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MEDIA WITH MICROSTRUCTURES AND
THERMODYNAMICS FROM A MATHEMATICAL
POINT OF VIEW

Abstract. Based on the notion of continua with microstructures weoithiice the
notion of microstructures on discrete bodies. Using théogyawith of differential
forms on discrete media we develop the discrete virtual veortt the thermody-
namics in the sense of Caratheodory.

1. Continua with microstructures

Let B be a medium, i.e. a three dimensional compact, differeletiatanifold with boundary. In
the case of classical continuum mechanics this medium iggthtdo be moving and deforming in
R3. A configuration is then a smooth embedditg B — R3. The configuration space is then
either&(B, R3), the collection of all smooth embeddings frdgninto R3, a Fréchet manifold,
or, for physical reasons, a subsetB, ]R3) which we denote bgonf (B, R3). This classical
setting can be generalized to media with microstructures.

A mediumB with microstructure is thought as a medium whose points raeenal degrees

of freedom. Such a medium was recently modelled by a spedgifiadipal bundleP % B with
structure grougH, a compact Lie group ([3])

Accordingly the mediumB with microstructure is thought to be moving and deforming
in the ambient spacE3 with microstructure, which is modelled by another specifieidcipal

bundleQ £ R3, with structure groufs, a Lie group containingd. A configuration is then a
smooth,H-equivariant, fibre preserving embeddi®dg P — Q, i.e.

&(p,h)y=d(p)-h, VpeP, VheH.
The configuration space is then eit&(P, Q), i.e. the collection of all these~ configurations,
or again for physical reasor@onf (P, Q), a subset o€ (P, Q). Clearly any® e £(P, Q)
determines somé € £(B, R3) by

() = (®(p), VpeP.
The mapr, : £(P, Q) — £(B,R3) given by
Te(P)((P) = w(P(P), ¥ pe P, VO e E(P,Q),

is not surjective in general. For the sake of simplicity weumse in the following thatr; is
surjective. Given two configurations,, ®, in n;l(CD) c E(P,Q) for ® € £(B, R3), there
exists a smooth ma§: P — G, called gauge transformation, such that

d1(p) = D2(p) - G(P), Y pe P.
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Moreover,§ satisfies
gp-hy=h"1.§(p)-h, Vpe P, VheH.

The colIectionG'l;| of all gauge transformatior§form a group, the so-called gauge group.

The gauge grouﬁ;E is a smooth Fréchet manifold. In fa€(P, Q) is a principal bundle
over&(B, R3) with GH as structure group.

2. Discrete systems with microstructures

In the following we show how the notion of media with micrastture dealed with above in the
continuum case can be introduced in the discrete case. Jerthiwe replace the body manifold,
i.e. the mediunB, by a connected, two-dimensional polyhedifdriWe denote the collection of
all verticesq of P by PP, the collection of all bounded edge®f P by SP, and the collection
of all bounded faced$ of P by S?P. We assume that:

i) every edgee € SIP is directed, having™ as initial ande™ as final vertex, and therefore
oriented,

ii) every facef € SPPis plane starshaped with respect to a given baryce®feand ori-
ented. Moreverf is regarded as the plane cone over its bound#ryormed with respect
to B¢ . This cone inherits frorik2 a smooth linear parametrization along each ray joining
B+ with the vertices off and with distinguished points of the edges belonging o
and joining these vertices, as well as a picewise smootkatiparametrization along the
boundaryaf of f, i.e. along the edges.

A configuration ofP is amap® : P — R3 with the following defining properties:

) j: PP — R3is an embedding;
i) if any two verticesq; andgp in PP are joined by some edgein S'P, then the image
®(e) is the edge joiningb(q1) and® (gp);

iii) the image®(f) of every facef in 2P, regarded as the plane cone over its boundary
af formed with respect t@+, is a cone ifR3 over the corresponding boundaiy(af)
formed with respect t@® (B+);

iv) @ preserves the orientation of every fate S2P and of every edge € S!P.

We denote by (P, ]R3) the collection of all configuration® of P, and byconf (]P’,R3) the

configuration space, which is eith&¢P, R3) or eventually a subset of it.

As in the continuum case we model the plyhedi®mvith microstructure by a principal
bundleP 5 P with structure grouH, a compact Lie group, while the ambient sp&%with
microstructure is modelled by another principal bun@ea—i R3 with structure grous, a Lie
group containingH.

We note that we implement the interaction of internal vdealby fixing a connection on
P % P, and this can be done by using an argument similar to thatrof.i Clearly not every
closed, piecewise linear curvelihcan be lifted to a closed, piecewise linear curvéin

The configuration spacgonf (P, Q) is a subset of the collectiafi(P, Q) of smooth,H-
equivariant, fibre preserving embeddings P — Q.

Again Conf (P, Q) is a principal bundle overonf (P, R3) or over some open subset of it
with GE as structure group.
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3. The interaction form and its virtual work

Let us denote by (S°P, R3) the collection of allR3-valued functions ors’P, by A(S'P, R3)
the collection of allR3-valued one-forms of?, i.e. of all mapsy : S'P — RS, and by

A2 (SZIF’, R3) the collection of allR3-valued two-forms ofP, i.e. of all mapsw : S?P — RS.
We note thaf (SOP, R3), ALlSIP, R3) andAZ(S?P, R3) are finite dimensionak-vector spaces
due to the fact thaP has finitely many vertices, edges and faces. In all thesewvepaces we

can present natural bases. Indeed, givenaryR3 and a fixed vertex; € S°P, we define
h§ € F(SPP, R®) as follows:

z,.n_ |z, ifa=d
hg(a) _{ 0, otherwise .
On the other hand, for a fixed edgee S!P respectively a fixed facd € S?P, y& €
AL(S'P, R3) andw? € A?(SP, R3) are given in the following way:

z,ife=¢,
0, otherwise,

z,if f=1*",
0, otherwise .

V2(e) = { (1) = {

If now {z1, 25, z3} is a base iRk3, then
{hg 1ge PP, i =1,23) c F(P,R3)

& lee SP,i = 1,2 3} c AL(SIP, R3)
and .

{og | T e SPi =1,23) c A%S?P,RY)
are the natural bases mentioned above.

Given now a scalar product, -) on R3, we define the scalar produe®, G! and G2 on
F(SP, R3), AL(S'P, R3) and respectivelya?(S?P, R3) by

GOh1.hp) == > (ha(@.ha@). V¥ hy hy e F(SP.R?).,
qesP

Glyry == Y. (10, 72(0). Y y1. 72 € ALSIP.RY)
ecSlP
and
Glwr.w) == Y (w1(F), w2()). ¥ w1, wp € AX(S?P,R3).
feS2P

The differentialdh of anyh € F(S°P, R3) is a one-form orP given by
dh(e) = h(et) —he™), Vee SP,

wheree™ ande™ are the initial and the final vertex ef
The exterior differentiadi : AL(SIP, R3) — A2(S?P, R3) appliedtoany € AL(SIP, R3)
is given by
dy(f):= Y y(@ .V fesP.

ecof
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The exterior differentiatlw for any two-formw on P vanishes. Associated withand the
above scalar products are the divergence operators

5 A2(PP, R3) - Al(Slp, RS

and
s AL(SIP, R3) - F(SPP, R3)

respectively defined by the following equations

Glw, @) = G2(w,da) , Y we A%(SPP,R3)and
Vo e AL(SP, R3) |

and
GO%sa, h) = Gl(e,dh) , Va e ALSIP,R3) and
v he F(P, R3) .

dod = 0impliess o § = 0. Elements of the forndh in AL(SIP, R3) for anyh € F(S°P, R3)
are called exact, while elements of the fosm in AL(S!P, R3) for anyw € AZ(S?P, R3) are
called coexact.
The Laplacians\g, A; andA, on F(SPP, R3), AL(SIP, R3) and A2(S?P, R3) are respec-
tively defined by

Aj:=680d+dod,i=012.

Due to dimP = 2 these Laplacians, selfadjoint with respecGﬂo i =0,1,2, simplify to
Ag = §od on functions, A1 = §od 4 d o § on one-forms and\, = d o § on two-forms. Hence
there are the foIIowingSO, G- and respectivelﬁz-orthogonal splittings, the so called Hodge
splittings [1]:

AP RSy = 5ALSIP, R3) @ Harm?(SPP, R3) ,
ALSIP,R3) = dF(SPP, R3) @ 6 AZ(S?P, R3) @ Harm(SIP, R3) ,
A%(P,R3 = dALSIP, R3) @ Harm?(S2P, R3) .

Here Harm' (SPP,R3) := Ker dN Ker 8, i = 0,1, 2 Reformulated, this says that e

Harm (SP,R3) if Ajf =0, i =0,1,2; we note thaid € HarmO(S°P, R3) is a constant
function.
Letting Hi (P, R3) be thei-th cohomology group oP with coefficients inR3, we hence
have:
H (P, R3 = Harm' (SP,R%) , i =1,2.
Next we introduce the stress or interaction forms, whichcarestitutive ingredients of the

polyhedronP. To this end we consider the interaction forces, i.e. vedtoR 3, which act up on
any vertexg, along any edge and any facef of P.

The collection of all these forces acting up on the vertiafges a configuration dependent
function «9(®) € F(PP, R3), where® e conf (]P, R3). Analogously the collection of all
the interaction forces acting up along the edges or alongpites defines a one foruiL(d>) €
AL(SIP, R®) or a two-forma?(®) e A%(S?P, R3) respectively. The virtual workd! (@) caused
respectively by any distortiopn' € AI(SP,R3),i =0, 1, 2, is given by

Al@) =3¢ @ @),y i=012.
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However, it is important to point out that the total virtuabrk .A(®) caused by a deforma-
tion of the polyhedrof® is given only by AL(d)(y1) + A2(d) (,02), wherep? is the harmonic
part ofy2 e A2(S2P, R3). In order to justify it we give the virtual workgll (®)(y'), i = 1, 2,

in accordance with the Hodge splitting fot(®) andy', i = 0, 1, 2, and with the definition of
the divergence operatods the equivalent forms

Ow@@), 8y = GLdaO@), yh,

Glet(@), yh GL(dBO + 80?2 + x1, y1)

GO(8Y, sy 1) + G2(w?, dyh) + GL0et, ph
G2(dBL + %2, y?) = GL(BL, 52 + G2(x?, p?),

G2@O(®), 51

Here the two terms
grocdt, vyl = g1t dn® 4 dh? 4 phy = godt, ph,
and
G202, y?) = G202, dnt + p?) = G2, p?)
depend only on the topology of the polyhedi®n
Comparing now the different expressions for the virtualkgave get

AL@) (1) + G262 07 = GO@O(@). 5y 1) + G2(@2(®). dyL)+
+ g:l.(%:l.’pl)_{_g2()f27 102)7
O@) = sal(@),
ol(@) = daO(®) + 8a?(d) + pl,
o2(@) = dal(@)+ p2
Moreover
Ag?@) = 2@,
Apd?(®) + 12 = oA(®D).

Accordingly, the total virtual work of? associated, as discussed above, witha® anda?
is given by

A@) (L y? = AN@) Y + A2(@)(pD)
= GLaX(@), Aty + Goct, pb) + G2, p?)

However, due to translational invariance
o (@) =d dP), i =0,1,2.

For this reason we let® vary in a smooth, compact and bounded manitld: dconf (P, R3)
with non-empty interior. The virtual work ofi has then the form

A@)(yL, y?) = Ado)(yL, v?)

for anyd® e K and anyy! e Al(SP,R3). Sincedconf (]P’, R3) c Al (SllP’, R3) ac-
cording to the Hodge splitting is not open, not all elementsAt (SllF’, R3) are tangent to
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dconf (P, RS . Therefore,A is not a one-form oiC C dconf (]P’, R3) , in general. To use the
formalism of differential forms, we need to extend the \aftwork .4 to some compact bounded
submanifoldc! ¢ Al (slp, R3) with K c K1- See [2] for details -

The one-formA(d®) needs not to be exact, in general. We decompose accordihiito

Ad®) = dl F + .
This decomposition is the so called Neumann one, given by
divA = AF, A®) (&) =DE) ()

for all £ in the boundan®X® of K1. D is the Fréchet derivative oAl (SllP’, R3) , while v

is the outward directed unit normal field oK 1. The differential opeatordiv and A are the
divergence and respectively the LaplaciaWn(SlP, ]R3) .

4. Thermodynamical setting

This Neumann decomposition, combined with the idea of natiqgg factor of the heat, as pre-
sented in [1], [6] and [7], yields a thermodynamical setting

In order to do this let us remember first that (Sl]P’, R3) has according to the Hodge
splitting the decomposition

al (slp, R3) —dF (SOIF’, RS) @ 5 A2 (szp, R3) ® Harmt (slp, R3) .

This fact implies the necessity of one additional coordirfanction for the construction of
the therodynamical setting. Accordingly we extefid to Kr = K1 x R and pull A back to
KRr. The pull back is again denoted b4

We follow now the argument in [2] and denote bythe additional coordinate function on
KR : we set for the heat
H:=dU-A4
where by dl we denote here the differential &t .
Let now% be an integrating factor dfl; i.e.

H=TdS on Kg,

whereS : Kg — R is a smooth function ([2]). Next we introduce the free enefgy, by
setting
FIC]R = U - T . S )
yielding
A= dFj, —SdT.
Both Fy., and T depend on the tupl¢t,U) € Kg. The one-formA on Kr depends

trivially on U. We think of some dependenceldfon, i.e. we think of a mags : K1 — R and
restrict the above decomposition dfto the graph os. s is determined by the equation

Ficy (€.5(6) = F(§) + FO,
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V£ in some submanifolds’ of K'1. We call F the free energy, too. Then
A=dF+w on K,
whereW onV has the form

W(E)(y) = S(56)) - dIT(s(6)) Ve e V c KL andvy e Al (SllP’, R3)

di is here the differential oiC?.
We have considered here the thermodynamical setting ortlyeircase of the virtual work

done onP. This can be easily generalized to the virtual work on the asitucture. To do this
we define first the virtual work on the microstructure [4] ahdrt we repeat the above argument.
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between two cracks located at poit&ndé depends on both the radial and angular variables,
and evolves with the current crack distribution patternu§;iihe form of the influence function
shall depend upon the distribution of the internal varialaleeach time / loading — step. The last
integral is in fact a path integral, depending on the spdiigttibution of the cracks. The path
that do effectively contribute to the local stress incretmamthe left-hand side of (1) change
according to the evolution of the spatial pattern of cracks.

In Ganghoffer et al., a path integral formulation of the mmall interactions has been formu-
lated, with damage as a focus. The scalar damage variabkergm@esents the internal variable.
The new concepts advanced therein can be considered agmpatd model in a phenomeno-
logical manner the nonlocal interactions between defecissiolid material. In this contribution,
we only give the main thrust of the ideas developed in [7].

2. Path integral formulation of nonlocal mechanics

The formulation of nonlocal damage relies upon the thermadyics of irreversi-ble processes;
accordingly, a damage potential function is set up, witluargnts the internal variables, namely
the local and the nonlocal damage. The consistency conditicthe damage potential function
and its dependence upon the local and nonlocal damage imghtegro-differential equation
for the rate of the local damage, that can be recast into thergeform

@) dx) = / G1(x, y)d(y)dy,

[ G1(x. y)dy
Q Q

with G1(x, y) an influence function. Equality (2) is rewritten into the m@ompact form

3 d) = G(x, y) o d(y),

whereby the kerngb and the composition operatomre identified from the integral form in (2),
i.e. (3) defines an integral operator having the kernel

Gx.y) = G1(x. y).

1
[ Ga(x, y)dy
Q

When the kerneG (X, y) only depends on the differen¢e — y) (e.g. in the form of the gaussian
(3)), equality (2) gives the rate of damage as the convolytimduct of the kernel with the rate
of damage. From now on, the starting point shall be the maf?), in whichwe do not a
priori know the kernel G(x, y). A path integration technique will then be used to deterntiirge
expression of this kernel.

Since the kerneGG determines the evolution of the internal variable, it shallcalled the
propagator as well. Properties satisfied by the kerlare first evidenced. First note that
relation (3) embodies an implicit definition & : elaborating (3) yields

@) d(x) = G(X, y) 0 G(Y, 2) 0 d(2) = G(X, 2) 0 d(2)
and therefore, one has formally
(5) G(x,2) = G(x,y) 0o G(Y, 2)

in which the composition operator means that one first praggthe influence from to y,
and then fromy to z. Relation (5) is called thenclusion relation of an intermediate point. In



