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ANISOTROPIC AND DISSIPATIVE FINITE

ELASTO-PLASTIC COMPOSITE

Abstract. Here we propose a macroscopic model for elasto-plastic composite,
characterized by an initial anisotropy, that can evolve during the large plastic de-
formation. Application to transversely isotropic and orthotropic composites will
be also developed. The paper deals with anisotropic finite elasto-plastic6-models,
which accounts for the dissipative nature of the plastic flow, within the constructive
framework of materials with relaxed configurations in internal variables. Here6
stands for Mandel’s non-symmetric stress tensor,or the quasi-static Eshelby stress-
tensor. The appropriate variational inequalities are derived, related rate quasi-static
boundary value problem, in our approach to composite materials.

1. Introduction

The continuum approach treats the composites as a single material with different properties in
different directions. The macroscopic response will be transversely isotropic about the fiber
direction if there exists just one family of reinforced fibres and orthotropic if there are two fam-
ilies. Spencer in [23] formulated yield conditions, flow rules and hardening rules for material
reinforced by one and two families of fibres, in small deformations plasticity theory. The yield
function is assumed to be not affected by a superposed tension in fibre direction. Spencer in
[22] proposed the term of proportional hardening for the corresponding theory of isotropic hard-
ening, for anisotropic plasticity. Rogers in [21] generalized Spencer’s results concerning fibre
reinforced materials, assuming that the yield condition isunaffected by the superposition of an
arbitrary hydrostatic pressure.

Experimental results performed on axially reinforced tubular specimens of boron alumini-
um composite, under complex loading, reveal the large kinematic hardening effects, see [20]. In
[26] the effect of shear on the compressive response and failure was investigated experimentally
for an unidirectional composite. Here both axes of loading could be operated in either load or
displacement control.

Here we propose a macroscopic model for elasto-plastic composite, characterized by an ini-
tial anisotropy, that can evolve during the large plastic deformation. Applications to transversely
isotropic and orthotropic composites will be developed, based on the papers [5, 6], which gener-
alized Spencer and Roger’s results.

The paper deals with anisotropic finite elasto-plastic6−models, which account for the
dissipative nature of the plastic flow, within the constitutive framework of materials with relaxed
configurations and internal variables, [1, 2]. Here6 stands for Mandel’s non-symmetric stress
tensor, see [15], or the quasi-static Eshelby stress tensor, see [17, 18]. We shown in [9], that
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there exist classes of6−models with hyperelastic properties, for which the dissipation postulate
[7] can be equivalently imposed through the normality and convexity properties, despite of the
non-injectivity of the function which describes6 as dependent on elastic strain. Our dissipation
postulate extend to anisotropic materials the results obtained by [13, 14, 16, 24].

During the elasto-plastic deformation process, see experimental evidences in [26], the chan-
ges in geometry and rotations of material elements cannot bedisregarded. Consequently, the
field equation and the boundary conditions at time t are properly formulated (see [11]) in terms
of the rate of thenominalstress. The second objective of the paper is to derive an appropriate
variational inequality, related to the rate quasi-static boundary value problem and associated
with a generic stage of the process in our approach to composite materials. Only when the
dissipative nature of the plastic flow is considered, the variational inequality is caracterized by
a bilinear form which becomes symmetric. In a forcomming paper a complete analysis of the
bifurcation of the homogeneous deformation will be performed, as in Cleja-Ţigoiu [4], based
on the variational inequality, under axial compressive stress. In our analyse it is not necessary
to make the assumptions either the fibres are uniformly inclined to the line of the loading by a
small angle, or the existence of a sinusoidal imperfection,which is uniformly distributed, as we
remark here that the stability can be lost, during plastic deformation.

Further we shall use the following notations:

Lin, Lin+− the second order tensors and the elements with positive determinant;

V− the three dimensional vector space;

Sym, Skew, Sym+− symmetric, skew-symmetric and symmetric and positive definite tensors;

Ort+− all proper rotation of the orthogonal groupOrt;
A · B := tr ABT− the scalar product ofA, B ∈ Lin;

As = 1

2
(A +AT ) andAa = 1

2
(A −AT )− the symmetrical and respectively skew- symmetrical

parts ofA ∈ Lin; I is the identity tensor;

ET− the transpose ofE− fourth order tensor, defined for allA, B ∈ Lin by

ET A · B := A · EB;
u̇− represents the derivative with respect to time;∂G ϕ(G, α)− the partial derivative of the
functionϕ(G, α) with respect toG;
d 6̂(G)− the differential of the map̂6 at G;
A · B := tr ABT− the scalar product ofA, B ∈ Lin; | A |=

√
A · A ≡

√
Ai j Ai j the modulus

of the second order tensor andAi j denote its Cartesian components;|E |4 =
√∑

i j kl

E2
i j kl denotes

the modulus of fourth order tensor andEi j kl are Cartesian components ofE;
< z >= 1/2 (z+ | z |), ∀z ∈ R− the set of all real numbers;

ρ0, ρ̃, ρ are mass densities in initial, relaxed and actual configurations;

Q[α] := QαQT for α ∈ Lin, Q[α] := α for α ∈ R.

2. 6-models

We introduce now the constitutive framework of anisotropicelasto-plastic materials,6−models
being included, see [8].

We fix a material pointX in the body, considered in the reference configurationk. For an
arbitrary given motionχ , defined in a certain neighborhood ofX, let consider the deformation
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gradientF(t) , det F(t) > 0, F(0) = I . We assume themultiplicative decompositionof the
deformation gradient into itselasticandplasticparts:

F(t) = E(t)P(t) where E(t) = ∇χ(X, t)K−1
t , P(t) = K t K

−1
0(1)

based on the local, current configurationK t .

We denote byG = ET E the elastic strain, and byY = (P−1, α) the set of the irreversible
variables, whereα represent the set of internal variables, scalars and tensors, 5− symmetric
Piola-Kirchhoff stress tensorK t , T− Cauchy stress tensor, related by

5

ρ̃
= E−1 T

ρ
E−T

Theelastic type constitutivein term of6 is written under the form

6 := 6̂(G, α), 6̂(I , α) = 0,

G−16̂(G, α) = 6̂T (G, α)G−1, ∀ G ∈ Sym+.
(2)

The value of the tensor function written in (2)2 gives the current value of
5

ρ̃
, taking into account

the relation between symmetric Piola-Kirchhoff and Mandel’s stress tensors

6 = G
5

ρ̃

Therate independent evolution eqns.for P, α are expressed by

ṖP−1 = µ B̂(6, α), α̇ = µ m̂(6,α),

F̂(·, α) : D
F̂

⊂ Lin −→ R≤0, and F̂(0, α) < 0,

µ ≥ 0, µ F̂ = 0, and µ
˙̂
F = 0.

Material symmetry requirements(see [1, 3]). We assume that thepreexisting material symmetry
is characterized bythe symmetry group gk ⊂ Ort+, that renders the material functions invariant

6̂(QGQT , Q[α]) = Q6̂(G, α)QT , F̂(Q6QT , Q[α]) = F̂(6,α),

B̂(Q6QT , Q[α]) = QB̂(6, α)(Q)T , m̂(Q6QT , Q[α]) = Q[m̂(G, α)]

for everyQ ∈ gk.

THEOREM1. Any6− model leads to a strain formulation of the elasto- plastic behaviour
of the material with respect to the relaxed configurationK t . Also the material functions are gk−
invariant.

The appropriate material functions in strain formulationsare related to the basic functions
from6−models through relationships of the type:

F̃(G, α) = F̂(6̂(G, α), α), B̃(G, α) = B̂(6̂(G, α), α), etc.

THEOREM2 (STRAIN FORMULATION IN THE INITIAL CONFIGURATION ).
1. LetY := (P−1, α) characterizes the irreversible behaviour of the body, at the fixed material
point. The yield function in the reference configuration associated with the yield function in
elastic strain is defined by

F(C, Y) := F̃(P−TCP−1, α) ≡ F̃(G, α) with Y ≡ (P−1, α)
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as a consequence of (1).

2. The evolution in time ofY is governed by the solutions of Cauchy problem (see[1])

Ẏ = − < β(t, Y) > Ȳ(C(t),Y)H(F(C(t),Y))

β(t, C) = ∂CF(C(t), Y) · Ċ(t)

∂YF̄(C, Y) · Ȳ(C, Y) = 1 on F(C, Y) = 0

Y(0) = Y0

(3)

for a given strain history, denoted̂C ∈ Gs,

t ∈ [0, d] → Ĉ(t) ∈ Sym+, with Ĉ(t) = C(t) = FT (t)F(t).

HereH denotes the Heaviside function.

Basic assumptions:

I. There exists an unique solution of the Cauchy problem (3).

II. The smooth yield functioñF is given in such way that

i) F̃ : DF ⊂ Sym+ × Rn −→ R is of the classC1, and F̃(I , α) < 0 for all α;
ii) for all fixed α ∈ pr2 DF− the projection on the space of internal variables, the set

{G ∈ Sym+ | F̃(G, α) ≤ 0}

is the closure of a non-empty, connected open set, i.e. if necessary we restrict the yield function
to the connected set that containsI ∈ pr1 DF ⊂ Sym+;

iii) for all α ∈ pr2DF the set{G ∈ Sym+ | F̃(G, α) = 0} defines aC1 differential
manifold, called the current yield surface. Hence∂GF̃(G, α) 6= 0 on the yield surface.

THEOREM 3. The dissipation postulate, introduced in[7] is equivalent to the existence of
the stress potential(I), together with the dissipation inequality(II ).

I. For all Ĉ ∈ Gs and for all t ∈ [0, 1) there exist the smooth scalar valued functions,ϕ, σ,

related by

σ(C,Y(t)) = ϕ(P−T (t)CP−1(t), α(t)) ∀C ∈ U(Ĉt ) with
U(Ĉt ) := {B ∈ Sym+ | F(B, Y(t)) ≤ 0}

the elastic range, at time t corresponding toĈ ∈ Gs. Here Ĉt is the restriction on[0, t ] of the
given history.

The functionsϕ, σ, are stress potentials

5(t)

ρ̃(t)
= 2 ∂Gϕ(G, α(t)),

T(t)

ρ
= 2 F∂Cσ(C(t),Y(t))FT ,

G = P−T (t)C(t)P−1(t).
(4)

II. The following equivalent dissipation inequalities

[∂Yσ(A,Y(t)) − ∂Yσ(C(t),Y(t))] · Ẏ(t) ≥ 0 and

(6(t) − 6∗) · Ṗ(t)P−1(t) + (a(t) − a∗)α̇(t) ≥ 0
(5)
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hold for all G, G∗ such thatF̃(G, α) = 0, F̃(G∗, α) ≤ 0, when the conjugated forces to
internal variables (see [10]) are considered

a(t) := −∂αϕ(G(t), α(t)), a∗ = −∂αϕ(G∗, α(t))

Here6(t),6∗ are calculated from (2) for the elastic strainsG(t) andG∗.

PROPOSITION1. When the dissipation inequality (5)2 is satisfied then modified flow rule

(∂G6̂(G, α))T [ṖP−1] = µ∂GF̃(G, α) + ∂2
α Gϕ(G, α)[α̇](6)

with µ ≥ 0, holds. The dissipation inequality (5)1 imposes that

−∂Y [∂Cσ(C, Y)][ Ẏ] = µ̄∂CF(C, Y) µ̄ ≥ 0,(7)

for all C = C(t) on yield surfaceF(C, Y) = 0, for the fixedY = Y(t), with µ̄ ≥ 0.

To end the discussion about the consequences of the dissipation postulate we recall the basic
result, similar to [13]:

THEOREM4. 1. At any regular point6 of the yield function in stress spacêF(6, α) = 0,

but with6 = 6̂(G), the appropriate flow rule, i.e. the modified flow rule, takes the form

L p ≡ ṖP−1 = µ ∂6F̂(6, α) + L p∗;
L p∗ : (d 6̂(G))T (L p∗) = 0

(8)

3. Rate boundary value problem and variational inequalities

We derive the variational inequalities with respect to the actual and respectively initial config-
urations, related to the rate quasi-static boundary value problem and associated with a generic
stage of the process, at the timet . We use an appropriate procedure as in [19, 4] and different
motion descriptions that can be found in [25].

Thenominal stresswith respect to the actual configuration at timet, or thenon-symmetric
relativePiola- Kirchhoff, is defined by

St (x, τ ) = (detFt (x, τ ))T(y, τ )(Ft (x, τ ))−T ,

with
Ft (x, τ ) = F(X, τ )(F(X, t))−1

the relative deformation gradient.
Herex = χ(X, t), y = χ(X, τ ), or y = χt (x, τ ) ≡ χ(χ−1(x, t), τ )− the motion in the relative
description. At timet we have

St (x, t) = T(x, t) and

Ṡt (x, t) ≡ ∂

∂τ
St (x, τ ) |τ=t

= ρ(x, t)
∂

∂τ
(
T(y, τ )

ρ(y, τ )
) |τ=t −T(x, t)LT (x, t).

(9)

HereL (x, t) = ∇v(x, t) represents the velocity gradient, in spatial representation.
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Let us consider a body, identified with� ⊂ R3 in the initial configuration, which undergoes
the finite elasto-plastic deformation and occupies the domain �τ = χ(�, τ) ⊂ R3, at timeτ.

Theequilibrium equationat timeτ, in terms of Cauchy stress tensorT(y, τ ) ∈ Sym

div T(y, τ ) + ρ(y, τ )b(y, τ ) = 0, in �τ

whereb are the body forces, can be equivalently expressed, with respect to the configuration at
time t− taken as the reference configuration

div St (x, τ ) + ρ(x, t)bt (x, τ ) = 0 , with bt (x, τ ) = b(χt (x, τ ), τ )

St (x, τ )FT
t (x, τ ) = Ft (x, τ )ST

t (x, τ )

(10)

When the reference configuration is considered to be a natural one, we add the initial conditions

S0(X, 0) = 0, F(X, 0) = I , P(X,0) = I , α(X, 0) = 0,

for everyX ∈ �0 and the following boundary conditions on∂�t :

St (x, τ )n(t) |01t = Ŝt (x, τ ) , (χt (x, τ ) − x) |02t = Ût (x, τ )(11)

Here ∂�t ≡ 01t
⋃

02t denotes the boundary of the thredimensional domain�t , n(t) is the
unit external normal at01t , while χt (x, τ ) − x is the displacement vector with respect to the
configuration at timet . Ŝt and Ût , the surface loading and the displacement vector are time
dependent,τ, prescribed functions, with respect to the fixed at timet configuration.

The rate quasi-static boundary value problem at timet, involves the time differentiation, i.e.
with respect toτ, of the equilibrium equations, (10),∀ x ∈ �t , and of the boundary condition
(11), whenτ = t

div Ṡt (x, t) + ρ(x, t)ḃt (x, t) = 0 ,

Ṡt (x, t)n(t) |01t =
˙̂St(x, t),

v(x, t) |02t =
˙̂Ut(x, t)

(12)

using the notatioṅbt (x, t) for
∂

∂τ
bt (x, τ |τ=t .

At a generic stage of the process the current values, i.e. at the timet, of F, T, Y, and the set
of all material particles, in which the stress reached the current yield surface

�
p
t = χ(�p, t), with �p ≡ {X ∈ � | F(C(X, t),Y(X, t)) = 0}

are known for allx ∈ �t , with the current deformed domain�t also determined.

The set of kinematically admissible (at timet) velocity fields is denoted by

Vad(t) ≡ {v : �t −→ R3 | v |02t =
˙̂Ut}.

and the set of all admissible plastic multiplier

M(t) ≡ {δ : �t −→ R≥0 | δ(x, t) = 0, if x ∈ �t\�p
t ,

δ(x, t) ≥ 0, if x ∈ �
p
t }.
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THEOREM5. At every time t the velocity field,v, and the equivalent plastic factorβ satisfy
the following relationships

∫

�t

ρ
{
∇v

T
ρ

· (∇w − ∇v) + 4F∂2
CCσ(C, Y)[FT {∇v}sF]FT · ({∇w}s −

{∇v}s)}dx − 2
∫

�
p
t

ρ
β

hr
F∂CF(C, Y)FT · ({∇w}s − {∇v}s)dx =(13)

∫

�t

ρḃ · (w − v)dx +
∫

02t

˙̂St · (w − v)da

and

−2
∫

�
p
t

ρ

hr
(δ − β) F∂CF(C, Y)FT · ({∇v}s)dx +

∫

�
p
t

ρ

hr
(δ − β)βdx ≥ 0,(14)

which hold for every admissible vector fieldw ∈ Vad(t), and for all δ ∈ M(t).

Proof. In the theorem of virtual power, derived from the rate quasi-static equilibrium equation
(12): ∫

�t

Ṡt · ∇wdx =
∫

∂�t

Ṡtn · wda +
∫

�t

ρḃt · wdx, ∀w ∈ Vad(t)

we substitute the rate of the nominal stress, at timet , calculated from (9), taking into account the
potentiality condition (4)2. First of all we calculate the differential with respect toτ of the right
hand side in (4)2, in which we replacėFF−1 = L andĊ = 2FDFT , with D = Ls. Thus

∂

∂τ
(
T
ρ

) = 2LF∂Cσ(C,Y)FT + 2F∂Cσ(C, Y)FT LT+

2F∂2
CCσ(C, Y)[2FDFT ]FT + 2F(∂2

YCσ(C, Y)[Ẏ])FT

(15)

in which we introduce the modified flow rule, (7), written under the form (see Remark 2)

∂2
YCσ(C, Y)[Ẏ] = −µ∂CF(C, Y),(16)

Hence the equality (13) follows at once from (9), (15)and (16).

In order to prove (14) we note thatµ ≥ 0 can be express either by the inequality

(µ̃ − µ)
˙̂
F ≤ 0, ∀ µ̃ ≥ 0, together with µ F̂ = 0,(17)

or under its explicit dependence on the rate of strain:

µ = β

hr
, with β = 2∂6F̂(6, α) · d6̂(G, α)[ET DE],

hr = 2∂6F̂(6, α) · d6̂(G, α)[{GB̃}s] − ∂αF̂(6, α) · m̃,

where the hardening parameterhr > 0. The time derivative ofF̂(6,α) with (2) is introduced in
(17). Consequently, for allx ∈ �

p
t we get

(µ̃ − µ)(−µhr + 2∂6F̂(6,α) · d6̂(G, α)[ETDE]) ≤ 0.(18)
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hr > 0. We can substituteµ and µ̃ by β/hr and δ/hr . By integrating on�p
t from (18) the

inequality (14) holds, when the equality

∂CF · A = ∂6F̂(6, α) · d6̂(G, α)[P−T AP−1]) , ∀ A ∈ Sym

is also used forA = FT DF.

Let us define the convex set̃K in the appropriate functional space of the solutionHad, by

K̃ := {(w, δ) | w ∈ Vad(t), δ : � −→ R≥0},

andthe bilinear forms, in the appropriate spaceHab:

K [v, w] =
∫

�t

ρ
(
∇v

T
ρ

· ∇w + 4F∂2
CCσ(C, Y)[FT {∇v}sF]FT · {∇w}s

)
dx(19)

A[β, δ] =
∫

�
p
t

ρ

hr
β δdx

B[δ, v] = −2
∫

�
p
t

ρ

hr
δ F∂CF(C, Y)FT · {∇v}sdx

are defined∀ v, w ∈ Vad(t), ∀ δ, β : �t −→ R≥0.

As a consequence of (19) , (13) and (14) the below statement holds:

THEOREM6. Find U = (v, β) ∈ K̃ , solution of the variational inequality,V.I.:

a[U, V − U] ≥ f [V − U] ∀ V ∈ K̃(20)

a[·, ·] is the bilinear and symmetric formdefined on Had

a[V, W] := K [v, w] + B[β,w] + B[δ, v] + A[β, δ]

defined∀ V = (v, β), W = (w, δ) and

f [V] :=
∫

01t

˙̂St · vda +
∫

�t

ρḃt · vdx, 01t ⊂ ∂�t .(21)

REMARK 1. Under hypotheses: there existsHad− a Hilbert space, with the scalar product
denoted by·, the continuity of the bilinear form onHad, | a[V, U] |≤ co || V ||H || U ||H ,

and of the linear functional from (21) then the existence ofQ− linear operator associated to the
bilinear form:

a[U, V] = QU · V ∀ U, V ∈ Had.

The variational problemcan be equivalently formulated (see for instance Glowinski, Lions,
Trémolières [1976]): Find̃U ∈ Had such that

a[Ũ, U − Ũ] − f · (U − Ũ) + 8K̃ (U) − 8K̃ (Ũ) ≥ 0 ∀ U ∈ Had.

Here8K̃ - the indicator function ofK̃ , is zero on K̃ , and infinity outside.
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By using the subdifferential∂8K̃ of the function8K̃ the variational inequality becomes

−(QŨ − f) ∈ ∂8K̃ (Ũ)

We recall that thesubdifferentialof 8K̃ is defined as the mapping onHad such that

∂8K̃ (x) = {η ∈ H | 8K̃ (y) − 8K̃ (x) ≥ η · (y − x) ∀ y ∈ H};

η ∈ ∂8K̃ (x) are called subgradients of8K̃ ( see [18]). The domain of∂8K̃ coincides with

K̃ , and ∂8K̃ (x) = {0} when x belongs to the interior ofK̃ .

PROPOSITION2. For linear elastic type constitutive equation, in the plastically deformed
configuration, the following formula

4∂2
CCσ(C,Y)[A] = P−1E [P−TAP−1]P−T , ∀ A ∈ Sym

follows.

In the case of small elastic strains

1 = 1

2
(G − I) ' εe E = ReUe, where

Ue = I + εe, G = I + 2εe with | εe |≤ 1,

Re− elastic rotation, the following estimations

| ∇w
T
ρ

· ∇w |≤| ∇w |2| E |4| εe |

4 | F∂2
CCσ(C, Y)[FT {∇w}sF]FT · {∇w}s | ≤ | ∇w |2| E |4

hold.

In conclusion: in the case of small elastic strains the first terms in the bilinear formK [·, ·]
can be neglected in the presence of the second one. Moreover,if the behavior of the body, with
small elastic strain only, is elastic, which means thatβ = 0 in the solution of the variational
inequality, (20),then the bilinear forma[V, V] for V = (v, 0) is symmetric and positive definite.

In a similar manner, but starting from theequilibrium equationand thebalance equation of
momentumwith respect to the initial configuration, expressed as

Div S+ b0 = 0, and SFT = FST , in � with

S := (detF)TF−T , S := ρ0FP−15

ρ̃
P−T

S− non-symmetric Piola- Kirchhoff stress tensor, whereb0 are the body forces, we can prove:

THEOREM 7. The formulation of the rate quasi- static boundary value problem, in the
initial configuration leads to the variational inequality:

Find (u̇, µ) ∈ V × M , such that∀(v, ν) ∈ V × M

K0[u̇, v − u̇] + B0[µ, v − u̇] = R[v − u̇],

B0[u̇, ν − µ] + A0[µ, ν − µ] ≥ 0
(22)
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where K0, B0, A0 denote the bilinear forms:

K0[v, w] =
∫

�
ρ0{∇vP−1 5

ρ̃
P−T · ∇w + E

p
[{FT∇v}s] · {FT∇w}s}dX

B0[µ, w] = −2
∫

�p

ρ0

hr
µP−1(d 6̂)T [∂6F̂ ]P−T · {FT∇w}sdX

A0[µ, ν] =
∫

�p

ρ0

hr
νµdX

The linear functional

R[v] =
∫

01

Ḟ0 · vda +
∫

�
ρ0ḃ0 · vdx,

represents the virtual power produced by the variation in time of the of the mass forceb0 and of
the forces acting on the part01 of the boundary domain∂�, i.e. SN |01= F0.

Here we have introduced the elastic tensor with respect to the reference configurationE
p

E
p
[A] : = 4 P−1∂2

GGϕ[P−T AP−1]P−1

ϕ(G, α) = σ(C, Y) , G = P−T CP−1, Y = (P−1, α).

Here we denoted byV ≡ {v | v = U̇0 on02 ⊂ ∂�}, the set of admissible displacement rate(
for a given functionU0 ), and byM, the set of admissible plastic factors.

REMARK 2. Note thatF = I +∇Xu, whereu(X, t) = χ(X, t)−X represents the displace-
ment vector field anḋF = ∇X u̇, and the spatial representations of the bilinear form (19) are just
represented in (22).

The plastic factorµ = β

hr
which enter variational inequality is just the plastic factor which

characterizes the evolution of plastic deformation, via the modified flow rule (7). In order to
justify the above statement we recall the formula

∂CF = P−1∂GF̃P−T = P−1d6̂T [∂6F̂(6, α)]P−T ,

and from the modified flow rule (6) we found

d6̂T [ ṖP−1 − µ∂6F̂(6,α)] = 0.

On the other hand when we pass to the actual configuration we get

B0[µ, u̇] = B[µ, v]

for

u̇ = ∂χ

∂ t
(X, t) and v = ∂χ

∂ t
(X, t) |x=χ−1(X,t)

the rate of the displacement vectoru̇ andv represent the velocity at the material pointX in the
material and the spatial representation.
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4. Composite materials

We describe the composite materials within the framework of6-models, with the potentiality
condition and the modified flow rule.

The macroscopic response will be orthotropic if there are two families reinforced fibres. In
our model othotropic symmetry, characterized ( see [12]) bythe groupg6 ∈ Ort defined by

g6 := {Q ∈ Ort | Qni = ni , or Qni = −ni , i = 1, 2, 3.}

where{n1, n2, n3} is the orthonormal basis of the symmetry directions.

For transverse isotropy we distinguish thesubgroups g1, g4, equivalently described in Liu
[1983] by:

g1 ≡ {Q ∈ Ort | Qn1 = n1, QN1QT = N1}
g4 ≡ {Q ∈ Ort | Q(n1 ⊗ n1)Q

T = n1 ⊗ n1}

whereN1 = n2 ⊗ n3 − n3 ⊗ n2, for {n1, n2, n3} an orthonormal basis, withn1− thesymmetry
direction. The general representation theorems of Liu [1983] and Wang[1970] for anisotropic
and isotropic functions were consequently employed by [5],to describe the complete set of the
constitutive equations under the hypotheses formulated above. Here we give such kind of the
model.

The linear g4−transversely isotropic elasticconstitutive equation with five material param-
eters, in tensorial representation is written with respectto plastically deformed configuration,
K t ,

5

ρ̃
= E(1) ≡ [a1n1 · n1 + ctr1](n1 ⊗ n1) + (c1n1 · n1 + dtr1)I +

+ e[(n1 ⊗ n1)1 + 1(n1 ⊗ n1)] + f 1

The last representation is written in terms of the attached isotropic fourth order elastic tensor,̂E,

such that∀ Q ∈ Ort . HereE is symmetric and positive definite.

The yield condition is generated via the formula (24) by the functionf orthotropic, i.e.
dependent on fourteen material constant (or scalar functions invariant relative tog6 ), such that

f (6) := f̂ (6s, 6a, (n1 ⊗ n1), (n2 ⊗ n2)) ≡
≡ M̂((n1 ⊗ n1), (n2 ⊗ n2))6 · 6 =
= C1(6s · I)2 + C26

s · 6s + C3(6
a)2 · I +

+ C4(6s · I)(6s · (n1 ⊗ n1)) + C5(6
s · I)(6s · (n2 ⊗ n2)) +(23)

+ C66s · {6s(n1 ⊗ n1)}s + C76s · {6s(n2 ⊗ n2)}s +
+ C86s · {(n1 ⊗ n1)6a}s + C96s · {(n2 ⊗ n2)6a}s

+ C10[6s · (n1 ⊗ n1)]
2 + C11[6s · (n2 ⊗ n2)]2 +

+ C12[6s · (n1 ⊗ n1)][6
s · (n2 ⊗ n2)] + C13(6

a)2 · (n1 ⊗ n1) +
+ C14(6

a)2 · (n2 ⊗ n2)

REMARK 3. When we consider the symmetrical case, that corresponds to small elastic
strains, i.e. when6s = 5,6a = 0 then the yield condition is given from (23) in which
C3 = C8 = C9 = C13 = C14 = 0.
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The rate evolution equation for plastic deformation expressed by Mandel’s nine- dimen-
sional flow rule, i.e. there is a particular representation of the modified flow rule given in (8),

ṖP−1 = µ∂6F(6, α, κ)

is associated to the orthotropic yield function, generatedby (23), which describe the proportional
and kinematic hardening given by

F(6, α, κ) ≡ f (6, κ) − 1 ≡
M̂((n1 ⊗ n1), (n2 ⊗ n2), κ)6 · 6 − 1 = 0, 6 = 6 − α.

(24)

Here we put into evidence the possible dependence onκ of the yield function through the fourth
order tensorM.

We provide the constitutive relations for the plastic strain rate,Dp, as well as for the plastic
spinW p, defined by

Dp = 1/2(L p + L pT
), W p = 1/2(L p − L pT

), where L p = ṖP−1

For orthotropic material the plastic strain rate is given by

Dp = µ N̂p(6,α, κ, (n1 ⊗ n1), (n2 ⊗ n2))

with

N̂p = 2C1(6
s · I)I + 2C26

s + C4[(6
s · I)(n1 ⊗ n1) +(25)

+ (6
s · n1 ⊗ n1)I ] + C5[(6

s · I)(n2 ⊗ n2) + (6
s · n2 ⊗ n2)I ] +

+ 2C6{6
s
(n1 ⊗ n1)}s + 2C7{6s

(n2 ⊗ n2)}s +
+ C8{(n1 ⊗ n1)6

a}s + C9{(n2 ⊗ n2)6
a}s +

+ 2C10(6
s · (n1 ⊗ n1))(n1 ⊗ n1) +

+ 2C11(6
s · (n2 ⊗ n2))(n2 ⊗ n2) +

+ 2C12[(6 · (n1 ⊗ n1))(n2 ⊗ n2) + (6 · (n2 ⊗ n2))(n1 ⊗ n1)]

and the plastic spin is expressed under the form

W p = µ �̂p(6, α, κ,n1 ⊗ n1, n2 ⊗ n2) with

�̂p = −2C36
a + C8{(n1 ⊗ n1)6

s}a + C9{(n2 ⊗ n2)6
s}a−

−2C13{6
a
(n1 ⊗ n1)}a − 2C14{6

a
(n2 ⊗ n2)}a

(26)

REMARK 4. W p involves the terms generated by the symmetric part of6, while Dp con-
tains terms generated by the skew- symmetric part of6, with two coupling coefficientsC8, C9.

REMARK 5. In the case of6 ∈ Sym, i.e. for small elastic strainsandα ∈ Sym, directly
from (26) we derive the following expression fororthotropic plastic spin

W p = µ �p = µ {C8{(n1 ⊗ n1)6
s}a + C9{(n2 ⊗ n2)6

s}a}(27)

But in this case, the yield condition (23) does not depend on the parameters which enter the
expression (27) of the plastic spin.
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PROPOSITION3. From the orthotropic Mandel’s flow rule (26) the flow rule characterizing
the g4− transversely isotropic material is derived when C5 = C7 = C9 = C11 = C12 = 0, i.e.
dependent on six material constants. The plastic spin is given by (25), in which C9 = C14 = 0,

i.e. dependent on three constant only.

Evolution equation for internal variablecan be described, see [6], by some new generaliza-
tion to finite deformation of Armstrong- Frederick hardening rule.

From the orthotrop representationg4− transversely isotropic case only can be obtained.
Thus for plasticallyincompressiblematerial, i.e. ρ̃ = ρ0, the representatio from [21] can be
obtained by taking into account small deformation theory. The fibre-inextensible case given in
[22] can be also derived from our general representation, when the appropriate yield constant is
much grater then the others.
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[4] CLEJA-ŢIGOIU S.,Bifurcations of homogeneous deformations of the bar in finite elasto-
plasticity, Eur. J. Mech. A, Solids34 (1986),761–786.
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J. Engelbrecht - M. Vendelin∗

MICROSTRUCTURE DESCRIBED BY HIERARCHICAL

INTERNAL VARIABLES

Abstract. In this paper a clear distinction is made between the different scales and
the different processes in the microstructure which influence the dynamics at the
macrolevel. In the first case the governing equation for wavepropagation is repre-
sented by a hierarchy of waves. In the second case it has been shown, how useful
the concept of internal variables is. The different processes can be best described
by a hierarchy of internal variables. An example of cardiac muscle contraction is
briefly described, demonstrating the dependence of the active stress on sliding the
molecules and ion concentration involving the corresponding internal variables.

1. Introduction

Continuum mechanics is usually based on macroscopic concepts and quantities, such as energy
density, stress, strain, etc. However, materials (whatever their origin is) have usually a mi-
crostructure because of inhomogeneities, pores, embeddedlayers, reinforcements, etc.. This list
can be prolonged but one is clear - the description of the behaviour of many materials should take
into account both the macroscopic and microscopic properties, occuring at different length scales
and involving different physical effects. Within the framework of continuum mechanics, such a
behaviour is best described by distinguishing macro stresses and microstresses with interactive
microforces ([1], [2]). We feel however, that for materialswith complicated properties indicated
above, one should start distinguishing clearly the observable and internal variables ([10], [13]).
Although the formalism of internal variables is well known ([10], [13]), for the clarity sake we
repeat here some basic concepts.

The observable variables are the usual macroscopic field quantities such as elastic strain, for
example. These variables are governed by conservation lawsand possess inertia. The internal
structure of the material (body, tissue, composite, etc.) is supposed to be described by internal
variables which are not observable and do not possess inertia. They should compensate our
lack of knowledge of the precise description of the microstructure. The formalism of internal
variables involves constructing of a dissipation potential D in parallel to the LagrangianL for the
observable variable. However, the governing equations of internal variables are kinetic equations
(not hyperbolic) – see [10], [13].

The idea of using internal variables for describing dynamical processes in microstructured
materials has earlier been presented in [12], [4]. The problems become more complicated when
either the scales or possible processes in materials are different and form a certain hierarchy. This
brings us directly to the idea of hierarchical internal variables that certainly need generalization

∗This study is supported by the Estonian Science Foundation.J.E. would like to thank Department of
Mathematics, University of Turin, for the financial supportto attend the 4 th International seminar ”Geome-
try, Continua & Microstructure” where the ideas of this paper were discussed.
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