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NATURAL MICROSTRUCTURES ASSOCIATED WITH
SINGULARITY FREE GRADIENT FIELDS IN THREE-SPACE
AND QUANTIZATION

Abstract.

Any singularity free vector fieldX defined on an open set in a three-dimen-
sional Euclidean space with cud = 0 admits a complex line bundE2 with a
fibre-wise defined symplectic structure, a principal burfdfeand a Heisenberg
group bundleG2. For the non-vanishing constant vector fidddhe geometry of
P2 defines for each frequency a Schrodinger representati@nyfibre of the
Heisenberg group bundle and in turn a quantization proeefhurhomogeneous
quadratic polynomials on the real line.

1. Introduction

In [2] we described microstructures on a deformable mediyra principal bundle on the body
manifold. The microstructure at a point of the body manifiddencoded by the fibre over it,
i.e. the collection of all internal variables at the poinh€eTstructure group expresses the internal
symmetries.

In these notes we will show that each singularity free gratdield defined on an open set
of the Euclidean space hides a natural microstructure. fbetare group idJ (1).

If the vector fieldX is a gradient field with a nowhere vanishing principal @arsay, then
there are natural bundles over such as a complex line bundE? with a fibre-wise defined
symplectic formw?, a Heisenberg group bund®&? and a four-dimensional principal bundi®
with structure groupJ (1). (Fibres overO are indicated by a lower index) For anyx € O the
fibre F2 is the orthogonal complement afx) formed inE and encodes internal variablescat
It is, moreover, identified as a coadjoint orbit®§. The principal bundlé”2, a subbundle of
the fibre bundleF2, is equipped with a natural connection fosfi, encoding the vector field in
terms of the geometry of the local level surfaces: The fi¢lchn be reconstructed froaf. The
collection of all internal variables provides all tangeattors to all locally given level surfaces.
The curvatureR? of o describes the geometry of the level surfaces of the grafiedtn terms
of »® and the Gaussian curvature.

There is a natural link between this sort of microstructund guantum mechanics. To
demonstrate the mechanism we have in mind, the principthpdrthe vector fieldX is assumed
to be constant (for simplicity only). Thus the integral eesyi.e. the field lines, are straight lines.
Fixing somex € O and a solution curvg passing througlt € O, we consider the collection of
all geodesics on the restriction of the principal burffeto 8. Each of these geodesics with the
same speed is called a periodic lift®and passes through a common initial paigte P2, say.

If the periodic lifts rotate in time, circular polarized wesare established. Hence the integral
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curveg is accompanied by circular polarized wavesffof arbitrarily given frequencies. This
collection of periodic lifts ofg defines unitary representatiops of the Heisenberg grou@,
the Schrodinger representations (cf. [11] and [13]). Tiegdencies of the polarized waves
correspond to the equivalence classep,oflue to the theorem of Stone-von Neumann.

The automorphism group @ is the symplectic grougp(F2) of the symplectic complex
line F&. Therefore, the representatipa of G2 yields a projective representation 8fx F2),
due to the theorem of Stone-von Neumann again. This pregeotipresentation is resolved to
a unitary representatiow of the metaplectic group p(F2) in the usual way. Its infinitesimal
representatiod W of the Lie algebranp(F2) of Mp(FZ) yields the quantization procedure for
all homogeneous quadratic polynomials defined on the neal Df course, this is in analogy to
the quantization procedure emanating from the quadraticoagmation in optics.

2. The complex line bundle associated with a singularity fre gradient field in Euclidean
space

Let O be an open subset not containing the zero vector 0 in a thineendional orientedR-
vector spaceé with scalar produck , >. The orientation on the Euclidean spd€eshall be
represented by the Euclidean volume fqum.

Our setting relies on a smooth, singularity free vector fieldO — O x E with principal
parta: O — E, say. We shall frequently identifi{ with its principal part.

Moreover, letH := R - e ® E be the skew field of quaternions wheres the multiplicative
unit element. The scalar produet , > and the orientation oit extend to all ofH such
thate € H is a unit vector and the above splitting Bf is orthogonal. The unit sphers?’,
i.e. Spin(E), is naturally isomorphic t&U(2) and coversS O(E) twice (cf. [8] and [9]).

Given anyx € O, the orthogonal complemeig of a(x) € E is a complex line as can be
seen from the following: Le€2 ¢ H be the orthogonal complement Bf. Hence the field of
quaterniond splits orthogonally into

@ H=C§eoFg.
As itis easily observed,
a(x)
C&=R-epR-
X lax)|

is a commutative subfield df naturally isomorphic t& due to

2
(a(x)) =—e VxeO,

[a(x)|

where| - | denotes the norm defined By, >. This isomorphism shall be called
j2:.Cc— C8;

it maps 1 toe andi to |gf§§\' The multiplicative group on the unit circle @2 is denoted by
U2(1). Itis a subgroup oSU(2) ¢ H and hence a group of spins. Obviousli) generates
the Lie algebra ol 2(1).

F&is aC&-linear space under the (right) multiplicationlifand hence &-linear space, a
complex line. MoreoverH is the Clifford algebra of¢ equipped with— <, > (cf. [9]).

The topological subspadg? := Jycof{X} x FZ of O x E is aC-vector subbundle of
O x E, if curl X = 0, as can easily be seen. In this c&Skis a complex line bundle (cf. [15]),
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the complex line bundle associated wkh Let p : F& — O be its projection. Accordingly
there is a bundle of field§2 — O with fibre C2 at eactx € O. Clearly,

OxH=C2x F2

as vector bundles oved. Of course, the bundlE® — O can be regarded as the pull-back of
T & via the Gauss map assigni i Q‘ toanyx € O.

We, therefore, assume that cul = 0 from now on. Due to this assumption there is a
locally given real-valued functio, a potential ofa, such thata = grad V. Each (locally
given) level surfac& of V obviously satisfie§ S= F3|s. HereF?3|g = [ Jys{X} x FZ. Each

fibre F2 of F2is oriented by its Euclidean volume folimy 1 ‘= ug (%, e ) For
Tal

any level surface the scalar product yields a Riemannianierggt on S given by

gs(X; vx, wx) = < vy, wx > ¥VXxe O and VYux, wx € TxS.

For any vector fieldy on S, anyx € O and anyvyx € TxS, the covariant derivativé/ S of
Levi-Civita determined byg satisfies

VoY) = dY(x vx) + < Y(X), Wa(vy) > .

HereWg : TxS — TxSis the Weingarten map d assigning to eaclvx € Tx S the vector
d% (X; wy), the differential of% at x evaluated atvx. The Riemannian curvature of vS at
anyx is expressed by the well-known equation of Gauss as
(2 RO vx, wx.Ux, Yx) = < We(wx), Ux > - < W (vx), Yx >

— < W8(vx), ux > - < W (wx), Yx >

for any choice of the vectons,, wy, Ux, Yx € TxS.

A simple but fundamental observation in our setting is ttethefioreF2 ¢ F2 carries a
natural symplectic structue? defined by

o?(x;h, k) ;= <hxaXx),k>=<h-aX),k> vh ke F2,

wherex is the cross product, here being identical with the produ@t.iln the context of-2 as
a complex line we may write

0?(x; hg, hy) = ja(X)|- < hg-i,hy > .

This is due to the fact that anda(x) are perpendicular elementsn The bundleF2 is fibre-
wise oriented by-w?. In factew? extends on all oE by setting

o?(X;y,2) ;=< yxaXx),z>

for all y,z € E; itis not a symplectic structure 0®, of course. Letc(x) := detwg for all
X € S, the Gaussian curvature 8f Providedvy, wx is an orthonormal basis dk S, the relation
between the Riemannian curvatiReandw is given by

Kk (X)
[a(x)]

R(X; vx, wx.Ux, Yx) = 'wa(xi Ux, Yx)

for everyx € Sanduy, yx € TxS= F2.
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3. The natural principal bundle P2 associated withX

We recall that the singularity free vector fiexdon O has the formX = (id, a). Let P2 c Fg
1
be the circle centred at zero with radiagx)|™ 2 for anyx € O. Then

P = | (x} x P§
xeO

equipped with the topology induced B is a four-dimensional fibre-wise oriented submanifold

of F&. It inherits its smooth fibre-wise orientation froRf'. Moreover, P2 is aU (1)-principal

bundle.U (1) acts from the right on the fibrBg of P2 via j2|y (1) : U(1) — UZ(D) for any

x € O. This operation is fibre-wise orientation preserving. Téason for choosing the radius
1

of PZ to beja(x)|~ 2 will be made apparent below.

Both F& and P2 encode collections of internal variables ov@rand both are constructed
out of X, of course. Clearly, the vector bundfé is associated wit#®2.

The vector fieldX can be reconstructed out of the smooth, fibre-wise orientigtipal
bundleP? as follows: For eackx € O the fibrePZ is a circle inF& centred at zero. The
orientation of this circle yields an orientation of the agional complement oF2 formed in
E, the direction of the field ax. Hencela(x)| is determined by the radius of the circig.
Therefore, the vector fieldl admits a characteristic geometric object, namely the smdibtre-
wise oriented principal bundi®2 on which all properties oK can be reformulated in geometric
terms. Vice versa, all geometric properties?f reflect characteristics af. The fibre-wise
orientation can be implemented in a more elegant way bydotimg a connection formy?2,
say, which is in fact much more powerful. This will be our neagk. SinceP? c O x E, any
tangent vectot € T, P2 can be represented as a quadruple

&= (X, vx,h,0,) e OXE xE x E

forx € O, vx € P;'Z‘ andh, ¢,, € E C H with the following restrictions, expressing the fact that
£ is tangent tgP?2:

Given a curver = (o1, o2) onP2 with 4(s) € O ando,(s) € 7331(5) for all s, then
<05(9),a(01(8) >= 0 and |o2(9)% = SV
2 = 2 la(o1(9)] '
Each¢ € T,, P2 given bys = o2 (0) is expressed as
ax) Ux vx X a(x)
=rq- +ro. — A
CT R0l T o T ol Aol
with
a [vx| )
r=—<Wg(x),h> |, r2=—7-dln|a|(x, h)

and a free parametere R. The Weingarten mag/g is of the form
da(x; k) = |a(x)| -W;'("(k) +a(x) -dInja|(x; k) Vxe O, YkeE,
where we seWg(a(x)) = 0 for all x € O. With these preparations we define the one-form

«?: TP SR
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for eacht e TP2 with & = (x, vx, h, ¢) to be
3) a®(vx, & i=<wvx xaX),¢ >.

One easily shows that? is a connection form (cf. [10] and for the field theoretic agij&]). To
match the requirement of a connection form in this metritirsgt the size of the radius g2
is crucial for anyx € O. The negative of the connection form @&f is in accordance with the
smooth fibre-wise orientation, of course.

Thus the principal bundI®? together with the connection foraf characterizes the vector
field X, and vice versa. To determine the curvat@® which is defined to be the exterior
covariant derivative of?2, the horizontal bundles ifi?2 will be characterized. Giveny € P2,
the horizontal subspadeor,, c TP?is defined by

Hory, = ker a®(vy; ...).

A vector&,, € Hor,,, being orthogonal tox x a(x), has the forn(x, vx, h, ghor) e OxEx
E x E whereh varies inO and¢"°" satisfies

209 _ Il g1 jajoc by - 2

hor a
=— <Wo(vx),h>-
¢ x (¥ a2 o]

SinceTpr® : Hor,, — TxO is an isomorphism for anyx € P&, dim Hor,, = 3 for all
vx € P2 and for allx € O. The collectionHor ¢ TP? of all horizontal subspaces in the
tangent bundld P2 inherits a vector bundle structufeP?.

The exterior covariant derivativd°" o2 is defined by
d"%a® vy, 9. £1) = daP(vx: £5°7, £1°T)

for every&g, &1 € T, P2, vx € PZ andx € O.

The curvatureQ? = d"° 42 of o2 is sensitive in particular to the geometry of the (locally
given) level surfaces, as is easily verified by using equa®):

PrRopPOSITIONL. Let X be a smooth, singularity free vector field on O with ppatpart
a. The curvatureR? of the connection form? is
08 — K P
|al
wherex : O — R is the leaf-wise defined Gaussian curvature on the foliatib©® given
by the collection of all level surfaces of the locally det@ved potential V. The curvatur@?
vanishes along field lines of X.

The fact that the curvatui®? vanishes along field lines plays a crucial role in our sethup.
will allow us to establish (on a simple model) the relatiotvEen the transmission of internal
variables along field lines ok and the quantization of homogeneous quadratic polynoroials
the real line.

4. Two examples

If we consider specific vector fields in these notes, we witiaantrate on the two types presented
in more detail in this section. At first let us regard a constactor fieldX on O c E\{0} with
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a principal part having the non-zero valae= E for all x € O. Obviously the principal bundle
Pajs trivial, i.e.
Pa =0 x U31).

Since an integral curvg of X is a straight line segment parametrized by
Bt)=t-a+xy with B(tg) = Xg,

the restrictiorP2|ip, g of P2 to the imagam g is a cylinder with radiu$a|’%.

As the second type of example of a principal bun@fé associated with a singularity free
vector field let us consider a central symmetric fidd= grad V5o on E\{0O} with the only
singularity at the origin. The potenti&k) is given by

m
Vsol(X) = —m VxeO

wherem is a positive real. This potential governs planetary matiand hence graisg is
called the solar field here. The principal panf the gradient field is

4) grad Vsel(x) = —ﬂz X wxeE\(O).
x| IX]

For reasons of simplicity we illustrate from a longitudipaiint of view the principal bundi@®?
associated with the gradient field. An integral cupvpassing througlx at the timetg = 1 is of
the form

) Bt)=—m-B-t—23.x  for §<t<oo.

Hence the (trivial) principal bundi®?|im g is a cone. The radiusof a circleP§ with x € im
isr = XL
isr = NG for all x € O (cf. [12]).

5. Heisenberg group bundles associated with the singulasitfree vector field and curves
and the solar field

Associated with thé2 + 1)-splitting of the Euclidean spade caused by the vector field there
is a natural Heisenberg group bun@é with »? as symplectic form. The bund@? allows us
to reconstrucX as well. Heisenberg groups play a central role in signalrthézs. [13], [14]).
We essentially restrict us to the two types of examples ptesan the previous section.

Givenx € O, the vectora(x) # 0 determined=2 with the symplectic structure®®) and
C% which decomposel according to (1).

1
The submanifoldGg := |a(x)|”2 - e- U & FZ of H carries the Heisenberg group
structure the (non-commutative) multiplication of whishdefined by

1 . a
6) (z+h)-(Z2+hy)i=lax)| 2 217, €2 %MD G Ly 4,

for any twozy, zp € |a(x)|’% -e-U&(1) and any paihq, hy € F2 (cf. [12]). The (commutative)
multiplication in the centrea(x)|% -e-UZ(1) of G& is given by adding angles. The reason

the centre has radiug(x)|~ 2 is the length scale off for anyx € O. The group bundle
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1
Uxeo{X} x [a(x)|~ 2 -e-UZ(1), which is the collection of all centres, is associated Withand
forms a natural torus bundle together wii. The collection

G2 = U {x} x G&
xeO

can be made into a group bundle which is associated with theipal bundleP?, too. Clearly
F2 c G2 as fibre bundles. In the cases of a constant vector field ansbthefield the Heisen-
berg group bundle along field lines is trivial.

X]
m

1 1 1
In particular,a in (6) takes the valueg(x)|”2 = |a|” 2 andja(x)|” 2 = ‘= forallx € O
in the cases of the constant vector field respectively thar $ield.
The Lie algebraz2 of G¢ is

a

G&:=R.- —F2
X |a| X
together with the operation
a a a
M -— +hy v —+ hz] = o0?(x;h1. hy) - —
[ |al |al |al

for any #1, 9 € R and anyh;, h, € FZ. The exponential map ey ! g8 — G%is
surjective. ObviouslyX can be reconstructed from bo@? and G2. The coadjoint orbit of
Ad?" passing through o - & +hi > GF with 9 £ 0isv - & @ F2.

In this context we will study the solar field next (cf. [12])t first let us see how it emanates
from Keppler's laws of circular planetary motion. Suppesis a closed planetary orbit iB\ {0}
defined on all oRR; it liesin a pIaner/, say, withb’ € E\{0}, due to Keppler's second law. Let
o be acircle of radius. It is generated by a one-parameter grguip SO(FP) with generator
b, say, yielding

o) =P vteR.
Hence

§=b"-9o=—IpP-¢.
This generator, a skew linear map so(FP), is identified with a vector irE in the obvious
way. The invariant norms osno(Fb) are positive real multiples of the trace norm, and hence on
so(Fb) the generator has a norm

Ib]|> = =G'?- trb? = G- |bj?
for some positive real numb&’ and a fixed constantb||.
The time of revolutionT := ng_l is determined by Keppler's third law which states
©) T2 =r3. const

Therefores of ¢ := ¢ - Xg with |Xg| = r has the form

b em
G2 Is1? sl
with G2 = G=1.r3 andm := ||b||? as solar mass. This is the reason whywith principal

part gradVsg here is called the solar field. Newton’s field of gravitatiocludes the mass of
the planet, which is not involved here.
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Next let us point out a consequence of the comparison of the7é6|,3 embedded intg¢
for a fixedx € im B, but shifted forward such that its vertex is incOE, with the coneCy; of
a Minkowski metricg,’c\llI ongGa. The metricg,’c\llI relies on the following observation: Up to the
choice of a positive constant there is a natural Minkowski metric dfi inherited from squaring
any quaterniork = A - e + u with A € R andu e E since thee-componenik?)e of k2 is

—(K%e = (lu? —2%) - e= (b? - Kd)e

with b e S2. Introducing the positive constant the Minkowski metricgf(‘,| on G& mentioned
above is pulled back tg2 by the right multiplication with% and reads

g (h1.hp) ;=<ug,up > —C- A1 A

a
for anyhy € F1al represented bliy = Ay - \%I + ur forr = 1, 2. The respective interior angles

9% andgc,, which the meridians ofP iy, g andCy form with the axisR - % satisfy

1
2

1
tang® =m~2 and tamyc, = -

and

m-cZ2=G"1.coyp?. cotz(pcM,
providedm := % This is a geometric basis to derive within our settthg= m- c? from special
relativity (cf. [12]).

Now we will study planetary motions in terms of Heisenbergebkas. In particular we
will deduce Keppler's laws from the solar field by means of sobgmphic principle (we will
make this terminology precise below). To this end we firstdbe natural Heisenberg algebras
associated with each time derivative of a smooth injectiv@eo in O defined on an interval
I C R. Foranyt € | then-th derivatives (M (1), assumed to be different from zero, defines a
Heisenberg algebra bund®™ for n = 0, 1. . . with fibre

n ._ n (n)
Gory =R-c™ O @ F 1)
where Fg('g) = oM t)L (formed inE) with the symplectic structure™ defined by

oM@ t):h,hy) = <hixo®),hy>  VYhyhye F;r(‘g).

Here F (™ is the complex line bundle alorign o for which F™. := &™) for eacht. The

o(t) *
. . o)
two-forms »™ are extended to all 0® by lettinghy andhs vary also inR - IZ(:>E8|

; () Q) ;
t € 1. The Heisenberg algeb&}r(t) o (to) for a giventg € |, anyt
and anyn for whicho ™ (t) # 0.

As a subbundle of ™ we construc®®™ ¢ F™M which constitutes of the circlé@((;g) c

for all

is naturally isomorphic tg;

Fér('z) with radius|o (M (t)|’%. OnF ™M the curves admits an analogue™ of the one-formx?
described in (3), determined by

(W) =<o®) xo®®),h>  VYheF()
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for anyt. Since the Heisenberg algebra bundle evolves @ém we may ask howt (™ evolves
alonga, in particular fora™. The evolution ofx(™ can be expressed in termsaf™ defined
by

aWo);h = %a“‘)(a(t); h) —a™ @G (), h)

= <o®)xo™Dt),h> vhe Fér(]t))'

A slightly more informative form forr is

dPemih =o@Em:om.h)  YheF{

Thus the evolution of» alongo is governed by the Heisenberg algebed®, yielding in
particular
a® = const. iff ox&5=0meaning izo® =0.

HenceaD = const. is the analogue of Keppler’s second law. In this dasejtiaterniorb :=
o x ¢ is constant and heneeis in the planeF C E perpendicular td. ThusR - b x FPisa
Heisenberg algebra with

wP(hy,hp) ;=< hy xb,hp>  ¥hy hye FP

as symplectic form o 2. Hence the planetary motion can be described in only onesHeésg
algebra, namely i, which is caused by the angular momentbpof course. We havé =
f - o for some smooth real-valued function defined along a planetary motien implying

2 -
0@ = f. % - w?. In caser is a circle, f is identical with the constant map with valtf;&l,
due to the third Kepplerian law (cf. equation (7)). This naates us to set

2
(8) Yoty = gf;‘(t) vt

along any closed planetary motienwhich hence impliess® = w2 alongo. In turn one
obtains

9) (1) = gradVsei(o (1)) Vi,

a well-known equation from Newton implying Keppler's lawsquation (9) is derived from a
holographic principle in the sense that equation (8) stasgghe oriented circle (5?3 matches

®
the oriented circle o‘P?(t) at anyt.

6. Horizontal and periodic lifts of 8

Since, in generalR? £ 0, the horizontal distribution iff P2 does not need to be integrable
along level surfaces. Howeve? vanishes along field lines and thus the horizontal distidiout
is integrable along these curves. Let us Iool@éﬂﬂ whereg is a field line of the singularity
free vector fieldX.

A horizontal lift of 4 is a curveg"®" in Horg = kera? which satisfiesTpr2gh®" = 4

and obeys an initial condition iﬁl’Pa“g. Hence there is a unique curyﬁé“’r passing through
Vg(to) € Pg(to), say, called horizontal lift of. In the case of a constant vector field or in the
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case of the solar field this is nothing else but a meridian efaylinder respectively the cone
P24 containingug ty). Let B(tp) = x for a fixedx € O.

Obviously, a horizontal lift is a geodesic dﬁa|,3 equipped with the metrigHorﬁ, say,
induced by the scalar produet, > onE.

At first let a be a non-vanishing constant. A curveon Pa|ﬂ here is called a periodic lift
of B throughvy iff it is of the form

.q. &
y(© = "5 PVH P Vs

wherep is a fixed real.

Clearly, y is a horizontal lift throughvy iff y = ﬂhf’r, i.e. iff p = 0. In fact any periodic
lift ¥ of B is a geodesic o®?|g. Hencey is perpendicular t@2|g. Due to theJ (1)-symmetry
of P2|g, a geodesie onP?|4 is of the form

o(s) = N (9. 5) . PP T

Vs

as it is easily verified. Herp and6 denote realsd determines the speed of the geodesic. Thus
o and B have accordant speedsif= 1 (which will be assumed from now on), as can be easily
seen from

. a .
7O =pvx o+ O

for tg = 0. The real numbep determines the spatial frequency of the periodicjlifdue to

Z'T” = \v_pxl The spatial frequency af counts the number of revolutions aI’OUﬁ&hg per unit

time and is determined by tH&2-componentp of the initial velocity due to th&) (1)-symmetry
of the cyIinder’Pa|ﬂ. We refer top as a momentum.

For the solar fieldX (x) = (x, —#) with x € O, let|xg| = 1 and let a parametrization of

the body of revolutiori'?ahg be given in Clairaut coordinates via the mapl/ — E defined by
al

X(U, v) = —M- (v —2)3 -1 (e“'%) . (vx 4 i)

a a
on an open sé C R2. Herer is the representation &f 7/ (1) ontoSO(F W) foranyx € O.
Then a geodesig on Pa|ﬂ takes the form

y(9) = X(U(S), v(S) = —m-(3u(S) —2)3-r (e“@)'%) . (vx n %)

where the functions andv are determined by

_ . s 4
(10) us) = 2 arctan( ﬁd+2 d>+cz
3
1(/1 2 o\% 2
(12) and v(s) = i§ (<ﬁs+c1> +d) +§

(cf. [12]) with sin an open interval C R containing 1. Here; andcy are integration constants
determining the initial conditions. Since we are concemwét a forward movement along the
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channelR - \%I’ only the positive sign in (11) is of interest. The constéfixes the slope of the
geodesic via
d
cosy = >
L 2
( s+ &) +d

where? is the constant angle between the geodgsitalled periodic lift, again, and the parallels
given in Clairaut coordinates. This means tHatanishes precisely for a meridian. A periodic
lift y is a horizontal lift of 8 iff y is a meridian. Thus the parametrization of a meridian as a
horizontal IiftﬂhOIr of an integral curvgs parametrized as in (5) has the form

BTty = —m - (3t —2)3 - vy

with gNOT(1) = —rh - vy as well asB(1) = —m - x for % <t < land any initiahyx € Pg(l).

For the constant vector field from above, any periodicjlifof 8 throughvy is uniquely
determined by th& &(1)-valued map

a
s> eP ST,

while for the solar field a periodic lift is characterized by

a
s> O

with u(s) as in (10). These two maps here are called an elementandpefimction respectively
an elementary Clairaut map. Therefore, we can state:

PrRoPOSITION2. Let x = 8(0). Under the hypothesis that a is a non-zero constant, there
is a one-to-one correspondence between all elementarggiierd?(1)-valued functions and all
periodic lifts of 8 passing through a giveny € P&. In case X is the solar field there is a
one-to-one correspondence between all periodic lifts ipasthrough a givery € P& and all
elementary Clairaut maps.

An internal variable can be interpreted as a piece of infdiona Thus the fibres=2 and
P2 can be regarded as a collection of pieces of information @he periodic lifts ofg on Pa|,3
describe the evolution of information @fa“g alongp. This evolution can be further realized by
a circular polarized wave: Let the lift rotate with frequgnc 0. Then a pointu(s; t), say, on
this rotating lift is described by

hor
S —p.s)2&
(12) w(s; t) = |vx| P ©  2rve-poE yorer, s#£0

1B (9]

a circular polarized wave on the cylinder Wif—& as speed of the phase angl| as amplitude.

w travels alongR - \%I’ the channel of information. Clearlf;2|im g isin O x E and not inE.
However,w could be coupled to the spa&eand could be a wave i& traveling alongs, e.g. as
an electric or magnetic field. More types of waves can be nbthby using the complex line

bundleF?2 instead of the principal bundg2, of course.
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7. Representation of the Heisenberg group associated withepodic lifts of 8 on Palﬂ of a
constant vector field

Leta # 0 be constant o® andx € im 8 a fixed vector. There is a unique periodic liftof 8
passing throughk = y (0) with prescribed velocity (0). At first we will associate withy (0) a
well-defined unitary linear operator on a Hilbert space #evics.

The specification ofx € P2 turnsFg into afield Fa isomorphic toC, sincer;

-C=Fg.
[ox]
The real axis iR - ‘le and the imaginary one R - | ‘ \al We rename these axes tpaxis
carried by the unit vectafix and by p-axis carried by the unit vectquy, respectively. Clearly,
Px = Gx - j&(@). Any h € F&is thus of the formh = (g, p). The Schwartz space of the real axis
and itsL2- completion are denoted hy(R, C) and L2(R, C), respectively. The Schrodinger

representatiopy of G2 acts on each complex-valugde S(R, C) C LZ(R, C) by

(13) px@+h@)(r)=2z-eP™ . e72 P y(z —q) VreR
forall z+ h € G& with h = (g, p) (cf. [11], [13] and [7]). Clearly,

—p-q-i =wd(©,p),(@O)-i and z=& T
for somes € R. By the Stone-von Neumann theoresnis irreducible (cf. [13] and [7]). Setting
g = |vx|, for any p € R, equation (13) turns into

px(2+ (lvx], PH) <f + %) _z.ePTy (f - %) VreR.
Operators of this form generapg (G2), of course. In cases2 with the frequency (justified
by (12)) is different from one, for eagh € R equation (13) turns into

(14) pv(et'%+(|vx|,p))<¢)(r 'X'> ez””“’p”'*p( |U_2X|)

for everyz,t € R.

This shows that 2v(t — p - s) in the exponent of the fact@®™ V=P for s = 7 is
characteristic for the circular polarized wave describe@lid) and determines the Schrodinger
representation. Thus the geometry on the coIIec‘IRﬁ‘rhﬂ of all internal variables alon@ is
directly transfered to the Hilbert spat&(R, C) via the Schrodinger representation. Differently
formulated, the Schrodinger representation has a geaneetunterpart, namelyP? together
with its geometry, which is, for example, used for holognaphhe counterpart df in quantum
mechanics is the imaginary uq% e H.

a
On the other hand the2(1)-valued functionr — V=Pl entirely describes the

periodic lift y, rotating with frequency and passing throughy, as expressed in (13) Thus
the circular polarized wave is characterized by the unitary linear transformat,ume Tl +
(Jvx|, p)) on LZ(R, C). Due to the Stone-von Neumann theorem, the equivalencs afas is
uniquely determined by and vice versa. Therefore, we state:

THEOREM 1. Let a be a non-vanishing constant. Any periodic Jifof 8 on Palﬁ with
initial conditionsy (0) = vx and momentum p is uniquely characterized by the unitaratine
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transformationpyx (1 + (Jux|, p)) of L2(R, C) with (1 + (lvx], p)) € G2 and vice versa. Thus
vx € P2 determines a unitary representatipron L2(R, C) characterizing the collection g; of

a
all periodic lifts of 8 passing throughyy. The unitary linear transformatiopv(et'@ +(vx|, p)
of L2(R, C) characterizes the circular polarized wave on P2|in, g With frequencyv # 0
generated by and vice versa. The frequency determines the equivaleass afp,, .

As a consequence we have

COROLLARY 1. The Schrodinger representatign of GS describes the transport of any
piece of information(|vx|, p) € T(Ux,o)Palﬂ along the field lines, with R - % as information
transmission channel.

The mechanism by which each geodesic is associated withradober representation as
expressed in theorem 1 is generalized for the solar fieldlebsv® (cf. [12]): Let O = E\{0}.
a
Givenim B of an integral curve8, we consider the Heisenberg algema%l @ FTal equipped
with the symplectic structure determined l@f Now let y be a geodesic 02|y, g and

¥ € S(R,C). Then the Schrddinger representatjayy of the solar field on the Heisenberg
groupG# is given by

Psol(Z. XS (W)(1)(S) 1= 2 MO TT . g2 U VST .y (7 _ ()

for all sin the domain ofy and anyr € R.

8. Periodic lifts of 8 on Palﬂ, the metaplectic groupMp(F2) and quantization

Let px be given as in (13), meaning that Planck’s constant is seté¢o Borvx € PZ andyy, (0)
of a periodic lifty,, of g,

. . a 5

Yux (0) = 1y (O FX + BhOT(0)
is an orthogonal splitting of the velocity gf,, at 0. Clearly, theF&-component ofy,, (0) is
Yo (0) R = p - Px, wherep is the momentum. Thus the momenta of periodic liftggfassing
throughvy are in a one-to-one correspondence with elements, i®g.

Therefore, the collectiog of all periodic lifts of 8 on P2 is in a one-to-one corre-
spondence witlr P (being diffeomorphic to a cylinder) via a map : C& — TPZ, say.
Let

j i TPRlp — F
be given byj := T | wherej : P& — P2 is the antipodal map. Thus
Jwx, &) = j(w—x, 2) = 1

for every (wy, A) € Ty, Pg with wx € PZ andi € R. Clearly, j is two-to-one. Setting
F2 = F2\{0}, the map

jof:C8— F2
is two-to-one, turning=g into a two-fold covering oﬂf)?. j o f describes the correspondence
between periodic lifts if€2 and their momenta. The symplectic groBp(F2) acts transitively
on F2 equipped withw? as symplectic structure. Therefore, the metaplectic gidygiF2),
which is the two-fold covering o8 p(F), acts transitively ol PZ.
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Thus giveru € F2, there is a smooth map
®:SpFY) — FL

given by®(A) := A(u) for all A € Sp(F)?). Sincej o f(Uyy) = j o f(u_y,) forall uy, €
TP?|4(0), the mapd lifts smoothly to

®: Mp(F3) — C2

such that
(jof)od =prod

wherepr : Mp(F&) — Sp(F2) is the covering map. Clearly, the orbit Mp(F2) on C2 is
all of C&, andMp(F&) acts onF with a one-dimensional stabilizing group (cf. [14]). Novt le
us sketch the link between this observation and the qudinizcan R. Sp(F&) operates as an
automorphism group on the Heisenberg gr@gh(leaving the centre fixed) via

Az+hy=z4+AMh) Vz+heGa
Any A € Sp(F2) determines the irreducible unitary representatigndefined by
pPA(Z+h) = px(z+ A(h)  V(z+h) eG§.

Due to the Stone-von Neumann theorem it must be equivalepy ttself, meaning that
there is an intertwining unitary operatdm on L2(R, C), determined up to a complex number of
absolute value one i6&, such thajpp = Upopo U;l andUp; oUpa, = COO(A1, Az)-Uponp,
for all Az, Ay € SPF®). Herecocis a cocycle with valueodAy, Ap) € C\{0}. Thus
U is a projective representation &fp(FZ) and hence lifts to a representatigv of Mp(F2).
Since the Lie algebra d¥lp(F) is isomorphic to the Poisson algebra of homogenous quadrati
polynomials,d W provides the quantization procedure of quadratic homaggpolynomials on
R and moreover describes the transport of informatioR$nalong the field lings, as described
in [4].
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