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STATISTICALLY STORED DISLOCATIONS IN
RATE-INDEPENDENT PLASTICITY

Abstract. Work hardening in crystalline materials is related to theuamaulation of
statistically stored dislocations in low-energy struesirWe present here a model
which includes dislocation dynamics in the rate-indepehdetting for plasticity.
Three basic physical features are taken into account: €iytte of dislocation
densities in hardening; (i) the relations between thex@ipcities and the mobility
of gliding dislocations; (iii)the energetics of self and twal interactions between
dislocations. The model unifies a number of different apginea to the problem
presented in literature. Reaction-diffusion equatiorhwitobility depending on
the slip velocities are obtained for the evolution of thdatiations responsible of
hardening.

1. Introduction

Slip lines and slip bands on the surface of a plastically aeéal crystal are due to complicated
phenomena which occur inside the crystal. When plasticrdeftion occurs, dislocations are
generated : some of them move towards the crystal surfacgrfgrslip lines, others may be
stored to harden the material and form more or less regutterpa ([1]-[16]). As reported in
Fleck et al. [1], “dislocations become stored for two reasons : they amdate by trapping
each other in a random way or they are required for compatiefermation of various parts
of the crystal. The dislocation which trap each other rarigicame referred to astatistically
stored dislocations.gradients of plastic shear result in the storaggedmetrically necessary
dislocations.

Taking into account both statistically stored dislocat{8%D) and geometrically necessary
dislocations (GND), our purpose in this paper is to constaunodel which is able, at least in the
simple case of single slip, to describe dislocations pasteThe basic idea here is to introduce
dislocation densities as independent variables in thedwark of Gurtin’s theory of gradient
plasticity [17].

Total dislocation densities have been introduced fredyénthe literature, both to describe
hardening and the formation of patterns during plastic cheédions ([18]-[26]).

In fact, materials scientists often describe hardening tdudislocation accumulation by
means of the so-called Kocks’ model (see [22]): the resigtam slips is assumed to depend on
the total dislocation density through a relation of the form

¢ =1¢()),
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and the accumulation of dislocations during plastic sliple¥s according to an ordinary differ-
ential equation which can be rewritten in the form

d
@) 4t = k2 ~ ko).

wherev is the resolved (plastic) shear strain rate &ndks are positive constants. In the right
hand side of equation (1), the tek, /o represents dislocation storage and the tegrasrepre-
sents dynamic recovery. An important consequence of tiigoagph is immediately recognizable
by equation (1): the dislocation ragedepends on the strain rate. Roughly, this means that dis-
locations are less mobile when the material hardens.

The above approach does not take into account dislocatimsitggradients and thus, while
very efficient for small strain rates, it does not allow todstispatial variations of the density.
One of the first approaches twn-local models, which should take into account both spatial
and temporal variations of the dislocation density, is duélolt [18], which obtains a Cahn-
Hilliard equation for the total dislocation densities tasdgbe patterning in a manner analogous
to spinoidal decomposition in alloys. His model is based drea energy density which takes
into account dislocation interactions through higher grat$ of the dislocation density, in con-
junction with a gradient-flow derivation of a balance eqomfior such densities.

Other authors, for instance Aifantis (see for example [2B}) co-workers, model the com-
plex phenomena due to dislocation interaction and anmibildy means of a reaction-diffusion
system: in this approach two or more dislocation speciegwanéved (e.g., mobile and immobile
dislocations) and an evolution equation for each specieg 64, t), is postulated

@ % = DAo +9(0)

whereg(p) is a source term describing creation and annihilation dbdaions (e.g.g(e) =

ao — b2, with a andb phenomenological coefficientd is a diffusive-like coefficient anch

is the laplacian. Models like (2) may be used to describeouarphenomena related to pattern
formation, but they do not include (plastic) strain rateef§ of the type described by (1).

The main goal of our work is a unified model which includes bé# basic features of the
models described above, i.e., the dependence of (plabte) sate on dislocation density rate,
the non-locality, and finally a term describing work and d@dtdening.

Using consistently the assumption of rate-independenee @Gurtin [17]), we obtain an
equation for the total edge dislocation density of the form

do Ay
© S =i (eae-3%)

wheree may be interpreted as a diffusive coefficient an@) is a dislocation energy including
work and soft-hardening behavior. Notice that equilibrisotutions satisfy

(4) eAo— — =0.

Those solutions may correspond to low energy dislocatitmgtsires (LEDS, see Kuhlmann-
Wilsdorf [2]), or patterns forming during fatigue, wheresldications arrange themselves in such
a way that their self and interaction energy are minimized| their average density does not
change with time, even if plastic flow does occur ang 0.
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If  and¢(p) denote the resolved shear stress and the slip resistaretigsly, then by
regularization of the classical yield equatios= (sgn v)¢ (o), by lettingr = (sgn v)|v|¥ "¢ (o)
for a large positive integer, we obtain

hl)”

5 vj=——) .

©) i (C(Q)

By substitution ofv, as given by (5), into (3), we obtain the non linear parabdifterential
equation

do ( 7| )” ( 8¢)
6 — =— ehNo— — |,
© dt ~ \z( ¢ 9
which can be solved if the resolved shear stress (X, t) is known as a function of position
and time.

2. Kinematics

Consider a body identified with its reference configuratifyy, a regular region irk3, and let
X € Bgr denote an arbitrary material point of the body. A motion &fltody is a time-dependent
one-to-one smooth mapping= y(X, t). At each fixed timet, the deformation gradient is a
tensor field defined by

(7) F=Gady

and consistent witdet F(X,t) > 0 for anyX in Br. A superposed dot denotes material time
derivative so that, for instancg,is the velocity of the motion.

We assume that the classic elastic-plastic decomposititishi.e.,
®) F = FeFp.

with Fe andFp the elastic and plastic gradients, consistent Wigh= det Fe > 0 andJp =
det Fp > 0. The usual interpretation of these tensors is thatepresents stretching and
rotation of the atomic lattice embedded in the body, whilerepresents disarrangements due to
slip of atomic planes.

We restrict attention tplastic slip shear deformatign.e., deformations such that the de-
composition (8) holds, witkre arbitrary and withF , of the form

9) Fp=1l4+as®m, s-m=0,

with | the identity inR3, s andm constant unit vectors and = «(X,t). In (9), @ may be
interpreted as slip rate on the slip plane, defined by theglicections and the slip-plane normal
m. This plane is understood to be the only one active amongealfhvailable slip systems.

2.1. The geometrically necessary dislocation tensor

The presence of geometrically necessary dislocationstiysaat is usually described in terms of
Burgers vector, a notion strictly related to the incompltybof the elastic deformation.
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DEFINITION 1. Let S be a surface in the deformed configuration, whose bayréda is a
smooth closed curve. The Burgers vectod 8fis defined as

b(39) =/ Fg tdx
39S
where & is the line element of the circuitS. Stokes’ theorem implies that
T
b(BS):/ (curl Fg1> nda,
S

wheren is the unit normal to the surface S andr| and da are, respectively, the curl operator
with respect to the point and the area element in the deformed configuration.

Sincecur | Fgl # 0 is necessary to have non null Burgers vectors, the tensor Fe_1
seems to be a candidate to measure geometrically necessiagations. As such, however, it
suffers some drawbacks: for exampdeyr | Fgl is not invariant under superposed compatible
elastic deformations; moreover, in view of applicationgrtadient theories of plasticity, it should
be desirable to work in terms of a dislocation measure whigchlie expressed in terms of the
plastic strain gradient also. In [27], Cermelli and Gurtioye the existence of a dislocation
tensor which satisfies both requirements above. We canasegltheir result as follows:

DEFINITION 2. Lety be a deformation an# = Vy its deformation gradient. IIFe andFp
are smooth fields satisfying (8), then the idenﬁg}f pCurl Fp = Jnglcur | Fgl holds: we
define therefore the geometrically necessary dislocagosdr (GND tensor) as

1
(10) D := 5-FpQurl Fp= JeFgleur! Fgl.
p

By (10), we have an alternative plastic and elastic reptatien ofDg. As pointed out in
[27], in developing a constitutive theory “it would seem adtageous to use the representation
of Dg in terms ofF p, which characterizes defects, leaviRgto describe stretching and rotation
of the lattice”. See [27] for an exhaustive discussion ofgeemetrical dislocation tensor defined
by (10).

For single slip plastic deformations (9), the GND tensor thasform

(12) Dg=(Vaxm ®S=5g5®S+6egt®s
wheret = s x m and
(12) €g=Va-s, Sy =—Va -t.

The quantitiessy andsy can be interpreted as densities associated to geometriwatessary
edgeandscrewdislocations, respectively, with Burgers vector pardthes.

2.2. The total dislocation tensor

Individual dislocations can be visualized by electron msoopy and their direction and Burgers
vector can be determined experimentally. We thus assuné¢hiaanicroscopic arrangement of
dislocations at each point is characterized by scalar tiessif edge end screw dislocations, for
any given Burgers vector. More precisely, assuming that dislocations with Burgers vectar
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are present, and their line direction is contained in thenem-., we introduce nonnegative
functions

(13) er =er (X, 1), e-=e-(Xt), sp=s51(X,t), s =s(X,1),

with the following interpretation e ande_ are the densities of dislocations with Burgers vector
s and line directiont and —t respectively (edge dislocations); ands_ are the densities of
dislocations with Burgers vectarand line directiors and—s respectively (screw dislocations).

Noting that all the information on a given system of dislomas may be summarized in one
of the tensorial quantities (recall that, s+ > 0)

ert®s, —et®s  $S®S  —S-S®S

we assume that the edge and screw densities above are reldtexigeometrically necessary
dislocation tensor by a compatibility relation of the form

(14) Dg=(er —e)t®s+(sy —S-)s®s
from which it follows that
e —e_ = eg, Sy —s = g.
DEerINITION 3. Introducing the total edge and screw dislocation densities
e=e;+e_, S:=s; +5s_,
we define the total dislocation tensor by

(15) Ds:=et®s+ss®s.

3. Dynamics

3.1. Standard forces and microforces

To describe the force systems associated to the motion dfattg plastic deformation and the
evolution of the total dislocation densities, we introdadensor field, vector fieldshe*t &, «e
andxs, and scalar fieldsl, 18!, Me, MEX!, Ms andM&*!, all functions of(X, t).

These fields correspond to three physically distinct setsrogs acting on the body.

The first force system is standard, and is given by the uswédKirchhoff stress tensd
and the body force®X,

The second force system has been introduced by Gurtin imédy of gradient plasticity
of single crystals (see [17]), to describe forces that perfaork associated to plastic slip. This
system consists in a vector microstréssa scalar internal microforcH, and a scalar external
microforceI1€Xt,

The last set of forces is introduced to account for the dynarof the total screw and edge
dislocation densities. It consists of a vector fokge a scalar internal microforc®le, and a
scalar external microforch‘lgXt for edge dislocations, and corresponding quantitigdvis and
MEX! for screw dislocations.

A balance law is associated to each force system. We confsigethe standard system
(S, b®%Y, which is governed by the classical force balances, in lfarah given by

(16) Di v S+ b&t=0, SFT = Fs',
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where we have omitted the inertial terms. To the second feyseem(&, IT, exy), governing
plastic slip, a corresponding microforce balance is assedi(Gurtin, [17])

(17) Divé+ I+t =0.

Following Gurtin, [17] we shall see later that this relati@places the usual yield condition for
the single slip system under consideration.

In our theory two more balances must be introduced, in omebtain a complete integrable
set of equations once an adequate constitutive theory islafsd. These new balances are
associated to the force systeras, Ie, I1EXY and (xs, s, TIEXY), and are given in local form
by

Di V ke + Me + MEXt =0,
(18) Di v ks + Ms + MEXt = 0.

Each of the above force system is characterized by the waxpirels power on the rate of
change of the corresponding microstructural field : prégisee assume that the working of the
forces on an arbitrary portiogR of the body is

WP) = /8P(Sn-y+§ “N& + ke - N€+ ks - NS)da

(19) + [y ans et M.

Notice that the microstress and the corresponding external force, expend power on tpe sl
velocity ¢, while the total dislocation forces andxs expand power on the rate of change of the
corresponding dislocation densities.

We take the second law in the form of a dissipation inequatsting that the time-derivative
of the free energy relative to an arbitrary subregif the body may not exceed the working
of the external forces acting @, i.e.,

d

(20) - / Ydv < W(P)
dt Jp

where is the free energy, density per unit volume in the referermdiguration. Using the
balance equations, this inequality becomes, in local form,

(21) V <Te -Fe+& Vi+ke Vé+ks  Vé+ md — M — Ms$
where
(22) Te= SF,TJ T =1-1Tl, =S (FeS®@M).

Notice thatr is theresolved shear stregm the slip system under consideration.

3.2. Constitutive equations

Lettingo = (Fe, e,€e—,s+,5—, Ve, Ve_, Vs;, Vs_) andv = (&, &, $) we consider consti-
tutive equations of the form

(23) Y =4v(0), Te=Tel0), &=£E(0), ke=rke(0), «s==Rs(o)
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and
(24) 7 =#(0,v), Me=Me(o,v), Ms= Ms(o,v).

Requiring the consistency of the constitutive equationth wie dissipation inequality for any
process, we obtain by the classical Coleman-Noll proceth&eesult that the constitutive func-
tions above cannot depend 8, Ve_, Vs; andVs_, but only onVe andVs, i.e., we can
rewrite the constitutive relations (23) in terms of the list

o' = (Fe,er,e_,s1,5,Ve Vs)

or, equivalently,
0" = (Fe, €g.5g. & S, Ve, Vs).

Furthermore, the constitutive relations in (23) must gdtie requirements

BYY, EYY, 3
'|'e=_¢-7 ‘;;:z_ws+_wmxs’
(25) Fe deg  9sg
Ay v
Ke = —, Ks = ——,
€~ Hve ST 9Vs

while the internal microforceMe and Ms decompose as

_pdis 0¥

. 3@
(26) Me = —MZ 2’ —mdis _ °2

Ms = —Ms ds

wheremdis, Mdis andz must satisfy the residual dissipation inequality
(27) 5 =ma + MJSe+ MZ1Ss > 0

for all processeso, v).

3.3. Rate independence

Notice that, under a time scale transformation definetl by t/6, 6 > 0, the fieldsx, éand$
transform according t@ — 6da, € — 6é and$ — 6#S. Following Gurtin, we assume that the
constitutive equations favdis, MJiS andz are rate-independent, in the sense that they satisfy
dis _ pnpdis dis _ npdis _
Mg “(0,v) = Mg “(0,6v), Mg >(0,v) = Mg ~(0,60v), n(o,v)=mn(o,0v),

for any (o, v) and for allé > 0.

4. A nonlinear model

For the applications presented in this paper, we chooset&ylar form of the free energy
functiony,, namely

1 1
(28) ¥ = Ye(Fe) + ¢(€g, Sg. € S) + 561|Ve|2 + EestF

whereye andy are non-negative functions aag ande, are positive constants.
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Moreover, we shall assume that the dissipative fie)tﬂés, Mg“s andr are given by

Mgis(a,v) = a(e,s)i,

la]

(29) M3, v) = b@ﬁﬁ%,
o

m(o,v) = ¢(es)sgna,

wherea(e, s), b(e, s) and¢(e, s) are positive functions. This choice guarantees rate-ieaeép

ence, and yields a dissipation densityquadratic in the rates of change of the total dislocation

densities. Moreover, as we shall see, whes 0, equations (29)and (29) are well-defined.
Following Gurtin [17], the functiort may be interpreted as th#ip resistance In [17], ¢

is introduced as internal variable, whose evolution isgibg an ordinary differential equation,

called thehardening equationof the form

=t a),

where is a list possibly containing the fields, Fp, VFp and¢. As shown in [17], when
restricted by rate independence, the hardening equatimonies

(30) ¢ =KMmlal.

Our approach to hardening is substantially different frdwat tbased on internal variables: we
assume in fact that is given by a constitutive relation compatible with the gission inequality
and the hypothesis of rate independence. Therefore it isetassary to introduce the hardening
equationa priori, since, as shown below, it is a consequence of the constitatioices (29)
and (29) for M3is andmdis,

To write explicitly the evolution equations for our modekwssume that no external forces
are present, and choose a cartesian coordinate systel) Z) in the reference configuration
such that

(1,0,0) =sxm 0,1,0) =s 0,0,H) =m.

The balance equations are then
1) the balances of linear and angular momentum
(e 7 e 1 dye\"
31 Div | —F =0, and —F, =Fe| — ) .
1) (BFe P aFe ¢ °\0Fe
2) the yield equation
82(/) 320 82(/) 320 82g0 920

(32) T=(Sgna)f—%m+zaegasg XY 835 X2

Notice that the yield condition is modified by the presencg@bmetrically necessary
dislocations (we have used (12) to express the geomeyricatiessary dislocation den-
sities in terms of the derivatives of the plastic slip which can be thought as inducing
isotropic hardening-softening.

3) areaction-diffusion system for the total dislocation dées

A |ce| dp A |ce| dp
33 == Ae— —~ == As— —2 ).
(33) é (el e——2): $ €2AS
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Notice that the dislocation mobility is proportional to timedulus of the slip velocityt.
Henceforth, two characteristic features of dislocationaiyics are immediately recog-
nizable from (33):

(i) one can have equilibrium configurations for edge didliocss, i.e.,

d
€1Ae — % _ 0
Joe
such tha& = 0 and dislocations are "locked” in low energy structureg, fastic
flow does occur, and the slip velocity does not vanishk 0. A similar discussion

applies to screw densities.
(i) if the material behaves elastically, so tlat= 0, then dislocations cannot move.

Besides, by derivations with respect the time of the camsté relationz (e, s) for the
slip resistance, and using equations ¢3@)d (33}, we obtain a hardening equation

_[13¢ EIAWNEY]Y AV
(34) é“_[aae(elAe ae)+bas(62As as>]|°‘|

which is a generalization of the classical equation (30).

5. One dimensional model

In this section we describe some simplifying assumptionghvhllow to reduce the reaction-
diffusion system for the total dislocation densities, targgke one-dimensional equation for the
total edge density.

ASSUMPTIONS

(i) We assume that the geometrically necessary dislocdgosities vanish, i.e.,

&g =59 =0,
which implies thate; = e_, s; = s_ and thus, by (12)¢ only depends o1z, t) .
(i) Screw dislocations densities are assumed to vanigttichly, and the total edge disloca-

tion densitye is constant on each slip plane, so teatepends only ofiZ, t). Thuseis
the only non-vanishing dislocation density.

(iii) The resolved shear stresss assumed to be constant with respeatXot).
(iv) The constitutive relation for the slip resistance Haes form

t(e =¢o+cve

wheregg andc are positive constants. This relation is well known in theerials science

literature (cf. Livingston [4], Van Drunen and Saimoto [Staker and Holt [6]).
(V) We approximatesgn & for & # 0 by

1
lg|nsgna

with n large (viscoplastic regularization).

(vi) Assuming that the bodjg is an infinite layer between the plangs= 0 andZ = L, we

take natural boundary conditions for the microstress aatatto the total edge disloca-

tion density,
oe

7.0 9Z

ae

= =0
Y

Z=L
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5.1. A particular energy dislocation function

We further choose(e) in the form

1
(35) v(e) = e~ em)]?,

with e;y > 0 a constant. The functign(e) is non-convex and non-negative with a local minimum
ate = 0 ande = ey and a local maximum & = en/2.

5.2. The model

Assuming that the standard balance of momentum (31) isicglyt satisfied, the previous as-
sumptions reduce the general model to the following two gons

(36) t = (sgn@)la|Y (5o + cv/e),

and

37 é—g' & e(e 2)(e

(37) = Zlél | e155z —ee—em/DE—em) ).

Using (36), equation (37) becomes

S G LA Y S
(38) é= a(§0+cﬁ> (e azz—e(e—em/Z)(e—an)>,

supplemented by the natural boundary conditions discuabede. Equation (38), which is
the basic result of this work, is a non-linear partial diffietial equation which may be solved
numerically: a complete discussion of the behavior of tHatsms to (38) will be published

elsewhere.
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