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NATURAL MICROSTRUCTURES ASSOCIATED WITH

SINGULARITY FREE GRADIENT FIELDS IN THREE-SPACE

AND QUANTIZATION

Abstract.
Any singularity free vector fieldX defined on an open set in a three-dimen-

sional Euclidean space with curlX = 0 admits a complex line bundleFa with a
fibre-wise defined symplectic structure, a principal bundlePa and a Heisenberg
group bundleGa. For the non-vanishing constant vector fieldX the geometry of
Pa defines for each frequency a Schrödinger representation ofany fibre of the
Heisenberg group bundle and in turn a quantization procedure for homogeneous
quadratic polynomials on the real line.

1. Introduction

In [2] we described microstructures on a deformable medium by a principal bundle on the body
manifold. The microstructure at a point of the body manifoldis encoded by the fibre over it,
i.e. the collection of all internal variables at the point. The structure group expresses the internal
symmetries.

In these notes we will show that each singularity free gradient field defined on an open set
of the Euclidean space hides a natural microstructure. The structure group isU(1).

If the vector fieldX is a gradient field with a nowhere vanishing principal parta, say, then
there are natural bundles overO such as a complex line bundleFa with a fibre-wise defined
symplectic formωa, a Heisenberg group bundleGa and a four-dimensional principal bundlePa

with structure groupU(1). (Fibres overO are indicated by a lower indexx.) For anyx ∈ O the
fibre Fa

x is the orthogonal complement ofa(x) formed inE and encodes internal variables atx.
It is, moreover, identified as a coadjoint orbit ofGa

x . The principal bundlePa, a subbundle of
the fibre bundleFa, is equipped with a natural connection formαa, encoding the vector field in
terms of the geometry of the local level surfaces: The fieldX can be reconstructed fromαa. The
collection of all internal variables provides all tangent vectors to all locally given level surfaces.
The curvature�a of αa describes the geometry of the level surfaces of the gradientfield in terms
of ωa and the Gaussian curvature.

There is a natural link between this sort of microstructure and quantum mechanics. To
demonstrate the mechanism we have in mind, the principal part a of the vector fieldX is assumed
to be constant (for simplicity only). Thus the integral curves, i.e. the field lines, are straight lines.
Fixing somex ∈ O and a solution curveβ passing throughx ∈ O, we consider the collection of
all geodesics on the restriction of the principal bundlePa to β. Each of these geodesics with the
same speed is called a periodic lift ofβ and passes through a common initial pointvx ∈ Pa

x , say.
If the periodic lifts rotate in time, circular polarized waves are established. Hence the integral
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curveβ is accompanied by circular polarized waves onPa of arbitrarily given frequencies. This
collection of periodic lifts ofβ defines unitary representationsρν of the Heisenberg groupGa

x ,
the Schrödinger representations (cf. [11] and [13]). The frequencies of the polarized waves
correspond to the equivalence classes ofρν due to the theorem of Stone-von Neumann.

The automorphism group ofGa
x is the symplectic groupSp(Fa

x ) of the symplectic complex
line Fa

x . Therefore, the representationρ1 of Ga
x yields a projective representation ofSp(Fa

x ),
due to the theorem of Stone-von Neumann again. This projective representation is resolved to
a unitary representationW of the metaplectic groupMp(Fa

x ) in the usual way. Its infinitesimal
representationdW of the Lie algebramp(Fa

x ) of Mp(Fa
x ) yields the quantization procedure for

all homogeneous quadratic polynomials defined on the real line. Of course, this is in analogy to
the quantization procedure emanating from the quadratic approximation in optics.

2. The complex line bundle associated with a singularity free gradient field in Euclidean
space

Let O be an open subset not containing the zero vector 0 in a three-dimensional orientedR-
vector spaceE with scalar product< , >. The orientation on the Euclidean spaceE shall be
represented by the Euclidean volume formµE .

Our setting relies on a smooth, singularity free vector fieldX : O −→ O× E with principal
parta : O −→ E, say. We shall frequently identifyX with its principal part.

Moreover, letH := R · e⊕ E be the skew field of quaternions wheree is the multiplicative
unit element. The scalar product< , > and the orientation onE extend to all ofH such
that e ∈ H is a unit vector and the above splitting ofH is orthogonal. The unit sphereS3,
i.e. Spin(E), is naturally isomorphic toSU(2) and coversSO(E) twice (cf. [8] and [9]).

Given anyx ∈ O, the orthogonal complementFa
x of a(x) ∈ E is a complex line as can be

seen from the following: LetCa
x ⊂ H be the orthogonal complement ofFa

x . Hence the field of
quaternionsH splits orthogonally into

(1) H = C
a
x ⊕ Fa

x .

As it is easily observed,

C
a
x = R · e⊕ R · a(x)

|a(x)|
is a commutative subfield ofH naturally isomorphic toC due to

(

a(x)

|a(x)|

)2
= −e ∀ x ∈ O,

where| · | denotes the norm defined by< , >. This isomorphism shall be called

j a
x : C −→ C

a
x ;

it maps 1 toe and i to a(x)
|a(x)| . The multiplicative group on the unit circle ofCa

x is denoted by

Ua
x (1). It is a subgroup ofSU(2) ⊂ H and hence a group of spins. Obviouslya(x) generates

the Lie algebra ofUa
x (1).

Fa
x is aCa

x-linear space under the (right) multiplication ofH and hence aC-linear space, a
complex line. Moreover,H is the Clifford algebra ofFa

x equipped with− < , > (cf. [9]).

The topological subspaceFa :=
⋃

x∈O{x} × Fa
x of O × E is a C-vector subbundle of

O × E, if curl X = 0, as can easily be seen. In this caseFa is a complex line bundle (cf. [15]),
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the complex line bundle associated withX. Let pra : Fa −→ O be its projection. Accordingly
there is a bundle of fieldsCa −→ O with fibreCa

x at eachx ∈ O. Clearly,

O × H = C
a × Fa

as vector bundles overO. Of course, the bundleFa −→ O can be regarded as the pull-back of
T S2 via the Gauss map assigninga(x)|a(x)| to anyx ∈ O.

We, therefore, assume that curlX = 0 from now on. Due to this assumption there is a
locally given real-valued functionV , a potential ofa, such thata = grad V . Each (locally
given) level surfaceSof V obviously satisfiesT S= Fa|S. HereFa|S =

⋃

x∈S{x} × Fa
x . Each

fibre Fa
x of Fa is oriented by its Euclidean volume formi a(x)

|a(x)|
µE := µE

(

a(x)
|a(x)| , . . . , . . .

)

. For

any level surface the scalar product yields a Riemannian metric gS on Sgiven by

gS(x; vx, wx) := < vx, wx > ∀ x ∈ O and ∀ vx, wx ∈ TxS.

For any vector fieldY on S, any x ∈ O and anyvx ∈ Tx S, the covariant derivative∇S of
Levi-Cività determined bygS satisfies

∇S
vx

Y(x) = dY(x; vx)+ < Y(x),Wa
x (vx) > .

HereWa
x : Tx S −→ TxS is the Weingarten map ofS assigning to eachwx ∈ Tx S the vector

d a
|a| (x;wx), the differential of a

|a| at x evaluated atwx . The Riemannian curvatureR of ∇S at
anyx is expressed by the well-known equation of Gauss as

R(x; vx, wx .ux, yx) = < Wa
x (wx),ux > · < Wa

x (vx), yx >(2)

− < Wa
x (vx),ux > · < Wa

x (wx), yx >

for any choice of the vectorsvx, wx,ux, yx ∈ TxS.

A simple but fundamental observation in our setting is that each fibreFa
x ⊂ Fa carries a

natural symplectic structureωa defined by

ωa(x; h, k) := < h × a(x), k > = < h · a(x), k > ∀ h, k ∈ Fa
x ,

where× is the cross product, here being identical with the product in H. In the context ofFa
x as

a complex line we may write

ωa(x; h0, h1) = |a(x)|· < h0 · i, h1 > .

This is due to the fact thath anda(x) are perpendicular elements inE. The bundleFa is fibre-
wise oriented by−ωa. In factωa extends on all ofE by setting

ωa(x; y, z) :=< y × a(x), z>

for all y, z ∈ E; it is not a symplectic structure onO, of course. Letκ(x) := detWa
x for all

x ∈ S, the Gaussian curvature ofS. Providedvx, wx is an orthonormal basis ofTx S, the relation
between the Riemannian curvatureR andω is given by

R(x; vx, wx.ux, yx) = κ(x)

|a(x)| · ωa(x; ux, yx)

for everyx ∈ Sandux, yx ∈ Tx S= Fa
x .
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3. The natural principal bundle Pa associated withX

We recall that the singularity free vector fieldX on O has the formX = (id , a). LetPa
x ⊂ Fa

x

be the circle centred at zero with radius|a(x)|−
1
2 for anyx ∈ O. Then

P
a :=

⋃

x∈O

{x} × P
a
x

equipped with the topology induced byFa is a four-dimensional fibre-wise oriented submanifold
of Fa. It inherits its smooth fibre-wise orientation fromFa. Moreover,Pa is aU(1)-principal
bundle.U(1) acts from the right on the fibrePa

x of Pa via j a
x |U (1) : U(1) −→ Ua

x (1) for any
x ∈ O. This operation is fibre-wise orientation preserving. The reason for choosing the radius

of Pa
x to be|a(x)|−

1
2 will be made apparent below.

Both Fa andPa encode collections of internal variables overO and both are constructed
out of X, of course. Clearly, the vector bundleFa is associated withPa.

The vector fieldX can be reconstructed out of the smooth, fibre-wise oriented principal
bundlePa as follows: For eachx ∈ O the fibrePa

x is a circle in Fa
x centred at zero. The

orientation of this circle yields an orientation of the orthogonal complement ofFa
x formed in

E, the direction of the field atx. Hence|a(x)| is determined by the radius of the circlePa
x .

Therefore, the vector fieldX admits a characteristic geometric object, namely the smooth, fibre-
wise oriented principal bundlePa on which all properties ofX can be reformulated in geometric
terms. Vice versa, all geometric properties ofPa reflect characteristics ofa. The fibre-wise
orientation can be implemented in a more elegant way by introducing a connection form,αa,
say, which is in fact much more powerful. This will be our nexttask. SincePa ⊂ O × E, any
tangent vectorξ ∈ TvxP

a can be represented as a quadruple

ξ = (x, vx,h, ζvx ) ∈ O × E × E × E

for x ∈ O, vx ∈ Pa
x andh, ζvx ∈ E ⊂ H with the following restrictions, expressing the fact that

ξ is tangent toPa:
Given a curveσ = (σ1, σ2) onPa with σ1(s) ∈ O andσ2(s) ∈ Pa

σ1(s)
for all s, then

< σ2(s), a(σ1(s)) >= 0 and |σ2(s)|2 = 1

|a(σ1(s))|
∀ s.

Eachζ ∈ TvxP
a given byζ = ·

σ2 (0) is expressed as

ζ = r1 · a(x)

|a(x)| + r2 · vx

|vx | + r · vx × a(x)

|vx | · |a(x)|

with

r1 = − < Wa
x (vx),h > , r2 = −|vx |

2
· d ln |a|(x; h)

and a free parameterr ∈ R. The Weingarten mapWa
x is of the form

da(x; k) = |a(x)| · Wa
x (k)+ a(x) · d ln |a|(x; k) ∀ x ∈ O , ∀ k ∈ E,

where we setWa
x (a(x)) = 0 for all x ∈ O. With these preparations we define the one-form

αa : TP
a −→ R
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for eachξ ∈ TPa with ξ = (x, vx,h, ζ ) to be

αa(vx, ξ) := < vx × a(x), ζ > .(3)

One easily shows thatαa is a connection form (cf. [10] and for the field theoretic aspect [1]). To
match the requirement of a connection form in this metric setting, the size of the radius ofPa

x
is crucial for anyx ∈ O. The negative of the connection form onPa is in accordance with the
smooth fibre-wise orientation, of course.

Thus the principal bundlePa together with the connection formαa characterizes the vector
field X, and vice versa. To determine the curvature�a which is defined to be the exterior
covariant derivative ofαa, the horizontal bundles inTPa will be characterized. Givenvx ∈ Pa,
the horizontal subspaceHorvx ⊂ TPa is defined by

Horvx := ker αa(vx; . . .).

A vectorξvx ∈ Horvx , being orthogonal tovx × a(x), has the form(x, vx,h, ζhor) ∈ O × E ×
E × E whereh varies inO andζhor satisfies

ζhor = − < Wa
x (vx),h > · a(x)

|a(x)| − |vx |
2

· d ln |a|(x; h) · vx

|vx | .

SinceTpra : Horvx −→ Tx O is an isomorphism for anyvx ∈ Pa, dim Horvx = 3 for all
vx ∈ Pa and for allx ∈ O. The collectionHor ⊂ TPa of all horizontal subspaces in the
tangent bundleTPa inherits a vector bundle structureTPa.

The exterior covariant derivativedhorαa is defined by

dhorαa(vx, ξ0, ξ1) := dαa(vx; ξhor
0 , ξhor

1 )

for everyξ0, ξ1 ∈ TvxP
a, vx ∈ Pa

x andx ∈ O.

The curvature�a := dhorαa of αa is sensitive in particular to the geometry of the (locally
given) level surfaces, as is easily verified by using equation (2):

PROPOSITION1. Let X be a smooth, singularity free vector field on O with principal part
a. The curvature�a of the connection formαa is

�a = κ

|a| · ωa

whereκ : O −→ R is the leaf-wise defined Gaussian curvature on the foliationof O given
by the collection of all level surfaces of the locally determined potential V . The curvature�a

vanishes along field lines of X.

The fact that the curvature�a vanishes along field lines plays a crucial role in our set-up.It
will allow us to establish (on a simple model) the relation between the transmission of internal
variables along field lines ofX and the quantization of homogeneous quadratic polynomialson
the real line.

4. Two examples

If we consider specific vector fields in these notes, we will concentrate on the two types presented
in more detail in this section. At first let us regard a constant vector fieldX on O ⊂ E\{0} with
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a principal part having the non-zero valuea ∈ E for all x ∈ O. Obviously the principal bundle
Pa is trivial, i.e.

P
a ∼= O × Ua(1).

Since an integral curveβ of X is a straight line segment parametrized by

β(t) = t · a + x0 with β(t0) = x0,

the restrictionPa|im β of Pa to the imageim β is a cylinder with radius|a|−
1
2 .

As the second type of example of a principal bundlePa associated with a singularity free
vector field let us consider a central symmetric fieldX = grad Vsol on E\{0} with the only
singularity at the origin. The potentialVsol is given by

Vsol(x) := − m̄

|x| ∀ x ∈ O

wherem̄ is a positive real. This potential governs planetary motions and hence gradVsol is
called the solar field here. The principal parta of the gradient field is

grad Vsol(x) = − m̄

|x|2
· x

|x| ∀ x ∈ E\{0}.(4)

For reasons of simplicity we illustrate from a longitudinalpoint of view the principal bundlePa

associated with the gradient field. An integral curveβ passing throughx at the timet0 = 1 is of
the form

β(t) = −m̄ · (3 · t − 2)
1
3 · x for

2

3
< t < ∞.(5)

Hence the (trivial) principal bundlePa|im β is a cone. The radiusr of a circlePa
x with x ∈ im β

is r = |x|√
m̄

for all x ∈ O (cf. [12]).

5. Heisenberg group bundles associated with the singularity free vector field and curves
and the solar field

Associated with the(2+1)-splitting of the Euclidean spaceE caused by the vector fieldX there
is a natural Heisenberg group bundleGa with ωa as symplectic form. The bundleGa allows us
to reconstructX as well. Heisenberg groups play a central role in signal theory (cf. [13], [14]).
We essentially restrict us to the two types of examples presented in the previous section.

Givenx ∈ O, the vectora(x) 6= 0 determinesFa
x with the symplectic structureωa(x) and

Ca
x which decomposeH according to (1).

The submanifoldGa
x := |a(x)|−

1
2 · e · Ua

x (1) ⊕ Fa
x of H carries the Heisenberg group

structure the (non-commutative) multiplication of which is defined by

(z1 + h1) · (z2 + h2) := |a(x)|−
1
2 · z1 · z2 · e

1
2 ·ωa(x;h1,h2)· a

|a| + h1 + h2(6)

for any twoz1, z2 ∈ |a(x)|−
1
2 ·e·Ua

x (1) and any pairh1,h2 ∈ Fa
x (cf. [12]). The (commutative)

multiplication in the centre|a(x)|
1
2 · e · Ua

x (1) of Ga
x is given by adding angles. The reason

the centre has radius|a(x)|−
1
2 is the length scale onPa

x for any x ∈ O. The group bundle
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∪x∈O{x}× |a(x)|−
1
2 ·e·Ua

x (1), which is the collection of all centres, is associated withPa and
forms a natural torus bundle together withPa. The collection

Ga :=
⋃

x∈O

{x} × Ga
x

can be made into a group bundle which is associated with the principal bundlePa, too. Clearly
Fa ⊂ Ga as fibre bundles. In the cases of a constant vector field and thesolar field the Heisen-
berg group bundle along field lines is trivial.

In particular,a in (6) takes the values|a(x)|−
1
2 = |a|−

1
2 and|a(x)|−

1
2 = |x|

m̄ for all x ∈ O
in the cases of the constant vector field respectively the solar field.

The Lie algebraGa
x of Ga

x is

G
a
x := R · a

|a| ⊕ Fa
x

together with the operation
[

ϑ1 · a

|a| + h1, ϑ2 · a

|a| + h2

]

:= ωa(x; h1,h2) · a

|a|

for any ϑ1, ϑ2 ∈ R and anyh1,h2 ∈ Fa
x . The exponential map expGa

x
: Ga

x −→ Ga
x is

surjective. Obviously,X can be reconstructed from bothGa andGa. The coadjoint orbit of
Ada∗

passing through< ϑ · a
|a| + h1, .. >∈ Ga∗

x with ϑ 6= 0 isϑ · a
|a| ⊕ Fa

x .

In this context we will study the solar field next (cf. [12]). At first let us see how it emanates
from Keppler’s laws of circular planetary motion. Supposeσ is a closed planetary orbit inE\{0}
defined on all ofR; it lies in a planeFb′

, say, withb′ ∈ E\{0}, due to Keppler’s second law. Let
σ be a circle of radiusr . It is generated by a one-parameter groupϕ in SO(Fb) with generator
b, say, yielding

ϕ(t) = et ·b ∀t ∈ R.

Hence
ϕ̈ = b2 · ϕ = −|b|2 · ϕ.

This generator, a skew linear map inso(Fb), is identified with a vector inE in the obvious
way. The invariant norms onso(Fb) are positive real multiples of the trace norm, and hence on
so(Fb) the generator has a norm

||b||2 = −G′2 · tr b2 = G′2 · |b|2

for some positive real numberG′ and a fixed constant||b||.
The time of revolutionT := 2π

|b| is determined by Keppler’s third law which states

T2 = r 3 · const.(7)

Thereforeς̈ of ς := ϕ · x0 with |x0| = r has the form

ς̈ = −||b||2
G′2 · ς = −G · m

|ς |2
· ς|ς |

with G′2 = G−1 · r 3 andm := ||b||2 as solar mass. This is the reason whyX with principal
part gradVsol here is called the solar field. Newton’s field of gravitation includes the mass of
the planet, which is not involved here.
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Next let us point out a consequence of the comparison of the conePa|β embedded intoGa
x

for a fixedx ∈ im β, but shifted forward such that its vertex is in 0∈ E, with the coneCM of
a Minkowski metricga

M on Ga
x . The metricga

M relies on the following observation: Up to the
choice of a positive constantc, there is a natural Minkowski metric onH inherited from squaring
any quaternionk = λ · e+ u with λ ∈ R andu ∈ E since thee-component(k2)e of k2 is

−(k2)e = (|u|2 − λ2) · e = (b2 · k2)e

with b ∈ S2. Introducing the positive constantc, the Minkowski metricga
M on Ga

x mentioned
above is pulled back toGa

x by the right multiplication with a
|a| and reads

ga
M (h1, h2) :=< u1,u2 > −c · λ1 · λ2

for anyhr ∈ F
a
|a| represented byhr = λr · a

|a| + ur for r = 1,2. The respective interior angles

ϕa andϕCM which the meridians onP |im β andCM form with the axisR · x
|x| satisfy

tanϕa = m̄− 1
2 and tanϕCM = 1

c
,

and

m · c2 = G−1 · cot2 ϕa · cot2 ϕCM ,

providedm := m̄
G . This is a geometric basis to derive within our settingE = m · c2 from special

relativity (cf. [12]).

Now we will study planetary motions in terms of Heisenberg algebras. In particular we
will deduce Keppler’s laws from the solar field by means of a holographic principle (we will
make this terminology precise below). To this end we first describe natural Heisenberg algebras
associated with each time derivative of a smooth injective curveσ in O defined on an interval
I ⊂ R. For anyt ∈ I then-th derivativeσ (n)(t), assumed to be different from zero, defines a
Heisenberg algebra bundleG(n) for n = 0,1 . . . with fibre

G
(n)
σ (t) := R · σ (n)(t)⊕ F(n)

σ (t)

whereF(n)
σ (t) := σ (n)(t)⊥ (formed inE) with the symplectic structureω(n) defined by

ω(n)(σ (t);h1,h2) = < h1 × σ (n)(t),h2 > ∀h1, h2 ∈ F(n)
σ (t).

HereF(n) is the complex line bundle alongim σ for which F(n)
σ (t) := σ (n)(t)⊥ for eacht . The

two-formsω(n) are extended to all ofO by letting h1 andh2 vary also inR · σ (n)(t)
|σ (n)(t)| for all

t ∈ I . The Heisenberg algebraG(n)
σ (t) is naturally isomorphic toG(n)

σ (t0)
for a givent0 ∈ I , anyt

and anyn for whichσ (n)(t) 6= 0.

As a subbundle ofF(n) we constructP(n) ⊂ F(n) which constitutes of the circlesP(n)
σ (t) ⊂

F(n)
σ (t) with radius|σ (n)(t)|−

1
2 . On F(n) the curveσ admits an analogueα(n) of the one-formαa

described in (3), determined by

α(n)(σ (t);h) = < σ(t)× σ (n)(t),h > ∀ h ∈ F(n)
σ (t)
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for any t . Since the Heisenberg algebra bundle evolves fromG
(n)
0 we may ask howα(n) evolves

alongσ , in particular forα(1). The evolution ofα(n) can be expressed in terms ofα̇(n) defined
by

α̇(n)(σ (t);h) := d

dt
α(n)(σ (t);h)− α(n)(σ̇ (t),h)

= < σ(t)× σ (n+1)(t),h > ∀ h ∈ F(n)
σ (t).

A slightly more informative form foṙα(1) is

α̇(1)(σ (t);h) = ω(2)(σ (t);σ(t),h) ∀ h ∈ F(1)
σ (t).

Thus the evolution ofα(1) alongσ is governed by the Heisenberg algebrasG(2), yielding in
particular

α(1) = const. iff σ × σ̈ = 0, meaning iσω
(2) = 0.

Henceα(1) = const. is the analogue of Keppler’s second law. In this case the quaternionb :=
σ × σ̇ is constant and henceσ is in the planeF ⊂ E perpendicular tob. ThusR · b × Fb is a
Heisenberg algebra with

ωb(h1,h2) :=< h1 × b, h2 > ∀ h1,h2 ∈ Fb

as symplectic form onFa. Hence the planetary motion can be described in only one Heisenberg
algebra, namely inGb, which is caused by the angular momentumb, of course. We havëσ =
f · σ for some smooth real-valued functionf defined along a planetary motionσ , implying

ω(2) = f · |σ |2
m̄ · ωa. In caseσ is a circle, f is identical with the constant map with valuēm|σ |2 ,

due to the third Kepplerian law (cf. equation (7)). This motivates us to set

G
(2)
σ (t) = G

a
σ(t) ∀t(8)

along any closed planetary motionσ which hence impliesω(2) = ωa alongσ . In turn one
obtains

σ̈ (t) = gradVsol(σ (t)) ∀ t,(9)

a well-known equation from Newton implying Keppler’s laws.Equation (9) is derived from a
holographic principle in the sense that equation (8) statesthat the oriented circle ofP2

σ(t) matches

the oriented circle ofPa
σ(t) at anyt .

6. Horizontal and periodic lifts of β

Since, in general,�a 6= 0, the horizontal distribution inTPa does not need to be integrable
along level surfaces. However,�a vanishes along field lines and thus the horizontal distribution
is integrable along these curves. Let us look atPa|β whereβ is a field line of the singularity
free vector fieldX.

A horizontal lift of β̇ is a curveβ̇hor in Horβ = kerαa which satisfiesTpraβ̇hor = β̇

and obeys an initial condition inTPa|β . Hence there is a unique curveβhor passing through
vβ(t0) ∈ Pa

β(t0)
, say, called horizontal lift ofβ. In the case of a constant vector field or in the
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case of the solar field this is nothing else but a meridian of the cylinder respectively the cone
Pa|β containingvβ(t0). Letβ(t0) = x for a fixedx ∈ O.

Obviously, a horizontal lift is a geodesic onPa|β equipped with the metricgHorβ , say,
induced by the scalar product< , > on E.

At first let a be a non-vanishing constant. A curveγ onPa|β here is called a periodic lift
of β throughvx iff it is of the form

γ (s) = βhor(s) · ep·s· a
|a| ∈ P

a
β(s) ∀ s

wherep is a fixed real.

Clearly,γ is a horizontal lift throughvx iff γ = βhor, i.e. iff p = 0. In fact any periodic
lift γ of β is a geodesic onPa|β . Henceγ̈ is perpendicular toPa|β . Due to theU(1)-symmetry
of Pa|β , a geodesicσ onPa|β is of the form

σ(s) = βhor(θ · s) · ep·θ ·s· a
|a| ∀ s

as it is easily verified. Herep andθ denote reals.θ determines the speed of the geodesic. Thus
σ andβ have accordant speeds ifθ = 1 (which will be assumed from now on), as can be easily
seen from

γ̇ (0) = p · vx · a

|a| + β̇hor(0)

for t0 = 0. The real numberp determines the spatial frequency of the periodic liftγ due to
2·π
T = p

|vx | . The spatial frequency ofγ counts the number of revolutions aroundPa|β per unit
time and is determined by theFa

x -componentp of the initial velocity due to theU(1)-symmetry
of the cylinderPa|β . We refer top as a momentum.

For the solar fieldX(x) =
(

x,− x
|x|3

)

with x ∈ O, let |x0| = 1 and let a parametrization of

the body of revolutionPa|β be given in Clairaut coordinates via the mapx : U → E defined by

x(u, v) := −m̄ · (3v − 2)
1
3 · r

(

eu· a
|a|
)

·
(

vx + a

|a|

)

on an open setU ⊂ R2. Herer is the representation ofU
a
|a| (1) ontoSO

(

F
a
|a|
)

for anyx ∈ O.

Then a geodesicγ onPa|β takes the form

γ (s) = x(u(s), v(s)) = −m̄ · (3v(s)− 2)
1
3 · r

(

eu(s)· a
|a|
)

·
(

vx + a

|a|

)

where the functionsu andv are determined by

u(s) =
√

2 · arctan

(

s√
2 d

+ c1

2 d

)

+ c2(10)

and v(s) = ±1

3

(

(

1√
2

s + c1

)2
+ d2

)
3
2

+ 2

3
(11)

(cf. [12]) with s in an open intervalI ⊂ R containing 1. Herec1 andc2 are integration constants
determining the initial conditions. Since we are concernedwith a forward movement along the
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channelR · a
|a| , only the positive sign in (11) is of interest. The constantd fixes the slope of the

geodesic via

cosϑ = d
√

(

1√
2
s + c1

)2
+ d2

whereϑ is the constant angle between the geodesicγ , called periodic lift, again, and the parallels
given in Clairaut coordinates. This means thatd vanishes precisely for a meridian. A periodic
lift γ is a horizontal lift ofβ iff γ is a meridian. Thus the parametrization of a meridian as a
horizontal liftβhor of an integral curveβ parametrized as in (5) has the form

βhor(t) = −m̄ · (3t − 2)
1
3 · vx

with βhor(1) = −m̄ · vx as well asβ(1) = −m̄ · x for 2
3 ≤ t < 1 and any initialvx ∈ Pa

β(1).

For the constant vector field from above, any periodic liftγ of β throughvx is uniquely
determined by theUa(1)-valued map

s 7→ ep·s· a
|a| ,

while for the solar field a periodic lift is characterized by

s 7→ eu(s)· a
|a|

with u(s) as in (10). These two maps here are called an elementary periodic function respectively
an elementary Clairaut map. Therefore, we can state:

PROPOSITION2. Let x = β(0). Under the hypothesis that a is a non-zero constant, there
is a one-to-one correspondence between all elementary periodic Ua(1)-valued functions and all
periodic lifts ofβ passing through a givenvx ∈ Pa

x . In case X is the solar field there is a
one-to-one correspondence between all periodic lifts passing through a givenvx ∈ Pa

x and all
elementary Clairaut maps.

An internal variable can be interpreted as a piece of information. Thus the fibresFa
x and

Pa
x can be regarded as a collection of pieces of information atx. The periodic lifts ofβ onPa|β

describe the evolution of information ofPa|β alongβ. This evolution can be further realized by
a circular polarized wave: Let the lift rotate with frequency ν 6= 0. Then a pointw(s; t), say, on
this rotating lift is described by

w(s; t) = |vx | ·
βhor
vx

(s)

|βhor
vx (s)|

· e2πν(t−p·s)· a
|a| ∀s, t ∈ R, s 6= 0(12)

a circular polarized wave on the cylinder with1|p| as speed of the phase and|vx | as amplitude.

w travels alongR · a
|a| , the channel of information. Clearly,Pa|im β is in O × E and not inE.

However,w could be coupled to the spaceE and could be a wave inE traveling alongβ, e.g. as
an electric or magnetic field. More types of waves can be obtained by using the complex line
bundleFa instead of the principal bundlePa, of course.
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7. Representation of the Heisenberg group associated with periodic lifts of β on Pa|β of a
constant vector field

Let a 6= 0 be constant onO andx ∈ im β a fixed vector. There is a unique periodic liftγ of β
passing throughvx = γ (0) with prescribed velocitẏγ (0). At first we will associate witḣγ (0) a
well-defined unitary linear operator on a Hilbert space as follows.

The specification ofvx ∈ Pa
x turnsFa

x into a fieldF̂a
x isomorphic toC, since vx

|vx | ·C = Fa
x .

The real axis isR · vx
|vx | and the imaginary one isR · vx

|vx | × a
|a| . We rename these axes byq-axis

carried by the unit vector̄qx and byp-axis carried by the unit vector̄px, respectively. Clearly,
p̄x = q̄x · j a

x (i ). Any h ∈ Fa
x is thus of the formh = (q, p). The Schwartz space of the real axis

and itsL2- completion are denoted byS(R,C) and L2(R,C), respectively. The Schrödinger
representationρx of Ga

x acts on each complex-valuedψ ∈ S(R,C) ⊂ L2(R,C) by

ρx(z + h)(ψ)(τ) := z · ep·τ ·i · e− 1
2 ·p·q·i · ψ(τ − q) ∀ τ ∈ R(13)

for all z + h ∈ Ga
x with h = (q, p) (cf. [11], [13] and [7]). Clearly,

−p · q · i = ωa
x((0, p), (q, 0)) · i and z = eϑ · a

|a|

for someϑ ∈ R. By the Stone-von Neumann theoremρx is irreducible (cf. [13] and [7]). Setting
q = |vx |, for any p ∈ R, equation (13) turns into

ρx(z + (|vx |, p))(ψ)

(

τ + |vx |
2

)

= z · ep·τ ·i · ψ
(

τ − |vx |
2

)

∀ τ ∈ R.

Operators of this form generateρx(Ga
x), of course. In case 2πν with the frequencyν (justified

by (12)) is different from one, for eachp ∈ R equation (13) turns into

(14) ρν

(

et · a
|a| + (|vx |, p)

)

(ψ)

(

τ + |vx |
2

)

= e2πν·(t−p·τ )·i · ψ
(

τ − |vx |
2

)

for everyτ, t ∈ R.

This shows that 2πν(t − p · s) in the exponent of the factore2πν(t−p·s)·i for s = τ is
characteristic for the circular polarized wave described in (14) and determines the Schrödinger
representation. Thus the geometry on the collectionPa|β of all internal variables alongβ is

directly transfered to the Hilbert spaceL2(R,C) via the Schrödinger representation. Differently
formulated, the Schrödinger representation has a geometric counterpart, namelyPa together
with its geometry, which is, for example, used for holography. The counterpart ofi in quantum
mechanics is the imaginary unita|a| ∈ H.

On the other hand theUa
x (1)-valued functionτ −→ e2πν(t−p·τ )· a

|a| entirely describes the
periodic lift γ , rotating with frequencyν and passing throughvx, as expressed in (13). Thus

the circular polarized wavew is characterized by the unitary linear transformationρν(e
t · a

|a| +
(|vx |, p)) on L2(R,C). Due to the Stone-von Neumann theorem, the equivalence class ofρν is
uniquely determined byν and vice versa. Therefore, we state:

THEOREM 1. Let a be a non-vanishing constant. Any periodic liftγ of β on Pa|β with
initial conditionsγ (0) = vx and momentum p is uniquely characterized by the unitary linear
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transformationρx(1 + (|vx |, p)) of L2(R,C) with (1 + (|vx |, p)) ∈ Ga
x and vice versa. Thus

vx ∈ Pa
x determines a unitary representationρ on L2(R,C) characterizing the collection Cavx

of

all periodic lifts ofβ passing throughvx . The unitary linear transformationρν(e
t · a

|a| +(|vx |, p))
of L2(R,C) characterizes the circular polarized wavew on Pa|im β with frequencyν 6= 0
generated byγ and vice versa. The frequency determines the equivalence class ofρν .

As a consequence we have

COROLLARY 1. The Schrödinger representationρν of Ga
x describes the transport of any

piece of information(|vx |, p) ∈ T(vx,0)P
a|β along the field lineβ, with R · a

|a| as information
transmission channel.

The mechanism by which each geodesic is associated with a Schrödinger representation as
expressed in theorem 1 is generalized for the solar field as follows (cf. [12]): Let O = E\{0}.
Given im β of an integral curveβ, we consider the Heisenberg algebraR · a

|a| ⊕ F
a
|a| equipped

with the symplectic structure determined bya|a| . Now let γ be a geodesic onPa|im β and
ψ ∈ S(R,C). Then the Schrödinger representationρsol of the solar field on the Heisenberg
groupGa

x is given by

ρsol(z, x(s))(ψ)(τ)(s) := z · eu(s)·τ ·i · e− 1
2 ·u(s)·v(s)·i · ψ(τ − v(s))

for all s in the domain ofγ and anyτ ∈ R.

8. Periodic lifts of β on Pa|β , the metaplectic groupMp(Fa
x ) and quantization

Let ρx be given as in (13), meaning that Planck’s constant is set to one. Forvx ∈ Pa
x andγ̇vx (0)

of a periodic liftγvx of β,

γ̇vx (0) = γ̇vx (0)
Fa

x + β̇hor
vx

(0)

is an orthogonal splitting of the velocity ofγvx at 0. Clearly, theFa
x -component ofγ̇vx (0) is

γ̇vx (0)
Fa

x = p · p̄x, wherep is the momentum. Thus the momenta of periodic lifts ofβ passing
throughvx are in a one-to-one correspondence with elements inTvxP

a
x .

Therefore, the collection̄Ca
x of all periodic lifts of β on Pa|β is in a one-to-one corre-

spondence withTPa
x (being diffeomorphic to a cylinder) via a mapf : C̄a

x −→ TPa
x , say.

Let
j : TP

a
x |β −→ Fa

x

be given byj := T j̃ where j̃ : Pa
x −→ Pa

x is the antipodal map. Thus

j (wx, λ) = j (w−x, λ) = λ

for every (wx, λ) ∈ TwxP
a
x with wx ∈ Pa

x and λ ∈ R. Clearly, j is two-to-one. Setting
Ḟa

x = Fa
x \{0}, the map

j ◦ f : C̄a
x −→ Ḟa

x

is two-to-one, turningC̄a
x into a two-fold covering ofḞa

x . j ◦ f describes the correspondence
between periodic lifts in̄Ca

x and their momenta. The symplectic groupSp(Fa
x ) acts transitively

on Fa
x equipped withωa as symplectic structure. Therefore, the metaplectic groupMp(Fa

x ),
which is the two-fold covering ofSp(Fa

x ), acts transitively onTPa
x .
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Thus givenu ∈ Fa
x , there is a smooth map

8 : Sp(Fa
x ) −→ Fa

x

given by8(A) := A(u) for all A ∈ Sp(Fa
x ). Since j ◦ f (uwx ) = j ◦ f (u wx ) for all uwx ∈

TPa|β(0), the map8 lifts smoothly to

8̃ : Mp(Fa
x ) −→ C̄a

x

such that
( j ◦ f ) ◦ 8̃ = p̃r ◦8

wherep̃r : Mp(Fa
x ) −→ Sp(Fa

x ) is the covering map. Clearly, the orbit ofMp(Fa
x ) on C̄a

x is
all of C̄a

x , andMp(Fa
x ) acts onFa

x with a one-dimensional stabilizing group (cf. [14]). Now let
us sketch the link between this observation and the quantization on R. Sp(Fa

x ) operates as an
automorphism group on the Heisenberg groupGa

x (leaving the centre fixed) via

A(z + h) = z + A(h) ∀ z + h ∈ Ga
x .

Any A ∈ Sp(Fa
x ) determines the irreducible unitary representationρA defined by

ρA(z + h) := ρx(z + A(h)) ∀ (z + h) ∈ Ga
x.

Due to the Stone-von Neumann theorem it must be equivalent toρx itself, meaning that
there is an intertwining unitary operatorUA on L2(R,C), determined up to a complex number of
absolute value one inCa

x , such thatρA = UA ◦ρ ◦U−1
A andUA1 ◦UA2 = coc(A1, A2) ·UA1◦A2

for all A1, A2 ∈ Sp(Fa
x ). Here coc is a cocycle with valuecoc(A1, A2) ∈ C\{0}. Thus

U is a projective representation ofSp(Fa
x ) and hence lifts to a representationW of Mp(Fa

x ).
Since the Lie algebra ofMp(Fa

x ) is isomorphic to the Poisson algebra of homogenous quadratic
polynomials,dW provides the quantization procedure of quadratic homogeneous polynomials on
R and moreover describes the transport of information inPa along the field lineβ, as described
in [4].
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