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A FRACTIONAL CALCULUS APPROACH TO THE
MECHANICS OF FRACTAL MEDIA

Abstract. Based on the experimental observation of the size effecte@struc-

tural behavior of heterogeneous material specimens, #lotalrfeatures of the mi-
crostructure of such materials is rationally described céime fractal geometry
of the microstructure is set, we can define the quantitiesacierizing the failure

process of a disordered material (i.e. a fractal medium)es€hguantities show
anomalous (non integer) physical dimensions. Our anabjtisvs a global ex-

planation of the size effects affecting the cohesive lagy, the constitutive law
describing the tensile failure of heterogeneous materidisreover, a fractal co-
hesive law which is a material property is put forward andvétkdity is checked

by some experimental data. Then we propose new mathemafieshtors from

fractional calculus to handle the fractal quantities prasly introduced. In this
way, the static and kinematic (fractional) differentiauations of the model are
pointed out. These equations form the basis of the mechahfcactal media. In

this framework, the principle of virtual work is also obtath

1. Introduction

In solid mechanics, with the tersize effectve mean the dependence of one or more material
parameters on the size of the structure made by that matdriabther words, we speak of
size effect when geometrically similar structures showffent structural behavior. The first
observations about size effect in solid mechanics date backalileo. For instance, in his
“Discorsi e dimostrazioni matematiche intorno a due nu@ierze attenenti alla meccanica e i
movimenti locali” (1638), he observed that the bones of $ar@mals are more slender than the
bones of big animals. In fact, increasing the size, the gi@fithe load prevails on the growth of
the strength, since the first increases with the bulk, therlatith the area of the fracture surface.
In the last century, fracture mechanics allowed a deepéhh the size effect phenomenon.
Nowadays, the most used model to describe damage locatiziatimaterials with disordered
microstructure (also called quasi-brittle materials)hs ¢ohesive crack modeintroduced by
Hillerborg et al. [1].

According to Hillerborg’s model, the material is charated by a stress-strain relationship
(o-¢), valid for the undamaged zones, and by a stress-crack rgpelisplacement relationship
(o-w, the cohesive law), describing how the stress decreasestsanaximum value, to zero
as the distance between the crack lips increases from z¢he twitical displacementc. The
area below the cohesive law represents the enggggpent to create the unit crack surface. The
cohesive crack model is able to simulate tests where higlsstradients are present, e.g. tests
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on pre-notched specimens; in particular, it captures thatildebrittle transition occurring by
increasing the structural size. On the other hand, releseaie effects are encountered also
in uniaxial tensile tests on dog-bone shaped specimens|,[2&re smaller stress gradients
are present. In this case size effects, which should beb@stto the material rather than to the
stress-intensification, can not be predicted by the cobesack model. In the following section,
a scale-independent damage model is proposed which ovesctiva drawbacks of the original
cohesive model, assuming that damage occurs within a baadkvitiis spread in a fractal way.
The fractal nature of the damage process allows us to exiilaisize effects on tensile strength,
fracture energy and critical displacement and, partitylahe rising of the cohesive law tail
observed in [3].

2. Damage mechanics of materials with heterogeneous mictascture

Let us start our investigation about materials with discedemicrostructures analyzing the size
effect on their tensile strength. Recent experimentali®about porous concrete microstructure
[4] led us to believe that a consistent modelling of damagmircrete can be achieved by assum-
ing that the rarefied resisting sections in correspondehteeccritical load can be represented
by stochastic lacunar fractal sets with dimension 8, (d, > 0). From fractal geometry, we
know that the area of lacunar sets is scale-dependent agsltienero as the resolution increases.
Finite measures can be obtained only with non-integertdfadimensions. For the sake of sim-
plicity, let us represent the specimen cross-section agmi8ski carpet built on the square of
sideb (fig. 1a). The fractal dimension of this planar domain is 3.8 = 0.107). The assump-
tion of Euclidean domain characterizing the classical iooitm theory states that the maximum
load F is given by the product of the strengtfy times the nominal areAg = b2, whereas, in
our model,F equals the product of the Hausdorff measAie= b2~ of the Sierpinski carpet
times thefractal tensile strengtlo} [5]:

1) F =ouAg = o A*

whereo;* presents the anomalous physical dimensidrigl[] —(2—%).
The fractal tensile strength is the true material consiamt, it is scale-invariant. From egn (1)
we obtain the scaling law for tensile strength:

2) ou=o} b0

i.e. a power law with negative exponert,. Egn (2) represents the negative size effect on
tensile strength, experimentally revealed by severalasattfExperimental and theoretical results
allow us to affirm thatl, can vary between the lower limit 0 - canonical dimensionssfpand
absence of size effect on tensile strength - and the upp#rllja - o} with the dimensions of a
stress-intensity factor and maximum size effect on terssikngth (as in the case of LEFM).
Turning now our attention from a single cross-section tovthele damage zone, it can be
noticed that damage is not localized onto a single sectidistapread over a finite band where
the damage distribution often presents fractal patterrigs iE quite common in material sci-
ence. For instance, in some metals, the so-called slig-tlegelop with typical fractal patterns.
Also fractal crack networks develop in dry clay or in old gaigs under tensile stresses due to
shrinkage. Thus, as representative of the damaged bansideomow the simplest structure, a
bar subjected to tension, where, at the maximum load, diiatrain tends to concentrate into
different softening regions, while the rest of the body ugdes elastic unloading. If, for the
sake of simplicity, we assume that strain is localized omgs®-sections whose projections on
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Figure 1: Fractal localization: of the stress (a), of thaist(b), of the energy dissipa-
tion (c).

the longitudinal axis are provided by a Cantor set, the disgrhent function at rupture can be
represented (fig. 1b) by a Cantor staircase graph (sometiaties! devil's staircase). The strain
defined in the classical manner is meaningless in the singuolats, as it tends to diverge. This
drawback can be overcome introducing a fractal strain. Letll = 0.6391 be, for instance, the
fractal dimension of the lacunar projection of the damagetdiens (I > 0). According to the
fractal measure of the damage line projection, the totalgdtion of the band at rupture must be
given by the product of the Hausdorff meashft—d) of the Cantor set times tHeactal critical
strain ¢, while in the classical continuum theory it equals the pataif the lengthb times the
critical strainec:

3) we = ech = b1~

whereed has the anomalous physical dimensidfi%. The fractal critical strain is the true
material constant, i.e., it is the only scale-invariantgpageter governing the kinematics of the
fractal band. On the other hand, equation (3) states thattlang of the critical displacement is
described by a power law with positive exponertd,. The fractional exponemt; is intimately
related to the degree of disorder in the mesoscopic damagess. Wher, varies from 0
to 1, the kinematical control parametef moves from the canonical critical straig — [L]9
— to the critical crack opening displacemang — [L]1. Therefore, wherd, = 0 (diffused
damage, ductile behavior), one obtains the classical rsgpa.e. collapse governed by the strain
ec, independently of the bar length. In this case, continuumalge mechanics holds, and the
critical displacementuc is subjected to the maximum size effeatc(~ b). On the other hand,
whend; = 1 (localization of damage onto a single section, brittleawédr) fracture mechanics
holds and the collapse is governed by the critical displasgmc, which is size-independent as
in the cohesive model.

For what concerns the size effect upon the third parametmacterizing the cohesive law,
i.e. the fracture energgg, several experimental investigations have shown ¢aincreases
with the size of the specimen. This behavior can be explayeaissuming that, after the peak
load, the energy is dissipated inside the damage band,viee.tbe infinite lacunar sections
where softening takes place (fig. 1a,b). Generalizing éops(2) and (3) to the whole softening
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regime, we getr = o*b~% andw = ¢*b1-%). These relationships can be considered as
changes of variables and applied to the integral definitidhefracture energy:

W ¥
Q) OF = /0 ot = bt~ /0 " o*de* = ggbl-d—d

Equation (4) highlights the effect of the structural sizelmfracture energy. On the other hand,
since (fig. 1c) the damage process takes place over an ieviaaotal domainA* (different from
the lacunar one of equation (1)) with a dimens{@n+ dg) larger than 2dg > 0), we can also
affirm that the total energy expendit/é is equal to [4]:

W = Gp Ag = GEA*

whereGg is called thefractal fracture energyand presents the anomalous physical dimensions

[FL][L]~@+99) and, as well as;* ande, it is scale-independent. Sindg = b? and A* =
b2*+dg | the value ofg is linked to the values af; andd,:

®) da+da+dg=1

where all the exponents are positive. Whilecan get all the values inside the interval 10, d,
anddg tend to be comprised between 0 and 1/2 (brownian disordenation (5) states a strict
restriction to the maximum degree of disorder, confirmirgf the sum ofl, anddg is always
lower than 1, as previously asserted by Carpinteri througtedsional analysis arguments [5].

o o*
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Figure 2: Fractal cohesive model.

It is interesting to note how, from equation (4), the fradtatture energyyf can be ob-
tained as the area below the softening fractal stressagtiagram (fig. 2b). During the softening
regime, i.e. when dissipation occutst decreases from the maximum vale§ to O, while&*
grows from O tae{. In the meantime, the non-damaged parts of the bar undeagticelinloading
(fig. 2a). We call ther*-¢* diagram the scale-independentfractal cohesive law Contrarily
to the classical cohesive law, which is experimentally gmesto the structural size, this curve
should be an exclusive property of the material since it is tbcapture the fractal nature of the
damage process.

Recently, van Mier et al. [3] accurately performed tenséists on dog-bone shaped con-
crete specimens over a wide scale range (1:32). They pltiteedohesive law for specimens
of different sizes and found that, increasing the specinen the peak of the curve decreases
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whereas the tail rises. More in detail¢ increases more rapidly thaiy decreases, since, in the
meantime, an increase of the area below the cohesive lawf tlee fracture energy, is observed.
Thus, the fractal model consistently confirms the expertaiérends oy, G, we.

The model has been applied to the data obtained by Carpgnteziro [2, 6] for tensile tests
on dog-bone shaped concrete specimens (fig. 3a) of varires snder fixed boundary condi-
tions. They interpreted the size effects on the tensilengtreand the fracture energy by fractal
geometry. Fitting the experimental results, they foundvhleesd, = 0.14 anddg = 0.38.
Some of thes-¢ and theo-w diagrams are reported in fig. 3b,c, whesds the displacement
localized in the damage band, obtained by subtracting, freotal one, the displacement due
to elastic and anelastic pre-peak deformation. Equatipgi€sdsd, = 0.48, so that the fractal
cohesive laws can be represented in fig. 3d. As expectetigatiirves related to the single sizes
tend to merge in a unique, scale-independent cohesive laavoiferlapping of the cohesive laws
for the different sizes proves the soundness of the frapialaach in the interpretation of the
size effects in concrete.

t @ | (b)

IS

4b

N
L

stress (N/mm?)

o

0.0008 0.0016

0
* strain
'8
2
= (d)
& g
= Z
g <
= “q L
z £
Y 5
S 2
‘ Eo | '
0 100 200 0 0.005 0.01
localized displacement (Um) fractal strain (mm/mm?>?)

Figure 3: Tensile tests over dog-bone shaped concretenseesi(a): stress versus
strain plots (b), cohesive laws (c), fractal cohesive lay (d

3. Fractional calculus, local fractional calculus and frat¢al functions

The main characteristic of fractals is their irregularitiepall the length scales. This irregularity
is the reason of the non-integer dimensions of fractal setsunfortunately, it makes them very
difficult to handle analytically since the usual calculusniadequate to describe such structures
and processes. Fractals are too irregular to have any srddfettentiable function defined on
them. Fractal functions do not possess first order der@ativany point. Therefore it is argued
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that a new calculus should be developed which includessitidlly a fractal structure [7]. Re-
cently, Kolwankar [8], based on fractional calculus, dedimew mathematical operators - the
local fractional derivative and the fractal integral - thapear to be useful in the description of
fractal processes. It is important to emphasize that, wémms to be really interesting in study-
ing fractals via fractional calculus, are the non-integkysical dimensions that arise dealing
with both fractional operators and fractal sets. Physic#iiis means to find the same scaling
laws both from an analytic and a geometric point of view.

Let’s start our analysis from the classical fractional ahls. While classical calculus treats
integrals and derivatives of integer order, fractionatuohls is the branch of mathematics that
deals with the generalization of integrals and derivatizeall real (and even complex) orders.
There are various definitions of fractional differintegoglerators not necessarily equivalent to
each other. A complete list of these definitions can be fourttié fractional calculus treatises
[9, 10, 11, 12]. These definitions have different origin. Thest frequently used definition of a
fractional integral of ordeq (q > 0) is the Riemann-Liouville definition, which is a straigttf
ward generalization to non-integer values of Cauchy foenfiol repeated integration:
®) d f(x)ﬁ _ 1 f(y)l_ dy

[dx—a)]=9 T'(@ Ja (x—yl-d
From this formula, it appears logical to define the fractlaeivative of ordem —1 < q < n
(ninteger) as tha-th integer derivative of thén — g)-th fractional integral:

dd f (x) 1 dan /‘X f(y)

0 [dx—a]d  Th-qd" Ja (x—ydti-n

Once these definitions are given, it is natural to write défeial equations in terms of such
quantities. In the last decade, many fractional diffeareguations have been proposed. They
include relaxation equations, wave equations, diffusignagions, etc [13]. In these general-
izations, one replaces the usual integer order time derdsaby fractional ones. In such way,
by varying the order of derivation, it is possible to obtaioamtinuous transition between com-
pletely different models of the mathematical physics. Qfrse, wher is not a positive integer,
the fractional derivative (7) is a non-local operator siitc®pends on the lower integration limit
a. The chain rule, Leibniz rule, composition law and otherpgemies have been studied for
the fractional derivatives [9]. Looking for a link betweemdtional calculus and fractals, it is
worthwhile to cite the following scaling property (far= 0):

d9f(bx) b dd  (bx)
[dx9 7 [d(bx)]d

It means that the fractional differintegral operators antgjected to the same scaling power laws
the quantities defined on fractal domains are subjected tweing the fractal dimension). For
the scaling property in the case# 0, see [9].

More recently, another important result has been achiesaderning the maximum order
of fractional differentiability for non-classical diffentiable functions. Let us explain this prop-
erty for two kinds of functions: the Weierstrass functioml &me Cantor staircase. The first one is
continuous but nowhere differentiable. The singularifiesslocally characterized by the Holder
exponent, which is everywhere constant and equal to a nerdédile 0< s < 1. It is possible
to prove that the graph of this function is fractal with a lmunting dimension equal to2 s
and hence greater than 1. Although fractal, the Weierstuassion admits continuous fractional
derivatives of order lower thasm Hence, there is a direct relationship between the fraatatd-
sion of the graph and the maximum order of differentiahilitye greater the fractal dimension,
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the lower the differentiability. We have already encouaten Cantor staircase in Section 2.
This kind of functions (fig. 1b) can be obtained [14] as thegnal of a constant mass density
upon a lacunar fractal set belonging to the intervall]0 The result is a monotonic function that
grows on a fractal support; elsewhere it is constant. Thé'sletaircases are not fractal since
they present a finite length; on the other hand, they have fanitthnumber of singular points
characterized by a Holder exponent equal to the fractaédsion of the support. Schellnhuber
& Seyler [15] proved that the Cantor staircases admit cootiis fractional derivatives of order
lower than the fractal dimension of the set where they grow.

From a physical point of view, some efforts have been speapply space fractional dif-
ferential equations to the study of phenomena involvingtétadistributions in space. Here we
can quote Giona & Roman [16], who proposed a fractional éguab describe diffusion on
fractals, and Nonnenmacher [17], who showed that a clas®wf kype processes satisfies an
integral equation of fractional order. This order is alse fitactal dimension of the set visited by
a random walker whose jump size distribution follows theegiv.évy distribution.

Recently, a new notion callddcal fractional derivative(LFD) has been introduced with
the motivation of studying the local properties of fractalistures and processes [18]. The LFD
definition is obtained from (7) introducing two “correct&lnin order to avoid some physically
undesirable features of the classical definition. In fécme wishes to analyze the local behavior
of a function, both the dependence on the lower lianénd the fact that adding a constant to
a function yields to a different fractional derivative shibbe avoided. This can be obtained
subtracting from the function the value of the function a goint where we want to study the
local scaling property and choosing as the lower limit tr@npitself. Therefore, restricting our
discussion to an order comprised between 0 and 1, the LFD is defined as the following |
(if it exists and is finite):

q —
qu(y)zx"m M 0<g<1

-y [dx-y]d

In [18] it has been shown that the Weierstrass function iallpdractionally differentiable
up to a critical orderr between 0 and 1. More precisely, the LFD is zero if the ordéovier
thana, does not exist if greater, while exists and is finite onlygéial toe. Thus the LFD shows
a behavior analogous to the Hausdorff measure of a fradtaFsghermore, the critical order is
strictly linked to the fractal properties of the functiosetf. In fact, Kolwankar & Gangal [18]
showed that the critical order is equivalent to the localddd exponent (which depends, as we
have seen, on the fractal dimension), by proving the folhgntocal fractional Taylor expansion
of the functionf (x) of orderq < 1 (forq > 1, see [19, 20]) fox — y:

DYf (y) q
® f(X)—f(y)+r(q+1)(x YT+ Rg(x —y)
where Ry(x — y) is a remainder, negligible if compared with the other teriost us observe
that the terms in the right hand side of equations (8) areriviadtand finite only ifq is equal
to the critical orderx. Moreover, forq = «, the fractional Taylor expansion (8) gives us the
geometrical interpretation of the LFD. Whepis set equal to unity, one obtains from (8) the
equation of a tangent. All the curves passing through theespoint y with the same first
derivative have the same tangent. Analogously, all theezuwith the same critical orderand
the sameD® form an equivalence class modeled>$Yy. This is how it is possible to generalize
the geometric interpretation of derivatives in terms ohtjants”.

The solution of the simple differential equatiorf @lix = 1jo x] gives the length of the
interval [0, x]. The solution is nothing but the integral of the unit fulcti Wishing to extend
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this idea to the computation of the measure of fractal setan be seen immediately that the
fractional integral (6) does not work as it fails to be additbecause of its non-trivial kernel. On
the other hand, Kolwankar [21] proved that a fractional rmeasf a fractal set can be obtained
through the inverse of the LFD defined as:

a—« Ly, (X)

N—1
9 D “f(x) = lim f(x)———
© aPp 100 N— o0 g) % )[d(xi+l_xi)]_a
where ki, xj11],i =0, ..., N—1,Xg = aandxy = b, provide a partition of the intervaa( b]
andxi* is some suitable point chosen in the subinterx@lX; 1], while 1gy, is the unit function
defined on the same subinterval. Kolwankar cajJBg’ % f (x) thefractal integral of ordera of
f (x) over the interval §, b]. The simple local fractional differential equatidf f (x) = g(x)
has not a finite solution wheg(x) is constant and & « < 1. Interestingly, the solution exists
if g(x) has a fractal support whose Hausdorff dimengiois equal to the fractional order of
derivatione. Consider, for instance, the triadic Cantor €etbuilt on the interval [01], whose
dimension il = In2/1n 3. Let 1 (x) be the function whose value is one in the points belonging
to the Cantor set upon [Q], zero elsewhere. Therefore, the solutiorDéf f (x) = 1¢(x) when
a=dis f(x) = aDE”‘ 1c(x). Applying (9) withxg = 0 andxy = x and choosing* to be
such that g (x*) is maximum in the intervaly , xj 1], one gets [17]:

10 f(x) = D71 — Iim N71|:i Kig1 =x)% _ S
(10) (x) = oDy C(X)_NLOOEE) C rd+e) Td+a)

where F(': is a flag function that takes value 1 if the intervaj [x; 1] contains a point of the
setC and 0 otherwise; hencg(x) is the Cantor (devil's) staircase (fig. 1b). Moreover, egpmat
(10) introduces the fractional measure of a fractal set weel@king for: for the Cantor set
C it is defined asF*(C) = 0Dl""lc(x). In fact #*(C) is infinite if « < d, and 0 ifa > d.
Fora = d, we find F*(C) = ﬁ This measure definition yields the same value of the
dimension predicted by the Hausdorff one, the differendadoeepresented only by a different
value of the normalization constant.

Eventually, consider two continuous functioigx) and g(x) defined upon4, b] with a
zero first derivative except at the points belonging to threestacunar fractal se where they
present an Holder exponemtequal to the dimension of the fractal support (if€x) andg(x)
are Cantor staircase type functions). Based on equatioit (&n be proved that, in the singular
pointsx € C, (i) the product functiom(x) = f (x)g(x) has the same Holder exponentinless
both the factor functions have zero valui¢) the LFD of orderr of h(x) can be computed using
the classical rule for the differentiation of the product:

(11) D“h(x) = f(x)D*g(x) + g(x) D f (x)

Performing now, for both the sides of equation (11), a fidotagration of ordew upon [, b]
yields to the followingfractal integration by parts

12) aDp “[ T 0D*g(0)] = [h(b) — h(@)] — ,Dy“[g(x) D f (x)]

which will be useful in the next section.
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4. Kinematic and static equations for fractal media

As shown in the Sections 1 and 2, fractality plays a very irtgprrole in the mechanics of mate-
rials with an heterogeneous microstructure. The aim of3kigtion is to develop a model that, by
the local fractional operators introduced in Section 3bis # capture intrinsically the fractality
of the material and, consequently, the size effects uponetlh&ed physical quantities. Thus, let
us start with a uniaxial model [22], hereafter calfeattal Cantor baraccording to Feder’s ter-
minology [14]. Hence, consider a specimen of disorderedratof lengthb. Suppose now to
apply a tensile load in the (axial) direction. As pointed out in Section 2, because efftactal
localization of strain, the plot of the axial displacementersusz is a Cantor staircase (fig. 1b).
This plot corresponds to a strain field which is zero almostrgwvhere (corresponding to the
integer portions) except in an infinite number of points vehers singular (corresponding to the
localized cracks). The displacement singularities carhlagacterized by the LFD of order equal
to the fractal dimensioa = 1—d, of the domain of the singularities, the unique value for iahic
the LFD is finite and different from zero (the critical valudjhis computation is equivalent to
equation (3), passing from the global level to the local drfeerefore, we can define analytically
the fractal strair* as the LFD of the displacement:

(13) £*(2) = D*w(2)

Let us observe that, in equation (13), the non-integer ghyslimensions L[]dé‘ of ¢* are in-
troduced by the LFD, whilst in equation (3) they are a geoite@ticonsequence of the fractal
dimension of the localization domain.

Now let’s turn our attention to the differential equilibniuequation, when the fractal bar is
subjected to an axial load. Consider again a fiber of the spatand suppose that the body is in
equilibrium,z = 0 andz = b being its extreme cross sections. We indicate witliz) the axial
load per unit of fractal length acting upon the fractal badt aiith N(z) the axial force acting on
the generic cross section orthogonal tozkexis. Take therefore into consideration a kinematical
field (w, ¢*) satisfying equation (13) and a static fieM,(p*). The fractal integration by parts
(12) can be interpreted as the principle of virtual work foe fractal bar. In fact, according to
the fractal nature of the material microstructure, therimaévirtual work can be computed as the
fractal a-integral of the product of the axial fordé times the fractal straia® performed over
the interval [Q b], which, according to equations (13) and (12), is in its tequal to:

(14) oD, *IN@e*(2)] = Dy *[N(@)D*w(2)] = [N(Z)w(Z)]ZB — oDp “[w(@D*N(2)]

Since the body is in equilibrium, the virtual work princigtelds. Hence the right hand side of
equation (14) must be equal to the external virtual worksTétrue if and only if:

(15) D*N(2) + p*(2) =0

which is the (fractional) static axial equation of the fddtar. Observe the anomalous dimension
of the loadp™*, [F][ L]*(lfds), since it considers forces acting on a fractal medium.

What has been done in the one-dimensional case can be fgrexadinded in the three-
dimensional case for a generic fractal medium [23]. As indlassical continuum mechanics,
one needs the introduction of the fractal strgss} and fractal strairje*} vectors to replace the
corresponding scalar quantities in equations (13) and [@8hoting with{n} the displacement
vector, the kinematic equations for a fractal medium candpeessed as:

(16) {e"} = [0"1{n}
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where p%] is the kinematic fractional differential operator comiaig local fractional deriva-
tives of ordera = 1 — d;. Equation (16) is the three-dimensional extension of eqndtL3).
Analogously, equation (15) becomes:

17) [0%17 {o*) = —{F*)

where p?]T is the static fractional differential operator, transgbsé the kinematic one and
{F*} is the vector of the forces per unit of fractal volume. From ginysical dimension of the
matrices at the first hand side of equation (17) and from thddmental relationship (5) among
the fractal exponents, it can be easily shown {f&t} owns the following physical dimension:
[FI[L]~@*99) where(2 + dg), comprised between 2 and 3, should now be seen as the fractal
dimension of the fractal medium.

In order to get the expression of the principle of the virtwalrk for a fractal medium,
we need the extension to fractal domain of the Green theofds. extension can be obtained
performing a fractal integration of ordgr— « of both sides of equation(12):

(18) D/ [FD%g] = DR~ fgny] — Df[gD* ]

where nowD¥ is the LFD in thex-direction, ny is the x-component of the outward normal
vector to the fractal bounday* of the fractal body2*. Other two scalar expressions can be
obtained analogously to equation (18), just consideriedffDs in they andz-directions. Thus
we are now able to derive the expression of the principle méi& work for fractal media. It is
sufficient to apply the extension of the Green theorem — équét 8) — substituting appropriately
to the functionsf, g the components of the fractal strefgs*} and displacement} vectors.
Furthermoreq andg are equal respectively td—d;) and(2+dg). Thus for vector field$o *},
{F*} satisfying equation (17) (i.e. statically admissible) aedtors fields{¢*}, {5} satisfying
equation (16) (i.e. kinematically admissible), it is padsito prove the validity of the following
equation:

(19) [ Tmeer+ [ o1 Tmar = [ @7 1der

which represents the principle of virtual work for a gendractal medium and is the natural
extension of the classical continuum mechanics formutatibthe principle. For the sake of
clarity, in equation (19) we used the classical symbol ferititegrals; anyway they are fractal
integrals over fractal domaingp*} is the vector of the contact forces acting upon the (fractal)
boundary of the fractal medium; it has the same physical dgioa of the fractal stress, to which
it is related by the relation:

[MT{o*} = (p*)

as naturally comes out in the proof of equation (19Y]] is defined at any dense point of the
boundary as the cosine matrix of the outward normal vecttrgdoundary of the initiator (see
[14]) of the fractal set occupied by the body.

5. Conclusions

In this paper, the topologic framework for the mechanicsefbdmable fractal media has been
outlined. Based on the experimental observations of the eifects on the parameters char-
acterizing the cohesive law of materials with a disorderéctostructure, the fractal quantities
characterizing the process of deformation have been gbmté In the second part of the pa-
per, new mathematical operators from fractional calculagelbeen applied to write the field
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equations for solids with a fractal microstructure. It hagib shown that the classical fractional
calculus cannot be used to describe properly the deformatibfractal media. Instead, the local
fractional operators, recently introduced by Kolwankdr f&n be successfully applied for our
purposes. The static and kinematic equations for fractdiarteave been obtained. Moreover, the
extension of the Green Theorem to fractal quantities andaittsrhas been proposed, naturally
yielding the Principle of Virtual Work for fractal media. €mext step should be the definition of
proper constitutive laws (e.qg. elasticity) for fractal rieedAt this stage, only the formal structure
of the static and kinematic equations has been outlined.eMar, further analytical research
about local fractional operators has to be carried out. Téngineering calculations may only

be at an early stage. However, once these goals were achleveddary value problems on

fractal sets could be solved, not only in principle, by meafrthie Local Fractional Calculus.
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