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ANISOTROPIC AND DISSIPATIVE FINITE
ELASTO-PLASTIC COMPOSITE

Abstract. Here we propose a macroscopic model for elasto-plastic oeitgp
characterized by an initial anisotropy, that can evolvarduthe large plastic de-
formation. Application to transversely isotropic and ettiopic composites will
be also developed. The paper deals with anisotropic firas@lplastic-models,
which accounts for the dissipative nature of the plastic,flgithin the constructive
framework of materials with relaxed configurations in intrvariables. Her&
stands for Mandel’'s non-symmetric stress tensor,or theiegiatic Eshelby stress-
tensor. The appropriate variational inequalities arevé€lrirelated rate quasi-static
boundary value problem, in our approach to composite nadseri

1. Introduction

The continuum approach treats the composites as a singkrialatith different properties in
different directions. The macroscopic response will bedvarsely isotropic about the fiber
direction if there exists just one family of reinforced fibr@nd orthotropic if there are two fam-
ilies. Spencer in [23] formulated yield conditions, flowesaland hardening rules for material
reinforced by one and two families of fibres, in small defotioras plasticity theory. The yield
function is assumed to be not affected by a superposed teirsifibre direction. Spencer in
[22] proposed the term of proportional hardening for theegponding theory of isotropic hard-
ening, for anisotropic plasticity. Rogers in [21] genezall Spencer’s results concerning fibre
reinforced materials, assuming that the yield conditionriaffected by the superposition of an
arbitrary hydrostatic pressure.

Experimental results performed on axially reinforced tabspecimens of boron alumini-
um composite, under complex loading, reveal the large katenmardening effects, see [20]. In
[26] the effect of shear on the compressive response anddailas investigated experimentally
for an unidirectional composite. Here both axes of loadioglad be operated in either load or
displacement control.

Here we propose a macroscopic model for elasto-plastic ositg) characterized by an ini-
tial anisotropy, that can evolve during the large plastfodaation. Applications to transversely
isotropic and orthotropic composites will be developeddabon the papers [5, 6], which gener-
alized Spencer and Roger’s results.

The paper deals with anisotropic finite elasto-pla&ie models, which account for the
dissipative nature of the plastic flow, within the constitetframework of materials with relaxed
configurations and internal variables, [1, 2]. H&restands for Mandel’'s non-symmetric stress
tensor, see [15], or the quasi-static Eshelby stress tesser[17, 18]. We shown in [9], that
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there exist classes &f—models with hyperelastic properties, for which the dissgrapostulate

[7] can be equivalently imposed through the normality anaveaity properties, despite of the
non-injectivity of the function which describés as dependent on elastic strain. Our dissipation
postulate extend to anisotropic materials the resultsmddeby [13, 14, 16, 24].

During the elasto-plastic deformation process, see exyetial evidences in [26], the chan-
ges in geometry and rotations of material elements cannalidgsegarded. Consequently, the
field equation and the boundary conditions at time t are phppermulated (see [11]) in terms
of the rate of thenominalstress. The second objective of the paper is to derive aroppate
variational inequality, related to the rate quasi-staticifdary value problem and associated
with a generic stage of the process in our approach to comepogiterials. Only when the
dissipative nature of the plastic flow is considered, théatimnal inequality is caracterized by
a bilinear form which becomes symmetric. In a forcomminggveg complete analysis of the
bifurcation of the homogeneous deformation will be perfednas in Cleja-Tigoiu [4], based
on the variational inequality, under axial compressivesdr In our analyse it is not necessary
to make the assumptions either the fibres are uniformlynediito the line of the loading by a
small angle, or the existence of a sinusoidal imperfectidrich is uniformly distributed, as we
remark here that the stability can be lost, during plastforeation.

Further we shall use the following notations:

Lin, LinT— the second order tensors and the elements with positivendietnt;

V— the three dimensional vector space;

Sym Skav, Symt — symmetric, skew-symmetric and symmetric and positive deftensors;
Ortt— all proper rotation of the orthogonal gro@rt;

A -B:=tr ABT — the scalar product ok, B € Lin;

AS = % (A+AT)andA? = % (A—AT)—the symmetrical and respectively skew- symmetrical

parts ofA € Lin; | is the identity tensor;

£T — the transpose of — fourth order tensor, defined for @, B € Lin by

ETA.-B:=A.-£B;

U— represents the derivative with respect to tindg; ¢ (G, «)— the partial derivative of the

function¢ (G, «) with respect tdG;

d 2(G)— the differential of the max atG;

A . B :=tr ABT — the scalar product ok, B € Lin; | A |= VA A = \/mthe modulus

of the second order tensor aig denote its Cartesian componen|i$ly = Z Sﬁkl denotes
ijkl

the modulus of fourth order tensor afigy are Cartesian components&f J

<z>=1/2(z+ | z|), Yz € R— the set of all real numbers;

00, P, p are mass densities in initial, relaxed and actual configurst

Qla] := QaQT fora € Lin, Q[a] = a fora € R.

2. ¥-models

We introduce now the constitutive framework of anisotragsto-plastic materialg; —models
being included, see [8].

We fix a material poinX in the body, considered in the reference configurakiofror an
arbitrary given motiory, defined in a certain neighborhood Xf let consider the deformation
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gradientF(t) , detF(t) > 0, F(0) = |. We assume thenultiplicative decompositionf the
deformation gradient into itslasticandplastic parts:

(1) F(t) = E)P(t) where E(t) = Vx(X, DKL, P(t) = KiKg?

based on the local, current configuratién.

We denote byG = ET E the elastic strain, and by = (P~1, &) the set of the irreversible
variables, wherex represent the set of internal variables, scalars and t®nBer symmetric
Piola-Kirchhoff stress tensdtt, T— Cauchy stress tensor, related by

0 _galgr
)2 2

Theelastic type constitutiviem term of ¥ is written under the form

¥ :=3%(G,a), 2(,a)=0,

) G 186G, 0) =T (G, )G, VG e Synt.

The value of the tensor function written in ¢2jives the current value olg taking into account
0
the relation between symmetric Piola-Kirchhoff and Margigtress tensors
I
2 = GT
0
Therate independent evolution eqrfer P, « are expressed by
PPl=puB. o). o=pm( w),
F(,a) :D]_: Cc Lin— R<g, and F(0,«) <0,
u=>0, M]:"=O, and Mj:=0.
Material symmetry requiremengsee [1, 3]). We assume that theeexisting material symmetry
is characterized bghe symmetry groupgc Ort™, that renders the material functions invariant

2(QGQT, Qla]) = QEG, QT ., FQTQT, Qlal) = F(T,a),

BQ=QT,Qla]) = QB(E, x)(QT, m@QTQT, Qa]) = QIM(G, a)]
for everyQ € gk.

THEOREM1. Any X~ — model leads to a strain formulation of the elasto- plastibd&our
of the material with respect to the relaxed configuration Also the material functions are.g-
invariant.

The appropriate material functions in strain formulatiosm® related to the basic functions
from ¥ —models through relationships of the type:

FG,a)=F(E(G.a).a), BG,a)=BEG,a),a), et
THEOREM2 (STRAIN FORMULATION IN THE INITIAL CONFIGURATION).
1. LetY := (P1, &) characterizes the irreversible behaviour of the body, atfiked material

point. The yield function in the reference configurationoassted with the yield function in
elastic strain is defined by

FCY)=FP TcP L o) = FG,a) withY =P 1 a)
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as a consequence of (1).
2. The evolution in time of is governed by the solutions of Cauchy problem (4¢e

Y =—<BtY)> YCW),Y)HFC®),Y))

B(t, C) = acF(C(),Y) - C(t)
®)
WF(EC,Y)-YC,Y)=1 on F(C,Y)=0

Y(0) = Yo
for a given strain history, denoted € Gs,

te[0,d] - Ct) e Sym, with C(t) =C(t) =F' ()F(t).

HereH denotes the Heaviside function.
Basic assumptions:
I. There exists an unique solution of the Cauchy problem (3).
1. The smooth yield functiorf is given in such way that
i) F:Dr c Symt x R" — Ris of the clas<C?, and F (I, «) < O for all a;
i) for all fixed « € pro D — the projection on the space of internal variables, the set

(G e Syni" | F(G,a) <0}

is the closure of a hon-empty, connected open set, i.e. #3saay we restrict the yield function
to the connected set that contalns pry D C Sym';

iii) for all @ € proDg the set{G € Sym' | F(G,a) = 0} defines aC! differential
manifold, called the current yield surface. Her&)@;ef(G, «a) # 0on the yield surface.

THEOREM 3. The dissipation postulate, introduced|if] is equivalent to the existence of
the stress potentigl), together with the dissipation inequaligh).

I.Forall C e Gs and for all t € [0, 1) there exist the smooth scalar valued functiansg,
related by

o (C, Y1) = P~ TMCPLt), a(t)) VCeU(Ct) with
UG = {B e Sym" | F(B, Y (t)) < 0}

the elastic range, at time t corresponding@oe Gs. Here Ct is the restriction o0, t] of the
given history.
The functionsy, o, are stress potentials
Tt T(t
4) % =20G¢(G, a(1)), O Fico (C(1). Y(D)F'
2 p
G =P T(mCHP L.

1. The following equivalent dissipation inequalities

[aya (A, Y () — dyo (C(t), Y(t)]- Y1) >0 and
(5
(Z(t) — =% - POP~L(1) + (at) — a*)a(t) > 0
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hold for all G, G* such that]f‘(G,a) = 0, f(G*,oe) < 0, when the conjugated forces to
internal variables (see [10]) are considered

alt) i= =9y (G(t), a(t)), a = —du9(G*, a(t))
HereX (t), =* are calculated from (2) for the elastic stradg) andG*.
PrRopPosITIONL. When the dissipation inequality ¢bls satisfied then modified flow rule
() (062G, a)T[PPY] = nig F(G, @) + 92 ¢ (G, )[d]
with u > 0, holds. The dissipation inequality (5mposes that
@ —dy[dco (C.V][Y] = adc F(C.Y) >0,

for all C = C(t) on yield surfaceF(C, Y) = 0, for the fixedY = Y (1), with iz > 0.

To end the discussion about the consequences of the diesifaistulate we recall the basic
result, similar to [13]:

THEOREM4. 1. Atany regular point of the yield function in stress spadg s, o) =0,
but with® = X (G), the appropriate flow rule, i.e. the modified flow rule, takesfibrm

@® LP = PP 1= (oA (S, a) +LP%
LP*: dEG)T(LPH=0

3. Rate boundary value problem and variational inequalities

We derive the variational inequalities with respect to tbiual and respectively initial config-
urations, related to the rate quasi-static boundary vatablem and associated with a generic
stage of the process, at the timaAe use an appropriate procedure as in [19, 4] and different
motion descriptions that can be found in [25].

Thenominal stressvith respect to the actual configuration at titper thenon-symmetric
relative Piola- Kirchhoff, is defined by

St(x. 1) = (deFy(x, T)T(Y. D(Ft(X, 1),
with
Ft(x, ) = F(X, ) (F(X, t))_1
the relative deformation gradient.

Herex = x(X,t),y = x(X,t),0ry = xt (X, t) = X(Xfl(x, t), )— the motion in the relative
description. At timg we have

S(x,t) = T t) and
. 0
©) Si(x,t) = ESt(X, T) |r=t
_ 9 Ty T
= P(X,t)at(p(y,t)ﬂr:t T DL (X, t).

HereL (x,t) = Vv(x, t) represents the velocity gradient, in spatial represemtati
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Let us consider a body, identified wifh C R3in the initial configuration, which undergoes
the finite elasto-plastic deformation and occupies the dongs = x (2, t) C RS, attimer.

Theequilibrium equatiorat timez, in terms of Cauchy stress tensbfy, ) € Sym
divT(y,7) + oy, 0)b(y,7) =0, in Q¢

whereb are the body forces, can be equivalently expressed, wigeotso the configuration at
time t— taken as the reference configuration

divSt(X, 7) + p(X, )bt (X, ) =0, with bi(x, 7) = b(xt(X, 1), 7)
(10)
St (%, T)F] (X, 1) = Fr(x, 1)} (%, 7)

When the reference configuration is considered to be a nateawe add the initial conditions
SX,00=0, FX,0 =1, PX,0=I, «aX,0 =0,

for everyX e Qg and the following boundary conditions @St :

(11) S DN Iry= S 1) (X, 1) =) |y = Or(x, 7)

Here 9@t = I'y; | J ot denotes the boundary of the thredimensional donsainn(t) is the

unit external normal af'1;, while xt(x, 7) — x is the displacement vector with respect to the
configuration at time. S and U, the surface loading and the displacement vector are time
dependentz, prescribed functions, with respect to the fixed at tineenfiguration.

The rate quasi-static boundary value problem at tinievolves the time differentiation, i.e.
with respect tor, of the equilibrium equations, (10¥,x € Qt, and of the boundary condition
(11), whenr =t

div S (x. ) + p(x. Hbr(x. 1) = 0.
(12) SO ey = S b,
VX, 1) Iry= Ut(x, 1)

. L 0
using the notatiot; (x, t) for a_bt X, T |z=t -
T

At a generic stage of the process the current values, i.eeairhet, of F, T, Y, and the set
of all material particles, in which the stress reached threectt yield surface

QP = x@P,1), with QP ={XeQ|FCX,1t),Y(X,1) =0

are known for allk € Qt, with the current deformed domai®; also determined.
The set of kinematically admissible (at tirtlevelocity fields is denoted by

Vad(®) = {v: @ — R3| viry=Uy).
and the set of all admissible plastic multiplier
M) ={5:9Q — Rog| sx0)=0, if xe\QP,

s, 1) =0, if xeQf).
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THEOREMDS. Atevery time t the velocity field, and the equivalent plastic fact@r satisfy
the following relationships

/ p{VvI (YW — VV) + 4F82.0 (C, V)[FT (VWISFIFT - ((Vw)S —
Qt 1Y

(13) (Vv}®))dx — 2/ 5 phﬁ FIcF(C,Y)ET - ((Vw}S — {VV}S)dx =
of hr

/ ob - (w—v)dx + ét-(w—v)da
Q o

and
(14) —2/ ﬁ(a — B) FacF(C, Y)FT . ({Vv}s)dx+/ ﬁ(S — B)Bdx >0,
QP hr of hr

which hold for every admissible vector fielde Vaq(t), and for all§ € M(t).
Proof. In the theorem of virtual power, derived from the rate qusatic equilibrium equation
(12):

S - vwdx = &n -Wda+/ bt -wdx,  Yw e Vaq(t)
Qt 92t Qt

we substitute the rate of the nominal stress, at tinealculated from (9), taking into account the
potentiality condition (4). First of all we calculate the differential with respectrtof the right
hand side in (4, in which we replacé-F~1 = L andC = 2FDFT, with D = LS. Thus

d

T T T
1-(=) = 2LF3co (C,Y)FT + 2Fico (C.Y)FTLT+
Tp

(15)
2F92 .0 (C, Y)[2FDFT]FT + 2F(32. 0 (C. Y)[YDFT

in which we introduce the modified flow rule, (7), written undee form (see Remark 2)
(16) 0§co (€. Y)[Y] = —pdc F(C, Y),

Hence the equality (13) follows at once from (9), (15)and)(16
In order to prove (14) we note that> 0 can be express either by the inequality

17) (i—m) F<0, V>0, togetherwith uF =0,
or under its explicit dependence on the rate of strain:

“Zhﬁ’ with g =205 F(T.a) - d5(G, «)[ET DE],
r

hr = 205 (2, a) - d2(G, o)[{GB}S] — 0. F (T, &) - W,

where the hardening parametgr> 0. The time derivative off(Z, a) with (2) is introduced in
(17). Consequently, for akl € Qtp we get

(18) (it — W(—phr + 205 F (S, a) - dE(G, )[ETDE]) < 0.
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hr > 0. We can substitute. and i by g/hy ands/hy. By integrating othp from (18) the
inequality (14) holds, when the equality

IcF -A=05nF(S,a)-dSG,0)[P"TAP1]) VA € Sym

is also used foA = FT DF.
Let us define the convex sktin the appropriate functional space of the solutitgy, by

K :={W,8) | weVaq(t), §:Q2— Rxo},

andthe bilinear formsin the appropriate spadép:

(19) K[v,w] = /p(Vv%~VW+4F8(2:C0(C,Y)[FT{VV}SF]FT~{Vw}s)dx
Q
_ v
NB5] = /QtphrﬁSdX
B[S,v] = —2/ L s FacF(C, YFT - (vv)Sdx
of hr

are defined/ v, w € Vaq(1), V4, B: Qt — Rxo.

As a consequence of (19) , (13) and (14) the below statemédafg:ho
THEOREMG6. Find U = (v, B) € K , solution of the variational inequality.l.:
(20) alu,V—U]>f[V-U] VYVek
a[-, -] is the bilinear and symmetric forgiefined on Hy
a[Vv, W] := K[v,w] + B[B,w] + B[5, v] + A[B, ]

definedvVV = (v, 8), W = (w, §) and

(21) f[V] = §t -vda+/ pbt -vdx, T3 C 9%x.
It Qt

REMARK 1. Under hypotheses: there existgq— a Hilbert space, with the scalar product
denoted by, the continuity of the bilinear form oklag, | a[V,U]l I<co IV IIH I UllH,
and of the linear functional from (21) then the existencedf linear operator associated to the
bilinear form:

a[lu,V]=QU -V VU,V € Hgg.

The variational problentan be equivalently formulated (see for instance Glowiriskins,
Trémoliéres [1976]): Find) € Hag such that

alUU—-U0]-f U-0)+ @z U)— e (0) >0 VU e Hag.

Here(bK - the indicator function ofK, is zero onK, and infinity outside.
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By using the subdifferentiab®; of the function @ ¢ the variational inequality becomes
—(QU-f e a0
We recall that theubdifferentialof @ is defined as the mapping oHag such that
1P X)={neH|Pg(Y)—Pp(X)=n-(Yy—%) V yeH}

n € 3@ (x) are called subgradients df; ( see [18]). The domain 0b®; coincides with
K. and 9@ (x) = {0} when x belongs to the interior oK.

PROPOSITION2. For linear elastic type constitutive equation, in the pleally deformed
configuration, the following formula

4320 (C,V)[A] = P[P TAP7YP~T, VA e Sym

follows.

In the case of small elastic strains

1
A= E(G — 1) ~e® E=REU®, where

U =14+¢® G=I1+2° with |e®|<1,

R®— elastic rotation, the following estimations

T
| VW— - VW [<]| YW 2] € [4] €2 |
0

4| Fodco (CVIFTH{VWFIFT - (Vw)S | < | Vw 2| € |4

hold.

In conclusion: in the case of small elastic strains the fasns in the bilinear fornkK[-, -]
can be neglected in the presence of the second one. Moréaberbehavior of the body, with
small elastic strain only, is elastic, which means tBat 0 in the solution of the variational
inequality, (20),then the bilinear forafV, V] for V = (v, 0) is symmetric and positive definite.

In a similar manner, but starting from tleguilibrium equatiorand thebalance equation of
momentunwith respect to the initial configuration, expressed as

DivS+by=0 and SF' =FST, in Q with

I
S:= (detF)TE~T, S:=poFP1—p~T
o)
S— non-symmetric Piola- Kirchhoff stress tensor, whiegeare the body forces, we can prove:

THEOREM 7. The formulation of the rate quasi- static boundary valuebpem, in the
initial configuration leads to the variational inequality:
Find (U, u) € V x M ,suchthav(v,v) € V x M
KolU,v —u] + Bo[p, v —U] = R[v—1U],
(22)
BolU, v — u] + Ao[p, v —u] 2 0
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where Ky, Bg, Ag denote the bilinear forms:

Il _
Kolv.w] = / oot VWP =P~ T . vw + ZP[{FT vv}%] - {FT vw}S}dX
Q 1Y
Boliw] = -2 [ 0upid 3 (95 A1P T - (FT Vwpax
QP Nr
Aolm,v] = / @vudx
QP hr

The linear functional
R[v]:/ l':0~vda+/ pobg - vd X,
r Q

represents the virtual power produced by the variatiomir tof the of the mass ford®, and of
the forces acting on the pary of the boundary domaibg, i.e. SN |r, = Fo.

Here we have introduced the elastic tensor with respecetoetference configuratio?]p
EPIAl: = 4P 193gelP TAP P
9(G, ) o(C,Y), G=P TcPl yv=pP1a).

Here we denoted by = {v | v=U%0nT» c 39}, the set of admissible displacement rate
for a given functionu® ), and by M, the set of admissible plastic factors

REMARK 2. Note that = | + Vyxu, whereu(X, t) = x (X, t) — X represents the displace-

ment vector field ané = Vx U, and the spatial representations of the bilinear form (18)wst
represented in (22).

The plastic factopr = hﬁ which enter variational inequality is just the plastic faoivhich

'
characterizes the evolution of plastic deformation, via thodified flow rule (7). In order to
justify the above statement we recall the formula

IcF =P Lo FP T =P ST [as F(=, )]P T,
and from the modified flow rule (6) we found
dST[PPL - pos F(Z, )] = 0.
On the other hand when we pass to the actual configuration tve ge
Bolu, U] = B[u, V]

for

. 0x dx
u= ﬁ(x,t) and v= ﬁ(x,t) |X=X’1(X,t)

the rate of the displacement vectoandv represent the velocity at the material paitin the
material and the spatial representation.
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4. Composite materials

We describe the composite materials within the framework ahodels, with the potentiality
condition and the modified flow rule

The macroscopic response will be orthotropic if there aefamilies reinforced fibres. In
our model othotropic symmetry, characterized ( see [12Fheygroupge € Ort defined by

O6:={QeOrt| Qny=nj, or Qnj=-nj, i=123}

where{n4, no, n3} is the orthonormal basis of the symmetry directions.

For transverse isotropy we distinguish gebgroups ¢, 94, equivalently described in Liu
[1983] by:

01 {QeOrt| Qni=n;, QNiQT =Ny}
g = {Qeort| QM®enpQ' =n;®ng}

whereN1 = ny ® hg — N3 ® ny, for {n1, Ny, N3} an orthonormal basis, with; — the symmetry
direction The general representation theorems of Liu [1983] and W&8d0] for anisotropic
and isotropic functions were consequently employed byt{blescribe the complete set of the
constitutive equations under the hypotheses formulatedeabHere we give such kind of the
model.

The linear g—transversely isotropic elastizonstitutive equation with five material param-
eters, in tensorial representation is written with respeqtlastically deformed configuration,
Kt,

=&(A) = [aAni-ni+ctrAl(ng ® ny) + (CAng-n1 +dtrA)l +

bxlﬂ

+ egmenpA+AMNI@np]+ fA

The last representation is written in terms of the attachettopic fourth order elastic tensar,
such thaty Q € Ort. Here€& is symmetric and positive definite.

The yield condition is generated via the formula (24) by the functibrorthotropig, i.e.
dependent on fourteen material constant (or scalar fumefiozariant relative tgg ), such that

f(2) = (=528 M en) (Maeny) =

M((n1®np), (N ®@N)E - X =

C1(ZS- 12+ CoEs. B85+ C3(3H2. 1 +

C4(Z3-1)(Z%- (N1 ®Ny)) + Cs(Z5- 1)(E5- (N2 ® NR)) +
Ce=® - (%N @ NS+ C7% - {(Z%(n, ®@ o)) +

CgT%- {(N; ® NP T3S+ Co=- {(ny ® np) 3)°

C1ol=% - (N1 ® Np)]% + C1a[TS - (N2 @ np)]% +

C1a[=8- (N ®@ NPI[ES - (N2 ® N2)] + C13(EH? - (g @ ny) +
C14(¥H? - (2@ np)

(23)

+ o+ o+ + 4+ o+

REMARK 3. When we consider the symmetrical case, that correspandmall elastic
strains i.e. whenXxS = I, 2 = 0 then the yield condition is given from (23) in which
C3=C8=C9=C13=C14=0_
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The rate evolution equation for plastic deformation expeesby Mandel’s nine- dimen-
sional flow rulg i.e. there is a particular representation of the modified fide given in (8),

PP L= os F(, o, k)

is associated to the orthotropic yield function, generate(P3), which describe the proportional
and kinematic hardening given by

FE an)=fZ,k)—1=

(24) M1 ®N7),(N2®N2), KT - T —-1=0, T=3 —oa.

Here we put into evidence the possible dependenceafrthe yield function through the fourth
order tensoM.

We provide the constitutive relations for the plastic straite,DP, as well as for the plastic
spinW P, defined by

DP=1/2LP+LPT), WP =1/2LP - LPT), where LP=pp!
For orthotropic material the plastic strain rate is given by
DP = uNP(2, o, k, (N1 ® Ny), (N2 ® N2))

with

2C1(Z° - DI +2C,T° + C4[(T° - H(n @ np) +
(=°-np@npI] +Cs[(Z°- H(nz @ np) + (X° - na @ no)l] +
2C6{T (N1 ® N)}* +2C7{Z° (N2 @ np)}° +

Cal(ng ® N TS + Col(ny @ ) TS +

2C19(Z° - (N ® N) (N1 ® Np) +

2C11(E°- (N2 ®np) (N2 @ np) +

+ 2C12[(T - (N1 ®N1)(N2® N2) + (T - (N2 ® N2)) (N1 ® Ny)]

(25) NP

+ 4+ + + +

and the plastic spin is expressed under the form

WP =4 QP(S,a,6,n1®N1,No®Ny)  with
(26) QP = —2C3E% + Ca{(n1 ® N T )2 + Col(np ® N =°)2—
—2C13(Z% (N1 ® N1)}2 — 2C14(Z%(Ny @ )2

REMARK 4. WP involves the terms generated by the symmetric pai pivhile DP con-
tains terms generated by the skew- symmetric pak ofvith two coupling coefficient€g, Cqg.

REMARK 5. In the case ok € Sym i.e. for small elastic strain@nde € Sym directly
from (26) we derive the following expression forthotropic plastic spin

(27) WP = 1 QP = 11 {Cgl(n1 ® NPT} 4 Col(nz ® N T°)3)

But in this case, the yield condition (23) does not dependhenparameters which enter the
expression (27) of the plastic spin.
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PrRopPoOsSITION3. From the orthotropic Mandel's flow rule (26) the flow rule chaterizing
the g— transversely isotropic material is derived wheg € C7 = Cg = C11=C12 =0, i.e.
dependent on six material constants. The plastic spin isngby (25), in whichg@= Cq4 =0,
i.e. dependent on three constant only.

Evolution equation for internal variablean be described, see [6], by some new generaliza-
tion to finite deformation of Armstrong- Frederick hardemile.

From the orthotrop representatian— transversely isotropic case only can be obtained.
Thus for plasticallyincompressiblematerial, i.e. 5 = pg, the representatio from [21] can be
obtained by taking into account small deformation theorye Tibre-inextensible case given in
[22] can be also derived from our general representatioeywvthe appropriate yield constant is
much grater then the others.

References

[1] CLEJA-TIGOIU S. AND S00s E., Elastoplastic models with relaxed configurations and
internal state variablesAppl. Mech. Rev43(1990), 131-151.

[2] CLEJIA-TIGOIU S.,Large elasto-plastic deformations of materials with redebconfigura
tions. I. Constitutive assumptions. Il. Role of the completary plastic factorint. J. Eng.
Sci.28(1990), 171-180, 273-284.

[3] CLEJA-TIGOIU S., Material symmetry of elastoplastic materials with relaxaahfigura-
tions Rev. Roum. Math. Pures Ap84 (1989), 513-521.

[4] CLEJA-TIGOIU S.,Bifurcations of homogeneous deformations of the bar inefiaiasto-
plasticity, Eur. J. Mech. A, Solid84 (1986),761—786.

[5] CLEJA-TIGOIU S.,Nonlinear elasto-plastic deformations of transversebtrispic materi-
als and plastic spinint. J. Engng. Sci38 (2000), 737—-763.

[6] CLEJA-TIGOIU S.,Orthotropic X — models in finite elasto-plasticiRev. Roumaine Math.
Pures Appl45(2000), 219-227.

[7] CLEJA-TIGOIU S., Some remarks on dissipation postulate in anisotropic fieltesto-
plasticity, Technische MechaniR0 (2000), 183-193.

[8] CLEJA-TIGOIU S.AND MAUGIN G.A., Eshelby’s stress tensors in finite elastoplasticity
Acta Mech.139(2000), 231-249.

[9] CLEJA-TIGOIU S.,Consequences of the dissipative restrictions in finiteatropic elasto-
plasticity, Int. J. Plasticity, submitted.

[10] HALPHEN B. AND NGUYEN Q.S., Sur les matériaux standards généralisés de
Mécaniquel4 (1975), 39-63.

[11] HiLL R., A general theory of uniqueness and stability in elasticsptasolids J. Mech.
Phys. Solids (1958), 236—248.

[12] 1-SHIH L1u, On the representations of anisotropic invariantgt. J. Engng. Sci40(1982),
1099-1109.

[13] LuBLINERJ.,Normality rules in large-deformation plasticitech. Mat.5 (1986), 29-34.

[14] LuccHESIM. AND PoDIO-GUIDUGLI P., Materials with elastic range. A theory with a
view toward applications, Part JIArch. Rat. Mech. Anal110(1990), 9-42.



82

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

S. Cleja-Tigoiu

MANDEL J.,Plasticité classique et viscoplasticit€ISM- Udine, Springer-Verlag, New-
York 1972.

MaRIGO J.J.,Constitutive relations in plasticity, damage and fractunechanics based
on a work propertyNuclear Eng.and Desighl4 (1989), 249-272.

MAUGIN G.A., Eshelby stress in elastoplasticity and fractuirt. J. Plasticityl0 (1994),
393-408.

MoREAU J.J. Fonctionnelle convexeSéminaire J. Lerray, College de France, Paris 1966.

NGUYEN Q.S:,Some Remarks on Plastic Bifurcatjdeur. J. Mech. A, Solid43 (1994),
485-500.

NIGAM H., DVvORAK G.J.AND BAHEI-EL-DIN, An experimental investigation of elastic-
plastic behavior of a fibrous boron- aluminium compositeMatrix- dominant mode; 1.
Fiber-dominant modent. J. Plasticityl0 (1994), 23-48, 49-62.

ROGERST.G., Plasticity of fibre-reinforced materialsn: “Continuum model in discret
system” (Ed. G.A. Maugin), Vol.1, Longman 1990, 87-102.

SPENCERA.J.M., Kinematic constraints, constitutive equations and faluules for
anisotropic materials in: “Applications of tensor functions in solid mechanic&d.
J.P. Boehler), CISM Courses and Lecture N&®8 Springer 1987, 187-201.

SPENCERA.J.M., Plasticity theory for fibre-reinforced composite3. Eng. Math.29
(1992), 107-118.

SRINIVASA A.R., On the nature of the response functions in rate-indepenglasticity,
Int. J. Non-Linear Mech32 (1997), 103-119.

TRUESDELLC. AND NoLL W., The non-linear field theory of mechanids: “Handbuch
der Phys., 111/3”, (Ed. Fluge), Springer, Berlin - Gotjen - Heidelgerg 1965.

VOGLERT.J., HsU S.Y. AND KYRIAKIDES S.,Composite failure under combined com-
pression and sheaint. J. Solids Struct37 (2000), 1765-1791.

AMS Subject Classification: 74C15.

Sanda CLEJA-TIGOIU

Faculty of Mathematics

University of Bucharest

Str. Academiei 14

70109 Bucharest, ROMANIA

e-mail: tigoiu@math.math.unibuc.ro



Rend. Sem. Mat. Univ. Pol. Torino
\ol. 58, 1 (2000)
Geom., Cont. and Micros., |

J. Engelbrecht - M. Vendelin*

MICROSTRUCTURE DESCRIBED BY HIERARCHICAL
INTERNAL VARIABLES

Abstract. In this paper a clear distinction is made between the diffeseales and
the different processes in the microstructure which infbeetne dynamics at the
macrolevel. In the first case the governing equation for wae@agation is repre-
sented by a hierarchy of waves. In the second case it has heamshow useful
the concept of internal variables is. The different proess=n be best described
by a hierarchy of internal variables. An example of cardiacsahe contraction is
briefly described, demonstrating the dependence of theeasitiess on sliding the
molecules and ion concentration involving the correspagditernal variables.

1. Introduction

Continuum mechanics is usually based on macroscopic ctsiaad quantities, such as energy
density, stress, strain, etc. However, materials (whatthr origin is) have usually a mi-
crostructure because of inhomogeneities, pores, embdaged, reinforcements, etc.. This list
can be prolonged but one is clear - the description of thewetiaof many materials should take
into account both the macroscopic and microscopic praggenticcuring at different length scales
and involving different physical effects. Within the frawmark of continuum mechanics, such a
behaviour is best described by distinguishing macro steeand microstresses with interactive
microforces ([1], [2]). We feel however, that for materialth complicated properties indicated
above, one should start distinguishing clearly the obd#evand internal variables ([10], [13]).
Although the formalism of internal variables is well knowd @], [13]), for the clarity sake we
repeat here some basic concepts.

The observable variables are the usual macroscopic fieltitjga such as elastic strain, for
example. These variables are governed by conservationdad/possess inertia. The internal
structure of the material (body, tissue, composite, eggupposed to be described by internal
variables which are not observable and do not possessaneftiey should compensate our
lack of knowledge of the precise description of the micnastire. The formalism of internal
variables involves constructing of a dissipation potérifidn parallel to the Lagrangiag for the
observable variable. However, the governing equationstefmal variables are kinetic equations
(not hyperbolic) — see [10], [13].

The idea of using internal variables for describing dynainprocesses in microstructured
materials has earlier been presented in [12], [4]. The prablbecome more complicated when
either the scales or possible processes in materials &eesdif and form a certain hierarchy. This
brings us directly to the idea of hierarchical internal ates that certainly need generalization

*This study is supported by the Estonian Science Foundafidh.would like to thank Department of
Mathematics, University of Turin, for the financial supptrattend the 4 th International seminar "Geome-
try, Continua & Microstructure” where the ideas of this papere discussed.
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