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PERIODIC FACTORIZATION OF A FINITE ABELIAN
2-GROUP

Abstract.

Let G be a finite abelian 2-group that is a direct product of a cyglaup and
an elementary group. Suppose tfais a direct product of its subsefs, ..., An
of cardinality two or four. Then one of the subsés, ..., Ap is periodic. The
subsetA; is periodic if Ajg = A; holds with a nonidentity elememgtof G. This
is a generalization of an earlier result of A. D. Sands andz8b8.

1. Introduction

Throughout the pape® will be a finite abelian group. We use multiplicative notatioThe
identity element is denoted &y The symbol " denotes a not necessarily strict inclusida,
denotes the order of the element A, |A| denotes the cardinality of the subgebf G. If G

is a direct product of its subsefs, ..., An, then we express this fact saying that the equality
G = Ay .- Anis afactorization ofG. If e € Aj, then we say that the subsat is normed. We
call the factorizatiorG = A1 --- Ap normed if eachA; is normed. A subsef of G is called
periodic if there is @ € G\ {e} such thatAg = A. The elemeng is a period ofA. If G is a direct

product of cyclic groups of ordets, . .., ts respectively, then we say is of type(ty, ..., ts).
A. D. Sands and S. Szabo [2] proved thaGifis of type(2,...,2) andG = A;---Apisa
factorization, whereA;| = --- = |An| = 4, then one of the factor8, ..., An is periodic.

We will prove the following generalization of this theorerbet G be a finite abelian 2-group
and letG = A;j--- An be a factorization of5, where eachA;| is either 2 or 4. IfG is of
type (2*, 2, ..., 2), then one of the factora, ..., An is periodic. We accomplish this using
characters 06.

If x is a character and is a subset 06, then we denote the sum

> x@

acA

by x(A). If x(A) = 0, theny annihilatesA. We denote by An(A) the set of characters &
that annihilatesA.

If AandA’ are subsets db such that given any subsBtof G, if G = AB s a factorization
of G, thenG = A’B is also a factorization o, then we say thaf is replaceable by'. There
is a character test for replaceability due to L. Rédei [liolilreads as follows. IfA| = |A’| and
Ann(A) c Ann(A"), thenA can be replaced by
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2. Theresult

Let G be a finite abelian group and l&t= {e, a, b, ¢} be a subset of. We define a subse¥’
by A" = {e, a}{e, b}. Since the equation = abd is solvable ford, A can be written in the form
A = {e, a, b, abd}. We need the next lemma.

LEMMA 1. If |a] = 2, then
(a) Ann(A) c Ann(A),
(b) Ais periodic if and only if d= e,
(c) x(A) =0impliesy(d) = 1.

Proof. (a) Let x be a character o6 for which 0 = x(A) = 1+ x(a) + x(b) + x(c). As
la] = 2, it follows thaty(a) = —1 or x(a) = 1. If x(@ = 1, thenyx(A) = 0 gives that
x(b) = x(c) = —1. Using this we have

x(A)=14+x@ +x0O) +x@xb =1+1-1-1=0.

If x(@) = —1, theny (A) = 0 gives thaty (b) = p and x(c) = —p, wherep is a root of unity.
Using this we have

x(A)=14+x@+ x(b)+ x@xb0 =1-1+p—p=0.

(b) If d = e, thenA = A’ and soA is periodic with perioda. Conversely, assume thatis
periodic with periody. Note thatg2 is also a period oA if g2 # e. Using this observation we
may assume thdg| = 2. Frome € A it follows thatg € A.

If g=a, then
Aa={a, e ab bd} ={e a, b, abd} = A
gives that{ab, bd} = {b, abd}. Here eitherab = b or bd = b. The first one leads to the
contradictiona = e. The second one gives= e.
If g =Db, then
Ab={b,ab, e ad} ={e a, b,abd} = A
gives that{ab, ad} = {a, abd}. Hence eitheab = a or ad = a. The first one leads to the
contradictionb = e. the second one givek= e.
If g = abd, then

Aabd = {abd, bd, ab?d, e} = {e, a, b, abd} = A

gives that{ab?d, bd} = {a, b}. Now eitherab?d = b or bd = b. The first equality gives the
contradictionabd = e, the second one provides= e.

(c) If x(A) = 0, then by part (a)y (A") = 0 and so
0= x(A) — x(A) = x(@ab)x(d) — x(@b) = x@y[x(d) —1J.

This completes the proof.

After this preparation we are ready to prove the main refuli®paper.

THEOREM1. Let G be a finite group of typ@*, 2, ..., 2). 1fG = Aq--- Ayisanormed
factorization of G, whereA|| is either2 or 4 for each i,1 < i < n, then at least one of the
factors A, ..., An is periodic.
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Proof. The|G| = 2 case is trivial. So we assume th@&{ > 4 and proceed by induction 9G|.
ClearlyG is a direct product of its subgroup andK of types(2*) and(2, .. ., 2) respectively.
If A =1, thenG is of type(2, ..., 2). This special case is covered by [2] Theorem 9. So for the
remaining part of the proof we may assume that 2. LetH = (x) andK = (y1,...,VYs),
where|x| = 2* and|y| = - - - = |ys| = 2. Consider a charactgrof G that is faithful onH or
equivalently for whichy (x) = p, wherep is a primitive(2*)th root of unity.

Let A; = {e, g;} be a factor of order 2. If &= x(Aj) = 1+ x(g), thenx(g) = —1 or
X(aiz) =1and saaiz = e. ThereforeA; is periodic with periody . So in the remaining part of
the proof we may assume thatA;) # 0 wheny is faithful on H and|A;j| = 2. Asx is not
the principal character @3, it follows that 0= x (G) = x (A1) - - - x (An) and sox (A;j) = 0 for
somei, 1 <i < n. Thus we may assume tha; | = 4 for somei.

Let Aj = {e, a, b, ¢j} be a factor of order 4. If

0= x(A) =1+ x(&)+ xbi)+ x (),

then one ofx (aj), x(bi), x(ci) must be—1 and so one 082, b?, ¢? must bee. Thus there

is at least one factor of order 4 that contains at least onensecrder element. We choose the
notation such thaf\q, ..., Am are all the factors of order 4 containing at least one secoaero
element. Ifm = 1, theny (A;) = O for eachy that is faithful onH. Now, by [2] Theorem 1A
is periodic. So we may assume that> 2.

Let us consider a\y = {e, g, bj, ¢j} with 1 < i < m. We choose the notation such that
lgj| = 2. Furtherc; can be written in the forng; = a b; d; with a suitabled; € G. By Lemma
1 A is periodic if and only ifdj = e. Thus we may assume thdt # e. Also by Lemma 1
x(Aj) = 0impliesx (dj) = 1. From this it follows thatd; can be replaced by

{e.a. by, abdf)

for each integek. In particular, we may assume thHdt| = 2 for eachi, 1 < i < m. Also A
can be replaced by

{e.a, b, abi} ={e a}{e b}
If bi2 = ¢, then each element d%; \ {€} is of order 2. We will say that\; is a type 1 factor.
Now A; can be replaced b¥; Bj, whereH; = (a;, bj) andB; = {g}. If bi2 # e, theng is the
only second order element . We will say thatA; is a type 2 factor. In this cas&; can be
replaced byH; B;, whereH; = {e, a} = (a;) andB; = {e, b;}.

The subgrouH has a unique subgroup = (xzhkl) of order 2. From the factorization
G =H1B1 - HmBmAms1- - An

it follows that the producHs - - - Hm is direct. So there can be only one subgraddjpfor which
L C Hi. Such arH; does not necessarily exists. But if it does, then we choaseadtation such
thatL c Hjp. We claim that. ¢ H, may be assumed.

In order to prove this claim let us considdg = {e, a;, b1, c1} and distinguish two cases
depending on whethek; is of type 1 or type 2.

If Aqis of type 1, then it can be written in the forms
A1 ={e a;, b, abidi}, Ap={e by, ci,bicidy), Ar={ea, ¢y, aicidy}
and can be replaced by the subgroups

Hi=(a;.b1), H{=(b1,c1), H{ =(ag.cy)
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respectively. IfL C Hj, then one ofay, by, a;b; is equal tox2 ", In the a; = x2 " case
¢ Hi since obviousha; # e, a; # by, a1 # ¢ anda; = bycq combined withcy = ajbid;
leads to thed; = e contradiction. In theb; = x2 1 caseb; ¢ Hj since clearlyb; # e,
b1 # a1, by # ¢1 andby = ajcq leads to thel; = e contradiction. In theajb; = x2* case
aiby ¢ Hi sinceajb; = e, a1b; = b1, a1by = ¢1, a1bq = bycy leads in order to tha; = by,
a1 = e, d; = e, a1 = ¢q contradictions.

If Aq is of type 2, thera? = e, b2 # e and A can be written in the formd; =
{e, a1, b1, a1bqdy} and can be replaced by, B1, whereH1 = {e, a1}, By = {e, by}. If L C Hy,

thena; = x2 . Now replaceA; by
Ay =b 1Ay = (b byt e agdy} = (e &, b, afbjdy},

wherea; = ajdy, b} =A7t11_1a1, d; = d;. The only second order elementAj is a; = a;d;
which is not equal to?” . HereA is replaceable byi; B}, where

Hi = (a’l) = (aqdq), BZ/I. = {e, b;_}

Thus in each case we may assume that H;.
ReplaceA; by H; B; in the factorizatiorG = A; - - - Ap to get the factorization

G=A1-A_1(HiB)A 11 An,
where 1< i < m. This leads to the factorization
G=A1---A_1BjAt1--- An
of the factor groupG = G/H;. Here

Aj ={Hi.ajHi.bjHi.ciHi} or Aj={Hi ajHi},
Bi = (Hi.biHi} or B

As |G| < |G|, by the inductive assumption it follows that eitt@f or A; is periodic for some
jbl<j=nj#i

If B; is periodic, theriB;j| = | B; | must be 2 and consequently must be of type 2. Since
Bj is periodic, it follows thai(bj Hj)?> = b?H; = H; and sob? € H; = {e, a;}. We know that
b? # eand hencé? = & Let

b = xPyfr... b

and & =x"y{* - yss,

wherea =221, 0<B<2*—1, O<ay,B,...,as s < 1. Now
bi2 _ (Xﬁyfl o ysﬂs)Z — x2B — X"‘yi‘l o yg!s — o
gives thaivqy = --- = as = 0 and soL C H; and this is a contradiction.
If Aj is periodic andAj| = |Aj| = 2, then in a similar wayajz e H andaj2 # elead to
the contradictiorL C Hj. Therefore ifA; is periodic, thenﬂj| = |Aj| = 4. The periodicity
of ﬂj implies thatﬂj contains a second order element, sa)/Hi)2 = aszi = H;. Hence

aj2 € Hi. As aj2 # ein the known way leads to the contradictibnc H;, it follows thataj2 =e
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ThusAj contains a second order element, thatis 1 < m. By Lemma 1 the periodicity oﬁj
implies thatd; € H;.

The summary of the above argument is that for dadh< i < mthereisaj,1<j <m
such thadj € Hj andi # j. We define a bipartite graph whose nodes ar#ly, ..., Hn and
di,...,dmand ifdj € Hi, then(H;, dj) is a directed edge df. If (H;, dj ), (Hk, dj) are edges
of ' withi # k, thend; € H;j N Hyk = {e} which is a contradiction. Thus for eadh there is at
most oneH; such that(H;j, d;) is an edge of". Further, for eactH; there is at least one; for
which (H;j, dj) is an edge of". Therefore there is a ono-to-one mégrom {H4, ..., Hy} into
{d1, ..., dm} such that(H;, f(Hj)), 1 <i < mare all the edges df.

Let us consider

Am = {€ am, bm, cm}.

(Remembem > 2.) If Ap is of type 1, then it can be written in the forms
Am = {€, am, bm, ambmdm}, Am = {€ am, Cm, amCmdm}, Am = {€, bm, cm, bmcmdfp}
and it can be replaced by the subgroups
Hm = (@m, bm), Hr/n = (am, Cm), Hr/ﬁ = (bm, cm)
respectively. These replacements give rise to the graphs, I'” and the mapsf, f/, f”
respectively. The nodedy, ..., Hy_1 anddy, ..., dpn_1 are common in these graphs. After
removing the edges joining tam, H/,, H/, anddm, dfy,, dff, the remaining parts of the graphs

are identical. From this it follows that(Hm) = f'(Hp,) = f”(Hp). Letd; be this common
value. This leads to the contradictidp € Hm N Hy, N Hy = {e}.

If Am is of type 2, thera2, = e, b2, # e and A can be written in the form
Am = {e, am, bm, ambmdm}
and can be replaced bymBm, where
Hm = {e, am}, Bm = {&, bm}.
The factorAnm can be replaced by
Al = bl Am = (bt, bytam, €, amdm} = (€, &, by, ajnbindin),
wherea/,, = amdm, bjy, = bm'am, d};, = dm. ThenA/, can be replaced bi/, B, where
Hn={ean},  Bn={e by}
The Am — HmBm and A, — H/, By, replacements give rise to the graphsI” and the
mapsf, f’ respectively. The nodedy, ..., Hy_1 anddy, ..., dn—1, dm are common in these
graphs. After removing the edges joining kn, H, the remaining parts of the graphs are
identical. From this it follows thaf (Hm) = f’(Hy,). Letd; be this common value. This gives

the contradictiord; € Hm N Hy, = {e}.
This completes the proof.
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