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K. Corr ádi - S. Szab́o

PERIODIC FACTORIZATION OF A FINITE ABELIAN

2-GROUP

Abstract.

Let G be a finite abelian 2-group that is a direct product of a cyclicgroup and
an elementary group. Suppose thatG is a direct product of its subsetsA1, . . . , An
of cardinality two or four. Then one of the subsetsA1, . . . , An is periodic. The
subsetAi is periodic if Ai g = Ai holds with a nonidentity elementg of G. This
is a generalization of an earlier result of A. D. Sands and S. Szabó.

1. Introduction

Throughout the paperG will be a finite abelian group. We use multiplicative notation. The
identity element is denoted bye. The symbol “⊂” denotes a not necessarily strict inclusion,|a|

denotes the order of the elementa ∈ A, |A| denotes the cardinality of the subsetA of G. If G
is a direct product of its subsetsA1, . . . , An, then we express this fact saying that the equality
G = A1 · · · An is a factorization ofG. If e ∈ Ai , then we say that the subsetAi is normed. We
call the factorizationG = A1 · · · An normed if eachAi is normed. A subsetA of G is called
periodic if there is ag ∈ G\{e} such thatAg = A. The elementg is a period ofA. If G is a direct
product of cyclic groups of orderst1, . . . , ts respectively, then we sayG is of type(t1, . . . , ts).
A. D. Sands and S. Szabó [2] proved that ifG is of type (2, . . . , 2) and G = A1 · · · An is a
factorization, where|A1| = · · · = |An| = 4, then one of the factorsA1, . . . , An is periodic.
We will prove the following generalization of this theorem.Let G be a finite abelian 2-group
and letG = A1 · · · An be a factorization ofG, where each|Ai | is either 2 or 4. IfG is of
type (2λ, 2, . . . , 2), then one of the factorsA1, . . . , An is periodic. We accomplish this using
characters ofG.

If χ is a character andA is a subset ofG, then we denote the sum

∑

a∈A

χ(a)

by χ(A). If χ(A) = 0, thenχ annihilatesA. We denote by Ann(A) the set of characters ofG
that annihilatesA.

If A andA′ are subsets ofG such that given any subsetB of G, if G = AB is a factorization
of G, thenG = A′B is also a factorization ofG, then we say thatA is replaceable byA′. There
is a character test for replaceability due to L. Rédei [1] which reads as follows. If|A| = |A′| and
Ann(A) ⊂ Ann(A′), thenA can be replaced byA′
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2. The result

Let G be a finite abelian group and letA = {e, a, b, c} be a subset ofG. We define a subsetA′

by A′ = {e, a}{e, b}. Since the equationc = abd is solvable ford, A can be written in the form
A = {e, a, b, abd}. We need the next lemma.

LEMMA 1. If |a| = 2, then
(a) Ann(A) ⊂ Ann(A′),
(b) A is periodic if and only if d= e,
(c) χ(A) = 0 impliesχ(d) = 1.

Proof. (a) Let χ be a character ofG for which 0 = χ(A) = 1 + χ(a) + χ(b) + χ(c). As
|a| = 2, it follows thatχ(a) = −1 or χ(a) = 1. If χ(a) = 1, thenχ(A) = 0 gives that
χ(b) = χ(c) = −1. Using this we have

χ(A′) = 1 + χ(a) + χ(b) + χ(a)χ(b) = 1 + 1 − 1 − 1 = 0.

If χ(a) = −1, thenχ(A) = 0 gives thatχ(b) = ρ andχ(c) = −ρ, whereρ is a root of unity.
Using this we have

χ(A′) = 1 + χ(a) + χ(b) + χ(a)χ(b) = 1 − 1 + ρ − ρ = 0.

(b) If d = e, thenA = A′ and soA is periodic with perioda. Conversely, assume thatA is
periodic with periodg. Note thatg2 is also a period ofA if g2 6= e. Using this observation we
may assume that|g| = 2. Frome ∈ A it follows thatg ∈ A.

If g = a, then
Aa = {a, e, ab, bd} = {e, a, b, abd} = A

gives that{ab, bd} = {b, abd}. Here eitherab = b or bd = b. The first one leads to the
contradictiona = e. The second one givesd = e.

If g = b, then
Ab = {b, ab, e, ad} = {e, a, b, abd} = A

gives that{ab, ad} = {a, abd}. Hence eitherab = a or ad = a. The first one leads to the
contradictionb = e. the second one givesd = e.

If g = abd, then

Aabd= {abd, bd, ab2d, e} = {e, a, b, abd} = A

gives that{ab2d, bd} = {a, b}. Now eitherab2d = b or bd = b. The first equality gives the
contradictionabd = e, the second one providesd = e.

(c) If χ(A) = 0, then by part (a),χ(A′) = 0 and so

0 = χ(A) − χ(A′) = χ(ab)χ(d) − χ(ab) = χ(ab)
[

χ(d) − 1
]

.

This completes the proof.

After this preparation we are ready to prove the main result of the paper.

THEOREM1. Let G be a finite group of type(2λ, 2, . . . , 2). If G = A1 · · · An is a normed
factorization of G, where|Ai | is either2 or 4 for each i,1 ≤ i ≤ n, then at least one of the
factors A1, . . . , An is periodic.
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Proof. The|G| = 2 case is trivial. So we assume that|G| ≥ 4 and proceed by induction on|G|.
ClearlyG is a direct product of its subgroupsH andK of types(2λ) and(2, . . . , 2) respectively.
If λ = 1, thenG is of type(2, . . . , 2). This special case is covered by [2] Theorem 9. So for the
remaining part of the proof we may assume thatλ ≥ 2. Let H = 〈x〉 and K = 〈y1, . . . , ys〉,
where|x| = 2λ and|y1| = · · · = |ys| = 2. Consider a characterχ of G that is faithful onH or
equivalently for whichχ(x) = ρ, whereρ is a primitive(2λ)th root of unity.

Let Ai = {e, ai } be a factor of order 2. If 0= χ(Ai ) = 1 + χ(ai ), thenχ(ai ) = −1 or
χ(a2

i ) = 1 and soa2
i = e. ThereforeAi is periodic with periodai . So in the remaining part of

the proof we may assume thatχ(Ai ) 6= 0 whenχ is faithful on H and|Ai | = 2. As χ is not
the principal character ofG, it follows that 0= χ(G) = χ(A1) · · ·χ(An) and soχ(Ai ) = 0 for
somei , 1 ≤ i ≤ n. Thus we may assume that|Ai | = 4 for somei .

Let Ai = {e, ai , bi , ci } be a factor of order 4. If

0 = χ(Ai ) = 1 + χ(ai ) + χ(bi ) + χ(ci ),

then one ofχ(ai ), χ(bi ), χ(ci ) must be−1 and so one ofa2
i , b2

i , c2
i must bee. Thus there

is at least one factor of order 4 that contains at least one second order element. We choose the
notation such thatA1, . . . , Am are all the factors of order 4 containing at least one second order
element. Ifm = 1, thenχ(A1) = 0 for eachχ that is faithful onH . Now, by [2] Theorem 1,A1
is periodic. So we may assume thatm ≥ 2.

Let us consider anAi = {e, ai , bi , ci } with 1 ≤ i ≤ m. We choose the notation such that
|ai | = 2. Furtherci can be written in the formci = ai bi di with a suitabledi ∈ G. By Lemma
1 Ai is periodic if and only ifdi = e. Thus we may assume thatdi 6= e. Also by Lemma 1
χ(Ai ) = 0 impliesχ(di ) = 1. From this it follows thatAi can be replaced by

{e, ai , bi , ai bi d
k
i }

for each integerk. In particular, we may assume that|di | = 2 for eachi , 1 ≤ i ≤ m. Also Ai
can be replaced by

{e, ai , bi , ai bi } = {e, ai }{e, bi }.

If b2
i = e, then each element ofAi \ {e} is of order 2. We will say thatAi is a type 1 factor.

Now Ai can be replaced byHi Bi , whereHi = 〈ai , bi 〉 andBi = {e}. If b2
i 6= e, thenai is the

only second order element inAi . We will say thatAi is a type 2 factor. In this caseAi can be
replaced byHi Bi , whereHi = {e, ai } = 〈ai 〉 andBi = {e, bi }.

The subgroupH has a unique subgroupL = 〈x2λ−1
〉 of order 2. From the factorization

G = H1B1 · · · HmBmAm+1 · · · An

it follows that the productH1 · · · Hm is direct. So there can be only one subgroupHi for which
L ⊂ Hi . Such anHi does not necessarily exists. But if it does, then we choose the notation such
that L ⊂ H1. We claim thatL 6⊂ H1 may be assumed.

In order to prove this claim let us considerA1 = {e, a1, b1, c1} and distinguish two cases
depending on whetherA1 is of type 1 or type 2.

If A1 is of type 1, then it can be written in the forms

A1 = {e, a1, b1, a1b1d1}, A1 = {e, b1, c1, b1c1d′

1}, A1 = {e, a1, c1, a1c1d′′

1 }

and can be replaced by the subgroups

H1 = 〈a1, b1〉, H ′

1 = 〈b1, c1〉, H ′′

1 = 〈a1, c1〉



306 K. Corrádi - S. Szabó

respectively. IfL ⊂ H1, then one ofa1, b1, a1b1 is equal tox2λ−1
. In thea1 = x2λ−1

case
a1 6∈ H ′

1 since obviouslya1 6= e, a1 6= b1, a1 6= c1 anda1 = b1c1 combined withc1 = a1b1d1

leads to thed1 = e contradiction. In theb1 = x2λ−1
caseb1 6∈ H ′′

1 since clearlyb1 6= e,

b1 6= a1, b1 6= c1 andb1 = a1c1 leads to thed1 = e contradiction. In thea1b1 = x2λ−1
case

a1b1 6∈ H ′

1 sincea1b1 = e, a1b1 = b1, a1b1 = c1, a1b1 = b1c1 leads in order to thea1 = b1,
a1 = e, d1 = e, a1 = c1 contradictions.

If A1 is of type 2, thena2
1 = e, b2

1 6= e and A1 can be written in the formA1 =

{e, a1, b1, a1b1d1} and can be replaced byH1B1, whereH1 = {e, a1}, B1 = {e, b1}. If L ⊂ H1,

thena1 = x2λ−1
. Now replaceA1 by

A′

1 = b−1
1 A1 = {b−1

1 , b−1
1 a1, e, a1d1} = {e, a′

1, b′

1, a′

1b′

1d′

1},

wherea′

1 = a1d1, b′

1 = b−1
1 a1, d′

1 = d1. The only second order element inA′

1 is a′

1 = a1d1

which is not equal tox2λ−1
. HereA′

1 is replaceable byH ′

1B′

1, where

H ′

1 = 〈a′

1〉 = 〈a1d1〉, B′

1 = {e, b′

1}.

Thus in each case we may assume thatL 6⊂ H1.

ReplaceAi by Hi Bi in the factorizationG = A1 · · · An to get the factorization

G = A1 · · · Ai−1(Hi Bi )Ai+1 · · · An,

where 1≤ i ≤ m. This leads to the factorization

G = A1 · · · Ai−1Bi Ai+1 · · · An

of the factor groupG = G/Hi . Here

A j = {Hi , a j Hi , b j Hi , c j Hi } or A j = {Hi , a j Hi },

Bi = {Hi , bi Hi } or Bi = {Hi }.

As |G| < |G|, by the inductive assumption it follows that eitherBi or A j is periodic for some
j , 1 ≤ j ≤ n, j 6= i .

If Bi is periodic, then|Bi | = |Bi | must be 2 and consequentlyAi must be of type 2. Since
Bi is periodic, it follows that(bi Hi )

2 = b2
i Hi = Hi and sob2

i ∈ Hi = {e, ai }. We know that

b2
i 6= e and henceb2

i = ai . Let

bi = xβ yβ1
1 · · · yβs

s and ai = xα yα1
1 · · · yαs

s ,

whereα = 2λ−1, 0 ≤ β ≤ 2λ − 1, 0≤ α1, β1, . . . , αs, βs ≤ 1. Now

b2
i = (xβ yβ1

1 · · · yβs
s )2 = x2β = xα yα1

1 · · · yαs
s = ai

gives thatα1 = · · · = αs = 0 and soL ⊂ Hi and this is a contradiction.

If A j is periodic and|A j | = |A j | = 2, then in a similar waya2
j ∈ Hi anda2

j 6= e lead to

the contradictionL ⊂ Hi . Therefore ifA j is periodic, then|A j | = |A j | = 4. The periodicity

of A j implies thatA j contains a second order element, say(a j Hi )
2 = a2

j Hi = Hi . Hence

a2
j ∈ Hi . As a2

j 6= e in the known way leads to the contradictionL ⊂ Hi , it follows thata2
j = e.
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ThusA j contains a second order element, that is 1≤ j ≤ m. By Lemma 1 the periodicity ofA j
implies thatd j ∈ Hi .

The summary of the above argument is that for eachi , 1 ≤ i ≤ m there is aj , 1 ≤ j ≤ m
such thatd j ∈ Hi andi 6= j . We define a bipartite graph0 whose nodes areH1, . . . , Hm and
d1, . . . , dm and ifd j ∈ Hi , then(Hi , d j ) is a directed edge of0. If (Hi , d j ), (Hk, d j ) are edges
of 0 with i 6= k, thend j ∈ Hi ∩ Hk = {e} which is a contradiction. Thus for eachd j there is at
most oneHi such that(Hi , d j ) is an edge of0. Further, for eachHi there is at least oned j for
which (Hi , d j ) is an edge of0. Therefore there is a ono-to-one mapf from {H1, . . . , Hm} into
{d1, . . . , dm} such that

(

Hi , f (Hi )
)

, 1 ≤ i ≤ m are all the edges of0.

Let us consider

Am = {e, am, bm, cm}.

(Rememberm ≥ 2.) If Am is of type 1, then it can be written in the forms

Am = {e, am, bm, ambmdm}, Am = {e, am, cm, amcmd′
m}, Am = {e, bm, cm, bmcmd′′

m}

and it can be replaced by the subgroups

Hm = 〈am, bm〉, H ′
m = 〈am, cm〉, H ′′

m = 〈bm, cm〉

respectively. These replacements give rise to the graphs0, 0′, 0′′ and the mapsf , f ′, f ′′

respectively. The nodesH1, . . . , Hm−1 andd1, . . . , dm−1 are common in these graphs. After
removing the edges joining toHm, H ′

m, H ′′
m anddm, d′

m, d′′
m the remaining parts of the graphs

are identical. From this it follows thatf (Hm) = f ′(H ′
m) = f ′′(H ′′

m). Let d j be this common
value. This leads to the contradictiond j ∈ Hm ∩ H ′

m ∩ H ′′
m = {e}.

If Am is of type 2, thena2
m = e, b2

m 6= e andAm can be written in the form

Am = {e, am, bm, ambmdm}

and can be replaced byHmBm, where

Hm = {e, am}, Bm = {e, bm}.

The factorAm can be replaced by

A′
m = b−1

m Am = {b−1
m , b−1

m am, e, amdm} = {e, a′
m, b′

m, a′
mb′

md′
m},

wherea′
m = amdm, b′

m = b−1
m am, d′

m = dm. ThenA′
m can be replaced byH ′

mB′
m, where

H ′
m = {e, a′

m}, B′
m = {e, b′

m}.

The Am → HmBm and A′
m → H ′

mB′
m replacements give rise to the graphs0, 0′ and the

maps f , f ′ respectively. The nodesH1, . . . , Hm−1 andd1, . . . , dm−1, dm are common in these
graphs. After removing the edges joining toHm, H ′

m the remaining parts of the graphs are
identical. From this it follows thatf (Hm) = f ′(H ′

m). Let d j be this common value. This gives
the contradictiond j ∈ Hm ∩ H ′

m = {e}.

This completes the proof.
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