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COMPATIBILITY CONDITIONS FOR DISCRETE
ELASTIC STRUCTURES

Abstract. The theory of plane, elastic trusses is reconsidered frenvigwpoint
of the continuum theory of elastic media. A main differeneé®en continuum
and discrete theories is the following: In the continuousecall quantities are
declared throughout the whole body, whereas in the discate each quantity
has its own “carrier”. In a truss, for instance, displaceta@md applied forces are
declared in the nodes while strain and stress live in the neesrdif the truss.

The paper deals with the proper formulation of compatipitionditions for a
truss. They are derived along the same lines as St.-Veramtipatibility condi-
tions of plane elasticity, i. e. by stipulating that Cessuintegrals are path inde-
pendent. Compatibility conditions can be formulated ahéacer node of a truss,
and they relate the strains of all members which constihgedsette surrounding
the inner node.

1. Continuous and discrete elastic systems

Continuum theories are usually developed from physicalatwthat are discrete in nature. A
continuous distribution of dislocations, for instance ulebhardly be conceivable, if we had not
a clear idea of aisolateddislocation. Even the notion of stress as a distributedeféoows
the example of a single force. Within the framework of a amntim theory, however, discrete
quantities appear as singularities and are formally lesgardent to handle than their continuous
counterparts.

By the process afiomogenizatioithe underlying discrete ideas are transformed into a con-
tinuum theory. The resulting partial differential equasodo not admit closed-form solutions,
in general. To solve them numericallydécretizationprocess is invoked, which approximates
the continuum by a discrete system. In this sense a contirthaory is squeezed between the
underlying discret@hysicalmodel and the discreteumericalapproximation.

The general structure of a physical theory should be pealtephdependently of the dis-
crete or continuum formulation. A balance equation, fotanse, has a genuine physical mean-
ing whether the model is continuous or discrete. The thebeydiscrete elastic structure, be it
a crystal lattice, a finite-element system or an elasticstraBould exhibit the same fundamen-
tal laws as continuum elasticity theory. The general fornthef fundamental equations can be
represented most suggestively by a so-calles T diagram [6, 7]. Figure 1 shows theoNTI
diagram of plane, linear elasticity theory. If we considegplane,discreteelastic system, we
should encounter the same physical laws, although in arrdiffierent formal garment.

This paper deals with the governing equations of planetielaasses with special empha-
size of the compatibility conditions, which are derivedrejadhe same lines asTSVENANT'’S
compatibility conditions of plane elasticity, i. e. by silpting that GSARO’s integrals are path
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independent.

The theory of plane, elastic trusses is reconsidered fravigwpoint of the continuum
theory of elastic media. Mathematically a truss is congidesis an oriented 2-complex, on
which displacement, strain, etc. are defined. In contraitda@ontinuous body the mechanical
guantities in a truss are not available everywhere in the,begch quantity resides on its own
“carrier”: Displacements and applied forces are declangtié nodes while strain and stress live
in the members of the truss. It will be shown that the comjagitconditions are attached to
“rosettes”, 1. e. inner nodes that are completely surrodrmyetriangles of truss members.

To consider trusses from the point of view of elasticity tlyeis not at all new. KEIN
and WIEGHARDT [4] have presented such an exposition even in 1905, and &hgyn earlier
works of MAXWELL and GREMONA. Meanwhile, however, trusses have become more a subject
of structural mechanics and the more theoretical aspewts lteen banned from textbooks. As
an exception a manuscript bylbER [5] should be mentioned, in which the cross-relations
between electrical and mechanical frameworks are studigdsiat detail.

2. Trusses

Mechanically a truss is a system of elastiembergoint to each other in hinges aodeswithout
friction. The truss is loaded by forces acting on the noddsg on

The appropriate mathematical model of a truss is a 1-comgb@sisting of 0-simplexes
(nodes) and 1-simplexes (members), which are “properhyejdii [3]. The subsequent analysis
gives rise to two extensions of this model, namely (i) eachiyer is given an orientation, which

displacemen volume force
vector density
Eij = U, Tij,j+fi=0
¢
strain tensor —» Tij = AEkkdij + 2UEj] |<— stress tensor
i
U = €ikeji Eij ki Tij = €ikejlok

disclination
density

Airy’s stress
function

Figure 1: Tonti diagram of plane linear elasticity
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Figure 2: Plane truss as a geometric complex

may be prescribed arbitrarily, and (ii) the triangles oiirddexes formed by the members are
taken into account. Thus the mathematical model of a trusgténded to apriented 2-complex
(Figure 2). Only the non-oriented 1-complex is reproduaedardware while the imposed ori-
entation and the appended triangular patches are mere metibal constructs which facilitate
the formulation of the theory.

Subsequently nodes will be designated by Latin leitejs. . . while Greek letters, 8, ...
denote the members. The connectivity of the truss is destiy incidence numberfo, K],
which are defined as

—1 if membera starts at nodé,
[e, K] = +1 if memberae ends at nodé,
0 else.

The distinction between start and end point of a member gesvits orientation. The matrix of
all incidence numbers describes the topological struaifitbe truss.

The geometry may be specified by prescribing the positiomove&y of all nodes in the
unloaded, stress-free state of the truss. The edge vectomaimberx can then be represented
by

(€N ag =) o KXk,
k

where the summation index may run over all nodes, since ttidgnce numbers single out
the proper starting and terminating points, thus redudiggsum to a simple difference. The
decomposition

Ay = eozeoz
yields the lengttt, and the direction vecta, of a member.
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It has been tacitly assumed that there exists an unloadedsdtee state of the truss. In
continuum elasticity theory this corresponds to the assiompghat the unloaded elastic body
is free of initial stresses. In a more general setting onetdasart from the lengthg, of the
undeformed members rather than from a given initial placeérke— Xy of the nodes. This
approach within a nonlinear theory is indicated in [2].

3. Displacement and strain

When loads are applied to the truss, each rod displaced by a certain vectag from its
original position. Thestrain or relative elongatiors of a member due to displacements and
u» of its endpoints is
1
&= Ze' (U2 —uy),

if only linear terms are retained. Using again the incidemgmbers §, k] the straing,, of an
arbitrary membet can be represented by

2 fa = iea ) le Kug.
o K

As in (1) above, the incidence numbers single out the endsofiehe member and the sum
reduces to a simple difference.

Due to the nodal displacements each membandergoes also a rotatias,. Restriction
to linear approximation yields

1
o = € A > lo Klug .
“« k

where A denotes the outer product of two plane vectors. An approtatirgy from displace-
ments does not need these rotations explicitly, since tbayod enter the stress-strain relation.
However, if the displacements have to be reconstructed fymen strains, the rotations are
needed as well.

Figure 3: Elongation of a member Figure 4: Equilibrium
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4. Equilibrium condition

Once the strain of a memberis known, one obtains the transmitted force bgdke's law

(3 Fo = (EAwéq ,

where E A denotes the axial rigidity of the member, i. e. the producY ofuNG's modulus and
cross-sectional area.

At any nodei of the truss the applied external for& and the member forces acting on
that node must be in equilibrium (Figure 4). The force acteonuthe node by the memberis
—[a, 1]Fy€y. Thus the equilibrium condition can be formulated as

4 D leilFuey = P

o

The sum may be taken over all members of the truss, sincedtdeince numbers single out only
those which start or end at notde

Combining the equilibrium condition (4), the constituti¥guation (3), and the definition of
strain (2) yields the linear system of equations

33 [ailfa. K (%em) Uk = P
k « o

which is the discrete analogue ofaAMER’s equations. In structural analysis the matrix of this
system of equations would be called the global stiffnesgirmaft the truss. The three con-
stituents of MVIER’s equations can be arranged in aNTI diagram (Figure 5), which is still
incomplete, since the lower part with the compatibility didion and ARY's stress function is
missing.

nodal
' external
displacements ° nodal forces
1 .
sazz—ea'Z[Ohk]Uk > lo.i]Fa€ = P
o
k o

member member
strains e Fo = (EAa £a e forces

Figure 5: Tonti diagram (upper part) for an elastic truss
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5. Compatibility in plane elasticity

Before developing the compatibility conditions for a trugsshall first review the §-VENANT
compatibility condition of plane elasticity, which may bead as paradigm. Starting from a
positionxg with given displacement vector the whole displacement fielsito be reconstructed
from the strain fieldgj; = u, j). Integration along a curvé connectingxg with an arbitrary
positionx yields the displacement components in terms B6&R0’s integral,

(5) Ui (X) = U (X0)+/C(Eij + weij ) dx;j ,

whereejj denotes the two-dimensional permutation symbol. Theiostaé = %(uz,l —Up,2),
however, is still unknown and has to be reconstructed frasthain field too.

For the integral in (5) to be path independent the integraagdth satisfy the integrability
condition

(6) g = Ejj kekj —ki =0,

wherekj = wj denotes the rotation gradient structural curvature[1]. Geometrically this
means that the body is free of dislocations. On the other taadotation field itself can be
reconstructed by another integral,

(7) (X) = w(Xg) + /C ki dx; .
For this integral to be path-independent the integrabdagdition
(8) ¥ =Kkj jeji =0

has to be satisfied, which means that the body is free of daabins. Combining the two condi-
tions (6) and (8) yields the1S-VENANT compatibility condition

9) €ikejl Eij ki =0,

which stipulates that both the dislocation and the distilmedensities vanish.

The compatibility condition emerges from a two-stage pssand combines two indepen-
dent conditions. To unwrap this combination the geometit pf the TONTI diagram, Figure 1,
has to be extended to show all the details, see Figure 6.

6. Compatibility condition for a plane truss

The displacement differencgu between the terminating nodes of a single member can be re-
constructed from the strain and the rotationo of that member. According to Figure 7 one
obtains

(10) AU = ga + wd’,

where the vectoa is aligned with the member aral® denotes the vector obtained by rotation
through+s /2.

The role of the patiC in CESARO’s integrals is adopted by an oriented 1-chain of truss
members (Figure 9). A 1-chaithcan be specified by incidence numbers
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+1 if C containsx and has the same orientation,
[C,a] =1 —1 ifC containsx and has opposite orientation,
0 if C does not contain.

Extending (10) to an oriented 1-chairyields the rotation difference

(11) Aug =) [C. o](eq8q + wpa)).
o
This is the discrete analogue t&SARO's first integral (5).

displacement vector

u

()
N

1u E 1(u +Uuii)
W= U e Ty .
S Ui i€ ij = 5 Ui ji
rotation strain tensor

a = Eij kekj — ki

structural _0 dislocation
curvature a= density
o St. Venant’s
U= kl,] €ji S "
compatibility condition
i
% =0 disclination density

Figure 6: Geometry of continuous deformation



44 M. Braun

The displacement difference (11) has to vanish for @ogedl-chain, or 1-cycleC. The
simplest nontrivial 1-cycle is a triangle formed by threembers. With the numbering and
orientation as provided in Figure 10 the closing conditionthis triangular 1-cycle reads

g1ag + wlaf + goay + wzaé\ + e3zaz + w33§ =0.

Scalar multiplication by one of the edge vectas,say, yields

1
w2 — W3 = (121 + epap +¢3a3) - @z,

where 2A = a; A ap = —aj A ag is twice the area of the triangle. From elementary geometric
considerations this can also be written as

(12) wy — w3 = (g1 — €2) COtag + (81 — €3) COtan,

where the angles of the undeformed triangle are denotedragune 10. Within each triangle the
rotation difference of two adjacent members can be compinted the strains in the members
of that triangle. This corresponds to the local integrébibndition (6) of the continuum theory,
which expresses the rotation gradient in terms of derigatof the local strain field.

The simplest 1-chain, for which a rotation difference candeéined, has length 2, it is
formed by two adjacent members (Figure 8). An extended Inaiay be decomposed into a
sequence of such elementary 1-chan$hus the rotation difference of an arbitrary 1-chain is

Awe = Z[C c]Awc
c

with appropriately defined incidence numbefs ¢]. Whereas the rotation differenc®wc is
defined for all paire of adjacent members, an explicit formula is available oifil{hese adja-
cent members are complemented by a third member to a clasedl&. Therefore, in order to
actually compute the rotation differeneavc between the first and the last member of a con-
nected 1-chai@, it has to be accompanied by an appropriate sequence dflegn. e. a 2-chain.
Also the original 1-chairf must be extended by certain detours along the edges of émglkeis
(Figure 11).

For any 1-cycleC the rotation differencé we has to vanish,

(13) dIC.dAwc =0 ifdC =4
C
Au
N’ — J—
o ] Aw = w2 — w1
g w1

w2

/ /

Figure 7: Single member Figure 8: Two members
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Figure 9: Oriented 1-chain Figure 10: Triangle

Figure 11: Chain of triangles Figure 12: Rosette

The shortest nontrivial 1-cycles are those surroundingnaeri node of the truss (Figure 12).
For each of these rosette-like substructures we can fotenala appropriate condition, which
corresponds to the integrability condition (8) in the contim case.

The closing condition for a rosette contains the differensec of successive members.
By use of (12) these can be expressed in the strains of the ererabthe corresponding trian-
gles. Using the numbering of members and angles indicatEdyure 12 one arrives at a single
condition of the form

n n

(14) ) (cotepi_p2i—1 + COtazi_12i)ezi—1 = »_(COtarzi_1,2i + COtergi 2i+1)e2i -
=1 mod 2h i=1 mod 2h



46 M. Braun

2n—2

Figure 13: Regular rosette Figure 14: Quadratic rosette

This is the analogue of 1I5-VENANT’s compatibility condition for a truss. It is obtained by
combining the closing condition (13) for the rotations arda rosette with the closing condition
(12) for the displacements around a triangle. For the trug®tstress-free in its unloaded state
the condition (14) is necessary but not sufficient, in genéfdahe 2-complex does not contain
any holes, the condition is also sufficient. The compatibitonditions are closely connected
with the extended model of the truss as an oriented 2-comalthough the 2-simplexes are not
material parts of the truss.

In the special case of a regular rosette (Figure 13) all tigéeany; i1 are equal and cancel
out. Thus the compatibility condition reduces to

n n
Yoea1=) ¢
i=1 i=1

The sum of the circumferential strains must be equal to thedithe radial strains. The general
compatibility condition (14) has a similar structure, witie strains being affected by certain
geometrical weight factors. For a quadratic rosette thepadifility condition reads

e1tez3téegt+er=¢e2+¢e4+¢€p+¢€8.

This equation can be interpreted as a discretizationTof\BENANT’S compatibility condition

(9).
7. Conclusion

The general structure of elasticity theory is not confinetthéocontinuum version, but holds also
for discrete elastic systems such as trusses or finite-atameadels. A remarkable difference be-
tween the theories of plane trusses and of elastic contstieifact that in the continuous case
all quantities are declared throughout the whole body, ed®in the discrete case of the truss
each quantity has its own “carrier”: Displacements areated in the nodes, strain and rota-
tion are available in the members, rotation differenceslpeédrs of members, and compatibility
conditions can be formulated for “rosettes”, 1. e. innerewthat are completely surrounded by
triangles of truss members. In this sense the continuunryhemuld be regarded as “easier”,
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since all quantities are defined in each material point. Aeldook shows, however, that the
continuum theory can also provide different carriers féfiedent quantities. This becomes mani-
fest, if the mechanical quantities are described in terntiffefrential forms rather than ordinary
field functions®*

The compatibility condition for a truss have been developsidg the same ideas as in the
continuum. It rests upon the postulation that displacenaendtrotation can be represented by
path-independenintegrals or, in the discrete case, by path-independeeffitns. To generate
localizedintegrability conditions in a continuum the integral ardunclosed path is transformed
via STOKES’s theorem into a surface integral, which must vanish ideily. In the truss case
the local conditions are obtained by choosing the smallestrivial closed paths or 1-cycles,
namely triangles for the displacements and rosettes famtiagions.

The theory of trusses can be developed further and exterided these lines. The com-
patibility condition should be complemented by its duak tiepresentation of member forces
by AIRY’s stress function. This quantity has the same carrier asdhepatibility condition,
i.e., it resides in the rosettes surrounding inner nodesetruss. The generalization to three
dimensions is more intricate, especially with respect ® ¢losing condition for the rotation
vector.

Quite interesting is the appropriate treatment of framestes, with members rigidly clamped
to each other. A frame truss allows forcasd couplego be applied to the nodes, and its mem-
bers deform under extensiobending andtorsion In this case the corresponding continuum
theory has to include couple stresses. It might be intergsti compare the common features of
continuous and discrete couple-stress theories.

Also a nonlinear theory of trusses can be formulated fronptiradigm of nonlinear elas-
ticity theory. The concept of differemtlacementss easily transferred to a truss, and also the
ESHELBY stress tensor has its counterpart in the discrete case. tAafiesnpt in this direction
has been made by the author in [2].
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