionsue defined on
the edge® of I'. Note thatue can be considered a function on [4. In fact, we will use the
same notationle to denote both the function on the edgand the function on the real interval
[0, 1] identified withe.

The integral o of a positive functioru is defined as follows

1
/u(x)dx: Z c(e)/ue(x)dx= Z c(e)/ Ue(X)dx
r e 0

ec=E ec=E

We define the spacEz(F, ¢) as the space of all the collections= {ue}ecg On T such that
Ue € L2((0, 1)) for everyein E, and) o g c(©) || Ue ”52((0 1) <

Analogously, for every integan > 0, we define the Sobolev spakE™(T", c) as the space
of all the collectionsu = {Ue}ecg ONT such that is continuous o, ue € HM((0, 1)) for
everyein E, andY o g c(©) || Ue ”2Hm((0,1)) < 0.

It is easy to see that the above spaces are Hilbert spaces.

Consider the sesquilinear continuous fapron H1(T", ¢) defined by

o, w) = (U, w/)Lz(F,c)

and letA be its associated Laplacian.

Itis not difficult to prove that the operatay is defined on the sd2(A) of all the collections
U = {Ue}ecg Of H 2(T, ¢) satisfying the Kirchhoff type conditions at every vertegf V namely

D(A) = {u e HT, ¢) : Z c(e)%(v) =0 forallvinV}
ecE, e

Whereg—‘rt(v) denotes the normal exterior derivativewgf evaluated at i.e.

%( )= —limp_, o+ (Ue(h) —ue(@)/h  ifv=0
3ne v) = Iimh_>07 (Ue(h + 1) — Ue(l))/h ifv=1
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Moreover for every functiom = {ue}ecg in D(A) and for every edge in E we have that

(Awe=u"e

3. Theheat kernel and the solution of the Cauchy problem

Our aim is to determine the heat kernel and the solution o€énechy problem

© o = f

{3—” = Au—-u t>0

where f belongs toL2(T", c).

By the theory of semigroups (see e.g. A. Pazy, ref. [7]) wexkttmat if P; f is the solution
of the Cauchy problem

au _
(10) { = Au t>0

at
u(0) f

then(exp(—t)) P f is the solution of (9). Sincé& f is the integral ovel" of f against the
heat kernel, we first compute the heat kernel.

Letx andy be inT". Choose ang, € in E such thatx € eandy < €. With the notation
of (2), (3), (6), (7) set

(11) K(t, x, y) = c®  Kk(t,| x — y Ddee + L(t, X, y)
where

P I ife =e
&€ =1 0 otherwise

and

Ltxy) = co b Y >

m=p(X.y) CeCry2(6,€)
eck(t, | X —T(xe) | +m+ |y — | (£€) |)

Next theorem shows thdt is the heat kernel of.

THEOREM 1. The function K defined in (11) does not depend on e dnahd has the
following properties

0} %(t, X, ) and%zTﬁ(t, X, y) existonRy x ' x (I'\ V)
(ii) %( X, Y) exists continuous oRfor every(x, y)in[" x (I' \ V)
P 2

@iy Ut x,y) = %(t, X, y)onRy x ' x (I'\ V)

(iv) K(t,x,-) € D(A) foreveryt, X)inRy x '
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REMARK 1. One can prove, essentially repeating the procedure eddyyt J.P. Roth (see
ref.[8]), that if there exists a functioH (t, x, y) with the properties of Theorem 1, then, for every
t,x,y)in Ry x I' x ' we have

H(t X, y) = K& X, y)

Therefore we can consider the properties listed in Theoresitthe properties characterizing the
fundamental solution of the heat equationlon

The proof of Theorem 1 depends on the estimates in the fallplwemmas.

LEMMA 2. There exist; > 0 andv > 0 (independent of e and)esuch that, for every
t,x,y)In Ry x 'xT

«d
12 Lt, x, < — exp(m(In«d) — m/4t
(12) [ Lt %, y) | C(e)mmng(x,y) p(m(n «d) — m/4t))
n
1
< c(e)ﬁ( +t)exp(vt)

(x isasin (4))
Moreover there exispt> 0 anda> 0 (independent of e and)esuch that, for all(t, X, y)

in (0, to] xI'xT"
o

c(e)/t

Lt x,y) |< exp(—p%(X, )B/t)

1 1
whereg < 8 < 3.

K 3°K iDL 82L
In order to computéw t,x,y) anda—y2 (t, X, y) we determlne%—y t, X, y) andW t,x,y)
and study their regularity. Witk, y, e and€’ as above set

Lit,x,y) = c(e);lzmzp(x,y)20ecm+2(e,ef)
= echyt Ix—T(Ee) | +mt|y—I(e) )
and 1
Lat.xy) = €@ "2 m=p(xy) LCeCmizle)
ec T At IX—T(Ee) | +mt|y—1(€)|)
We have

LEMMA 3. There exist; > 0 andv > 0 (independent of e and)esuch that, for every
t,x,y)inRy x ’'xlC

(kd)
OV Zmzp(x!y) exp(m(n(xd) + 1 — m/4t))

i
c(e)tﬁ(lJr t) exp(vt)

L1(t, X,
0 [Li(t, X, ) |

IATA

For every(t, x) fixed in R x T and for every y ine

. L L
(”) a_y( ) X, Y)— l( » X, y)
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Moreover there exispt> 0 anda> 0 (independent of e and)esuch that, for all(t, X, y)
in (0, to] xI'xT"

o

_ 2
Ot exp(—p=(X, y)B/1)

(iii) al‘(tx Y |<
|W H !y |_

1 1
whereg < 8 < 7.

and

LEMMA 4. Setr = min{t, t2}. There exisj > 0 andv > 0 (independent of e and)esuch
that, for every(t, x, y) in Ry x I'xT

e*(kd)
TN Zmzp(x!y) exp(m(In(kd) 4+ 2 — m/4t))

]
c(e)rﬁ(1+ t) exp(vt)

[ La(t, X, ¥) |

INIA

For every(t, x) fixed in R x I and for every y ine

N 92L
@) 5 X y) = Lat, X, y)
dy

Moreover there exispt> 0 anda> 0 (independent of e and)esuch that, for all(t, x, y)
in (0, to] xI'xTT

@ii) |82—L(t X, Y) 1< ——— exp(—p2(x, y)B/1)
ay2 Y= cet2 /t Pl=pmixy
Where% <B < 711.
We denote by (t, x) any one of the following functionk (t, x, -), %(t, X, *) anda;T'é(t, X, -)

then

LEMMA 5. For the function Mt, x, y) we have
(i) Mt x,-) e LY, ¢) L2, c) for everyt, x)inRy x I’
(i) there existsxq(t) > 0such that, for every x il

I M X, )l g < @a(t)
(iii) there existswa(t) > 0 such that, for every x il

a2(t)
| M(t, x, ) |l < —
L2(I,c) MinecE, C(€)
REMARK 2. Lemma 5 still holds with the functiol (t, -, y) replacing the functioM t, x, -)
(where it is defined) and(¢’) instead ofc(e).

The proofs of the above results are essentially the samesathesponding ones in [2].
We need only to modify the evaluation of the cardinality of 8etCm(e, €) and the absolute
value of the transfer coefficient ¢ . Therefore we omit them and refer to [2].
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We conclude by solving the Cauchy problem (10) (again wer teff2] for the proofs)
For everyf in L2(F, ¢) and for ally in ", set

[ JrKExyfeodx if t>0
43 Ptf(y)_{ fr(y) if t=0

This definition makes sense since we have

PROPOSITIONL. For every function f in B(T", ¢) and for every t> 0 we have that the
integral fr M(t, x, y) f (x)dx exists for every y ifl" \ V) and

/ M(t, x, ) f (x)dx € L2(T", ¢)
r

(Recall that Mt, x, y) denotes any one of three functionstKx, y), %(t, X, ¥), %ZTE(L X, ¥)).

Finally we can state

THEOREM 2. P f is the solution of the abstract Cauchy problé€B), i.e. R f has the
following properties

D) P f()eD(A) for t>0

(i) P f satisfies system(8)

(iii) P f isa continuous B(T, c) valued function on (Ry U{O})
(iv) P f is a continuously differentiabled(T", c) valued function on R
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