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POLYCRYSTALLINE MICROSTRUCTURE

Abstract. Polycrystals are often modelled as Cosserat continua, rjrstatio-
graphic directions within single crystals being represdrtrough elements of
SO(3). To address the problem of an overall representation of ycpgaitalline
aggregate, following the example of nematics, one may ehansppropriate em-
bedding ofSO(3) in a linear space. Some possibilities are explored and aesugg
tion is made for such a choice.

1. Introduction

1.1. Orientation distribution in polycrystals

A polycrystal is a material body the elements of which cospeach a population of ‘specks’
having the structure of a single perfect crystal. In the $@stpinstance all such crystallites
are of the same kind, i.e., any two of them can be superpogedgh a rigid displacement.
Thus a reference crystallite can be chosen and a latticetatien function can be assigned to
describe the polycrystal’'s substructure. This approadieisdard in metallurgical analyses and
the problem of determining the orientation function is afustrial import.

The sketch above pertains to a particular range of observatiales. Actually no lattice
at all can be defined within dislocations cores, while, olisgrmetals at low temperature and
at a scale significantly larger than the average disloca@ting, a grain pattern appears. The
lattice orientation function is constant on regions of &niblume (the bulk of grains) and jumps
across their boundaries.

When observations at a scale much larger than the largastsijza are involved no account
is taken of grain shapes and the polycrystal is describeglgithrough an orientation distribu-
tion function on the basis of probabilistic assumptionse Tibed arises for a global description
through a distribution of lattice orientations.

Thus when computations at a scale much larger than the tayges size are involved, one
may wish to consider body elements which include many husdcé grains and are charac-
terised by a whole distribution of lattice orientations.eTduestion arises as to the constitutive
nature of the interactions between neighbouring body efésné seems reasonable to start by
assuming that these interactions depend on the first morh#re distribution and thus on some
‘average’ orientation of the crystals within the materignaeents, and that these averages evolve
according to general rules described by multifield theorggereas evolutions of the orientation
distribution function deep within the element be describedhe basis of a multivariable theory
(cf. [4,5,7, 8,18]).

*We thank our friend Fulvio Lazzeri for useful suggestionshisTresearch is part of the programme
“Modelli Matematici per la Scienza dei Materiali” of the lign Ministero dell’Universita e della Ricerca
Scientifica e Tecnologica.
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In the case of polycrystals the manifoltt of ‘deep’ states)'éspace profondof [7], is
a subset ofSO(3) (symmetry arguments may make! a proper subgroup df O(3)) and, at
each pointx € &£, M is endowed with the structure of a probability space, so ¢élaahu <
M is a random variable with probability density, sgy(the orientation distribution function).
Assuming that self-effects be weakly non-localin, in the sense of [14], evolution equations
of general type can be found for, whereas interactions among neighbourg iaccur through
some kind of average ove¥1 based ory.

To achieve that average a device, simple to use, could bd&edvoWhitney's theorem
affirms that a linear spac§, of dimension 2n + 1, exists within which the manifold\, of
dimensionm, can be embedded. The embedding is not unique and thereexreases where
the embedding is feasible in a linear space of dimensionrahan 2n + 1 (e.g.,SO(3), of
dimension 3, can be embedded in a 5-dimensional linear spogvever the essential point is
thatS exists and, in it, averages can be evaluated in a straigiafdrmanner; they fall, generally,
outside the imagé of M in S, and fill altogether the convex hult of that image. Withirf{
complete disorder is represented by the average of a unidetmibution onM.

1.2. General remarks on continuum models

The possible teaming up, for certain tasks, of a multifield amultivariable theory has led one
of us to advance the remarks which follow [16]; we recall theene because they are strictly
relevant and give to our present proposal a very generahgett

Multifield theories are based on the classical space-fimg . Fieldsv : Ex7 — N (N a
manifold of ‘substructures’) enrich the ‘natural’ clasdiescription which invokes only bijections
£ — & at each instant. Interactions between elements are suppo$@ve short range ié a
la Cauchy though the nature of these interactions depends now, hijtydaeguments, on the
greater kinematic richness of the model.

Multivariable theories start from a wider representatidnpbysical space, obtained by
adding to standard placementséna setM of ‘deep’ placementg.. Interactions range now
between neighbours ifi x M, but the duality is usually narrow. These theories take tm-c
ponentsu® of 1 as extra independent variables beside the place vanafaled time if the case
requires). They introduce a distribution functipn(i, X) such thaty (u, X) du measures the
fraction of fragments of the element athaving a value of the substructure falling within the
interval (i, u +dp).

In some current research contributions it is assumed thablution ofy is totally dictated
by the internal state of each element and related to gragiietihe variable in a sort of weakly
nonlocal (onM) mode. Within the element spatial distances do not coungéreds it is easy to
believe that two fragments with slightly different valueisioinfluence one another more than
two fragments whose values are, in some measure, disteggpéctive of the exact location
of the two fragments within the element. The assumption abartusively internal dependence
may be sometimes a limiting factor, but this is not so criticgome problems for polycrystalline
solids where interelement effects due to spatial grademetenodest, or occur mainly through the
agency of macrostress; contrariwise, when studying nemsatid hyperfluids [10], one perceives
easily the depth of influence of certain constraining boupndanditions.

One way to fix the loophole: find somehow an average valye ofer each element and
imagine such average influenced by the averages in neighigoelements in the same way as
happens in less deep theories where all fragments in an etdesal to the same value of the
substructural variable. Perhaps extract some ‘frame’ okdgpaund from the averages and, if ob-
jectivity commands, describe the internal distributipnand their internal evolution against that
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background. Judicious steps are always required to ara@per and significant definition of
average. Previous embedding of the maniféitiin a linear space of higher dimension is al-

ways possible (in dimensiom2t+1, by the already quoted theorem of Whitney); then calouati
of averages is straightforward.

Actually reference ton, as a hypersurface ifi, rather then to the intrinsic manifoldH, if
managed with care, makes many developments easier; congiagly S may take the place of
N, again if prudence is exercised to avoid breaches of objgctknown concepts and relations
may be imported with advantage from available multifielcbtfies.

Thus, for our present task, the matter of embed®@3) in a linear space is an essential
prerequisite and becomes the core of our developments. Vi® tha way and make it even
more evident, we pause to consider first the simpler, andrirar@ady well established, case of
nematic liquid crystals.

2. The example of nematics

In the theory of nematic liquid crystal$1 is the manifold of directions, hence of dimension 2.
Whitney’s embedding can be realised in a linear space ofmina 5. Each direction is put first
into one-to-one correspondence with the tems@rn — %I , Wheren is any one of the two unit
vectors having the required direction ahds the identity. All those tensors belong to the linear
space (with dimension 5) of the symmetric traceless tensors of them, sayN, will be the
average when the element contains molecules with varyiggedeof orientation. The principal
axes ofN provide the frame upon which details regarding the distidvuof orientations can be
assigned. Still, already the eigenvaluedNof %I , call thema; determine two parameters which
describe essential traits of the distribution: the degrfgeralation s (called also, by Ericksen,

degree of orientation) i[u—%, 1]:

3 1/3
1
i=1
and the degree of triaxiality in [d]
3 1/3
B = 31/21/3 l_[ (ki - ki+1)
i=1

Perfect ordering corresponds to the valses 1, 8 = 0; ‘melting’ of the liquid crystal occurs
when both parameters vanish.

Many problems have been solved satisfactorily usi@s a substructural variable and
writing for it an appropriate evolution equation which ihwes the gradient ol in physical
space (for a partial analysis in this direction see [2] arft];[& fuller study is in a forthcoming
paper by Biscari and Capriz).

However, if the details of the distribution of directiopgn) become relevant for specific
problems, then the following further steps must be takeneyaiution equation foy must be
proposed, expressing its ‘conservation’ (the totajafver ' must always equal to 1); here a
suggestion of Muschik [3, 17] may be accepted though modsfeas to admit also an influence
ony of N and of the gross displacement gradiént



52 M. Brocato - G. Capriz

Ultimately one comes to the equation

0 . X . .
L+ divn () + (gradyy) - N + (grade ) - F =0,

where gradients enter along the manifolti$ and /. Actually if n ® n, rather tham, had
been chosen as a variable, thenpdwwould have been substituted by the appropriate surface
divergence alongv{ in S.

The balance equation above, exhaustive though it be in yegial cases, must be sup-
plemented in general by a ‘deep’ balance equation, whichtatics, may express a minimality
condition for the energy connected with a certain choice’@fl) and of its gradient on\.
Alternatively, there may be steady states of deformatiog. @ shearing) dominated by some
sort of viscous action which must be itself balanced (forahity developments in the theory of
polycrystals see [4, 6, 7, 9]).

3. Embedding of SO(3) in R®

The so called ‘easy Whitney embedding theorem’ (cfr. [19P)ves thatSO(3) can, as any
compact (Hausdorf€", 2 < r < o) three dimensional manifold, be embeddedrify though
embeddings into linear spaces of smaller dimension may &silge.

It has been proved th&O(3) cannot be embedded inf* (cfr. [11]), while an embedding
into R® is known. The latter result can be shown through a chain éémifitiable inclusions:
SO(3) can be included int&? x $? associating with each element of the orthogonal matrix any
two column vectors of it:

1 @D B3

[ e SRS
1

0(21) 0(22) cf) €SO3 — (P, c?@) e ?x ?
1) (@) ®)

GG G G

One of the two unit 2-sphere® can be included into J0+oco x R2:
@ e &c? +¢ £, £c?)) €]0, +oo[ xR2,
with 0 < £ < ¢; then
2 x (0, +oo[ xR?) = (S?x]0, +-00[) x RZ ~ (R3 — {0}) x RZ  RS.
Notice thatS?x]0, +o0[ is diffeomorphic toR3 — {0} as it can be shown, e.g., choosing coordi-
nates(?, ¢) on S? and taking the corresponding polar coordinaés = (sing cosv, sing sin®,
cosp) onRR3 — {0}:
@, ¢, p) € S?x]0, +00[— (p Sing cos?, p sing sind, p cosp) € RS — (0} .

We thus have the embedding:
[¢"] e so@)

P Ec? + 0, @ + o). P + o). 66 5¢P) e RS
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It can be shown that the conditiofis® || = 1 and||c® || = 1, and the conditios™.c(® =
0 correspond respectively to the equations (R>):

@) (X112 = £2 = ¢2)2 + 4:2(x2 + x2) = 46%¢2,
x1(IX[12 — &2 — £2) + 2¢ (XpX4 + X3X5) = 0.

4. Embedding a subgroup ofSO(3) into Syny

The embedding recalled in Sect. 3 from texts in differergmetry does not appear to have
intrinsic character required on principle for its use in gbal theory; the appropriate alter-
native is the introduction of a symmetric tensor of a spediass to denote a particular lattice
orientation.

We must emphasise, however, at the outset that applicatitre aheorem to our physical
context will be legitimate only when a set of three mutualfthogonal directions (no arrow!),
each endowed with a different characteristic length, ehésing an immediate physical signif-
icance in the description of crystallites (e.g. the edgethefelementary cell if the crystalline
system is orthorombic). Caim® |i e {1,2, 31}, ImP| < Im@ | < Im®|, the vectors rep-
resenting a crystallite, their sign being immaterial to piwysical description of the crystallite,

normalized to make
3

dm)2=1.
i=1
A polycrystal is a cluster of such crystallites, each unigugentified through the proper
orthogonal tenso@ giving the rotation from a set of reference unit vectw®d)} to the crystal-
lite’s unit vectors{m®@ /|m ||} modulus rotations ofr about anyc"; call M c SO(3) the
subgroup of such rotations.

Now let us define the following map from the same set of criistalto the linear space of
symmetric tensors

3
sqmp = mV em®;
i=1
forall (m}itis rS=1, r? = Y2, (m")*4 and des = [T>_;(m®)2.
There is a one to one differentiable map between the set sefalliyes and the elements of
Symwhich verify the conditions listed above; in particular aepsorS verifying these condi-

tions has three distinct eigenvalues(i))z, with the corresponding eigenvectors parallel to the
vectorsm{). The spectral decomposition of such a tenSis thus

s(m®) = QD?QT,
whereD is the diagonal matrix
Im®y 0 0
D:= 0 Im@ 0 .
0 o Im®y

Therefore

3 3
M =~ {Se Sym| rS=1, rs? = Z(m('))4, detS = H(m('))z} ,
i=1 i=1
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and one can suggest the embedding in the affine space:
M<— S§={SeSym| trS=1} .
REMARK 1. Chosen any reference the general elemestisfrepresented by

X1 Xg X4
S=| X5 X2 X3 ,
X4 X3 1l—X1—Xp

i.e., by a mappings — R°. The conditions &2 = >3 (m")* and dets = [T2_;(m1)2,
can be written in coordinates (cfr. equations (1)):

IXI12 4+ %2 — xq — Xp + 1= 33 (mD)4, |
(XX — X2) (1 — X1 — Xp) — X1 X3 — XpX3 + 2XgXaxg = [[2_1(m()2,

representing the imag#f of M in S.

5. Conclusion

A distribution of orthorhombic crystals can be represerkedugh the mean orientation defined
as:

é:=/ y(Q)S(Q) d(SO3)).
SO3)

If the distribution is one of perfect order, with all crystairiented as som@, thenS = S(@)
has three distinct eigenvalues and the corresponding\egens represent the axes of the crys-
tallite. Contrariwise, if the disorder is complete, th&is spherical and no preferred axis can be
assigned to the average representation of the distribafiorystals. Intermediate conditions are
clearly possible, with the axial optical properties of tlygi@egate corresponding to the number
of distinct eigenvalues d§.

We have thus taken the first essential step for a convenietrafi®f a polycrystal, a step
which opens the way for a rigourous connection between #arytof continua with microstruc-
ture as displayed in [13] and the theory of ‘deep’ space megdan [4] with direct metallurgical
applications in mind.
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