
Rend. Sem. Mat. Univ. Pol. Torino
Vol. 58, 1 (2000)
Geom., Cont. and Micros., I

E. Binz - D. Socolescu

MEDIA WITH MICROSTRUCTURES AND

THERMODYNAMICS FROM A MATHEMATICAL

POINT OF VIEW

Abstract. Based on the notion of continua with microstructures we introduce the
notion of microstructures on discrete bodies. Using the analogy with of differential
forms on discrete media we develop the discrete virtual workand the thermody-
namics in the sense of Caratheodory.

1. Continua with microstructures

Let B be a medium, i.e. a three dimensional compact, differentiable manifold with boundary. In
the case of classical continuum mechanics this medium is thought to be moving and deforming in
R

3. A configuration is then a smooth embedding8 : B → R
3. The configuration space is then

eitherE(B,R
3), the collection of all smooth embeddings fromB into R

3, a Fréchet manifold,
or, for physical reasons, a subset ofE(B,R

3) which we denote bycon f (B, R
3). This classical

setting can be generalized to media with microstructures.

A mediumB with microstructure is thought as a medium whose points haveinternal degrees

of freedom. Such a medium was recently modelled by a specifiedprincipal bundleP
π
→ B with

structure groupH, a compact Lie group ([3])

Accordingly the mediumB with microstructure is thought to be moving and deforming
in the ambient spaceR3 with microstructure, which is modelled by another specifiedprincipal

bundleQ
ω
→ R

3, with structure groupG, a Lie group containingH. A configuration is then a
smooth,H -equivariant, fibre preserving embedding8̃ : P → Q, i.e.

8̃(p, h) = 8̃(p) · h, ∀ p ∈ P, ∀ h ∈ H.

The configuration space is then eitherE(P, Q), i.e. the collection of all these configurations,
or again for physical reasonsCon f (P, Q), a subset ofE(P, Q). Clearly any8̃ ∈ E(P, Q)

determines some8 ∈ E(B,R
3) by

8(π(p)) = ω
(

8̃(p)
)

, ∀ p ∈ P.

The mapπε : E(P, Q) → E(B,R
3) given by

πε(8̃)(π(p)) = ω(8̃(p)), ∀ p ∈ P, ∀ 8̃ ∈ E(P, Q),

is not surjective in general. For the sake of simplicity we assume in the following thatπε is
surjective. Given two configurations̃81, 8̃2 in π−1

ε (8) ⊂ E(P, Q) for 8 ∈ E(B,R
3), there

exists a smooth map̃g : P → G, called gauge transformation, such that

8̃1(p) = 8̃2(p) · g̃(p), ∀ p ∈ P.
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Moreover,g̃ satisfies

g̃(p · h) = h−1 · g̃(p) · h, ∀ p ∈ P, ∀ h ∈ H.

The collectionG H
P of all gauge transformations̃g form a group, the so-called gauge group.

The gauge groupG H
P is a smooth Fréchet manifold. In factE(P, Q) is a principal bundle

overE(B,R
3) with G H

P as structure group.

2. Discrete systems with microstructures

In the following we show how the notion of media with microstructure dealed with above in the
continuum case can be introduced in the discrete case. To this end we replace the body manifold,
i.e. the mediumB, by a connected, two-dimensional polyhedronP. We denote the collection of
all verticesq of P by S0

P, the collection of all bounded edgese of P by S1
P, and the collection

of all bounded facesf of P by S2
P. We assume that:

i) every edgee ∈ S1
P is directed, havinge− as initial ande+ as final vertex, and therefore

oriented,

ii) every face f ∈ S2
P is plane starshaped with respect to a given barycenterB f and ori-

ented. Morever,f is regarded as the plane cone over its boundary∂ f, formed with respect
to B f . This cone inherits fromR2 a smooth linear parametrization along each ray joining
B f with the vertices off and with distinguished points of the edges belonging to∂ f
and joining these vertices, as well as a picewise smooth, linear parametrization along the
boundary∂ f of f, i.e. along the edges.

A configuration ofP is a map8 : P → R
3 with the following defining properties:

i) j : S0
P → R

3 is an embedding;

ii) if any two verticesq1 andq2 in S0
P are joined by some edgee in S1

P, then the image
8(e) is the edge joining8(q1) and8(q2);

iii) the image8( f ) of every face f in S2
P, regarded as the plane cone over its boundary

∂ f formed with respect toB f , is a cone inR3 over the corresponding boundary8(∂ f )

formed with respect to8(B f );

iv) 8 preserves the orientation of every facef ∈ S2
P and of every edgee ∈ S1

P.

We denote byE(P,R
3) the collection of all configurations8 of P, and bycon f

(

P,R3
)

the

configuration space, which is eitherE(P,R
3) or eventually a subset of it.

As in the continuum case we model the plyhedronP with microstructure by a principal

bundleP
π
→ P with structure groupH , a compact Lie group, while the ambient spaceR

3 with

microstructure is modelled by another principal bundleQ
ω
→ R

3 with structure groupG, a Lie
group containingH.

We note that we implement the interaction of internal variables by fixing a connection on

P
π
→ P, and this can be done by using an argument similar to that one in [4]. Clearly not every

closed, piecewise linear curve inP can be lifted to a closed, piecewise linear curve inP.

The configuration spaceCon f (P, Q) is a subset of the collectionE(P, Q) of smooth,H -
equivariant, fibre preserving embeddings8̃ : P → Q.

Again Con f (P, Q) is a principal bundle overcon f (P, R
3) or over some open subset of it

with G H
P as structure group.
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3. The interaction form and its virtual work

Let us denote byF(S0
P, R

3) the collection of allR3-valued functions onS0
P, by A(S1

P, R
3)

the collection of allR3-valued one-forms onP, i.e. of all mapsγ : S1
P → R

3, and by

A2
(

S2
P, R

3
)

the collection of allR3-valued two-forms onP, i.e. of all mapsω : S2
P → R

3.

We note thatF(S0
P, R

3), A1S1
P, R

3) andA2(S2
P, R

3) are finite dimensionalR-vector spaces
due to the fact thatP has finitely many vertices, edges and faces. In all these vector spaces we
can present natural bases. Indeed, given anyz ∈ R

3 and a fixed vertexq ∈ S0
P, we define

hz
q ∈ F(S0

P, R
3) as follows:

hz
q (q′) =

{

z , if q = q′

0 , otherwise .

On the other hand, for a fixed edgee ∈ S1
P respectively a fixed facef ∈ S2

P, γ z
e ∈

A1(S1
P, R

3) andωz
f ∈ A2(S2

P, R
3) are given in the following way:

γ z
e (e′) =

{

z , if e = e′ ,

0 , otherwise ,
ωz

f ( f ′) =

{

z , if f = f ′ ,

0 , otherwise .

If now {z1, z2, z3} is a base inR3, then

{hzi
q | q ∈ S0

P, i = 1, 2, 3} ⊂ F(S0
P, R

3)

{γ
zi
e | e ∈ S1

P, i = 1, 2, 3} ⊂ A1(S1
P, R

3)

and
{ω

zi
q | f ∈ S2

P, i = 1, 2, 3} ⊂ A2(S2
P, R

3)

are the natural bases mentioned above.

Given now a scalar product〈·, ·〉 on R
3, we define the scalar productG0, G1 andG2 on

F(S0
P, R

3), A1(S1
P, R

3) and respectivelyA2(S2
P,R

3) by

G0(h1, h2) :=
∑

q∈S0P

〈h1(q), h2(q)〉 , ∀ h1, h2 ∈ F(S0
P,R

3) ,

G1(γ1, γ2) :=
∑

e∈S1P

〈γ1(e), γ2(e)〉 , ∀ γ1, γ2 ∈ A1(S1
P, R

3) ,

and
G2(ω1, ω2) :=

∑

f ∈S2P

〈ω1( f ), ω2( f )〉 , ∀ ω1, ω2 ∈ A2(S2
P, R

3).

The differentialdh of anyh ∈ F(S0
P, R

3) is a one-form onP given by

dh(e) = h(e+) − h(e−) , ∀ e ∈ S1
P ,

wheree− ande+ are the initial and the final vertex ofe.

The exterior differentiald : A1(S1
P, R

3) → A2(S2
P, R

3) applied to anyγ ∈ A1(S1
P,R

3)

is given by
dγ ( f ) :=

∑

e∈∂ f

γ (e) , ∀ f ∈ S2
P .
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The exterior differentialdω for any two-formω on P vanishes. Associated withd and the
above scalar products are the divergence operators

δ : A2(S2
P, R

3) → A1(S1
P, R

3)

and
δ : A1(S1

P,R
3) → F(S0

P, R
3) ,

respectively defined by the following equations

G1(δω, α) = G2(ω, dα) , ∀ ω ∈ A2(S2
P,R

3) and
∀ α ∈ A1(S1

P, R
3) ,

and
G0(δα, h) = G1(α, dh) , ∀ α ∈ A1(S1

P, R
3) and

∀ h ∈ F(S0
P, R

3) .

d ◦ d = 0 impliesδ ◦ δ = 0. Elements of the formdh in A1(S1
P, R

3) for anyh ∈ F(S0
P, R

3)

are called exact, while elements of the formδω in A1(S1
P, R

3) for anyω ∈ A2(S2
P, R

3) are
called coexact.
The Laplacians10, 11 and12 on F(S0

P, R
3), A1(S1

P,R
3) and A2(S2

P, R
3) are respec-

tively defined by
1i := δ ◦ d + d ◦ δ , i = 0, 1, 2 .

Due to dimP = 2 these Laplacians, selfadjoint with respect toGi , i = 0, 1, 2 , simplify to
10 = δ ◦ d on functions,11 = δ ◦ d + d ◦ δ on one-forms and12 = d ◦ δ on two-forms. Hence
there are the followingG0, G1- and respectivelyG2-orthogonal splittings, the so called Hodge
splittings [1]:

A0(S0
P, R

3) = δA1(S1
P, R

3) ⊕ Harm0(S0
P, R

3) ,

A1(S1
P, R

3) = d F(S0
P, R

3) ⊕ δA2(S2
P, R

3) ⊕ Harm1(S1
P, R

3) ,

A2(S2
P, R

3) = d A1(S1
P, R

3) ⊕ Harm2(S2
P, R

3) .

Here Harmi (Si
P,R

3) := K er d ∩ K er δ , i = 0, 1, 2. Reformulated, this says thatβ ∈

Harmi (Si
P, R

3) if 1i β = 0, i = 0, 1, 2 ; we note thatβ ∈ Harm0(S0
P, R

3) is a constant
function.

Letting H i (P,R
3) be thei-th cohomology group ofP with coefficients inR

3, we hence
have:

H i (P,R
3)

∼
= Harmi (Si

P, R
3) , i = 1, 2 .

Next we introduce the stress or interaction forms, which areconstitutive ingredients of the
polyhedronP. To this end we consider the interaction forces, i.e. vectors in R

3,which act up on
any vertexq, along any edgee and any facef of P.

The collection of all these forces acting up on the vertices defines a configuration dependent

function α0(8) ∈ F(S0
P, R

3), where8 ∈ con f
(

P,R
3
)

. Analogously the collection of all

the interaction forces acting up along the edges or along thefaces defines a one formα1(8) ∈

A1(S1
P, R

3) or a two-formα2(8) ∈ A2(S2
P, R

3) respectively. The virtual workAi (8) caused
respectively by any distortionγ i ∈ Ai (Si

P, R
3), i = 0, 1, 2, is given by

Ai (8)(γ i ) = Gi (αi (8), γ i ), i = 0, 1, 2 .
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However, it is important to point out that the total virtual workA(8) caused by a deforma-

tion of the polyhedronP is given only byA1(8)(γ 1) +A2(8)
(

ρ2
)

, whereρ2 is the harmonic

part ofγ 2 ∈ A2(S2
P, R

3). In order to justify it we give the virtual worksAi (8)(γ i ), i = 1, 2,

in accordance with the Hodge splitting forαi (8) andγ i , i = 0, 1, 2, and with the definition of
the divergence operatorsδ, the equivalent forms

G0(α0(8), δγ 1) = G1(dα0(8), γ 1),

G1(α1(8), γ 1) = G1(dβ0 + δω2 + ~1, γ 1)

= G0(β0, δγ 1) + G2(ω2, dγ 1) + G1(~1, ρ1)

G2(α0(8), δγ 1) = G2(dβ1 + ~2, γ 2) = G1(β1, δγ 2) + G2(~2, ρ2),

Here the two terms

G1(~1, γ 1) = G1(~1, dh0 + dh2 + ρ1) = G1(~1, ρ1),

and
G2(~2, γ 2) = G2(~2, dh1 + ρ2) = G2(~2, ρ2)

depend only on the topology of the polyhedronP.

Comparing now the different expressions for the virtual works we get

A1(8)
(

γ 1
)

+ G2(~2, ρ2) = G0(α0(8), δγ 1) + G2(α2(8), dγ 1)+

+ G1(~1, ρ1) + G2(~2, ρ2),

α0(8) = δα1(8),

α1(8) = dα0(8) + δα2(8) + ρ1,

α2(8) = dα1(8) + ρ2.

Moreover

10α
0(8) = α0(8) ,

12α2(8) + ~2 = α2(8) .

Accordingly, the total virtual work onP associated, as discussed above, withα0, α1 andα2

is given by

A(8)(γ 1, γ 2) := A1(8)(γ 1) + A2(8)(ρ2)

= G1(α1(8),11γ 1) + G1(~1, ρ1) + G2(~2, ρ2)

However, due to translational invariance

αi (8) = αi (d8), i = 0, 1, 2 .

For this reason we letd8 vary in a smooth, compact and bounded manifoldK ⊂ dcon f (P, R
3)

with non-empty interior. The virtual work onP has then the form

A(8)(γ 1, γ 2) = A(d8)(γ 1, γ 2)

for any d8 ∈ K and anyγ i ∈ Ai (Si
P, R

3). Sincedcon f
(

P, R
3
)

⊂ A1
(

S1
P, R

3
)

ac-

cording to the Hodge splitting is not open, not all elements in A1
(

S1
P, R

3
)

are tangent to
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dcon f
(

P, R
3
)

. Therefore,A is not a one-form onK ⊂ dcon f
(

P, R
3
)

, in general. To use the

formalism of differential forms, we need to extend the virtual workA to some compact bounded

submanifoldK1 ⊂ A1
(

S1
P, R

3
)

with K ⊂ K1- See [2] for details -

The one-formA(d8) needs not to be exact, in general. We decompose accordinglyA into

A(d8) = dI F + 9.

This decomposition is the so called Neumann one, given by

divA = 1F, A(ξ) (ν(ξ)) = D(ξ)(ν(ξ))

for all ξ in the boundary∂K1 of K1. D is the Fréchet derivative onA1
(

S1
P, R

3
)

, while ν

is the outward directed unit normal field on∂K 1. The differential opeatorsdiv and1 are the

divergence and respectively the Laplacian onA1
(

S1
P, R

3
)

.

4. Thermodynamical setting

This Neumann decomposition, combined with the idea of integrating factor of the heat, as pre-
sented in [1], [6] and [7], yields a thermodynamical setting.

In order to do this let us remember first thatA1
(

S1
P, R

3
)

has according to the Hodge

splitting the decomposition

A1
(

S1
P,R

3
)

= d F
(

S0
P,R

3
)

⊕ δA2
(

S2
P,R

3
)

⊕ Harm1
(

S1
P, R

3
)

.

This fact implies the necessity of one additional coordinate function for the construction of
the therodynamical setting. Accordingly we extendK1 to KR := K1 × R and pullA back to
KR. The pull back is again denoted byA.

We follow now the argument in [2] and denote byU the additional coordinate function on
KR : we set for the heat

H := dIU − A

where by dI we denote here the differential onKR.

Let now 1
T be an integrating factor ofH ; i.e.

H = T dI S on KR,

whereS : KR → R is a smooth function ([2]). Next we introduce the free energyFKR
by

setting
FKR

:= U − T · S ,

yielding
A = dI FKR

− S dI T .

Both FKR
and T depend on the tuple(ξ, U) ∈ KR. The one-formA on KR depends

trivially on U. We think of some dependence ofU on ξ, i.e. we think of a maps : K1 → R and
restrict the above decomposition ofA to the graph ofs. s is determined by the equation

FKR
(ξ, s(ξ)) = F(ξ) + F0,
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∀ξ in some submanifoldsV of K1. We call F the free energy, too. Then

A = dI F + 9 on K1,

where9 on V has the form

9(ξ)(γ ) = S(s(ξ)) · dI T (s(ξ)) ∀ξ ∈ V ⊂ K1 and∀γ ∈ A1
(

S1
P,R

3
)

dI is here the differential onK1.

We have considered here the thermodynamical setting only inthe case of the virtual work
done onP. This can be easily generalized to the virtual work on the microstructure. To do this
we define first the virtual work on the microstructure [4] and then we repeat the above argument.
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between two cracks located at pointsx andξ depends on both the radial and angular variables,
and evolves with the current crack distribution pattern. Thus, the form of the influence function
shall depend upon the distribution of the internal variables at each time / loading – step. The last
integral is in fact a path integral, depending on the spatialdistribution of the cracks. The path
that do effectively contribute to the local stress increment on the left-hand side of (1) change
according to the evolution of the spatial pattern of cracks.

In Ganghoffer et al., a path integral formulation of the nonlocal interactions has been formu-
lated, with damage as a focus. The scalar damage variable there represents the internal variable.
The new concepts advanced therein can be considered as an attempt to model in a phenomeno-
logical manner the nonlocal interactions between defects in a solid material. In this contribution,
we only give the main thrust of the ideas developed in [7].

2. Path integral formulation of nonlocal mechanics

The formulation of nonlocal damage relies upon the thermodynamics of irreversi-ble processes;
accordingly, a damage potential function is set up, with arguments the internal variables, namely
the local and the nonlocal damage. The consistency condition for the damage potential function
and its dependence upon the local and nonlocal damage imply an integro-differential equation
for the rate of the local damage, that can be recast into the general form

(2) ḋ(x) =
1

∫

�

G1(x, y)dy

∫

�

G1(x, y)ḋ(y)dy,

with G1(x, y) an influence function. Equality (2) is rewritten into the more compact form

(3) ḋ(x) = G(x, y) ◦ ḋ(y),

whereby the kernelG and the composition operator◦ are identified from the integral form in (2),
i.e. (3) defines an integral operator having the kernel

G(x, y) =
1

∫

�

G1(x, y)dy
G1(x, y).

When the kernelG(x, y) only depends on the difference(x − y) (e.g. in the form of the gaussian
(3)), equality (2) gives the rate of damage as the convolution product of the kernel with the rate
of damage. From now on, the starting point shall be the relation (2), in whichwe do not a
priori know the kernel G(x, y). A path integration technique will then be used to determinethe
expression of this kernel.

Since the kernelG determines the evolution of the internal variable, it shallbe called the
propagator as well. Properties satisfied by the kernelG are first evidenced. First note that
relation (3) embodies an implicit definition ofG : elaborating (3) yields

(4) ḋ(x) = G(x, y) ◦ G(y, z) ◦ ḋ(z) = G(x, z) ◦ ḋ(z)

and therefore, one has formally

(5) G(x, z) = G(x, y) ◦ G(y, z)

in which the composition operator means that one first propagates the influence fromx to y,
and then fromy to z. Relation (5) is called theinclusion relation of an intermediate point. In


