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COMPATIBILITY CONDITIONS FOR DISCRETE

ELASTIC STRUCTURES

Abstract. The theory of plane, elastic trusses is reconsidered from the viewpoint
of the continuum theory of elastic media. A main difference between continuum
and discrete theories is the following: In the continuous case all quantities are
declared throughout the whole body, whereas in the discretecase each quantity
has its own “carrier”. In a truss, for instance, displacements and applied forces are
declared in the nodes while strain and stress live in the members of the truss.

The paper deals with the proper formulation of compatibility conditions for a
truss. They are derived along the same lines as St.-Venant’scompatibility condi-
tions of plane elasticity, i. e. by stipulating that Cesàro’s integrals are path inde-
pendent. Compatibility conditions can be formulated at each inner node of a truss,
and they relate the strains of all members which constitute the rosette surrounding
the inner node.

1. Continuous and discrete elastic systems

Continuum theories are usually developed from physical models that are discrete in nature. A
continuous distribution of dislocations, for instance, would hardly be conceivable, if we had not
a clear idea of anisolateddislocation. Even the notion of stress as a distributed force follows
the example of a single force. Within the framework of a continuum theory, however, discrete
quantities appear as singularities and are formally less convenient to handle than their continuous
counterparts.

By the process ofhomogenizationthe underlying discrete ideas are transformed into a con-
tinuum theory. The resulting partial differential equations do not admit closed-form solutions,
in general. To solve them numerically adiscretizationprocess is invoked, which approximates
the continuum by a discrete system. In this sense a continuumtheory is squeezed between the
underlying discretephysicalmodel and the discretenumericalapproximation.

The general structure of a physical theory should be perceptible independently of the dis-
crete or continuum formulation. A balance equation, for instance, has a genuine physical mean-
ing whether the model is continuous or discrete. The theory of a discrete elastic structure, be it
a crystal lattice, a finite-element system or an elastic truss, should exhibit the same fundamen-
tal laws as continuum elasticity theory. The general form ofthe fundamental equations can be
represented most suggestively by a so-called TONTI diagram [6, 7]. Figure 1 shows the TONTI

diagram of plane, linear elasticity theory. If we consider aplane,discreteelastic system, we
should encounter the same physical laws, although in a rather different formal garment.

This paper deals with the governing equations of plane, elastic trusses with special empha-
size of the compatibility conditions, which are derived along the same lines as ST.-VENANT’s
compatibility conditions of plane elasticity, i. e. by stipulating that CESÀRO’s integrals are path
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independent.

The theory of plane, elastic trusses is reconsidered from the viewpoint of the continuum
theory of elastic media. Mathematically a truss is considered as an oriented 2-complex, on
which displacement, strain, etc. are defined. In contrast tothe continuous body the mechanical
quantities in a truss are not available everywhere in the body, each quantity resides on its own
“carrier”: Displacements and applied forces are declared in the nodes while strain and stress live
in the members of the truss. It will be shown that the compatibility conditions are attached to
“rosettes”, ı. e. inner nodes that are completely surrounded by triangles of truss members.

To consider trusses from the point of view of elasticity theory is not at all new. KLEIN

and WIEGHARDT [4] have presented such an exposition even in 1905, and they rely on earlier
works of MAXWELL and CREMONA. Meanwhile, however, trusses have become more a subject
of structural mechanics and the more theoretical aspects have been banned from textbooks. As
an exception a manuscript by RIEDER [5] should be mentioned, in which the cross-relations
between electrical and mechanical frameworks are studied in great detail.

2. Trusses

Mechanically a truss is a system of elasticmembersjoint to each other in hinges ornodeswithout
friction. The truss is loaded by forces acting on the nodes only.

The appropriate mathematical model of a truss is a 1-complexconsisting of 0-simplexes
(nodes) and 1-simplexes (members), which are “properly joined” [3]. The subsequent analysis
gives rise to two extensions of this model, namely (i) each member is given an orientation, which

uuu
displacement

vector

Ei j = u(i, j )

EEEstrain tensor

ϑ = εikε j l Ei j ,kl

ϑ = 0
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Ti j = εikε j l ϕ,kl

TTT stress tensor
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fff = 000
volume force
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Ti j = λEkkδi j + 2µEi j

Figure 1: Tonti diagram of plane linear elasticity
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Figure 2: Plane truss as a geometric complex

may be prescribed arbitrarily, and (ii) the triangles or 2-simplexes formed by the members are
taken into account. Thus the mathematical model of a truss isextended to anoriented 2-complex
(Figure 2). Only the non-oriented 1-complex is reproduced in hardware while the imposed ori-
entation and the appended triangular patches are mere mathematical constructs which facilitate
the formulation of the theory.

Subsequently nodes will be designated by Latin lettersi, j , . . . while Greek lettersα,β, . . .

denote the members. The connectivity of the truss is described by incidence numbers[α, k],
which are defined as

[α, k] =







−1 if memberα starts at nodek,
+1 if memberα ends at nodek,

0 else.

The distinction between start and end point of a member provides its orientation. The matrix of
all incidence numbers describes the topological structureof the truss.

The geometry may be specified by prescribing the position vectors xxxk of all nodes in the
unloaded, stress-free state of the truss. The edge vector ofa memberα can then be represented
by

(1) aaaα =
∑

k

[α, k]xxxk,

where the summation index may run over all nodes, since the incidence numbers single out
the proper starting and terminating points, thus reducing the sum to a simple difference. The
decomposition

aaaα = `αeeeα

yields the length̀ α and the direction vectoreeeα of a member.
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It has been tacitly assumed that there exists an unloaded, stress-free state of the truss. In
continuum elasticity theory this corresponds to the assumption that the unloaded elastic body
is free of initial stresses. In a more general setting one hasto start from the lengths̀α of the
undeformed members rather than from a given initial placement k 7→ xxxk of the nodes. This
approach within a nonlinear theory is indicated in [2].

3. Displacement and strain

When loads are applied to the truss, each nodek is displaced by a certain vectoruuuk from its
original position. Thestrain or relative elongationε of a member due to displacementsuuu1 and
uuu2 of its endpoints is

ε =
1

`
eee ··· (uuu2 − uuu1),

if only linear terms are retained. Using again the incidencenumbers [α, k] the strainεα of an
arbitrary memberα can be represented by

(2) εα =
1

`α
eeeα ···

∑

k

[α, k]uuuk .

As in (1) above, the incidence numbers single out the end nodes of the member and the sum
reduces to a simple difference.

Due to the nodal displacements each memberα undergoes also a rotationωα . Restriction
to linear approximation yields

ωα =
1

`α
eeeα ∧

∑

k

[α, k]uuuk ,

where∧ denotes the outer product of two plane vectors. An approach starting from displace-
ments does not need these rotations explicitly, since they do not enter the stress-strain relation.
However, if the displacements have to be reconstructed fromgiven strains, the rotations are
needed as well.
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Figure 3: Elongation of a member
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Figure 4: Equilibrium
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4. Equilibrium condition

Once the strain of a memberα is known, one obtains the transmitted force by HOOKE’s law

(3) Fα = (E A)αεα ,

whereE A denotes the axial rigidity of the member, i. e. the product ofYOUNG’s modulus and
cross-sectional area.

At any nodei of the truss the applied external forcePPPi and the member forces acting on
that node must be in equilibrium (Figure 4). The force acted upon the node by the memberα is
−[α, i ]Fαeeeα. Thus the equilibrium condition can be formulated as

(4)
∑

α

[α, i ]Fαeeeα = PPPi .

The sum may be taken over all members of the truss, since the incidence numbers single out only
those which start or end at nodei .

Combining the equilibrium condition (4), the constitutiveequation (3), and the definition of
strain (2) yields the linear system of equations

∑

k

∑

α

[α, i ] [α, k]
(

E A

`
eee⊗ eee

)

α

uuuk = PPPi ,

which is the discrete analogue of NAVIER ’s equations. In structural analysis the matrix of this
system of equations would be called the global stiffness matrix of the truss. The three con-
stituents of NAVIER ’s equations can be arranged in a TONTI diagram (Figure 5), which is still
incomplete, since the lower part with the compatibility condition and AIRY ’s stress function is
missing.

uuuk
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1

`α
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∑
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member
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∑

α
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Figure 5: Tonti diagram (upper part) for an elastic truss
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5. Compatibility in plane elasticity

Before developing the compatibility conditions for a trusswe shall first review the ST.-VENANT

compatibility condition of plane elasticity, which may be used as paradigm. Starting from a
positionxxx0 with given displacement vector the whole displacement fieldhas to be reconstructed
from the strain fieldEi j = u(i, j ). Integration along a curveC connectingxxx0 with an arbitrary
positionxxx yields the displacement components in terms of CESÀRO’s integral,

(5) ui (xxx) = ui (xxx0) +

∫

C

(Ei j + ωεi j ) dx j ,

whereεi j denotes the two-dimensional permutation symbol. The rotation ω =
1
2(u2,1 − u1,2),

however, is still unknown and has to be reconstructed from the strain field too.

For the integral in (5) to be path independent the integrand has to satisfy the integrability
condition

(6) ai ≡ Ei j ,kεkj − ki = 0,

whereki = ω,i denotes the rotation gradient orstructural curvature[1]. Geometrically this
means that the body is free of dislocations. On the other handthe rotation field itself can be
reconstructed by another integral,

(7) ω(xxx) = ω(xxx0) +

∫

C

ki dxi .

For this integral to be path-independent the integrabilitycondition

(8) ϑ ≡ ki, j ε j i = 0

has to be satisfied, which means that the body is free of disclinations. Combining the two condi-
tions (6) and (8) yields the ST.-VENANT compatibility condition

(9) εikε j l Ei j ,kl = 0,

which stipulates that both the dislocation and the disclination densities vanish.

The compatibility condition emerges from a two-stage process and combines two indepen-
dent conditions. To unwrap this combination the geometric part of the TONTI diagram, Figure 1,
has to be extended to show all the details, see Figure 6.

6. Compatibility condition for a plane truss

The displacement difference1uuu between the terminating nodes of a single member can be re-
constructed from the strainε and the rotationω of that member. According to Figure 7 one
obtains

(10) 1uuu = εaaa + ωaaa∧,

where the vectoraaa is aligned with the member andaaa∧ denotes the vector obtained by rotation
through+π/2.

The role of the pathC in CESÀRO’s integrals is adopted by an oriented 1-chain of truss
members (Figure 9). A 1-chainC can be specified by incidence numbers
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[C, α] =







+1 if C containsα and has the same orientation,
−1 if C containsα and has opposite orientation,

0 if C does not containα.

Extending (10) to an oriented 1-chainC yields the rotation difference

(11) 1uuuC =
∑

α

[C, α](εαaaaα + ωαaaa∧
α ).

This is the discrete analogue to CESÀRO’s first integral (5).

uuu

ω =
1

2
ui, j ε j i

ω

ki = ω,i

kkk

ϑ = ki, j ε j i

ϑ = 0

Ei j =
1

2
(ui, j + u j ,i )

EEE

ai = Ei j ,kεkj − ki

aaa = 000

displacement vector

rotation strain tensor

structural
curvature

dislocation
density

disclination density

St. Venant’s
compatibility condition

Figure 6: Geometry of continuous deformation
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The displacement difference (11) has to vanish for anyclosed1-chain, or 1-cycle,C. The
simplest nontrivial 1-cycle is a triangle formed by three members. With the numbering and
orientation as provided in Figure 10 the closing condition for this triangular 1-cycle reads

ε1aaa1 + ω1aaa∧
1 + ε2aaa2 + ω2aaa∧

2 + ε3aaa3 + ω3aaa∧
3 = 0.

Scalar multiplication by one of the edge vectors,aaa1 say, yields

ω2 − ω3 =
1

2A
(ε1aaa1 + ε2aaa2 + ε3aaa3) ··· aaa1 ,

where 2A = aaa1 ∧ aaa2 = −aaa1 ∧ aaa3 is twice the area of the triangle. From elementary geometric
considerations this can also be written as

(12) ω2 − ω3 = (ε1 − ε2) cotα3 + (ε1 − ε3) cotα2 ,

where the angles of the undeformed triangle are denoted as inFigure 10. Within each triangle the
rotation difference of two adjacent members can be computedfrom the strains in the members
of that triangle. This corresponds to the local integrability condition (6) of the continuum theory,
which expresses the rotation gradient in terms of derivatives of the local strain field.

The simplest 1-chain, for which a rotation difference can bedefined, has length 2, it is
formed by two adjacent members (Figure 8). An extended 1-chain may be decomposed into a
sequence of such elementary 1-chainsc. Thus the rotation difference of an arbitrary 1-chain is

1ωC =
∑

c
[C, c]1ωc

with appropriately defined incidence numbers [C, c]. Whereas the rotation difference1ωc is
defined for all pairsc of adjacent members, an explicit formula is available only,if these adja-
cent members are complemented by a third member to a closed triangle. Therefore, in order to
actually compute the rotation difference1ωC between the first and the last member of a con-
nected 1-chainC, it has to be accompanied by an appropriate sequence of triangles, i. e. a 2-chain.
Also the original 1-chainC must be extended by certain detours along the edges of the triangles
(Figure 11).

For any 1-cycleC the rotation difference1ωC has to vanish,

(13)
∑

c
[C, c]1ωc = 0 if ∂C = ∅.

��

��

aaa

εa
ωa

1uuu

Figure 7: Single member

aaa 1

aaa2

��

ω1
ω2

1ω = ω2 − ω1

Figure 8: Two members
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The shortest nontrivial 1-cycles are those surrounding an inner node of the truss (Figure 12).
For each of these rosette-like substructures we can formulate an appropriate condition, which
corresponds to the integrability condition (8) in the continuum case.

The closing condition for a rosette contains the differences 1ωc of successive members.
By use of (12) these can be expressed in the strains of the members of the corresponding trian-
gles. Using the numbering of members and angles indicated inFigure 12 one arrives at a single
condition of the form

(14)
n

∑

i=1

(

cotα2i−2
mod 2n

,2i−1 + cotα2i−1,2i
)

ε2i−1 =

n
∑

i=1

(

cotα2i−1,2i + cotα2i,2i+1
mod 2n

)

ε2i .
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Figure 14: Quadratic rosette

This is the analogue of ST.-VENANT’s compatibility condition for a truss. It is obtained by
combining the closing condition (13) for the rotations around a rosette with the closing condition
(12) for the displacements around a triangle. For the truss to be stress-free in its unloaded state
the condition (14) is necessary but not sufficient, in general. If the 2-complex does not contain
any holes, the condition is also sufficient. The compatibility conditions are closely connected
with the extended model of the truss as an oriented 2-complex, although the 2-simplexes are not
material parts of the truss.

In the special case of a regular rosette (Figure 13) all the anglesαi,i+1 are equal and cancel
out. Thus the compatibility condition reduces to

n
∑

i=1

ε2i−1 =

n
∑

i=1

ε2i .

The sum of the circumferential strains must be equal to the sum of the radial strains. The general
compatibility condition (14) has a similar structure, withthe strains being affected by certain
geometrical weight factors. For a quadratic rosette the compatibility condition reads

ε1 + ε3 + ε5 + ε7 = ε2 + ε4 + ε6 + ε8 .

This equation can be interpreted as a discretization of ST.-VENANT’s compatibility condition
(9).

7. Conclusion

The general structure of elasticity theory is not confined tothe continuum version, but holds also
for discrete elastic systems such as trusses or finite-element models. A remarkable difference be-
tween the theories of plane trusses and of elastic continua is the fact that in the continuous case
all quantities are declared throughout the whole body, whereas in the discrete case of the truss
each quantity has its own “carrier”: Displacements are declared in the nodes, strain and rota-
tion are available in the members, rotation differences need pairs of members, and compatibility
conditions can be formulated for “rosettes”, ı. e. inner nodes that are completely surrounded by
triangles of truss members. In this sense the continuum theory could be regarded as “easier”,
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since all quantities are defined in each material point. A closer look shows, however, that the
continuum theory can also provide different carriers for different quantities. This becomes mani-
fest, if the mechanical quantities are described in terms ofdifferential forms rather than ordinary
field functions.∗

The compatibility condition for a truss have been developedusing the same ideas as in the
continuum. It rests upon the postulation that displacementand rotation can be represented by
path-independentintegrals or, in the discrete case, by path-independet finite sums. To generate
localizedintegrability conditions in a continuum the integral around a closed path is transformed
via STOKES’s theorem into a surface integral, which must vanish identically. In the truss case
the local conditions are obtained by choosing the smallest nontrivial closed paths or 1-cycles,
namely triangles for the displacements and rosettes for therotations.

The theory of trusses can be developed further and extended along these lines. The com-
patibility condition should be complemented by its dual, the representation of member forces
by AIRY ’s stress function. This quantity has the same carrier as thecompatibility condition,
i. e., it resides in the rosettes surrounding inner nodes of the truss. The generalization to three
dimensions is more intricate, especially with respect to the closing condition for the rotation
vector.

Quite interesting is the appropriate treatment of frame trusses, with members rigidly clamped
to each other. A frame truss allows forcesand couplesto be applied to the nodes, and its mem-
bers deform under extension,bending, andtorsion. In this case the corresponding continuum
theory has to include couple stresses. It might be interesting to compare the common features of
continuous and discrete couple-stress theories.

Also a nonlinear theory of trusses can be formulated from theparadigm of nonlinear elas-
ticity theory. The concept of differentplacementsis easily transferred to a truss, and also the
ESHELBY stress tensor has its counterpart in the discrete case. A first attempt in this direction
has been made by the author in [2].
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∗This aspect has been pointed out by Professor ANTONIO DI CARLO in the discussion of the paper at
the Torino seminar.
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