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ARE CONTINUOUS DISTRIBUTIONS OF
INHOMOGENEITIES IN LIQUID CRYSTALS POSSIBLE?

Abstract. Within a theory of liquid-crystals-like materials basedageneralized
Cosserat-type formulation, it is shown that continuougrithistions of inhomo-
geneities may exist at the microstructural level.

1. Introduction

In the conventional theories of liquid crystals, the freemgy density is assumed to be a function
of a spatial vector field and its spatial gradient. Starting from the piening work of Frank
[6], various improvements were proposed by Leslie [9] andEbigksen [4] [5]. A different
point of view was advocated by Lee and Eringen [7] [8], asyeasl 1972, when considering a
liquid criystal within the framework of the theory of matals with internal structure. The main
difference between these points of view is that the secoptbaph emphasizes the dependence
of the constitutive equations on tmeappingsbetween vectors or tensor fields, rather than on
their values alone. This mapping-dependence is essemtiabnly for sustaining continuous
distributions of inhomogeneities, but also, as shown by ditaand Trimarco [10], for the proper
setting of a definition of Eshelby stresses. The generalaxion between these two aspects of
material behaviour is described in [3].

2. The generalized Cosserat medium

A generalized Cosserat bo@CB) consists of the frame bundle of an ordinary b&tdyn other
words, a GCB is a body plus the collection of all its local femat each point. Denoting by
(I = 1,2 3)andx' (i = 1,2, 3) Cartesian coordinate systems for the bétignd for physical
space, respectively, a configuration of a GCB consists difitieése independent functions:

HY =H (X))
whereHIi represents the mapping of the frames attached at pointlt is important to stress

that the ordinary deformation gradieﬁ# = 5’% and the mapping-l,i are of the same nature,
but represent two independent vector-dragging mechanisms

A GCB is hyperelastioof the first grade if its material response can be complete#yaxc-
terized by a single scalar (“strain-energy”) function:

W =W, HY L H g XK
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where comma subscripts denote partial derivatives. Unddiaage of reference configuration
of the form

YA = YAXY)
HA = HA (X?)
where the indice#\, B, C are used for the new reference, the energy function changes t
W = W(F'a Hia, HiA,B;YC)
W(F AFA H AHA HiA,BFBJ HA + HiAHA|,J; xKrCy)

@)

Notice the special form of the composition law for the detiixes of HIi .

Generalizing Noll's idea of uniformity [11], by taking inaccount the composition laws in
Equation (1), one can show [1] [2] that in terms of an archeltymergy function

We = We(Flo, Hig, H' 4p)

where Greek indices are used for the archetype, a GQmBifsrm (namely, it is made of “the
same material” at all points) if there exist three unifosniields of tensorg! , (X7), Q' , (X7)
andR! ;5(X7) such that the equation

WL HT L HY 3 X = WeFY Pl QUG HY 3PIgQ1, + HY R gp)

is satisfied identically for all non-singul&ri | and Hi | and for all Hi 1,J- Homogeneityglobal
or local) follows if, and only if, there exists a (global orckl) reference configuration such that
these fields become trivial.

3. The liquid-crystal-like model

We call aliquid-crystal-like mode(LCM) a material whose internal structure can be represiente
by the deformation of one or more vector or tensor fields. Mpecifically, we say that a GCB
is of the LCM type if a nowhere-zero material vector field= D' E; and a material tensor field
A=Al JEI® EJ exist such that the energy density function depends ongtsnaents in the
following way:

@ W=WFE | H L HY 5 X = f(F R D' HY D! 4+ HE Al xK)

where we have used the lettérto denote the new functional dependence.

To clarify the rationale behind this definition, we consiéiest the particular case of a ref-
erence configuration in whicB(X) constitutes a parallel unit vector field aAdX) vanishes
identically. We can then write (for that particular refecerconfiguration, if it exists) that

W= f(F |, H D' (H D" 5;xK)

This constitutive equation is unable to detect any diffeeeshetween different deformations of
triads that happen to map the director into the same vectepate. In other words, all that
matters is the resulting vector and its gradient, just ashin“tonventional” theory of liquid
crystals, and it is in this sense that Equation (2) constitat generalization. More importantly,
when seen under this light, the tengomno longer appears as an artificial construct, but as the
natural outcome of describing the manner in which the camveal archetype has been inserted
in the body in a pointwise fashion.
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It is apparent that the particular form of the constitutieg ladopted for an LCM must
entail certairminimal symmetrigsamely, certain local changes of reference configuratian t
are indistinguishable as far as the material response tcoed. In addition, an LCM may have
other non-generic symmetries, but here we are interestddrining those symmetries that are
already inherent in the definition. Now, any symmetry of a G&Bsists of a tripldG, K, L}
satisfying:

f(F'5,H 3D, H'\ nDM + HIy AM ;s XK) =
f(F1G' 5, H K 3D, (HY 3GINK ' m + H L) DM + HE K AM ;s XK

for all non-singularFi | and Hi 1 and for all Hi 1,J- Since we are looking for minimal symme-
tries, namely, those stemming from the particular depetel@ssumed oRl and its gradient,
we setG equal to the identity. It then follows that the energy fuantivill have the same values
for all K andL satisfying the following identities:

H ;DY =H' K';D’
and
HiM,NDM—l—HiMAMN=Hi|,NKIMDM+Hi|LIMNDM+Hi|KIMAMN

for all non-singularFi | and Hi| and for allH! 1,3- It follows immediately that the minimal
symmetries are those satisfying the following conditions:

(3) K';p) =D
and
(4) L'mnDM = @' — K'm)AMy

The first condition is the obvious one: the energy functiom @bint remains invariant under
any change of reference configuration which leaves the tdirext that point unchanged. In
other words, the matriX has the director as an eigenvector corresponding to a gahealue.
The second condition, on the other hand, is far from obviausauld not have been predicted
except by means of the kinematically based method we hawk udete that in the particular
case in which the tensor fiel is zero, the right-hand side of the second condition vasishe
is not difficult to show by a direct calculation that the cotien of all the symmetries satisfying
the above two conditions forms a groGgin, Which we will call theminimal symmetry group
of any LCM, under the multiplication law given by Equation.(1

Although not strictly necessary, we will adopt as theéM archetypea point whose consti-
tutive law is of the form

We = We(F' o, Hla, Higp) = fe(Flo. H o D, Higp)
namely, we adopA® g, = 0 at the archetype. According to the general prescriptiomififor-
mity, then, fieldsP' o (XX), Q' ,(XK) andR! ;5 (XK) must exist such that:
W(F' | H L HT 5 xE)
=We(F' | P'o, H' Q1o HYy 3P Q1 + HI R up)
= fe(F' | P'a. H' Q"o D% (H'| 3PY4Q"y + H' | R 5)D%)
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It is a straightforward matter to verify that the resultinmétion W has the requisite form:
W, H, Hil,.]? XKy = f(F'|, H| D',(HiLJDI +H A )
where
D| =Q|aDa
and
Aly =R (P~ HP ;D
Indeed

fe(F'1 P'e, H' Q' DY, (H') 3P4Q" o + H' R 4p)D%)

= fe(F | P!, H' D! PIg(HT| 3D + HI Al )

= f(F'y,H D' H| ;D' + HI Al 5; xK)

Under a change of reference configuration we know that treoteffeld A ; transforms to
Afg = (HA ;D' + HA Al ) (F)'g

and we ask the question: does there exist a change of reéecamdiguration leading to an
identically vanishingA” g in an open neighbourhood of a point? It is not difficult to stbat a
sufficient condition for this local homogeneity requirernentake place is that:

Aly=0';
identically in that neighbourhood. Indeed, if that is thegave can write:
Afg = (HA DY ;FH7g
Therefore, any change of reference configuration of the form
YA = YAxK)
HA = @Q7H* 5%

will do the job. We conclude then that the local homogeneftgroLCM body is guaranteed, in
addition to the ordinary condition of homogeneity of the neaeedium, by the equation

(5) Al;=D',

describing the compatibility of the liquid crystal supeusture. If, however, the underlying
macromedium is homogeneous but condition (5) is violatezlhave a genuine distribution of
inhomogeneities at the microstructural level. On the otieerd, it can be shown that the two
conditions taken together are not only sufficient, but alsoessary, for local homogeneity of
an LCM uniform body whose symmetry group is minimal. Thistfaclds true even though the
minimal symmetry group is continuous. More surprisinglgrimps, the same conclusion holds
even when the macromedium is a genuine liquid, namely, wisesymmetry group is the whole
unimodular group.

Assume that we have a reference configuration that is honeogesnas far as the underly-
ing macromedium is concerned and in which the director figldriit and parallel. The only
source of inhomogeneity left is, therefore, a smooth seaoddr tensor field\ (X). By the po-
lar decomposition theorem, this field can be seen geomiiyrizs a field of ellipsoids, whose
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axes and eccentricities vary smoothly from point to pointpdinciple, then, we have a situation
equivalent to that of a standard liquid crystal, except thatstandard ellipsoids of orientational
distribution are now replaced by the ellipsoids arisingrfdhe inhomogeneity of the microstruc-
ture. These last ellipsoids are manifest, as already netesh if the director field is perfectly
unitary and parallel! The typical optical patterns, whosautiful curvy shapes have become
associated in popular imagination with liquid crystalsd aisually explained as a manifestation
of the variation of the mean orientational order of the moles, could therefore be explained
equivalently by the presence of continuous distributidrisltomogeneities.

4. Concluding remarks

We have shown that, at least in principle, it is possible tonfdate a theory of liquid-crystal-like
uniform bodies that admit continuous distributions of infameneities. The main ingredient of
this theory is the inclusion of maps, and derivatives thiereetween whole fibres of the princi-
pal frame bundle of the underlying body. This stands in @sttwith the conventional theory,
which recognizes only the transformation of a single veéigld and its derivative. Although
the treatment of a liquid crystal as some kind of generaliZedserat body is not new, the way
in which a particular director field is made to enter the folation is different from previous
formulations. Instead of imposing a constitutive symmetppn a standard Cosserat medium,
we emphasize a kinematic motivation as a rationale for caiméhg the constitutive functional
to a particular form, and only then derive a-posteriori hssfor the minimal symmetry group.
These results differ form the a-priori counterparts in [[@§148] in the rather complicated sym-
metry requirement for the microstructural component, airegnent that is absent in the a-priori
statement. But itis precisely this condition that allowstfee existence of legitimate microstruc-
tural inhomogeneities. Further mathematical details efttieory are now under investigation,
including differential-geometric implications.
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