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POLYCRYSTALLINE MICROSTRUCTURE

Abstract. Polycrystals are often modelled as Cosserat continua, the crystallo-
graphic directions within single crystals being represented through elements of
SO(3). To address the problem of an overall representation of a polycrystalline
aggregate, following the example of nematics, one may choose an appropriate em-
bedding ofSO(3) in a linear space. Some possibilities are explored and a sugges-
tion is made for such a choice.

1. Introduction

1.1. Orientation distribution in polycrystals

A polycrystal is a material body the elements of which comprise each a population of ‘specks’
having the structure of a single perfect crystal. In the simplest instance all such crystallites
are of the same kind, i.e., any two of them can be superposed through a rigid displacement.
Thus a reference crystallite can be chosen and a lattice orientation function can be assigned to
describe the polycrystal’s substructure. This approach isstandard in metallurgical analyses and
the problem of determining the orientation function is of industrial import.

The sketch above pertains to a particular range of observation scales. Actually no lattice
at all can be defined within dislocations cores, while, observing metals at low temperature and
at a scale significantly larger than the average dislocationspacing, a grain pattern appears. The
lattice orientation function is constant on regions of finite volume (the bulk of grains) and jumps
across their boundaries.

When observations at a scale much larger than the largest grain size are involved no account
is taken of grain shapes and the polycrystal is described simply through an orientation distribu-
tion function on the basis of probabilistic assumptions. The need arises for a global description
through a distribution of lattice orientations.

Thus when computations at a scale much larger than the largest grain size are involved, one
may wish to consider body elements which include many hundreds of grains and are charac-
terised by a whole distribution of lattice orientations. The question arises as to the constitutive
nature of the interactions between neighbouring body elements; it seems reasonable to start by
assuming that these interactions depend on the first moment of the distribution and thus on some
‘average’ orientation of the crystals within the material elements, and that these averages evolve
according to general rules described by multifield theories, whereas evolutions of the orientation
distribution function deep within the element be describedon the basis of a multivariable theory
(cf. [4, 5, 7, 8, 18]).
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In the case of polycrystals the manifoldM of ‘deep’ states,l’éspace profondof [7], is
a subset ofSO(3) (symmetry arguments may makeM a proper subgroup ofSO(3)) and, at
each pointx ∈ E , M is endowed with the structure of a probability space, so thateachµ ∈

M is a random variable with probability density, say,γ (the orientation distribution function).
Assuming that self-effects be weakly non-local inM, in the sense of [14], evolution equations
of general type can be found forγ , whereas interactions among neighbours inE occur through
some kind of average overM based onγ .

To achieve that average a device, simple to use, could be invoked. Whitney’s theorem
affirms that a linear spaceS , of dimension 2m + 1, exists within which the manifoldM, of
dimensionm, can be embedded. The embedding is not unique and there are even cases where
the embedding is feasible in a linear space of dimension lower than 2m + 1 (e.g.,SO(3), of
dimension 3, can be embedded in a 5-dimensional linear space). However the essential point is
thatS exists and, in it, averages can be evaluated in a straightforward manner; they fall, generally,
outside the imagêM of M in S , and fill altogether the convex hullH of that image. WithinH
complete disorder is represented by the average of a uniformdistribution onM.

1.2. General remarks on continuum models

The possible teaming up, for certain tasks, of a multifield and a multivariable theory has led one
of us to advance the remarks which follow [16]; we recall themhere because they are strictly
relevant and give to our present proposal a very general setting.

Multifield theories are based on the classical space-timeE×T . Fieldsν : E×T → N (N a
manifold of ‘substructures’) enrich the ‘natural’ classicdescription which invokes only bijections
E → E at each instant. Interactions between elements are supposed to have short range inE à
la Cauchy, though the nature of these interactions depends now, by duality arguments, on the
greater kinematic richness of the model.

Multivariable theories start from a wider representation of physical space, obtained by
adding to standard placements inE a setM of ‘deep’ placementsµ. Interactions range now
between neighbours inE × M, but the duality is usually narrow. These theories take the com-
ponentsµα of µ as extra independent variables beside the place variablex (and time if the case
requires). They introduce a distribution functionγ (µ, x) such thatγ (µ, x) dµ measures the
fraction of fragments of the element atx having a value of the substructure falling within the
interval(µ, µ + dµ).

In some current research contributions it is assumed that the evolution ofγ is totally dictated
by the internal state of each element and related to gradients in the variableµ in a sort of weakly
nonlocal (onM) mode. Within the element spatial distances do not count, whereas it is easy to
believe that two fragments with slightly different values of µ influence one another more than
two fragments whose values are, in some measure, distant, irrespective of the exact location
of the two fragments within the element. The assumption of anexclusively internal dependence
may be sometimes a limiting factor, but this is not so critical in some problems for polycrystalline
solids where interelement effects due to spatial gradientsare modest, or occur mainly through the
agency of macrostress; contrariwise, when studying nematics and hyperfluids [10], one perceives
easily the depth of influence of certain constraining boundary conditions.

One way to fix the loophole: find somehow an average value ofµ over each element and
imagine such average influenced by the averages in neighbouring elements in the same way as
happens in less deep theories where all fragments in an element lead to the same value of the
substructural variable. Perhaps extract some ‘frame’ or background from the averages and, if ob-
jectivity commands, describe the internal distributionsγ and their internal evolution against that
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background. Judicious steps are always required to arrive at a proper and significant definition of
average. Previous embedding of the manifoldM in a linear spaceS of higher dimension is al-
ways possible (in dimension 2m+1, by the already quoted theorem of Whitney); then calculation
of averages is straightforward.

Actually reference tôM, as a hypersurface inS , rather then to the intrinsic manifoldM, if
managed with care, makes many developments easier; correspondinglyS may take the place of
N , again if prudence is exercised to avoid breaches of objectivity. Known concepts and relations
may be imported with advantage from available multifield theories.

Thus, for our present task, the matter of embeddingSO(3) in a linear space is an essential
prerequisite and becomes the core of our developments. To pave the way and make it even
more evident, we pause to consider first the simpler, and in part already well established, case of
nematic liquid crystals.

2. The example of nematics

In the theory of nematic liquid crystalsM is the manifold of directions, hence of dimension 2.
Whitney’s embedding can be realised in a linear space of dimension 5. Each direction is put first
into one-to-one correspondence with the tensorn ⊗ n − 1

3 I , wheren is any one of the two unit
vectors having the required direction andI is the identity. All those tensors belong to the linear
space (with dimension 5) of the symmetric traceless tensors; one of them, sayN, will be the
average when the element contains molecules with varying degree of orientation. The principal
axes ofN provide the frame upon which details regarding the distribution of orientations can be
assigned. Still, already the eigenvalues ofN + 1

3 I , call themλi determine two parameters which
describe essential traits of the distribution: the degree of prolation s (called also, by Ericksen,

degree of orientation) in
[
−1

2, 1
]
:
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Perfect ordering corresponds to the valuess = 1, β = 0; ‘melting’ of the liquid crystal occurs
when both parameters vanish.

Many problems have been solved satisfactorily usingN as a substructural variable and
writing for it an appropriate evolution equation which involves the gradient ofN in physical
space (for a partial analysis in this direction see [2] and [12]; a fuller study is in a forthcoming
paper by Biscari and Capriz).

However, if the details of the distribution of directionsγ (n) become relevant for specific
problems, then the following further steps must be taken. Anevolution equation forγ must be
proposed, expressing its ‘conservation’ (the total ofγ overN must always equal to 1); here a
suggestion of Muschik [3, 17] may be accepted though modifiedso as to admit also an influence
onγ of N and of the gross displacement gradientF .
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Ultimately one comes to the equation

∂γ

∂τ
+ divN (γ ṅ) + ( gradNγ ) · Ṅ + ( gradFγ ) · Ḟ = 0 ,

where gradients enter along the manifoldsM andN . Actually if n ⊗ n, rather thann, had
been chosen as a variable, then divn would have been substituted by the appropriate surface
divergence alonĝM in S .

The balance equation above, exhaustive though it be in very special cases, must be sup-
plemented in general by a ‘deep’ balance equation, which, instatics, may express a minimality
condition for the energy connected with a certain choice ofγ (N) and of its gradient on̂M.
Alternatively, there may be steady states of deformation (e.g. of shearing) dominated by some
sort of viscous action which must be itself balanced (for matching developments in the theory of
polycrystals see [4, 6, 7, 9]).

3. Embedding ofSO(3) in R
5

The so called ‘easy Whitney embedding theorem’ (cfr. [19]) proves thatSO(3) can, as any
compact (HausdorffCr , 2 ≤ r ≤ ∞) three dimensional manifold, be embedded inR

7, though
embeddings into linear spaces of smaller dimension may be possible.

It has been proved thatSO(3) cannot be embedded intoR4 (cfr. [11]), while an embedding
into R

5 is known. The latter result can be shown through a chain of differentiable inclusions:
SO(3) can be included intoS2 × S2 associating with each element of the orthogonal matrix any
two column vectors of it:




c(1)
1 c(2)

1 c(3)
1

c(1)
2 c(2)

2 c(3)
2

c(1)
3 c(2)

3 c(3)
3


 ∈ SO(3) → (c(1), c(2)) ∈ S2 × S2

One of the two unit 2-spheresS2 can be included into ]0,+∞[×R
2:

c(2) ∈ S2 → (ξc(2)
1 + ζ, ξc(2)

2 , ξc(2)
3 ) ∈]0,+∞[×R

2 ,

with 0 < ξ < ζ ; then

S2 × (]0,+∞[×R
2) = (S2×]0,+∞[) × R

2 ≈ (R3 − {0}) × R
2 ⊂ R

5 .

Notice thatS2×]0,+∞[ is diffeomorphic toR
3 − {0} as it can be shown, e.g., choosing coordi-

nates(ϑ, φ) onS2 and taking the corresponding polar coordinatesc(1) = (sinφ cosϑ, sinφ sinϑ,

cosφ) onR
3 − {0}:

(ϑ, φ, ρ) ∈ S2×]0,+∞[→ (ρ sinφ cosϑ, ρ sinφ sinϑ, ρ cosφ) ∈ R
3 − {0} .

We thus have the embedding:

[
c(i )

j

]
∈ SO(3) →

(c(1)
1 (ξc(2)

1 + ζ ), c(1)
2 (ξc(2)

1 + ζ ), c(1)
3 (ξc(2)

1 + ζ ), ξc(2)
2 , ξc(2)

3 ) ∈ R
5 .
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It can be shown that the conditions‖c(1)‖ = 1 and‖c(2)‖ = 1, and the conditionc(1)·c(2) =

0 correspond respectively to the equations (x ∈ R
5):

(1)
(‖x‖2 − ξ2 − ζ2)2 + 4ζ2(x2

4 + x2
5) = 4ξ2ζ2 ,

x1(‖x‖2 − ξ2 − ζ2) + 2ζ(x2x4 + x3x5) = 0 .

4. Embedding a subgroup ofSO(3) into Sym0

The embedding recalled in Sect. 3 from texts in differentialgeometry does not appear to have
intrinsic character required on principle for its use in a physical theory; the appropriate alter-
native is the introduction of a symmetric tensor of a specialclass to denote a particular lattice
orientation.

We must emphasise, however, at the outset that application of the theorem to our physical
context will be legitimate only when a set of three mutually orthogonal directions (no arrow!),
each endowed with a different characteristic length, existhaving an immediate physical signif-
icance in the description of crystallites (e.g. the edges ofthe elementary cell if the crystalline
system is orthorombic). Call{m(i ) | i ∈ {1, 2, 3}}, ‖m(1)‖ < ‖m(2)‖ < ‖m(3)‖, the vectors rep-
resenting a crystallite, their sign being immaterial to thephysical description of the crystallite,
normalized to make

3∑

i=1

(m(i ))2 = 1 .

A polycrystal is a cluster of such crystallites, each uniquely identified through the proper
orthogonal tensorQ giving the rotation from a set of reference unit vectors{c(i )} to the crystal-
lite’s unit vectors{m(i )/‖m(i )‖} modulus rotations ofπ about anyc(i ); call M ⊂ SO(3) the
subgroup of such rotations.

Now let us define the following map from the same set of crystallites to the linear space of
symmetric tensors

S({m(i )}) =

3∑

i=1

m(i ) ⊗ m(i ) ;

for all {m(i )} it is trS= 1, trS2 =
∑3

i=1(m(i ))4, and detS =
∏3

i=1(m(i ))2.

There is a one to one differentiable map between the set of crystallites and the elements of
Symwhich verify the conditions listed above; in particular anytensorS verifying these condi-
tions has three distinct eigenvalues(m(i ))2, with the corresponding eigenvectors parallel to the
vectorsm(i ). The spectral decomposition of such a tensorS is thus

S({m(i )}) = QD2QT ,

whereD is the diagonal matrix

D :=




‖m(1)‖ 0 0
0 ‖m(2)‖ 0
0 0 ‖m(3)‖


 .

Therefore

M ≈



S ∈ Sym
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trS = 1, trS2 =

3∑

i=1

(m(i ))4, detS=
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(m(i ))2



 ,
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and one can suggest the embedding in the affine space:

M ↪→ S ≡ {S ∈ Sym| trS= 1} .

REMARK 1. Chosen any reference the general element ofS is represented by

S=




x1 x5 x4
x5 x2 x3
x4 x3 1 − x1 − x2


 ,

i.e., by a mappingS → R
5. The conditions trS2 =

∑3
i=1(m(i ))4 and detS =

∏3
i=1(m(i ))2,

can be written in coordinates (cfr. equations (1)):

‖x‖2 + x1x2 − x1 − x2 + 1 =
∑3

i=1(m(i ))4 ,

(x1x2 − x2
5)(1 − x1 − x2) − x1x2

3 − x2x2
4 + 2x3x4x5 =

∏3
i=1(m(i ))2 ,

representing the imagêM of M in S .

5. Conclusion

A distribution of orthorhombic crystals can be representedthrough the mean orientation defined
as:

S̃ :=
∫

SO(3)
γ (Q)S(Q) d(SO(3)) .

If the distribution is one of perfect order, with all crystals oriented as somêQ, thenS̃ = S(Q̂)

has three distinct eigenvalues and the corresponding eigenvectors represent the axes of the crys-
tallite. Contrariwise, if the disorder is complete, thenS̃ is spherical and no preferred axis can be
assigned to the average representation of the distributionof crystals. Intermediate conditions are
clearly possible, with the axial optical properties of the aggregate corresponding to the number
of distinct eigenvalues of̃S.

We have thus taken the first essential step for a convenient portrait of a polycrystal, a step
which opens the way for a rigourous connection between the theory of continua with microstruc-
ture as displayed in [13] and the theory of ‘deep’ space proposed in [4] with direct metallurgical
applications in mind.

References

[1] B ISCARI P., CAPRIZ G. AND V IRGA E., Biaxial nematic liquid crystal, in: “Boundary-
value problems for partial differential equations and applications”, (Eds. C. Baiocchi and
J.L. Lions), Masson, Paris 1993.

[2] B ISCARI P. AND CAPRIZ G., Optical and statistical anisotropy in nematics, Rend. Acc.
Lincei Matematica4 (1993), 307–313.

[3] BLENK S., EHRENTRAUT H. AND MUSCHIK W., A continuum theory for liquid crystals
describing different degrees of orientational order, Liquid Crystals14 4 (1993), 1221–
1226.
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