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CONSTITUTIVE THEORY IN GENERAL RELATIVITY: BASIC
FIELDS, STATE SPACES AND THE PRINCIPLE OF MINIMAL
COUPLING

Abstract. A scheme is presented how to describe material propertsrhe in-
fluence of gravitation. The relativistic dissipation inafity is exploited by LIU‘s
procedure. As an example an ideal spinning fluid is consitieréhe given frame-
work.

1. Introduction

We investigate how constitutive properties can be intreduato Einstein‘s gravitation theory.
Starting out with the balances of particle number densftin and energy - momentum, Ein-
stein‘s field equations and the relativistic dissipatioeguality we consider constitutive equa-
tions and state spaces in 3-1- decomposition determinasgeb of materials. The set of possible
constitutive equations compatible with the balances, tdite space and the dissipation inequality
is found out by LIU's exploitation of the dissipation inedjta[1], [2].

2. Balances

We start out with the balances of particle number densitgrg@n- momentum and spin in Ein-
stein‘s gravitation theory, that means in Riemann geonteycurved space without torsion:

1) N = 0, 1equation,
&) T%;5 = 0, 4equations,
(3) Sxf = 0, 3equations.

Here the particle flux is defined By* = nu® with the particle density and the 4-velocity®.
First of all the energy - momentum tensor is proposed to besymimetricT*? £ TA%. The
spin densityS* is antisymmetricS* = —SP¢ and satisfies the so-called Frenkel condition
U S =0= S"‘ﬁuﬂ which expresses that the spin tensor is purely spatial.

Because we want to describe material under the influenceawftgtion in Riemann geometry
we need Einstein's field equations

4 Rep — (1/20,8R = «T(ep), 10 equations.

*We would like to thank H.-H. von Borzeszkowski and Thoralfr@ok for interesting discussions and
introduction to geometries with curvature and torsion. Veila also like to thank the VISHAY Company,
D-95085 Selb and the Deutsche Forschungsgemeinschafbéoicial support.
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134 H.J. Herrmann - W. Muschik - G. Riickner

Here areliaﬂ the Ricci tensor an® the curvature scalar due to the Riemann geometry. They are
marked with a tilde because we although examine materianhe framework of other geome-
tries, so we have to distinguish between different geomeuantities. Due to the symmetry of
the left hand side only the symmetric part of the energy- muoma tensor appears in the field
equations.

Finally we have to take into account the dissipation ineityal
(%) S = o>0.

3

HereS* = su” + s%, introducing the entropy densit/and the entropy flux densis?.

The 18 equations (1) to (4) and the dissipation inequalityt@io more fields than equations
are. Therefore the set of equations is underdetermined.i¥kue to the fact, that (1) to (5) are
valid for all materials and up to now no special material ved®h into consideration. Hence we
have to split the 37 fields appearing in (1) to (5) into the béigids which we are looking for
and into the constitutive equations describing the comsilenaterial or the class of materials.
In more detail the 37 fields are:

N%,  4fields,
T8, 16 fields,
B, 3fields,
g*#, 10 fields,
¥, 4 fields.

From the energy - momentum tensor we can see, that partsebitdpto the constitutive equa-
tions, namely the 3 - stress tensor, and other parts, naimebrtergy density, belong to the basic
fields. Therefore we perform as usual the following 3-1 depasition

€ = Tup C—lzu"‘uﬁ, energy density,
t*f = h*’T,,h°P, stress tensor,

g* = -—h*T,,u¥, heatfluxdensity,
pf = hoo ToyUu?”,  momentum density.

Hereh?? is the projection tensor perpendicular to the 4-velocity:
1
oqy «_ Ay oY _ hYo
h*Y :=g¢g +—02u u¥ =hr*,

Now we introduce the 18 basic fields:
{€,n, Ug, Gups Sp} (X),
and the remaining 19 constitutive equations:

{tozﬂ’ qO(! pﬂ» S)!}(Xa)
Dealing with Riemann geometry one finally have to satisfy s@monstraints:

uu, = —c?, normalisation of the the 4-velocity,
Oup :: 98a; symmetry of the metric,
Oup;y = O, vanishing of the non-metricity,
%V} = F(9us. %up,y),  Symmetric connection as a function of the metric
and the first partial derivative of the metric,
Avpg = Aap— {gﬁ}Aa, covariant derivative according to the geometry.
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3. State Space

Because the system of equations (1) to (4) is underdetednoine has to introduce the constitu-
tive equations which depend on of state space variableshvane characterizing the material.

By introducing the state space one get balances on the ptate & the following form:

B _ ap _ o
A;ﬁ(Z)_a, or A;ﬁ(Z)_a .

Here the symbol Z represents all state space variables.

If we want to to describe material under the influence of dediin we have to introduce
a state space inducing variables which describe grawvitatieffects. Hence in general the state
space looks like
Z = Z(Ztherm Zgrav)

HereZgray is the set of variables which describes effects of grawitataindZiherm are all other
variables [3, 4, 5].

3.1. First derivative state space
First of all we have a look on state spaces which containagifirssatives:
I th th grav th th
7! = Z(Z erm’ Z;aerm’ Zgrav, Z;a ) — Z(Z erm’ Z;aerm’ gozﬂ» golﬂ;y)
N ——’
=0

This chosen state space consists of covariant quantitiee. decompose the covariant derivative
of a tensor of first order

Avip = Ao = (3p}As

and similary for tensors of higher order the state spacessrit
I th th
Z' =2zZZMM Z33%™, gog, {5, ).

Here the state space is spanned by non-covariant quankitiethe constitutive equations on it
depend on covariant combinations of these non-covariate space variables.

3.2. Second derivative state space and the principle of mimal coupling

Next a second derivative state space is discussed:

I th th th )
Z" =2z Z M Z208 ™, Gap. Gupiy - Gapiys: Rupys)-
N’

=0

With respect toAy;(g,] = F?gﬂVAJ one can replace the skew-symmetric part of the second
covariant derivatives by the Riemann curvature tensor hedjtiantity itself. Consequently we

obtain

11 therm —therm therm S
VAR W AVA ) Z;a ) Z;(otﬁ) » Qg Rolﬁy(S)'
——

symmetric part
As done before one can rewrite this state space containilygartial derivatives

1l h h h
z! = zztherm, zIperm, (NS, gup. 5, (5, ).0)-
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By introducing this second derivative state space we an@irbte with theprinciple of minimal
coupling It states that second derivative state spaces must noidim¢he curvature tensor or
the the partial derivative of the connection (or equivdieit Riemann geometry the second
derivative of the metric). Therinciple of minimal couplingguarantees that the equivalence
principle holds. So we have to remofRg, s, ZF{‘ﬁe;iT‘ and{%‘y},,g from the state space, and we
get a second derivative state space obeyingtheiple of minimal coupling
1 therm —therm —therm

' =27(Z ) Z,a ’ Z(,aﬂ) » Qas {%V})
With respect to the variables which are introduced to dbsdtie effects of gravitation this state
space looks likez! .

3.3. State space without derivatives
A state space which contains no derivatives is:
ZO — Z(ztherm’ gaﬁ)

The higher (directional) derivatives belonging to thigespace arerQerm and{%y} Or Gup,
respectively. But the Ricci tensor and the curvature sdal&instein's field equations depend
on the partial derivatives of the Christoffel symbols or ¢fi¢he connection, respectively. These
quantities are no higher derivatives with respecsz Consequently the Einstein equations do
not determine higer derivatives of the chosen state spaitesicase. Therefor&? does not fit

to Einstein‘s equations and we cannot use it.

Now we have to exploit the dissipation inequality.

4. LIU’s procedure

Constitutive
Bal ances e Equati ons
a
Stat e Space

Liu Procedure

constraints by the
di ssi pation inequality

A general balance looks like
Agp:p(Z) = agy.
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Applying the chain rule with respect to the chosen stateespadables we obtain

= A = (AZp—15A0 — (gl AL

B eB
Only the first term on the right hand side contains quantitibich are higher higher derivatives
than those included in the state space. So one can split tfms i@ such containing higher
derivatives and such which do not. Rewriting the balancektha dissipation inequality we
obtain then in the form

= 07
> 0.

IR ||:g>

< <
= |w

Here areA, B, « andg state functions depending on the constitutive propertielsyaepresents
the process direction in the chosen state space. The eggiatiove are linear ip.

DerINITION 1. All constitutive equations being compatible with the cimostate space and
satisfying the balances and the dissipation inequalitgdetne theclass of materialg6], [7]).

There exist two possibilities to find this class of materials

o ForfixedA, B, o andg certainy are excluded,
e For all possibIQ/_ theé, B, @ andB have to be determined in such a way, that the dissi-
pation inequality is satisfied.

Starting out with the Coleman-Mizel formulation of the seddaw that all solutions of the
balances are satisfying the dissipation inequality
A.y-B=0 = a-y—8=0,
Liu‘s proposition is valid:

a(2) = A(2) - A(Z),
A(Z) - B(Z) = B(2).

This expresses that the entropy production= A(Z) - B(Z) — 8(Z) > Ois independent of
the process direction and so the second possibilty for fipthia class of materials holds. These
equations are the so-called LIU equations. By eliminathgylagrange parametensfrom the
LIU equations and inserting them into the dissipation iradiyiwe obtain constraints restricting
the possible materials.

5. Weyssenhoff fluid in Riemann geometry

A covariant description of a classical fluid with spin in Ri@nm spacetime can be obtained by
generalising the work of Weyssenhofff and Raabe as it is tgriey Obukhoy and Piskareva [8],
[9] and [10].

Tensors of spin and energy-momentum for the Weyssenhaffadagostulated to be:

S

By u*Spy,

. |
TaﬂzTaﬂ = Uapﬂ.
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Here is Sy, the skew symmetric spin density, satisfying the Frenkediamn ufSg, = 0 =
u¥ Sy, Uy the 4-velocity andPg the 4-vector density of energy-momentum. The explicit form

of Pg can be derived from the spin conservation Iﬁwﬁ] =2V, S;:ﬂ
(6) Tiup] = Ua Pg — Up P = 2V, sgﬁ.

Taking into account the definition™ P, = ¢ wheree is the the energy density we obtain from
(6) by contracting with the 4-velocity?:

(7 Py = euy+20P2V, Shar

Inserting (7) into (6) one obtain the motion of spin, whiclsciébes the rotational dynamics of
the fluid.

Assuming that the elements of the medium interact in suchyatiat Pascal law is valid
we get the model for an ideal spinning fluid. By doing this weehto modify the stress tensor
given above for the description of dust by the contributibthe isotropic pressure

® g = WPy P(F — u®up) = —psf + U*[up(e + P) + 2u7 V) u¥ Syo].

Taking the divergence of the Einstein field equations (4) gets after 3-1-decomposition with
respect to (8) the equations for the tranlational dynamms1- decomposition:

!t

0= Tﬁ);a
(p+ E)ua (uﬂ;a) + (—5% + Uauﬁ) p;ot+
+2[uSg U’ 1.y + Ryoap S oU”
0 = (p+6)u‘,"a+u"‘ea

As it is shown above the spin enters in the spatial part of yimensetric energy-momentum
tensor. So the spin is over the energy connected to the Eirgsigvitation equations and in this
sense connected to the geometry. But there exist no direchefeic quantity with which the
spin is coupled and further on any skew symmetric parts obtiances stands alone. So one

can say that Einstein gravitation field theory can deal wlith physical quantity spin but say
nothing about the skew symmetric parts which appear in thenbaes.

o
Il

6. Conclusions

As usual in constitutive theory the split of the fields intsioafields and constitutive equations
is also possible, if gravitation is taken into account. Tha-relativistic state space is extended
by geometrical variables induced by curvature which dbedts influence on constitutive prop-
erties. Although the choice of the state spaces is free imciplie, some restrictions appear in
Riemann geometry: Because Einstein's field equations otiita second derivatives of the met-
ric, its first derivatives have to be included among the stat@bles in form of the Christoffel
symbols (connection) or the partial derivatives of the metself. This involves that the state
space is spanned by non-covariant quantities. But neVestheonstitutive properties are de-
scribed by covariant combinations of these non-covariaantties. A second consequence is ,
that state spaces containing only the metric as a geometadable cannot be used.
The second derivative state spaces have a speciality:

They have to obey therinciple of minimal coupling This principle runs as follows: sec-
ond derivative state spaces do not include the curvatusotesr the partial derivatives of the
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Christoffel symbols (or those of the connection). From agitsl point of view this principle
states, that there are no materials by which the curvatuspafe-time can be measured by
observing constitutive properties. This principle of miail coupling is related to the equiva-
lence principle which states, that for free falling, nomating observers locally the curvature of
space-time vanishes.
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CONSTITUTIVE THEORY IN GENERAL RELATIVITY:
SPIN-MATERIAL IN SPACES WITH TORSION

Abstract. Some of the problems arising in general relativistic canstie the-

ory can be solved by using the Riemann-Cartan geometry, ergezation of the
Riemann geometry containing torsion. As an example thel isigianing fluid

(Weyssenhoff fluid) is discussed and different results fmsiin and Einstein-
Cartan theories are compared.

1. Introduction

It is possible to formulate a relativistic constitutive ¢ing in the framework of Einstein’s theory
of gravitation [1], but there are several unsatisfying p@irOne problem is that only symmet-
ric energy-momentum tensors are compatible with the fieldaggns, another problem is that
the energy-momentum tensor has to have a vanishing divegdgéms is also a consequence of
the field equations). Other problems arise from the priecigfl minimal coupling. One can
expect, that at least some problems can be solved by usingeaadieed theory of gravitation
that includes spin (angular momentum) as source of gramitahe Einstein-Cartan theory of
gravitation is such a generalized theory, it is based on eetipae with curvature and torsion,
the Riemann-Cartan geometry.

2. Einstein-Cartan theory

2.1. Geometry

There is a general connectidh which is different from the Christoffel symbol. This commtien
is not symmetric, the antisymmetric part defines the torgipwhich is a tensor of degree 3. The
torsion vector is defined by a contraction of the torsion wétspect to the first and third indices:

Sk . K
Tow = T

_ Srom

T = E A -

It is possible to represent the connection as a combinatidheoChristoffel symbol and the
so-called contorsion:

K _ K C K K- K- -
FM_ {M} +7;M- _Tk# +T-M
——
Christoffel symbols Contorsion

*We would like to thank H.-H. von Borzeszkowski and Thoralfr@ok for interesting discussions and
introduction to geometries with curvature and torsion. Veila also like to thank the VISHAY Company,
D-95085 Selb and the Deutsche Forschungsgemeinschafbéoicial support.
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The tensor of curvature and the Ricci tensor are defined as:usu

<K _ K K P
Row. = 20T + 200, 0
R,LL)» = RK/U»K

The covariant derivatives are defined in the same way as m#&ia geometry, but the symmetric
Christoffel symbols are replaced by the non-symmetric ectionT:

v _ v v oA
U'EM = u,’M—H“Mu

_ _ v
U = Unp F)»u.uv

2.2. Field equations

It is possible to derive field equations by a variation piptei[2]. The variation of the special
Lagrange densityC(gy, I'y;,, ¢, dmug) given in [2] with respect to tetrades and connection
results in two sets of field equations with curvature anddors

€ R’“’—%g“"R = kT

S 2 e
7;/3 + 38[05773] = Ksaﬂ
geometry < material

The first set of field equations reads the same as in Einsteanythbut neither the Ricci tensor
nor the energy-momentum tensor are symmetric. Both siddgsoéquation are not divergence-
free, in contrast to Einstein’s theory. The second set ofitid equations connects the torsion
with the spin-tensor, which is a constitutive function.

Differentiating the Einstein-Cartan tensor, i.e. the sfte of the first set of field-equations
(1) and contracting over the second index results in thevoflg equations (the contracted
Bianchi identity):

1 . P
V(RS =S8R = 2Ty "R = T "Ry,

Using the field equation one finds that the divergence of tleeggrmomentum tensor is given
by:

=V T, = 2Ty’ R;;K - 77(,up Rup e
In contrast to the Einstein theory the divergence of thegraromentum tensor does not vanish
anymore, but is geometrically determined.
2.3. Balances

It is possible to derive balances for the energy-momentudnfamnthe spin from the field equa-
tions. This can be done by splitting the first set of field emumest into a symmetric and an
antisymmetric part:

1
R(;Lv)_ﬁg(;w)R = KT
Ruw) = €T
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By taking the divergence of the symmetric equation and ufiegcontracted Bianchi identity
one can derive the balance of energy-momentum:

@) (Vo = 3T) T, + 27,57  + 5,5 R, = 0

The balance of angular momentum can be directly derived frenantisymmetric part by using
a geometrical identity for the antisymmetric part of thedRtensor and the second set of field
equations:

?3) (Vo —3T) (7;;);“ + 35&7}]) = kT
—_———
kS %

A

The balance of angular momentum connects the change of ithéesigor to the antisymmetric
part of the energy-momentum-tensor.

3. Weyssenhoff fluid

3.1. Heuristic description

Now the Weyssenhoff fluid [3] will be discussed as it is donediyukhov and Korotky [4].

The Weyssenhoff fluid is defined as an ideal spinning fluid. i dpnsity is now introduced
as a skew-symmetric tensor:
SHY — _gVH

The spin density is spacelike, what is ensured by the Frextkalition:
S*u, =0
The constitutive assumptions (postulates) for a Weysdefihia are as follows:

e The spin tensor is a function of the spin density and theotig constitutive equation is
assumed:

S = U'Sy

e The energy-momentum tensor should be a function of the grraomentum density, and
is defined as follows:

Ty = Uu'P,

Next one calculate the explicit form of the energy-momentiensity P,. This can be done by
starting out with the antisymmetric part of the energy-motam tensor (3) and (4):

2T[;w] =uPy—uwP, = 2(Vy— 37503@“
e and with the usual definition of the internal-energy
u Py RN

one obtains:
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—®Py = €Uy + 2 (Vg — 3To) (U Syy)
1 1 .
T = —?eu“uv - ?ZUMUO{VﬁSwﬁ

If it is now assumed, that the interaction between the elésnafithe fluid is given in such a way
that

e Pascal law is valid, one has to modify the equations by andpiat pressure:

~ 1 1 .
o= 4ol - Sut et + 200V S0P

3.2. Exploiting the 29 law
Balances

From the thermodynamical point of view the correct way wdoédto write down the balances
and the constraints and for deriving restrictions to thestitutive equations by use of the Liu
procedure.

First there is the balance of particle number density whichiven in the same way as in
Einstein’s theory:

VuNK = 0 = (nu,,

Next there are the balances of energy-momentum and angolaentum, which are given by
the geometrical identities (2) and (3):

(Vo = 3T)TY, + 27,57l + 5, R, = 0

(Voz_37:x)sl;');a = T[p,v]

The next equation one needs is the balance of entropy, eieg the second law of thermody-
namics

n
VIR = (su),, +s.,= 0
and the field equations are
RHYV — 1g““R = «TH
2
T + 3T = kS

Other constaints, as there are the normalization of the@eig and the form of the covariant
derivative have also to be taken into account.

We now choose the state space for an ideal fluid with spin. Jtaie space has to contain
the wanted fields, the metric and the connection:

Z = (N Us € Sup Gup Thg)
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Liu procedure

In order to apply Liu’s procedure [5, 6, 7] one has to inseet ¢xplicit form of the covariant
derivative into the balances and then use the chain ruleifferehtiating the constitutive quan-
tities.
Next the balances and constraints have to be rewritten irbnfatmulation:
Ay+tB =0
a-y+p = 0

PROPOSITION1 (COLEMAN-MIZEL-FORMULATION OF THE2'P LAw [8]).
If Z is no trap, the following inclusion is valid for all:y

Ay=-B = a-y>-8
that means, all yvhich are solutions of the balances satisfy the dissipatieguality.
Then one can apply Liu’s proposition, which runs as follows:

PrRoOPOSITION2 (Liu [5]). Starting with proposition 1 one can show:

In large state spaces exist state space functierso that the constitutive equations satisfy the
Liu relations

and the residual inequality
®) -A-B>-8

From (4) and (5) we obtain the restrictions to the constituéquations we are looking for.
Taking these restrictions into account we obtain constégquations which are in accordance
with the second law of thermodynamics.

4. Comparison of Einstein and Einstein-Cartan theory

We now discuss differences and similarities of Einsteinimdtein-Cartan theories with respect
to coupling of constitutive properties to geometry.

In Einstein-Cartan theory with non-vanishing torsion andvature the spin couples to
torsion, and the energy-momentum tensor which is spinfug®, non-symmetric, and not
divergence-free couples to curvature. If the torsion Vass also the spin tensor and the skew-
symme-tric part of the energy-momentum tensor vanish.

In Einstein theory with vanishing torsion and non-vanighirvature the spin appears as in
Einstein-Cartan theory in the non-symmetric and not diercg-free energy-momentum tensor
which is split into its symmetric and skew-symme-tric pditte divergence-free symmetric part
couples by the Einstein equations to curvature, whereaskthve-symmetric part does not couple
to any geometric quantity. It represents the source in sgianze.

In Minkowski theory being flat and torsion-free there are mometric objects to which
spin and energy-momentum tensor can couple. If we regarétdviski and Einstein theory as
special cases of the Einstein-Cartan theory all having dneestype of coupling, then Einstein
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theory has to be spin-free and Minkowski theory is only validacuum. Of course, this is not
the case by experience and therefore we have to regard tivesetheories as having different
types of coupling to constitutive properties.

5. Conclusion

As dicussed above the energy-momentum tensor of the Wehyafdluid was obtained by use
of a variational problem without taking into account thes®t law of thermodynamics. This
variational problem generates the balance equations ofjgmeomentum and spin which now
are supplemented by the dissipation inequality. The Licgdare of exploiting this dissipation
inequality generates restrictions to the constitutiventjtias energy-momentum and spin.
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DYNAMICS IN QUANTUM THERMODYNAMICS

Abstract. A thermodynamical system being in contact with its envirentris in-
vestigated by use of quantum-thermodynamical descripamce the considered
system can only described by a restricted set of relevargreaisles, it performs
an irreversible non-equilibrium process. Different sttital operators accompa-
nying the non-equilibrium process are investigated, ifrtkdgnamics determine
the expectation values of the set-variables correctlynreti The positivity of the
entropy production of one of the dynamics is discussed.

1. Introduction

Thermodynamics is the theory of non-equilibrium system&e Tain problem that arises, if
we want a quantum mechanical description of thermodynarisidew to get irreversibility into
the reversible theory of quantum dynamics in order to getsitige entropy production. One
possibility is to introduce dissipative terms int@ $RODINGER'S equation or into th&oN NEU-
MANN dynamics. This leads to an irreversible quantum theory f@eimstance [1]). An other
possibility is this mesoscopic description of a thermodgitasystem using only its restricted
macroscopic information with respect to the observabldse fMicroscopic background theory
remains unchanged (see for instance [2], [3]). There isalsombination of these two meth-
ods treated in [4], [5]. We will use here the second one of theva-mentioned methods, the
mesoscopic theory using conventional microscopic dynamic

Let us consider a discrete syst&n The interaction betweefi and its environment shall
be completely described by their heat exchange, power agehand material exchange. Such
systems are calledc$OTTKY systems according to [6]. L&tbe included in an isolated system,
so that we can call that part of the isolated system, thatti§nohe environmeng .

isolated compound system

A

£

Since the isolated compound system does not interact wite@rironment, we can choose
a quantum mechanical description using its density magisfying thevoN NEUMANN dy-
namics.

The mesoscopic description &fis based on the choise of a restricted set of observables

*Financial support by the VISHAY Company, D-95085 Selb, mtefully acknowledged.
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that are relevant to the considered problem. This set ofamteobservables which have to be
linearily independent of each other is callegbbachtungseberjg]

B .= {G]_,...,Gn}
Gi =G;t foralli e{l....,n}.
Let us introduce the abbreviation
G:=(Gy...Gn'.
The expectation values of those observables are given by
g = tr(Gjo) forallief{l,...,n}
or g = tr(Go),

if o is the microscopic density operator of the considered tedlaompound system.

In the standard situation, the observalesf the beobachtungsebene depend on some work
variablesa; (1), ...,am(t). This is for instance the case, if we vary the volume of thesatered
discrete systen with a piston during the experiment. The abbreviation

a:=(@g...am)"

will be used henceforth.

On the mesoscopic level of description we are not interaatiik exact microscopic stage
but in the expectation valugs= tr (G o) of the observables which we are able to measure. For a
chosen set of observabl€ga), there exist a lot of microscopical states that are macpicatly
indistinguishable, because their expectation vafp@® the same. In this context, we can define:

A density operatop is calledaccompanying process @fwith respect td3, if
tr (G(t) o)) = tr (G(t) (1))
trot) =1 trot)=0  fort eR.
We are now free to choose any of the accompanying processdgdoribing the original

process.

2. Dynamics of accompanying processes

2.1. Canonical dynamics

The accompanying procegf ¢ with respect td3 that maximalizes the entropy of the consid-
ered system will be denoted &

1) Sz = —kmin(tr (¢ Ing)) = —ktr(RInR).
o

Herek is the BoLTzZMAN constant.R has the following form [8] [9]:
1
@) R=-e "G

with the partition function

(3) Z:=tre*C,
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R is calledgeneralized canonical operatqwith respect taB). The A are called Lagrangian
multipliers. Dynamics which preserve the canonical fornthef density operator of maximal
entropy for all times are callecanonical

From (2) and (3) we can see that the generalized canonicahtopelepends on thie and
theG(a). Thus we can derive the canonical dynamics as follows:

R—aR a+aR by
~ da o

and the coefficients are calculated in [2]. Inserting thentame state:
Canonical dynamicss given by

R= RA-(tr(RE>—&>~a+ R(tr (RG) —G) - 4

oa 0A
with
1
G = /0 e C G e Gy
& — /leu)vG E ef,u)vG du
0A 0 fa '

2.2. The relevant part of the density operator

The vector space of linear operators omLBERT space is called louviLLE spacel [10].
For instance the density matrix and the observables areeelsnof this space. Now we can
introduce linear mappings aoff, so-called super-operators. An example of a super-opeisato
the LiouviLLE operator (5). Here super-operators are interesting whietble us to derive
dynamics of the generalized canonical operator.

Since the operators in a chosen beobachtungsebene do noafoomplete base in the
LIouVILLE spaceL, the density matrix has for this particular beobachtungseba relevant
part, which contributes to the calculation of expectatiafugs, and an irrelevant part, which
does not show any effect on the trace in the expectation salue

o(t) = orel(t) + Qirrel (V)
with
r(GMe®) = tr(GM)erl®),
0 = tr (G(t) Qirrel (t))
tropl(t) =1 , tropt)=0.
The isolation of these two parts is achieved by a linear nrappn L. This operator transforms

the vON NEUMANN equation — the quantum-mechanical dynamics of the denpityator in
SCHRODINGER' picture

4 ot) =—iL o(t)

— into a mesoscopic dynamics of the generalized canonieabtgr. Herel is the LIOUVILLE
operator

(5) LX:=%[H, X].
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(For more detailed information about the relevant/irratevpart ofp see [11].)

There are two different methods to isolate the relevantgfatte microscopic density oper-
ator. This mapping can be either linear or local linear.

1. relevant part by &near mapping
(6) orelt) = P o(t),
2. relevant part by &ocal linear mapping
(7 orelt) = PM o).
Here,P(t) is supposed to be an idempotent super-operator, becassiesirable that
P(®) orel(t) = grel()

or
P() orel(t) = orel(t)
is valid. Let us define the operator

Q) :=1-P().

If P isidempotentQ is idempotent, too.

We can also project an accompanying process instead of #r@soopic density operator.
Both procedures should yield the same relevant part, bedaoth o and ¢ describe the same
macroscopic state and yield the same expectation values.

P® o)

P(t)o(t) = orel(t),

respectively

Pt)ot) = P(t)o(t) = drel(t) .

Fick-Sauermann dynamics

The case (6) in whicl® mapso(t) specially toRg(t) (cf. [8] [9]) has been treated byi€k and
SAUERMANN [10]. Starting out with thevoN NEUMANN equation (4) they derived the
Fick-Sauermann dynamics

® Rel) = —i(POLM®+iP®)Rel®)
- /t: (P L) +iP®) T(t.s) (Q(s) L(s)
— iP(9) Rel(9)ds
with
%T(t,s) = Tt 9 (Q()L(s)—iP(9),
Tt,t) = 1,
and

o(tp) = Reel(to)
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One possible operatd? for this dynamics is the
Kawasaki-Gunton operatdi 2]

PKG. 2 ¢
3
©) PKC X := RgItrX + ?&e' (tr (G X) —gtrX) .

In this case, the dynamics (8) is an implicit differentiabiation, becaus®g| is included in
PKG(t), which appears on the right hand side of the equation.
Robertson dynamics

Let us consider the dynamics using the local linear mappihgThis case has been treated by
ROBERTSON[13]. He started out with theoN NEUMANN equation (4) and assumed thgt) (t)
preserves the form of the generalized canonical operatadifime:

(10) Reel(t) = P(t) o(t).

Then he derived the so-call&bbertson dynamics

. t
11) Rrel(t) = =i P(t) L(t) Ree(t) —/ PO LM®T(t,s) Q(s) L(s) Rel(s) ds

to

with

(12) %T(t,s) = iT@,5)Q(s)L(s)),
(13) T, t) = 1,

(14) oto) = Re(lp).

Although RoBERTSONderived this dynamics only for constant work variables,djieam-
ics remains its form also for time dependent work variable®wever, we must now use an
another mappind?(t) than the RBERTSONOperator [13] or the KWASAKI-GUNTON oper-
ator (9), which are used in@BERTSONdynamics, because they only satisfy (10) if the work
variables are constant in time. This problem is treated4ij §hd partly in [15], too.

3. Positivity of entropy production

From (1) and (2) we get for the rate of entropy in canonicalayits [2]:
(15) S=—ktr(RINR) =ktr(A-GR).

The rate of entropy in an isolated system is cadetropy productiorn:
(16) o:=S 420, 00, e

Considering a systeid in contact with its environmerf during a contact time\t, that is suf-
ficiently short, conduction problems are out of scope anduskely the contact problem can
be treated. If all the quantum mechanical drift terms [5]\arishing in the chosen beobach-
tungsebene

v:.=—itr(GLR) =0
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and if we make a short time approximation (Taylor-expansiod neglecting quadratic and
higher powers ofAt), the FCk-SAUERMANN dynamics using the KWASAKI-GUNTON ope-
rator transforms int@ontact time dynamidd 5]

Reel = PKC Ry — (PKC L +i PKO)(L — i PKC) R AL

The corresponding rate of entrogyand the entropy production of S can be calculated by
inserting (8) into (15) and (16):

a:S‘ —Kk({xr-LG|ir LG)AL=0.

a=0, Q=0, n=0
Here, the parentheses stand for the generalizegNdroduct [16]

1
(F|G) :=/0 tr (Rel FT R, G R) du

which is a scalar product.
So it is possible to show the positivity of entropy produstissing this formalism.

4. Outlook

The question we are investigating is, if the maximum entrppgiciple is valid for systems in
non-equilibrium, too. At this point, we can say that there good prospects to answer this
question in the near future using the formalism of quantuenrttoedynamics presented here.
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DESIGNING TEXTURED POLYCRYSTALS WITH SPECIFIC
ISOTROPIC MATERIAL TENSORS: THE ODF METHOD

Abstract. Herein we study the following problem: Suppose we are giveapply

of grains, which are of the same material and have equal @lu@iven a finite
set of material tensoﬂﬁ('), can we find an arrangement of grains in an aggregate
so that all the tensof(") pertaining to this aggregate are isotropic? In this paper
we examine the preceding problem within the special coraeghysical theories
where material anisotropy of polycrystalline aggregasedetermined by crystal-
lographic texture, and we restrict our attention to tensgdrsse anisotropic part is
linear in the texture coefficients. A method is developed tciv the preceding
problem is answered positively for tensors of various aderd grains of vari-
ous crystal symmetries. Our method uses the machineryafmelin quantitative
texture analysis. It is based on the symmetry propertiesenbtientation distribu-
tion function (ODF) and appeals to some recent findings on ¢tryatallographic
texture affects material tensors of weakly textured polstais. As illustration,
explicit solutions are worked out for the fourth-order ¢z tensor and for the
sixth-order acoustoelastic tensor.

1. Introduction

Consider an aggregatd of N linearly elastic cubic crystallite8,, which are of the same
material and have equal volume. Let a reference crystdBitde chosen, and leE® be its
elasticity tensor. For a rotatioR and fourth-order tensd, let R®4 be the linear transformation
on the space of fourth-order tensors such Hiat R®4H has its Cartesian components given by

HijkI = Rip qu Rir Ris Hpqrs,

whereR;jj andHpqrs denote the components Bfand ofH, respectively, and repeated suffixes
mean summation from 1 to 3. Under the Voigt model, the effecélasticity tensor of the
aggregated is given by

N
1
(1) C=1 > R$ACO,
a=1

where the rotatiorR,, defines the orientation &, with respect td3,. Recently Bertram et al.
[1, 2], in the course of their work on texture-induced elastnisotropy that results from finite

*Man first learnt of the work of Bertram et al. when he visited Roberto Paroni at Carnegie Mellon in
December 1998. He thanks Dr. Paroni for the stimulatingudisions. We are grateful to Professor Albrecht
Bertram for sending us preprints of their papers [1, 2]. Theifigs reported here were obtained in the course
of work supported in part by a grant from the National ScieRoandation (No. DMS-9803441) and by a
DoD EPSCoR grant from AFOSR (No. F49620-98-1-0469).
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plastic deformations of polycrystals, raised and answénedollowing question: What is the
smallest numbeN of cubic grains required and how should they be arrangeddietermineR,
fora = 1,2, ..., N) so thatC is isotropic? They proved that the smallétis 4 and determined
R1, ..., R4 for C in Eq. (1) to be isotropic. In their papers Bertram et al. stbalso that each
arrangemenRy, (¢ = 1, ..., N) which delivers an isotropi€ under the Voigt model also renders
the effective elasticity tensor isotropic under the Reusslehand under the “geometric mean”
estimate [3, 4].

For broader applications, naturally one would ask analsgpestions that pertain to ag-
gregates of grains of other crystalline symmetries and tteromaterial tensors. For example,
the sixth-order acoustoelastic tensor [5, 6] figures premty in problems that concern wave
propagation in prestressed solids; in some formulatiohsyjéld functions and flow rules in
plasticity involve not only fourth-order tensors but als$etls-order and even higher order ten-
sors. For definiteness, let us paraphrase the problem thahalkinvestigate in this paper as
follows: Suppose we are given an unlimited supply of grdigs which are of the same mate-
rial, have equal volume, and have crystal symmetry chaiiaetbby the grougicr. We consider
aggregatesA made up of a finite numbeX of grainsB,. Given a finite set of material tensors
HD, ... H®, find a numbeiN and an arrangement of graifig for which theN-grain aggre-
gateA has all its tensorBl() (i = 1, ..., s) isotropic. To reduce the foregoing to a manageable
mathematical problem, we shall restrict our discussion special class of physical theories
where material anisotropy of polycrystalline aggregaseddtermined by crystallographic tex-
ture (i.e., the preferred orientations of the constitutingins), and we shall only consider what
we call tensor functions of class (*) (see Definition 2 in $&t8 for a precise definition). Prime
examples are tensors of polycrystals defined by orientaltiaveraging (e.gC in Eq. (1)) and
material tensors of “weakly textured” polycrystals [8, 9].

In their papers [1, 2], Bertram et al. restricted their aitento fourth-order tensors and to
aggregates of grains with cubic symmetry. As far as we caredis the methods that they devel-
oped are applicable only for those special circumstancedadkle our more general problem,
we shall appeal to the machinery developed in quantita¢ivite analysis [10, 11, 12], in par-
ticular the restrictions that crystal and texture symmaétrgose on the orientation distribution
function (ODF), and draw on some recent findings of Man [8,&Bh regard to how crystal-
lographic texture affects material tensors of weakly teedupolycrystals. Since the expansion
coef‘ficientsc'mn of the ODF (see Eq. (9) in Section 2.2) play a crucial role i phesent work,
we call the approach developed in this paper for designitgcpgstals with specific isotropic
material tensors th@DF method

As the reader will see in detail below, this method relies mwlifig suitable combina-
tions of crystal and texture symmetries which produce diévaystems of equations where
specific texture coefficientdm of an aggregate are set equal to zero. In this paper we take
Ger to be a finite rotation group which satisfies the crystallpgia restriction, i.e.Ger =
C1,Co, C3, Cy, Cg, Dy, D3, Dyg, Dg, T, or O in the Schoenflies notation. Létex be a group
of texture symmetry. Unlik&cr, Giex Need not observe the crystallographic restriction. The onl
requirement orGtex is that it be a subgroup of the rotation group. Since we stsdlvarious
Gtex's for building aggregates that consist of a finite numberrgétllites, in this paper we use
only thoseGtex Which are finite. In what follows, for a finite group, we write|G| for the order
of G.
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2. Preliminaries

In this section we recapitulate some facts about oriematieasures and tensor representations
of the rotation group, which we shall use below. Throughig paper, when we talk about
orientations of crystallites, it is understood that a refee crystallite has been chosen. The
orientation of a crystallite is then specified by a rotatiagthwespect to the reference.

2.1. Tensor representations of the rotation group

LetV be the translation space of the three-dimensional Euclidpace, an¥" ther -fold tensor
productV ® V --- ® V. A rotationQ onV induces a linear transformati€@®" on V" defined

by
&) (Q®'H)iy iy = Qiyjy Qizjz *+* Qir jr Hjyrje-

where repeated suffixes mean summation from 1 to 3. The@ap Q%" defines [14] a linear
representation of the rotation group SO(3)wh A subspaceZ c V' is said to be invariant
under the action of the rotation group if it remains invatianderQ®" for each rotatiorQ. Let
Q®'|Z be the restriction 0Q®" on Z. ThenQ — Q®'|Z defines a linear representation of the
rotation group orZ. We refer to these representations of SO(3) on tensor spadessor repre-
sentations. By formally introducing the complexificatidp of V and Z¢ of Z (see Miller [14],

p. 105), we shall henceforth regard the tensor represengatis complex representations. For
simplicity, we shall suppress the subscript &nd continue to write the complex representations
asQ — Q%" |z.

In what follows we shall be concerned only with tensor spageghich remain invariant
under the action of the rotation group and, to specify theuartypes of tensors, we shall adopt
a system of notation advocated by Jahn [15] and Sirotin [16]this notation,V2 stands for
the tensor product ® V, [V2] the space of symmetric second-order tensdiy/?] the tensor
product of V and V2], [[VZ]?] the symmetric square o] (i.e., the symmetrized tensor
product of 2] and [V2]), [[ V2]3] the symmetric cube oM 2], [V2][[ V2]?] the tensor product
of [V24] and [[V4]], ..., etc. For instance, the fourth-order elasticity teris of type [[V2]2],
and the sixth-order acoustoelastic tensor of typ&][[ V2]2].

Following usual practice [16], we shall use the notationdach type of tensor space (e.qg.,
[[V2]2]) to denote also the corresponding tensor representatian, Q — Q®4|[[V2]2]).
Whether we really mean the tensor space or the correspotetiisgr representation should be
clear from the context. The rotation group has a completefsabsolutely irreducible unitary
representation®| (I = 0,1, 2, ...) of dimension 2+ 1. Tensor representations of the rota-
tion group are, in general, not irreducible. Each tensoresgntationQ — Q®'|Z can be
decomposed as a direct sum of subrepresentations, eacliobf iwlequivalent to som®; :

3) Z=ngDg+n1D1+---+n Dy,

whereny is the multiplicity of Dy in the decomposition. Whefi = V', we always havey = 1
in the decomposition formula. Whehis a proper subspace ¥f", someny’s in Eg. (3) may be
equal to zero, but we must have din= ZL:O nk(2k + 1). For example, we have

(4) IVER 2Dg + 2D; + Da,

(5) [VAIVA3 = 4Dg+ 2Dq + 7Dy + 3D3 + 4Dy + Ds + D,

and dim[V2]?] = 21, dim[V4][[VZ]?] = 126. Here a term such &g in Eq. (5) denotes
a2x 6+ 1 = 13 dimensional subspace of ][ V2]2], over which the subrepresentation of
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Q> Q®6is equivalent to the irreducible representati®g. Decomposition formulae such as
Egs. (4) and (5) above can be derived by computing the claratthe tensor representation in
question [15, 17] or by other methods [16].

AtensorH € Z c V' is isotropic if and only if it takes value in the subspaggDg, which
is a direct sum ofg 1-dimensional subspaces invariant un@&" . Thus we can read from Egs.
(4) and (5) that isotropic elasticity and acoustoelastitstes in [V2]?] and [V2][[VZ]?] are
specified by two and four material constants, respectively.

In what follows we shall refer to formula (3) as the decomposiof the tensor spacg&
into its irreducible parts.

2.2. Orientation measures

For brevity, henceforth we writé for the rotation group SO(3), which is a compact topological
group. LetC(G) be the space of continuous complex functiongjotit is a Banach space under
the supremum norm. The elements@({G)*, the dual space dE(G), are the Radon measures
ong. For f € C(G) andu € C(G)*, we denote byu, f) the complex number that results when
w is applied tof. Anticipating the applications that we shall investigate,call positive Radon
measureg with o (G) = 1 orientation measures, and we denote\dyG) the set of orientation
measures og. Under the weaktopology, M (G) is compact inC(G)* (cf. [18], p. 19).

For Q € G, the orientation measu#e, defined by
(6, f) = f(Q) for eachf € C(G)

is called the Dirac measure concentratedat Discrete orientation measures are finite linear
combinations of Dirac measurgs; a; §g;, whereg; > 0 for eachi and); a = 1.

For orientation measurgs and a fixedd® € Z c V', we consider (cf. Eq. (1))
®) H(p) = / RETHdp (R).
g

When the orientation measugeis absolutely continuous with respect to the Haar meagyye
(with o (G) = 1), the Radon-Nikodym derivativi> /do is well defined. Following common
practice, we call

1 dp

7 -_—
0 v 82 dpy

the orientation distribution function (ODF), and we mayastEq. (6) in terms of the ODF as
(8) Hw) = 8712/ R® HOw(R)dpn (R).
g

If w is square integrable ai with respect tgo, we may choose a spatial Cartesian coordinate
system and expand in an infinite series as follows:

o0 | |
1
©) wREW.0.6) = =5 +3 > 3 CunDmn(RY.6.9)).
|=1m=—I| n=—I|
(20) n = (-D™Nd
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Here D'mn are the WigneD-functions [19, 20](v/, 6, ¢) are the Euler angles [11] corresponding
to the rotationR; Z denotes the complex conjugate of the complex nurapandm = —m. We
call the expansion coefficients

2 +1
I

11 Cnn =

( ) n 8 2

/ Dhnn(Rd (R)
g

the texture coefficients; they are related to Roe’s [11]fadehts Wimn by the formula

_ 2
Wimn = (=D)™ n\/ A11 Clmn-

Let M2(G) be the set of orientation measures which are absolutelyreants and have their
corresponding ODF square integrable. Under the Weagology, M»(G) is dense inM (G),
because discrete orientation measures lie (see, e.g.if2ffje weak closure of M»(G) and
they are dense iM (G) (see [18], p. 27).

For any sequenc@‘)w of square-integrable ODF’s whose corresponding oriestiatiea-
sures(k)p converge weakly to the Dirac measuréq, by Eq. (11) their texture coefficients
(¢l converge to

A4+1——"""
(12) = == Dln(Q(Y. 6. 9)).

8r2
We call thec'mn’s given by Eq. (12) the texture coefficients pertaining t® Birac measuréq.
Likewise, we associate a unique set of texture coefficie'mﬁto each orientation measuge
Thus the texture coefficienténn, originally defined onM»(G) by Eg. (11), are extended by
continuity to become weakiycontinuous functions oM (G).

Now consider an aggregatéwhich consists of a single crystalligwith crystal symmetry
specified by a point grou@cr which is a subgroup of the rotation grogp Let N¢r be the order
of Ger, and Ieték (k = 1, ..., N¢r) be the elements dfcr. SupposeB assumes an orientation
specified by the rotatioRg. The orientation measure gf is given by

wheresy is the Dirac measure concentratedRyQy. The texture coefficients aft are then
given by

NCF

2+1 1 —_
= )" Dhin(RoQu)-
k=1

13 - L
(13) Cmn 872 Ne

LetG™D be a finite subgroup & with elementngl), j =1, ..., N7, whereNy is the order
of gD, Let AD be an aggregate df; crystallitesB;j of equal volume, which have crystal
symmetryGcr and orientations specified tiyﬁl) Ro. The texture coefficients oA(D) are:

N]_ Ncr—

2+1 1 1 T

(14) Chnn = s 3 Dhn(QSY RoQu)-
j=1k=1
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If the entire aggregatd D is rotated byR;, the rotated aggrega.té(Rl) will have texture coeffi-
cients

Nl Ncr
2+1 1 1 | @) .
(15) =5 oo 2 2 Dhn(R1Q{Y RoQy.
]
872 Ni Ner j—1k=1

Let G be a finite subgroup & with eIementsQi(z), i =1,..., Ny, whereN, is the order
of G@. Let A be the aggregate df; x N crystallites formed by replacing each crystallite
Bj in the aggregateﬁt(l), whose orientation iRlQﬁl) Ro, with N> copies whose orientations

areQi(Z) RlQﬁl) Ro (i =1, ..., Np). The texture coefficients of aggrega4é? are:

N2 Ni Ner

2+1 1 1 1 5 T
(16)  Ccmn= S Y S S Dhn(QP R1Q RoQu).
i=1j=1k=1

LetGer = GO, whereG@ c G is a specific point group. We calk®, and.A® aggre-
gates of typg D RyG @, andg@ Ry gD RyG (@), respectively. (We shall take aggregat to
be of the same type as that.éfl).) In general, fop > 1, for a set of rotation®&y, ..., Rp-1, and
finite subgroupg @, ..., G(P of the rotation groug, we can easily write down the formula for
the texture coefficientsh, , that pertain to the aggregate of type” Rp_1GP~..g U RyG©,
which consists oNp x Np_1 x --- x Ny crystallites of equal volume and witer = G©@,
namely:

Np N1 No

2+1 1 1 1 G Dn o0
(A7) Cin= 5 S Y Y Dhn(QiP Ry 1+ Q) RoQ).
8 Np N1 Np 1 imtiomt p 1 0

where the order and elements@f are denoted by anin((?) (io =1, ..., Np), respectively.

3. The ODF method

Let wigg = 1/(87t2), the ODF when all texture coefficients are zero. tret= 8724, and let
L2(g, m) be the space of complex functions @which are square integrable with respect to the
measuram. Let

(18) Ho = |f eLz(g,m):/ f dm= 0},
G
(19) H = {wel?G m:w=uwsy+ f, wheref e Ho}.

All orientation distribution functionsv fall in #.

Let w be the ODF which characterizes the crystallographic textdira polycrystalline ag-
gregateA. After A undergoes a rotatio®, its texture is described by a new Opw, which
is related tow, the ODF before rotation, by the formula

(20) Tow(R) = w(Q'R)

for each rotatiorR.
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The tensor functiofil : M(G) — V', as defined in Eq. (6) by orientational averaging,
is weakly* continuous. When restricted fof»(G), the functionH(-) can be taken as a function
of the ODF. This function is defined by Eq. (8), which makesssefor any argumenf in
L2(G, m). As is apparent from Eq. (8), the extended functfor> H( f) is strongly continuous
on L2(G, m). Substituting Eq. (9) into Eq. (8), we observe that

(21) H(w) = Hiso + ﬁ/[w — Wisg,

where
ﬁiso=/;jRWH‘]IOdKJH(R)

is the isotropic part off, and

oo | |
Hw - wisol =872 > 3 c'mn/g R®HOD!, (R)dpH (R),

I=1m=—I n=—I|

the anisotropic part, is linear and strongly continuoustg From the invariance of the Haar
measurgoy , we observe immediately thl satisfies the constraint

(22) H [Tow — wisal = Q%" (H'[w — wisd

for each rotatiorQ.

Tensor functions defined by orientational averaging ana@rmexamples of the class (*) of
material tensors that we study in this paper. We formalimedlass with a definition.

DEFINITION 2. Let Z be a subspace of'Mvhich is invariant under @' for each rotation
Q. We say that a tensor functid: M(G) — Z is of class (*) if
(i) Bis weakly continuous;
(i) when restricted toM»(G),

(23) B(w) = Biso + B'[w — wiso],

whereBjg is isotropic andB’[-] is linear and strongly continuous GH;
(iii) B[-] observes the constraint

(24) IB3/[7'Qw — Wiggl = Q®r (B/[w - wiso])

for each rotation Q.

Besides tensors defined by orientational averaging, ctagsc{udes material tensors per-
taining to “weakly textured” polycrystals [8, 9]. Hencefflorwe shall consider only tensor func-
tions of class (*).

LetB : M(G) — Z c V' be atensor function of class (*). In our method for designing
aggregates with an isotrofi; the following observation is instrumental:

(#)LetZ = ngDg+n1D1+ - - -+ nr Dy be the decomposition of the tensor space
Z into its irreducible parts. LéB(g) = Bo(p) + B1(g) + Ba(p) + ... + Br (),
whereBg(-) (k =0, 1, ..., r) takes values in they x (2k+1) dimensional subspace
ngDk of Z. Fork > 1, the components d () are linear combinations of only
those texture coef‘ficient$nn with | = k.
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Observation (#) is an immediate corollary of a theorem dudaa [13].

REMARK 1. The tensoiB(g) is isotropic if and only ifBx() = Ofork = 1,2, ...,r
Hence, to design an aggregate with an isotrd@idt suffices to find an orientation measuype
which has itsr:'mn = 0 for those 1< | < r with nj # 0 in the decomposition formula fof
above.

REMARK 2. Let G andG(P) be finite rotation groups that satisfy the crystallographic
restriction, and leg @, ..., G(P~D pe finite rotation groups. Letl and.A be aggregates of
type g<P>Rp,1g(P 1)...9(1) RoG© and typeg @R gD.. g(P-D R’T)_ G(P, respectively,

and letcl,, and &, be their texture coefficients. Sindal,(RT) = Dhm(R) for each ro-

tation R, we see thaﬁlm = chm. Hence, if aIIann = 0 for a specific set of’s, then all
€nn = O for the same set dfs, and vice versa. Thus, if we can find an aggregate of type
GPR,_16P~D..gW Ry GO which has an isotropiB, we obtain at once another aggregate
of typeGOR) gD ..gP-D Rg_lg(p) which has an isotropiB.

By Remark 1, the problem of designing aggregates with tHastieity tensors isotropic
reduces to that of designing aggregates with all tbﬁ%,ws andc n'S zero. By the same token,
an aggregate with all |témn Ofor1<I < 6 has both its elast|C|ty and acoustoelastic tensors
isotropic. In any case, to design an aggregate which hasta §ei of specific material tensors
isotropic, we just need to determine an arrangements afigsa that the resulting aggregate has
all its c'mn = 0 for an appropriate finite set 6. Let us now proceed to examine this problem.

With the original formulation of the problem of Bertram et |l, 2] in mind, here we seek
only aggregates whose constituting crystallites all hayekvolume. For simplicity, whenever
no confusion should arise, we shall simply say “identicaligg” or just “grains” when we really
mean crystallites of the same material that have equal v@lumfact, all solutions reported in
Sections 4 and 5 below are aggregates of “identical grains”.

Consider a polycrystalline aggregate which undergoes a rotatia@. Letch,,andd,, , be
the texture coefficients of the aggregate before and afterdtation. These two sets of texture
coefficients are related by the formula [8, 11]

(25) Cn = Z Cpn pm(Q b,
p=-—I

For a fixedl andn, if c'mn =O0foral -l <m <, then(:'mn =O0foral - <m <

I, irrespective of the rotatioQ. This observation suggests a procedure for constructing an
aggregate of crystallites witicr = G(© which has all itsx:'mn = 0 for a specific finite set dfs

(say, forl =14, ...,13):

1. Forl = |1 and am; between—I4 andl4, find an aggregatel® of type GV RyG©@ (see
Section 2.2 above) which haiﬁlm = 0for—I1 < m < I4. The job here is to seek an
appropriate rotatiofRg and a finite rotation groug® which meet the requirement. The
aggregated® hasg® andg© as its group of texture symmetry and crystal symmetry,
respectively. This knowledge will facilitate the search4m appropriatdRy andgD, as
we shall see from the specific examples in the next two sextion

2. Depending on the specifig andG(©, the aggregated may already have ite, =
Oforall-I1 < m < Ilyand—lqy < n < I1. If that is the case, fof = I, and an
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n; between—I, andl, find an aggregated® of type G@ RGPV ReG@ which has
c'n?m = 0for —Is < m < l,. SinceRg andG™® have already been determined, the task
here is to find an appropriate rotatiéty and a suitable finite rotation gro@(z). The
aggregated® hasG® andg© as its group of texture symmetry and crystal symmetry,
respectively. Because of the transformation formula (mpregateft(z) still has its
clnlm = 0, irrespective of our choice d?; andg® which renders the texture coefficients
c'r?m of AP null for all =l < m < I,. Ifthere is am; # n; such that:'rﬁnj # 0 for
somem, find an aggregatel® of type G@ RGP RyG© such thalt:'nlmj = 0 for all
—lp <m<ly.

3. Repeat the preceding procedure iteratively to find aneagdge of typeg (P Ry_,G(P~D
.G RGO which has all ite),, = 0 forl =14, ..., la.

We shall work out a few concrete examples in the next two eestio illustrate the proce-
dure described above.

4. Example: elasticity tensor

As our first example, let us consider the elasticity terf8oBy decomposition formula (3) and
observation (#), if we wish to design an aggregate with atrapic elasticity tensor of class
(*), we need only to find an aggregate whcnﬁen andcﬁ‘nn coefficients are zero. We begin our
discussion by revisiting the problem solved by Bertram gflal?], namely, that of cubic grains.
In what follows we always assume that a fixed spatial Canteardinate system has been
chosen. We writee, e, andes for the orthonormal basis vectors that define this coordinat
system. For a unit vect@and an angle € [0, 7], we denote byR(e, w) the rotation aboué
by anglew. All angles given below are in radians.

4.1. Cubic grains

HereGcr = O. We choose a reference crystallite which has its threefiadraxes of cubic sym-
metry in line with the three spatial coordinate axes. Thisugamount to choosinB(ey, 7/2),
R(ep, 7/2), andR(e3, /2) to be the generators of the gro@of crystal symmetry. With this
choice of reference, the texture coefficients of any agdeegicubic grains satisfy [10, 11] the
equation

|
(26) Cn=Y_ CmpPhp(Q).
p=—I

for each of the 24 rotation® in the symmetry group of the reference crystallite. As altgsu
any aggregate of cubic grains has [22] thﬁﬁ{n coefficients all zero. Moreover, of tmﬁm
coefficients, only one coefficient is independent for eadtdin (—4 < m < 4), andcﬁ‘no (-4 <
m < 4) may be chosen as the independent coefficients. An aggrefjatebiz grains with

4 itqe2 4 i ; i ;
Cmo = 0 for eachm has all itsc,, andcpy,, coefficients vanish and thence has an isotr@hic

For an aggregate of one grain, there are nine equationsdgocéRo) =0, cgo(Ro) =0,
c5o(R0) = 0., c55(Ro) = 0, c35(Ro) = 0, ¢zo(Ro) = 0, where each texture coefficient is in

the form of Eq. (13)) to be solved for one orientati®p(g, 9o, o). Clearly there need not be a
solution. In fact, thanks to the work of Bertram et al. [1], afeeady know that this system of nine
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equations has no solution féty. By adding additional identical grains in specific orieigas
dictated by a groug® of texture symmetry, we can place additional restrictionshe texture
coefficients and reduce the number of equations which musatisfied.

Suppose we add three identical cubic grains and arrange sbettmat the aggregate has
orthorhombic texture symmetry with the coordinate axesdpéie axes of two-fold rotational
symmetry (i.e.gD = D, with R(ey, ) andR(es, =) as generators). The texture coefficients
must be calculated as in EqQ. (14) but there are fewer indepgmbefficients. FoQ € Do, Eq.
(25) implies that

|
(27) Gin= Y CmpDhp(Q™H
p=-—I
holds. By considerind(y, 9, ¢) = (0, 7,0 andQ(y, 6, ¢) = (0,0, ), we determine that
c'mn = 0if mis odd, anclc'mn = (—1)'c'mn if mis even. Hence, under this texture symme-
try/crystal symmetry combination, the only independef% coefficients can be chosen to be
Cho Caor andcdy, and by making these coefficients zero Gil, vanish.

The result is a system of three equations:
(28) o(R) =0,  Gy(R) =0,  c4p(Ro) =0,

where each texture coefficient is of the form given in Eq. (18)nce Ry is parametrized by
Euler angles, the equations need only be solved®@t 6g, ¢g). We used the computer algebra
system Maple to find solutions to the three simultaneoustemsa Because of th®, texture
symmetry andO crystal symmetry, two solutionBy and Rg of system (28) describe the same
arrangement of grains if o

R§=QRoQ
for someQ ¢ D, andQ e O. Surely we should regard such &py and Rg as equivalent
solutions. SincéDy| = 4, |O| = 24, andD» is a subgroup ofO, given a solutionRgy there
will be 96, 48, or 24 solutions equivalent to it By commutes with none, one, or both of the
generators oD»,. From our Maple solutions of (28), we identified the follogifour, which are
not equivalent in the preceding sense:

(29) R (0,60, $0) = (0.595492750.521743970.59549275,
(30) RP (yo.60.40) = (2.166289080.521743970.59549275,
(31) R (yo.60.40) = (0.975303580.521743970.97530358,
(32) R (Wo. 60, 0) = (2546099900.521743970.97530358,

where the angles are given in radians. The preceding sofutie clearly related by the equations
(33) R? = Rees, 7/2R,  R{Y = Rees, 7/2RY.
Solution R(()l) is none other than the 4-grain solution found by Bertram dtlaP].
Let A4; (i =1, 2, 3, 4) be the aggregate described by soluﬂRgf . Since
R(e3, 7/2)Da = DaR(e3, 7/2),

we observe from (33) thatl, and. A4 result if we rotate aggregate$; and. A3 by R(e3, 7/2),
respectively. We take aggregatds and.44 to be of the same type a$; and.43, respectively.
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For brevity, let us simply writéRq for Rgl). Then aggregatgl is of type DoRgO. If we
write Ro(vo, 60, d0) = (@, B, @), thenRS> (Yo, fg, ¢o) = (/2 — , B, /2 — ). Construct
an aggregat&t by rearranging the grains id; so thatR is replaced b)Rg, which has Euler
angles(r —«, B, m —«a) and is equivalent tér —«, 8, 7/2—«) fora DzRg O aggregate. If we
rotate A by R(e3, —7/2), we obtain aggregatds becausdR(es, —m/2) Dy, = DaR(e3, —7/2).
HenceAs is of type D, R] O.

4.2. Grains of other crystal symmetries

In Eq. (29) we obtain an aggrega#(! of type D2RyO, which has its elasticity tensdf
isotropic. From this solution we can construct, for crylitizd of anyGer C G, an aggregate with
an isotropicC.

The method is as follows: LeR; be any rotation an@@ be any finite subgroup of
which satisfies the crystallographic restriction. If weatetthe aggregatd® by Ry, the rotated
aggregatectg) still has itsC isotropic. Now append grains m(Rl) to obtain an aggregate of type
G@ Ry D2RyO, which is simply an assembly &, (the order ofG(?) rotated copies o.f4(R1).
Clearly the new assembly has an isotrofiic By Remark 2, we conclude that the aggregate
of type ORI D2R] G(@, which consists of 24 4 = 96 grains withGer = G(), also has an
isotropicC. In other words, for crystallites with it§¢r being a finite rotation group, including
triclinic crystallites withGer = C1, we can always design an aggregate with 96 identical grains
which has an isotropic elasticity tensor.

The appearance of an arbitrary rotati@nin the preceding scheme suggests that this recipe
generally will not lead to a solution with the least possiblenber of grains. Indeed for many
crystal symmetries we can achieve our goal using less grdies us now present one other
solution for eaclcr C G other tharCy.

Ger = Do, Dy, Dg

By Remark 2,0 Rg D5 is a solution with 24 orthorhombic grains. Moreovergifd con-
tains D, as a subgroup, then the 24-grain aggregate of @]5% ¢® also has an isotropi€.
Indeed, ley = |GV|/|D,| and

q
(34) ¢ =JaD,  (disjointunion
i=1

where{gj : i = 1, ...,q} is a set of left coset representatives®j in G'. An aggregate of
typeg® RpO can be taken as a “super-aggregatetjgbtated copies of the aggregate of type
D>RgO, whereg; (i = 1, ..., q) describe the rotations in question. Since each rotatey lcap
an isotropicC, so does the super-aggregate. It follows from Remark 2 thapgregate of type
ORJ G also has an isotropi€.

The same argument in fact proves a general assertion, whagiutas the next remark.

REMARK 3. Let Ga and Gy be point groups such théta € Gy € G = SO(3). If an
aggregate of typ§ (P Ry_1G(P~D .G RyG4 has its material tensoB™, ..., H(P isotropic,
so does an aggregate of ty@e” Rp_1G P~V ..¢ D RuGp,.
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By the preceding remark, cubic aggregates of 24 tetragowithexagonal crystallites which
are of typeO Rg D4 andO Rg Dg, respectively, have their elasticity tensor isotropigehee take
rotationsR(ep, ) andR(e3, 7 /2) as the two generators of groly and rotationdR(ep, ) and
R(es, 7/3) as the two generators of grolj.

Gor=C2,C4,Ce

Let Cél) = {I, R(es3, n)} and Céz) = {l, R(ep, m)}, wherel is the identity inG. The
solution of typeD2RpO can be looked upon as of typbél)lcéz) RpO. By Remark 2, we
obtain a solution of type Rgcf) I Cél), which consists of 24« 2 = 48 Cy-grains of equal
volume.

Let R(es, 7/2) and R(es, 7 /3) be the generator of group, andCg, respectively. Since
both C4 andCg incIudeCél) as a subgroup, by Remark 3 we conclude that aggregates of type

(0] R(T)Céz) IC4andO R(T)Céz) 1Cg are also solutions. These aggregates are made up Gj48
andCg-grains, respectively.

Gor= Cs

First we present a solution of hexagonal grains which exh®j texture symmetry. To start
with, we arrange an aggregate of 8 identical hexagonal gisonthat it has tetragonal texture
symmetry (i.e.GD = D4, whereR(ey, 7) and R(es, 7/2) are taken as generators). Then,
by determining the independent coefficientsifee 4 and solving the resulting equations with
texture coefficients of form shown in Eq. (14), we find that dnientation

(35) Ro(¥0. 0. ¢0) = (0.39269908 1.223899590)

generates an aggregate of tyipgRyDg Which has all its:f‘nn coefficients zero.

By placing three copies of this aggregate in such a way thastiper-aggregate h&
texture (i.e.g(z) = Cg, with R(eg, 27 /3) as generator), we are able to determine that among
the c?,m coefficients of the super-aggregate only the coeffiod%gﬁs independent, ancgo =0

renders albﬁm coefficients zero. Moreover, we find that
R1(¥1, 61, 1) = (0, 0.955316620)

is a solution ofcg0 = 0, where the texture coefficient is of form Eq. (16) wiiy given by
Eq. (35). Thus we obtain an aggregate of tfpeR1 D4 RgDg, which has an isotropic elasticity
tensorC.

By Remark 2, aggreggtes of.t)./;ﬁlg Rg D4.RI Cs, .WhiCh consist of 12 8 = 96 C3-grains
of equal volume, have their elasticity tensor isotropic.

Gor= D3

We found an arrangement of B¥s-grains, for which the elasticity tens@rof the aggregate
is isotropic. The arrangement is of ty@eRyD3, where

Ro(0. 0. o) = (0.553574367/2, 0).
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Gor=T
In paper [1] Bertram et al. have presented a solution of iyRgO, where
(36) Ro(¥0. 6o, ¢o) = (0.240023582.674806092.90156907.

Hence there is a solution of typ@ RST with 24 tetrahedral grains. In facRg = Rp in this
case.

In summary, we have presented at least one solution for @acWwhich is a finite rotation
group that satisfies the crystallographic restriction. &achGcr, our best solution at present
(where using a smaller number of grains means better) egjdigrains foG¢r = O; 24 grains
for Ger = Do, D3, Dy, Dg, or T; 48 grains forGer = Co, Cy, or Cg; 96 grains forGer = Cq, or
C3. Except for the case of cubic grains, where a proof was giyaBdstram et al. [1], it remains
unclear whether the solution we presented would be a mirswiation, i.e., one with the least
possible number of identical grains for tgr in question. In fact, we believe that many of our
present “best solutions” can be improved upon.

5. Example: acoustoelastic tensor

In a similar manner, it is possible to build textured aggtegavhich have isotropic tensors of
higher order. As an example, here we seek designs which rémelsixth-order acoustoelastic
tensorD [5, 6] isotropic. A glance at decomposition formula (5) ragethat we should design
aggregates with the'n‘mn coefficients all zero for & | < 6. A solution in this regard will not
only have its acoustoelastic tenddiisotropic, but will also attain (cf. Section 2.1) isotropyr f
all its material tensors of ordér< 6, including the fourth-order elasticity tensor

For all the finite rotation groups that appear below, we hdready specified their gener-
ators in the preceding section. For groups of crystal symyntite generators help specify the
orientation of the reference crystallite with respect te dhosen spatial Cartesian coordinate
system.

5.1. Cubic grains

With our choice of reference crystallite and spatial cooatle system, the restrictions imposed
by crystal symmetry (see Eq. (26)) dictate [10, 22] that ayregate of cubic grains must have
all their ¢l coefficients vanish fof = 1,2, 3, 5. Hence we just need to worry about ttfe,
andc8, , coefficients.

Consider an arrangement of 8 identical cubic grains sotiestggregatelD) has tetragonal
texture symmetry (i.eGer = O andG@® = D,). From the fact that Egs. (26) and (27) should
hold for Q € O andQ € Dy, respectively, we observe that all ttﬁn coefficients will vanish if
¢S, andc§, are null. Using Maple to solve the equatiasg(Ro) = 0 andc§(Ro) = 0, where
the texture coefficients are in the form of Eq. (14), we foumat t

(37) Ro(¥0. 00, $0) = (0.080331152.639237760.99945255

is an orientation which makes all thﬁnn coefficients vanish for the aggregaté? of type
D4RpO.

Place 4 identical copies of thidD aggregate so that the new super-aggregdﬁ% has
orthorhombic texture symmetip,. Equation (25) reminds us that th%m coefficients ot4(®
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vanish since all theg, , coefficients ofA() are zero. Because of the, texture symmetry, we
only need to solve a system of three equations:

(38) (RO =0, Sy(RD=0,  cjo(R) =0,

where each texture coefficient is of the form given in Eq. (16)
Using Maple, we found a solution

(39) R1(y1, 61, ¢1) = (0.105234260.479361610.28647879.

Thus we have constructed an aggregate of p&; D4 RO consisting of 4x 8 = 32 identical
cubic grains which has all its material tensors of older6 isotropic.

5.2. Grains of other crystal symmetries

By the argument given in Section 4.2, we know that for anytimtaR, and point groug® ¢
G, an aggregatet® of type OR] D4R] D,R] G®, whereRg and Ry are given by Egs. (37)
and (39), respectively, has all its material tensors of okde 6 isotropic. Such an aggregate
consists of 24« 8 x 4 = 768 identical grains of crystal symmetgr = G,

For most crystal symmetries, we expect that we can achie/eame goal with a smaller
number of grains. For instance, by Remark 2 and 3, aggregttigsesO R] D4R] D, OR] D4
R] D4, andOR] D4R] Dg, whereRg andR; are given by Egs. (37) and (39), respectively, have
all their material tensors of order< 6 isotropic. These aggregates are made up of 84= 192
identical orthorhombic, tetragonal, and hexagonal gragspectively.

Likewise, by treating an aggregate of type R1 D4 RgO as of typeCél) I Céz) R1D4Rp0O,
Wherecél) andCéZ) are defined in Sec. 4.2, we obtain a solution of t(]plég Dy R-lr Céz) | Cél),
which consists of 24 8 x 2 = 384 C,-grains of equal volume. By Remark 3, aggregates of type

OR] D4R} ng) IC4 and of typeO R] D4R} Céz) ICg are also solutions. These aggregates are
made up of 384C4- andCg-grains, respectively.

6. Discussion

The outlined method allows the construction of aggregasniy isotropic tensors of various
orders. So long a§¢y is a finite subgroup of the rotation grogp the specific crystal symmetry
of the crystallites is of no concern. Indeed we have showrettiBns 4 and 5 that once a design
of any type is found for an aggregate of identical grains Whias a specific set of material
tensors isotropic, it generates for each sgeh a solution which has the same set of tensors
isotropic. Our ODF method can be easily implemented usingsaftware which can solve
(nonlinear) systems of equations.

But there are limitations. At each step, say fih, the method requires finding a rotation
Rp-1(¥p-1,0p-1, #p—1) Which satisfies a system of nonlinear equatioh&(Rp,l) =0,
whered!,,, is of the form (17)} andn are given, andn runs over those indices betweeh and
| for which the texture coefficiento:s'mn are independent for aggregates wittP) as the group
of texture symmetry. When the number of independent indiedsgger than three, there are
more equations than the number of unknowns. While nothimgbeasaid for sure because the
equations are nonlinear, it is likely that the method wouldalx down when that happens. To
reduce the number of independents, we could takeG(P) to be a group of larger order. For
example, forlG(P = O, the number of independents is not bigger than three whén< 34.
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Of course, we hardly need to worry about tensors of ordereritiian 34 in practice. But
takingG(P) = O at every step is also impractical. The equations descrillbieg'mn coefficients
quickly become unwieldy dsis increased or when the orders of the symmetry groups iedolv
are large. In this case, it may be infeasible to find solutiewen if they exist. Usingjcr and
G(P (p > 1) of smaller orders will simplify the equations. A smaksr, however, will increase
the number of steps required because for ¢éahbre will be morgl, n) pairs for which the:'mn
coefficients must be considered. A smalEP) will increase the number of equations at the
p-th step. Hence the method relies on finding a suitable caoatibim of G¢r andg(P (p=2D
which produces solvable systems of equations at all thessacgsteps that lead to the design of a
suitable aggregate. This requires some trial-and-errgraumore systematic approach is worked
out. In fact, some texture and crystal symmetry combinatidm not have solutions to produce
AWM aggregates with isotropic elasticity tensor. (For exam@le = Dg with GV = C, has
no solution forc%O(Ro) =0, c%z( Rp) = 0.) Finally, even if our method successfully produces a
solution for a giverG¢r and a given set of material tens@té) (i = 1, ..., s), the solution found
need not be a minimal solution, i.e., there might still besothrrangements involving a smaller
number ofG¢r-grains for which all théI(®) tensors of the aggregate are isotropic.

Our ODF method seeks solutions which exhibit texture symynetarrying texture sym-
metry is clearly not a necessary condition for a solution. drerbasic question, which remains
to be answered, is whether the set of minimal solutions faaréiqularGcr and set of material
tensorsH®, if non-empty, would always include some member that exhileixture symmetry.
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G.A. Maugin*

TOWARDS AN ANALYTICAL MECHANICS OF DISSIPATIVE
MATERIALS

Abstract. A Lagrangian-Hamiltonian variational formulation is posged for the
thermoelasticity of heat conductors and its generalinati@nelasticity - described
by means of internal-state variables- by using a gauger¢kieal technique (intro-
duction of an additional variable of state - the gradienth&rimacy - that ren-
ders the system apparently Hamiltonian). Projecting thexggns resulting from
the Euler-Lagrange equations and the equations deducedtf® application of
Noether’s theorem back on the original space provides &dllIbalance equations
of the dissipative theory, including the entropy equatiod the equation of canoni-
cal momentum in material space (which are not strict coragienv laws). A canon-
ical structure clearly emerges for the anelasticity of eanadrs in finite strains.

1. Introduction

A recurrent dream of many mathematical physicists is tottoosa variational formulation for
all field equations of continuum physiagcluding in the presence of dissipative effedtée all
know that this is not possible unless one uses special tsieggls as introducing complex-valued
functions and adjoint fields (e.g., for heat conduction)t Be do present here a variational and
canonical formulation for the nonlinear continuum theofytermoelastic conductorgnd then
generalize this to the case of anelastic conductors of HEgis is made possible through the
introduction of a rather old notion, clearly insufficientiyploited, that othermacyintroduced
by Van Danzig (cf. [9]), a field of which the time derivativetige thermodynamical temperature.
It happens that we used such a notion in relativistic studitise late 60s-early 70s, (Pre-general
exam Seminar at Princeton University, Spring 1969; [101])1a time at which we found that
thermacy is nothing but theagrange multiplierintroduced to account fasentropyin a La-
grangian variational formulation. But , completely indegently and much later, Green and
Naghdi ([4]) formulated a strange “thermoelasticity witth@issipation”. Dascalu and | ([1])
identified thermacy as the unknowingly used notion by GreehNaghi (unaware of works in
relativistic variational formulations), and we formuldtéhe correspondinganonical balance
laws of momentum and energyf interest in the design of fracture criteria - which, cany

to the expressions of the classical theory, indeed presesource of dissipation and canonical
momentum, e.g., ho thermal source of quasi-inhomogesé(tie [2]). In recent works ([14],
[21]), we have shown the consistency between the expressfantrinsic dissipation and source
of canonical momentum in dissipative continua. This is t@wed within the framework of so-
calledmaterialor configurational forces‘Eshelbian mechanics”, that world of forces which, for
instance, drive structural rearrangements and materiattieof different types on the material

*Enlightening discussions with Prof. Ernst Binz (Mannhe{®&rmany) during the Torino International
Seminar are duly acknowledged.
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manifold (for these notions see [12], [13], [5] and [7]). Tioad to the analytical continuum
mechanics was explored in particular by P.Germain (199R3]irbut not in a variational frame-
work.

Herebelow we first present a consistent variational fortiuridor thermoelastic conductors
of heat, which, with the use of Noether’'s theorem, delivdrequations of interest, that is,
the balance of linear momentum, the equation of entropyb#@nce of canonical momentum,
and the energy equation, all in the apparently“dissipéggs form”. But these equations can
be transformed to those of the classical theory of (obviotisérmally dissipative) nonlinear
elastic conductors (cf. [20]). Therefore, we have a goodistapoint for a true canonical
formulation of dissipative continuum mechanics. The passextension of the formulation
to anelastic conductors of heat is also presented when #dastic behavior is accounted for
through the introduction of internal variables of stateer&énts of the present work were given
in a paper by Kalpakides and Maugin ([6]).

2. Direct Variational formulation and its results.

We use classical elements of field theory as enunciated aralevooks (e.g. [12], [14], [21]).
The reader is referred to these works for the abstract emsati

Consider Hamiltonian-Lagrangian densities (per unit k@éwof the undeformed configura-
tion Kr of nonlinear continuum mechanics given by the following eyah expression:

@ L=L(F0,8X =KX —WFH0.8X),

where 1
KW:X)=Sp0(X)V2, 6 =7, p=Vry.

Here,K is the kinetic energyV is the free energy densityg is the mass density at the reference
configuration, a superimposed dot denotes time differgotiaat constant fixed material point
X, VR denotes the material gradient, the scalar funcide called thethermacy andv andF
are the physical velocity and direct deformation gradieichshat

9 x

bl
V= F= X

) = VRx,
ot |y 9 RX

t

Xx=x(X,t), detF >0,

is the smooth placement &f at Newtonian time. The explicit dependence g andW on X
indicates material inhomogeneity (direct smooth depecelem the material point).

In the Lagrangian density (1), tHeasic fieldsare theplacementx and the thermacy,
both being assumed sufficiently smooth functions of space-time parametrizatiotX, t) ,
which is the one favored in the Piola-Kirchhoff formulatiohnonlinear continuum mechanics
(cf.Truesdell and Noll, 1965). Notice thhatis not an explicit function ok by virtue of Galilean
invariance (translations in physical space of placemert®ither is it an explicit function of
y itself, this implying a sort ofgauge invariancevery similar to that of electrostatic for the
electric potential. Since the focus is on field equationkaiathan on boundary conditions and
initial conditions, the density (1) may be integrated ovedewtonian space-time volume of
infinite extent with proper limit behavior of the various @ived functions at infinity in space
and at time limits. According to the general field theory, lre absence of external sources



Towards an analytical mechanics 173

(these would be explicit functions of the fields themselyt#field equations, i.e, the Euler-
Lagrange equations (cf. egns. (A.7) in Maugin, 1999a) aatertwithy andy, are immediately
given by

ap .
2 —| —divgT =0,
2 7t |y ivR
0S
(3) —| + VRS=0,
At |x
wherein
oL oW oL
p=pV=r—=, Ti=—F=—-—,
0 X oF 9 (VRX)
oW aL AW oL
@ S=-"— = S=-o =
a0 ay ap a(VRY)

are, respectively, thinear momentum vectan physical space, thiérst Piola-Kirchhoff stress
the entropy densityby appealing to the axiom of local state and assuming thab ey density
has the same general functional definition as in thermas)atind, accordingly, thentropy flux
in material form.

Invoking now Noether’s theorem (cf. egns. (A.11) in Maudif99a) for the Lagrangian (1)
with respect to the space-time parametrizaiidnt), we obtain the following two, respectively
co-vectorial and scalar, equations:

o PP th inh
L _A(di _ (sin
®) at |, (d'”Rb )L (f )L’
and

oH
©) —‘ VR U=0,

at |y

where we have defined tloanonical momenturfmaterial-covariant) vectdPth of the present
approach, the correspondireginonical material strestensorbth, the material forceof true
inhomogeneitiefs‘”h, theHamiltonian densitytotal energy densitylH, and the material Umov-
Poynting energy-flux vectdd by [15] (compare the general definitions given in egns. (A.16
(A.17), (A.14) and (A.15)).

aL oL
@ P = —VRx.oo = VRy 7> = —p.F — S8 =P"*"—sp,
LAY ay

L aL
(8) pth = — {bK = —(LsK - (y,L— +xL ))
L L YK d XK

- —(LsLK S +T§FiL)},

fnh._ 9L
TaX

v2 Vapo) AW
=5 RPO) — T
op  \ 2 X
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oL oL
oy v

uk=— yiﬂii =TKy —sKp
YK 8)(.'K !

where we have defined tmeechanical canonicalmaterial) momentunP™echand theinternal
energyper unit reference volume by

Pmech= —p.F,
(10) E=W+ .

For the first of these sometimes referred to aggdemudomomenturage, for instance [12], [13],
eqg. (10) is the usual Legendre transformation of thermoalycs between internal and free
energies. As a matter of fact, the definition (9) contains tvegendre transformations, one
related to mechanical fields, and the other to thermal ones.

If we assume, as in standard continuum thermodynamics,etitadpy and heat flux are
related by the usual relation

(11) S =Q/9,
we have

oW
(12) Q= -¢ W,

and eqgn. (6 takes on the classical form of the energy-coasenvequation (cf. Maugin and
Berezovski, 1999)

oH
(13) —| —VR.(Tv=0Q)=0.
at |y
Summing up, we have deduced from the Hamiltonian-Lagrandgmsity (1) all field equations,
balance laws and constitutive relations for the theory afemally inhomogeneous, finitely de-
formable, thermoelastic conductors of heat. As a mattemacf, feqns. (2) and (13) are the
local balance equations of linear momentum (in physicatspand energy, respectively. This is
completed by the balance equation of mass which here tyiviedds
ad
14) %1~ o
at |x
These are all formally identical to those of the classicatioelasticity of conductors (e.g., as
recalled in [18]). Another balance law if that osfoment of momentu¢m physical space). This
is deduced from (1) by considering the action of the infiniteg rotational component of the
connected group SO(3) in physical space. A classical daivgields then (in components in
order to avoid any confusion in notation)
oW _j -
(15) “Fll=0 o TEF!I =0,
oFl e
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as the action of this group is inoperative on the materiatoreg. Apart from the functional
dependence oV, eqn. (15) is also formally identical to the classical cenpart. Only the
equation of canonical momentum (5) differs from the oneioally obtained in [2] material
thermoelasticity. But, abstraction being made of matdrihbmogeneities, it is the same as
the one obtained by direct algebraic manipulations in [hia“dissipationless” formulation of
thermoelasticity. Indeed, canonical momentum (7) is mdd®vo parts, a strictly mechanical
part - which is none other than the pull back, changed of sigrhe physical momentum -
and a purely thermal part given by the constitutive behavinraddition, the canonical stress
tensor (8) - also calle@shelby stress tensduy the present author - contains a contribution of
B because, from its very definition, its captures materiadlignats of all fields. One should note
that the source term in eqn. (5) has no energetic contentthdfmore, contrary to common
use, even the entropy equation (3) is source free so thatiisiagly, in the absence of material
inhomogeneities, all equations obtained herestniet conservation lawhence the qualification
of “dissipationless theoty In this rather strange -we admit it - approach, the entribpy and
heat flux are derived from the free energy, on the same foatingntropy density , and stress
(egns. (4) and (12)).

3. Correspondence with the classical theory

Since eqns. (2), (13), (14) and (15) are formally the sama did classical theory, the limit
whereW does not depend of is trivial for these. What about eqns. (3) and (5) which are of
utmost importance for crack and phase-transition frordiegi(cf. [18]). We need to isolate the
contributions ofg in order to get some “classical” limit (this meapmjectingonto the classical
state space of the thermoelasticity of conductors). Fiesexpand egn. (5) by accounting for
the expressions (7) and (8). After some rearrangementsptanahe following equation (note
thatcurlgrB = 0; T =transposed)

9 Pmech
ot

— divgh™eN= SVRH +S.(Vgp)T + MM,
X

(16)

wherebMech— pth _ s g. But this is not all becausk in bth still depends orB. We must
isolate this dependency by writing

dW  gwmech gy T gwmech
=——+ — (VB =

9w aw T
17) X~ aX 2B IX S.(VRB) ",

where, in essencay™mech — W(F, 9, B = 0; X). On substituting (17) into the material
divergence ob™ech we finally transform (16) to

9 Pmech
Jat

_ divamechz finh + fth’
X

(18)

where
bMeCh_ _(L15 +T.F), L =K —WmeNE g:x), fh:= svge.

The last introduced quantity is the matetizrmal force of quasi-inhomogenettiearly defined
by Epstein and Maugin [2] in their general theoryrofterial uniformity and inhomogeneity
Thus equation (18) has recovered its “classical” form, thetation marks here emphasizing
that, in fact , while “classical” from our viewpoint, this eation is practically unknown to most
people, although it is the one on which thermoelastic gdizatans of theJ-integral of fracture
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must be based (cf. [18], [21]). As to eqgn. (3) we use the falhgatrick. Multiplying (3) by
6 # 0 and accounting for (11) we obtain the “heat-propagatiapiagion in the form

S .
(29) OW + VR.Q= S35,
or else, by integration by parts,
@S . .
(20) % + VR.Q= SO + Sg.
X

This equation is interesting by itself because of its stmect especially the right-hand side -
which is similar to that of eqn. (16), time derivatives regpfey material space derivatives. The
“classical” limit is obtained in (19) or (20) by ignoring tifeterm, i.e., restrictingV to wmech
The other terms then acquire their usual significance @itind S no longer derivable from a
potential. Working then in reverse, one recovers in thigagimation the equations

S S
0—+VRQ=0 —+VrS=o
ot T VRQ gt TYRS=C
wheresth = —s. VR (In 6) is thethermal entropy sourceS andQ = S/6 are now given by
a constitutive equation obtained by invoking the noncatittion of the formulation with the
second law of thermodynamics, which here locally realls > 0. This yields, for instance,
Fourier’s law of heat conduction.

4. Accounting for anelasticity

At this point we have effectively formulated a canonicaldheof the thermoelasticity of con-
ductors. All field equations, balance laws , and constituéiquations follow from it. The rela-
tionship with the “classical” formulation was establish@d proceed further, one must envisage
the case where nontherndiksipative processdg.g., anelasticity) are present. Considering the
theory ofinternal variables of statéo describe these phenomena is a sufficiently general ap-
proach as demonstrated in a recent book [15]. The arpyiori change should be accounting
for the dependency of the free eneiyon a new set of variables collectively represented by the
symbola The corresponding equation of state reads

A+ (dW/da) = 0.

The main problem, however, remains to build the evolutiaretign ofa, normally a relationship
betweeny and the thermodynamical foré&constrained by the second law of thermodynamics.
Thus the very presence efis related talissipative processesd a priori not amenable by means
of a canonical variationalformulation; « (X, t) is not a classical field; neither does it possess
inertia, nor is its gradient introduced to account for sorelocality). But it was recently shown
how variablesy andé could play parallel roles in a certain reformulation of threekasticity

of thermoconductors ([14] , [17] (2000)). This is the trendoe followed. In effect, now we
propose the following variational formulation in symbdig@m:

(21) lim & / L(V,F,a,0 =y,8=Vgy:X)d*X =0
B—0
E3xT

wherelL is the Hamiltonian-Lagrangian density per unit referengl@me. Thdimit symbolism
used in egn. (21) means that the limit@goes to zero must be takénthe equationsesulting
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from the variational formulation, this applying to both etquations and other consequences
of the principle such as the results of the application of tNees theorem. We claim that in
this limit all equations of the “classical” theory of anelastic condors of heatare obtained,
including the entropy equation and heat-propagation éguat this quite general case, a rather
surprising result, we admit it. The only change compared jaq that the free energyv now
depends ow, i.e., we have the following general expression

L=L(,F a6, B X) =KWvX) —-W(F,ab,BX).

Equations (2), (3), (5) and (6) hold true but for the additilcatependence &/ on«. The intrinsic
dissipation necessary for the expression of the dissipatiture of this variable becomes visible
only after performing manipulations of the type of those maxdSection 3. We need to isolate the
contributions due to the “dissipative” variables in eqr®). gnd (15). Equation (17) is modified
due to the dependence an

W gwmeeh 5wy T 0W -
22 — = ———+—(V — v
(22) -~ -~ +aa(R(¥)+aﬂ(R,3)
9 Wwmech

- —x— A (VR)T —S. (VR8T

where, in essencay™ech — W(F, 9, « = const, 8 = 0; X). The equation of canonical
momentum first yields

9 Pmech

o — divgb™Meh= SVRH +S.(VgB)T +fiNh.

X

But on substituting from (22) into this equation, it comes

d PmECh ; mech inh th intr
(23) T — divrb =f" 4+ 4 f
X
where
pmech — (L1 +T.F)
L = K-—W"MCNE g &= const: X),
fih. — svge,
fintr - A(VR()[)T,

The last two introduced quantities are mateftates of quasi-inhomogeneitiue to a nonuni-
form temperature field (cf. [2]) and to a nonunifornfield, respectively ([14]). The presence
of those terms on an equal footing withih means that, insofar as the material manifold is
concerned, spatially nonuniform fields efor 6 are equivalent to distributed material inho-
mogeneities (also continuously distributed defects ssctlislocations) ; they arguasi-plastic
effects(cf. [13]). As to eqn. (3), accounting for the kinetic-engtfeorem (obtained by mul-
tiplying scalarly egn. (2) by after multiplication byd # 0 and accounting for (6) and finally
making 8 = const. (this is equivalent to discardimgin the resulting equation and loosing the
connection ofSandQ with 8) we arrive at the heat-propagation” equatioin the form

3 (S9)
at

(24) +VRQ =S+ As = oth 4 ointr,
X
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Then working in reverse, in this approximation one recotleesequations (compare to [14])

S i
60— +VRQ — d>|nt|"

at
S i
E-FVR-S: ath—l—a'ntr,

wheregth = —SVR(In ) is thethermal entropy sourcand

alntr — 9_1A.d,
q)intr — Gaintr

are thentrinsic entropy source and thetrinsic dissipation , respectively. In the present classical
limit, bf Sandbf S= bf S are now given by a constitutive equation obtained by invgktre
noncontradiction with the second law of thermodynamicsciviiere locally reads

o = ath +aintr > 0.

We have recovered all equations or constraints of the “idaktheory” by applying the scheme
proposed in egn. (21).

5. Canonical four-dimensional space-time formulation

Equations (23) and (24) present an obvious space-time sym(see the two right-hand sides).
This obviously suggest considering these two equationpacesand time-like components of a
uniquefour-dimensional equatioim the appropriate space and the canonical momeRBEEH
and the quantity S (an energy which is the difference between internal and éreergies) as
dual space-time quantities, i.e., they together form a-fhorensional canonical momentum

Puy = (P Py = 65).

We let the reader check that eqns. (23) and (24) can in factwetten in the following pure
4-dimensional or 4« 4 formalism in an Euclidean 4-dim space (compare to Won@iiant
kinematics in [20])

oL

_ W
(25) ) gh_ g, =A 9 -
expl a X

axXpP - 9 X« a X«

(F,v fixed)
A=(AS) pu=(09),
X a=1,234) = {xK (K=123), x4=t}
K K 4 mech
N R R
or, introducing intrinsically four-dimensional gradisrend divergence i&* for eqn. (25),
(26) divga BTN = V4L Imech

where the right-hand side means the gradient computedrigdipé “mechanical” fieldsH,v)
fixed. Equation (26) represents the canonical form of the balahcarmnical momentum and the
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heat-propagation equation for anelastic, anisotropidtefindeformable solid heat conductors.
The 4-dimensional formalism introduced is somewhat diffefrom that used by Maugin ([17])
or Herrmann and Kienzler ([7]). However, in the absence tfrisic dissipative processes and
for isothermal processes, egns. (23) and (24) - or eqgn. @f)ce to those of Kijowski and
Magli ([8]) in isothermal thermoelasticity, the second atjon reducing obviously to the simple
equation

909/t =0.

This shows the closedness of the present approach with thergjerelativistic Hamiltonian
scheme.

6. Conclusion

The procedure used in this paper is essentially that gdiage theoryas practiced in modern
physics. We have artificially enlarged the state space dhiery by adding one coordinate (the
material gradient of the “potentialy) to this space and then projected the resulting equations
back onto the original state space. The latter could notraotadate dissipative processes,
but the enlarged one does. Recurring to the classical dissgpformulation then requires this
projection or “return to reality”. In the mean time, a vaitsial formulation has indeed been
proposed.
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AN ALTERNATIVE INTERPRETATION OF THE BEHAVIOR
LAW OF MATTER BY MEANS OF A GENERALIZED
STOCHASTIC PROCESS

Abstract. Discrepancy between discrete models and continuous tiigadrenes
is a common concern with the behavior laws of matter. We pefm alternative
frame in which the transition from a discrete to a continuouglel becomes very
natural. A statistical description of matter laws is givarhis contexte.

1. Introduction

The aim of this paper is to present a new mathematical backdravhich allows to modelize
in a natural way the mechanical behavior of matter. In suchodahthe transition from the
discrete microscopic structure to the macroscopic behawigery easy. This point of view, in-
volves an alternative mathematical theory called “Radliidalequentist Statistics” (RFS), based
on an idealized concept okry large finite sequence of outcom&ich an idealization cannot
be performed within the classical mathematical frame basedermelo-Fraenkel’s set theory.
Therefore we use an extended frame based on a conservatéresiexs with a double scale
of magnitude order of ZF, where the concepts of large numaedssmall fluctuations can be
formalized in a way which is very close to the statisticagaage. The use of a conservative ex-
tentions of ZF with one scale of magnitude order as a mathieahéackground for modelisation
is not news in mechanics (see [2], [3], [4], [5])-

The structure of the paper is the following: first we presenighly an intuitive statistical
description of matter; then we present the mathematicaleicohsidered . In section 3 we
introduced the RFS theory; we end in section 4 with the dpsori of matter laws within RFS.

2. Intuitive statistical description

Consider a numbes of macroscopically identical samples of some matter, sateplof concrete
or a generalized composite. Divide each sample into adjamls of the same size (this last
hypothesis is not essential).

Let Xj j k be a mechanical parameter of interest (Young modulus, shedulus...).and
xfj’k its value for thea!" sample. The range of;, j k is discretized into finite numbers of little
intervals. Thus we may suppose th§tj k takes its values in a finite s&. Fora € E, we
define the frequency

1
fr(Xi,jk=2a) = Scard {a <s X = a}
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and the conditional frequency

fr(Xijk=2alXipjik = a1 Xig.joke =82+ Xir jr .k =ar) =
i (Xijk = aXip ik = a1 Xig ok =320 X ok = &)
fr (Xip, jobky = 81 Xig,joko = 82,5 Xip i ke = @)

which measures the dependence of the mechanical propefttese cell with respect to the
other cells.

The knowledge of all these frequencies gives an approximatscription of the statistical
behavior law of this material.

A first way to transform this description into a mathematicaidel is to introduce a family
of random varlableé(g K wheree is the size of the cells ancﬂgJ i denotes the associated
conditional probabllltles relying each cell to the othd¥sre — 0 the corresponding continuous
model is rather to manage since we must handle the intrieaf@ntinuous stochastic processes
with moderate parameter space. In the present work we intedn alternative mathematical
model, which remains in the ream of finite combinatorics bptaced limit procedures by perfect
approximations. This is possible in a slight extension aésical mathematics where absolute
orders of magnitude are formalized.

3. The mathematical framework ZFL»

Scientists often deal in an intuitive way with orders of mitwpte, large, little, very large, near,
very near... and they manipulate informally these fuzzycepits in order to support their rea-
soning about real integers. But these concepts have noarpant within classical mathematics.
This is a fundamental weakness of mathematics, in parti@daoncerns modelisation where
the link between micro et macroscopic levels has to be destri Fortunately there are now,
since the emergence of A.RobinsoNen Standard Analysid.0] in the sixties, various conser-
vative extensions of ZF where absolute orders of magnitadebe introduced in a very natural
way. The most famous is E.Nelsorirgernal Set Theory(IST) [8], an axiomatic setting dflon
Standard AnalysisWeaker extensions may also be useful to the probabilistiedson showed
in his book onRadically Elementary Probability Thegr[9] (see also [1]).

In the present paper we introduce an elementary consezvatiension of ZF with a dou-
ble hierarchy of orders of magnitude in which we develop treoty of Radically Frequentist
Statistics. Classical mathematics may be formalized incth@ext of Zermelo-Freankel's set
theory (called here ZF). To get the extension ZRKkecond order Leibniz extension of ZF),we
call internal the formulas of ZF we add to the language of Z~ttto unary external predicates
moderate and weakly moderate and the following axiom rule:

1) 1 is moderate

2) every integer which is lower than a moderate integer iserete;

3) every integer which is lower than a weakly moderate intégeeakly moderate;

4) if n andm are moderate integers, so arg- m, nmandnm;

5) all moderate integers are weakly moderate;

6) there exists a weakly moderate integer which is not maegra

7) there exists an integer which is not weakly moderate;

Itis possible to prove (see [1]) that ZFlis a conservative extension of ZF. This means that
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(i) every internal statement which is a theorem in 2k4 also a theorem in ZF;

(ii) all theorems of ZF are theorems within ZgL

Thus ZFL, enriches classical mathematics with new concepts, butrtiester the status of
internal statements: they are neither more nor less theoire&FL, than in ZF. This legitimates,
from the logical point of view the use of Zklas a basis for the mathematical practice. But we
have external theorems which may be of help in modelisationgaures. Among all external
concepts expressible in the language of Zkte have the following:

DEFINITION 1. A real number is called moderate (resp. weakly moderate)dfanly if its
absolute value has a moderate (resp. weakly moderate)raitpgrt. A positive real number
which is not moderate (resp weakly moderate) is called I4{mgete ~ oo) (resp. very large
(write = 00)). A real number is called small (resp. very small ) if andyoifiit is O or its inverse
is not moderate (resp. weakly moderate). Two real numberadkyaare called close (write
X ~y) (resp. very close (write x y)) if their difference is small (resp. very small)

The orders of magnitude satisfy the following generalizeébhiz rules:
Concerning the first scale:

THEOREM1. Moderate + moderate = moderate,
moderatex moderate=moderate,

small + small = small,

small x moderate = small.

Concerning the second scale:

THEOREM2. Weakly moderate + weakly moderate = weakly moderate,
weakly moderatex weakly moderate = weakly moderate,

very small + very small = very small,

very smallx weakly moderate = very small.

The two scales are linked by the following relations:

THEOREM3. Very small= small,
very large= large,
moderate= weakly moderate.

The proofs are easy consequences of the external axiomfl{9ee

Notice that a good model for the macroscopic continuous isitefsetx; < Xo < -+ < Xp
With X1aXo~..aXn Wherex; = —oo andxn ~ +oo. If we use the weak scale, we have an
intermediate near-continuous where a very large numbexsmmain at a small distance.

4. The theory RFS

In a ZFL, context we introduce the Radically Frequentist StatigiRiSS) theory which can be
considered as an alternative mathematical foundationatits (see [6], [7]). The mean fact
about RFS is that all results of Probability Theory which aglevant in statistics have a more
general counterpart in RFS. Moreover, these probabilsséitements can be deduced from their
RFS counterpart through a purely logical procedure. ThuS Béntains the whole scientific
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power of Probability Theory as concerns statistical maagion.

The fundamental concept of RFS is thatrahdom numberj.e. a finite sequencX =
(X1, ..., Xs) € RS with very large sizes and such thatfr {|X| > m} ~ 0 for everym =~ oo..
Its mean value MX), variance V(X), deviationo (X) anddistribution functionare defined as
usual by the formulas

l S
M(X) = gZXJ
j=1

V(X) = M((X—M(X)?) =M(X3) — (M(X))?,
a(X) = VX,
Fx(t) = fr{X<t}.

We say thatwo random numberX andY have common distributiaghand only if fr{X € I} ~
fr{Y e 1} for each interval . Starting from the concept of random number, we defitege
random sampl@s a finite sequence of random numb8rs: (X1, ..., Xpn) with n large but not
very large. In other words we have a matfs ) with n rows ands columns, where each column

is asample realizationThen write (S) for the average 08, 1 (S) = %

The concept of large random sample can be interpreted asealization of the informal
discourse which is usual in statistics: if very long indegiemt sampling could be performed
repeatedly a large number of times, we would know the phenomeearly perfectly.

LetT = {tg,---,tn} be a set oh real numbers withg < --- < ty andn weakly mod-
erate. A one-dimensional stochastic process indexed s/a sequence of random numbers
Xtg, - -+ » Xt, With the same very large size As a random sample, also a stochastic process can
be visualized by axsmatrix, whose columns are the trajectories of the process.

In order to express the low of matter we have introducet@@acteristic functiord x (t) =
M (exp(it X)) of a random numbeK which satisfies :

(i) if X andY have common (resp. weakly common) distribution, tdeg (t) ~ v (t)
(resp.~) for every weakly moderate (resp. moderdate)

(ii) inversion formula:

fra<X=<h + %fr{xza}—:—;fr{xzb}

1 /+T exp(—ita) — exp(—ith)
27 J_T1 it

~
~

Dy (t)dt

for everya < b, every very largdl ;
(iii ) for every continuous probability densitlywith

+T 00
/ f(x)dxz/ f(x)dx=0
—00 T
for all very largeT, there is a random numbet such that
/XJ f(xX)dx= ]
oo T s+ 1
Then
+00
Dy (t) = / expitx) f (x)dx

—00
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for all weakly moderate;
(iv) if Xis LL" for some weakly moderate then

n k
Ox(t+h) =dx)+ Y %M((iX)kexp(itX)) +h"e
k=1

wheree = 0 for allh = 0 and weakly moderate
(v) if S= (X4, ..., Xp) is a sample of independent random numbers then

Bxy o X (1) R Dy (1) - D, (1),

For the proof we refer to [6].

5. Theoretic model inside the RFS context

To formalize the empirical statistical description of §1 iweoduce a random numbe; for
every cell(i, j,k) where 1< i < n, 1< j € p, 1<k < q. These random numbers take their
values in a discrete finite s& and the numbers, p, q are large whiles is a very large. The
cells are supposed to be of small size. Thus the model carshalized by a multidimensional
tablexfj’k ,1<ax<s.
We have then the following cases:

a linear material is represented byas matrix;

a bidimensional material is represented by a cubipxsmatrix;

a tridimensional material is represented by an hypercakjoxgxsmatrix.

The statistical matter behavior law can be expressed by srafathe following conditional
frequencies:

friXijk=2alXig,jk =aw Xy, joky =82, » Xig jr ke = a)-

The model suggests the following rough classification ofvédrs:

A) Local behaviors: among them we distinguish between tbependent case
Vae E,Vay,---,a € E

‘ fr (Xijk =2l Xipjik = a1 Xig.joke = 2.+ Xig jr ke =ar) = ‘ ~0

fr (Xi,j,k = a)
and the weakly dependence case expressed by the conditions
Vae E,Vay,---,a € E
‘ fr (Xijk =2l Xigjiky =81 Xip joke =82, Xirjrk =a) = | _ g
fr (Xi,j,k = a)

B) Non local behavior, where we distinguish between thetslamge dependence expressed
by the two conditions

Vae E,Va,---,a € E
|f|’ (Xi,j,k =a) — fr (Xi,j,k =al X j .k =ar)|not%0
‘ fr (Xijk=al Xiy,jyky = a1 Xiy, jok, = 82, Xig jr ke = ar) = ‘ ~0
fr(Xijk=al X j.k =a)
and the weak short range dependence case expressed by:
\fr (Xi,j,k =a) — fr (Xi,j,k =a| X j .k =ar)\not%0
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fr(Xijk=alXigjik = a1 Xig joko =82+ X jr k. =) =
fr (Xijk=al X j.k =a)
the cells(iy, jr, kr) range into the neighborhood of tite j, k)cell;
C) the long range dependence case expressed by the cosdition
Vae E,Vay,---,a € E
| fr (Xi,j,k = a) — fr (Xi,j,k =al| X j .k = ar)| not~ 0
and
[fr(Xijk=a) = fr (Xijk=2alX_ j.k =a)[ =0
where the cellsir, jr, kr)are not necessary in the neighborhood of(ihe, k)cell.

This classification may be refined if one relates the depearedewith the distances. The
inversion formula of the characteristic function may befukt treat the information in order
to eliminate the white noise and to put in evidence the istcitharacteristic distances of the
concerned matter.

~0

6. Conclusion

This model gives a formal tool to characterize the behavienatter in terms of local and non-
local interactions.

A theoretical model inside the probabilistic context wotdghlace the random numbers by
the random variable and frequency by the probabilities hSumodelization hides the intuitive
interpretation of the model since the probability is a matagcal concept, which has no direct
statistical interpretation. However, in the statisticahtext of RFS, which works within the
mathematical framework of ZFLthe description of the behavior is at the same time intuitive
and formal.

References

[1] LuTz R.AND ALBUQUERQUEL G. Modern infinitesimals as tools to Mach intuitive and
formal reasoning in analysjso appear.

[2] MAGNO M., Buckling of generalized beam®uaderni del dip. di Matem. dell'Univ. di
Torino 27 (1999).

[3] GANGHOFFERJ.F.AND MAGNO M., Mechanics of planar beams focusing on buckling
phenomenaC. R. Acad. Sci. Pari82811 b (2000), 283-288.

[4] GANGHOFFERJ.F.AND MAGNO M., From microscopic to macroscopic mechanics of
beamsRend. Sem. Matem. Univ. e Polit. di Torisd 4 (1999).

[5] GANGHOFFERJ.F.AND MAGNO M., La mécanique des tissiPour la Science (french
edition of “Scientific American”), December 1999.

[6] MusioM. AND LuTz R.,Radically frequentist statistics: a new background fotistiacs
(2000), preprint.

[7]1 Musio M., Radically frequentist statistics: an intermediate thebefween statistics and
probability (2000), preprint.

[8] NELSONE.,Internal set theoryBull. Amer. Math. Soc836 (1977).



An alternative interpretation 187

[9] NELsoON E. Radically elementary probability thegrnann. Math. Studied17, Princeton
Univ. Press N.J. 1987.

[10] RoBINSONA., Non-standard analysjdNorth-Holland, Amsterdam 1966.

AMS Subject Classification: 74A25, 74A60.

Massimo MAGNO

Laboratoire de Physique et Mécanique des Textiles ENSITM
11, rue Alfred Werner

68093 Mulhouse, FRANCE

e-mail: massimo.magno@mageos.com

Monica MUSIO

Laboratoire des Mathématiques
Université de Haute Alsace

4, rue des fréres Lumiere
68093 Mulhouse, FRANCE



188 M. Magno - M. Musio



Rend. Sem. Mat. Univ. Pol. Torino
\ol. 58, 2 (2000)
Geom., Cont. and Micros., Il

A.V. Porubov*

STRAIN SOLITARY WAVES IN AN ELASTIC ROD WITH
MICROSTRUCTURE

Abstract. The nonlinear longitudinal strain solitary waves are stddnside cylin-
drical elastic rod with microstructure. The problem is salwsing the pseudo-
continuum Cosserat model and the Le Roux continuum modelrogeglure is
developed for derivation of a governing equation for loadihal nonlinear strain
waves. Exact solution of the equation has the form of a thiaggbell-shaped soli-
tary wave. The influence of microstructure on the solitaryavpropagation is
studied. Possible experimental determination of the patars of the microstruc-
ture is discussed.

1. Introduction

Sometimes classic elastic theory cannot account for phenomcaused by the microstructure
of a material. A particular case is a dispersion of strainesawn an elastic medium. The influ-
ence of microstructure may provide dissipative effects gl 4], however, here consideration is
restricted by non-dissipative case. The theory of micuzstre has been developed recently,
see [6, 7, 15, 17] and references therein. Most of resultsigab the linear theory of elasticity,
however, there are findings in the field of the nonlinear th¢ér7]. Strain waves were studied
mainly in the linear approximation [7, 15, 17]. Only a few \Werare devoted to the nonlinear
waves in microstructured non-dissipative media [6, 19,120 9]. Waves in elastimave-guides
with microstructure were out of considerable investigatid\so the values of the parameters
characterizing microstructure, are unknown as a rule, arigwv data may be mentioned [20].

It is known that the balance between nonlinearity and dgper may result in an appear-
ance of bulk localized long bell-shaped strain waves of pent form (solitary waves or soli-
tons) which may propagate and transfer energy over the listgrite along an elastic wave
guide. The amplification of them may cause the appearanckastigty zones or microcracks
in a wave guide. This is of importance for an assessment afility of elastic materials and
structures, methods of nondestructive testing, detetinimaf the physical properties of elastic
materials, particularly, polymeric solids, and cerami@&ulk waves provide better suited de-
tection requirements than surface strain waves in setting ualuable nondestructive test for
pipelines.

Recently, the theory has been developed to account for longitudinal strain solitary
waves propagating in a free lateral surface elastic rod1522]. The procedure has been pro-
posed to obtain model equations using boundary conditinrie@rod surface [18]. The nonlin-
earity, caused by both the finite stress values and elasterialaproperties, and the dispersion
resulting from the finite transverse size of the rod, whenafahce allow the propagation of

*This research has been supported by the INTAS under Grab168-
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strain solitary waves. The equation governing this process is of Boussinesq tyamely, a
double dispersive equation

2
vt — a1 Uxx — o2( V) xx + @3 Uxxtt — o4 vxxxx = 0.

The coefficients; depend upon the elastic parameters of the rod material.t Bgadion of the
equation has the form of a travelling bell-shaped solitaayev The amplitude and the velocity
of the solitary wave are explicitly connected with the @tastoduli. It allows to propose the
estimation of the Murnaghan third order elastic moduli ggimeasurement of the solitary wave
parameters [1]. Motivated by analytical theoretical pcidns, there has been successful exper-
imental generation of strain solitons in a polystyrene fegeral surface rod using holographic
interferometry [3]. The procedure developed in Ref.[1&]s bbeen successfully applied for the
more complicated modelling of strain waves in a narrowirg{4pand in a rod interacting with
an another external elastic medium [1].

The present paper refers to the study of nonlinear solitayes inside cylindrical rod with
microstructure. The problem is solved using the "pseudticonm” Cosserat model and the
Le Roux continuum model. A procedure is developed for déaowaof the model equation for
long longitudinal strain waves inside the rod. The influeatthe microstructure on the solitary
wave propagation is studied. Possible experimental détation of the parameters of the
microstructure is discussed.

2. Modelling of elastic medium with microstructure

Recall some basic ideas following Eringen [7]. Suppose theroelement of an elastic body
contains discrete micromaterial elements. At any time tiggtjpn of a material point of theth
microelement may be expressed as

@ — x4+ @),

wherex is the position vector of the center of mass of the macroetengé® is the position
of a point in the microelement relative to the center of m8$® motion of the center of mass
depends upon the initial position and timet, x = x(X, t), while for £ the axiom of affine
motion is assumed,

£ = xe 6,1 8¢,

whereZ(® characterizes initial position of a point relative to thetes of mass. Then the square
of the arc length igds®))2 = dx@dx(®, and the difference between the squares of arc length
in the deformed and undeformed body is

1) @ds®)2 - @dSY)? = (XK XL — OKL + 2X K XKML EM
+  XkM.K XkN,L Em En)d Xk d XL
+  2(Xk K xkL — 8K L + xkL xkm Em) d Xk dE
+  XkK XkLJEK dEL.

wheredk | is the Kronecker delta. Let us introduce vector of macrddisgmentsy(X, t) and
tensor of microdisplacement®,(X, t),

Ok + UL k)KL,
OLk + PLK)KL

Xk, K
XKkK
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Then three tensors characterizing the behavior of miarosired medium follow from (1),

1
CkL = E(UK,L-I-UL,K +UmkUm.L),
EkL = ®kL+ULk+Uwmk ML,
F'kem = Pk,m +UnK ONL M

whereCy | is the Cauchy-Green macrostrain ten&fy, is the tensor of a reference distortion,
'k LM is the tensor of microdistortion. Tensor of the second r&Rl accounts for the mi-
croelements motion relative to the center of mass of the ogdéement, while tensor of the third
rankk L characterizes relative motion of the microelements of ovoeteer.

The density of the potential ener@y should be the function of these tensors,
IT =TI(CkL, EkL, CkLm), more precisely upon the invariants of them. The bulk dgrit
the kinetic energy has the form [15]

@) K =%po (UI%A_I'*'JKN ‘DKM,t‘DNM,t),
wherepg is macrodensity of the elastic materidk y is the inertia tensor. Elastic media with
central symmetry posses simpler representatigny = J*Sk N -

One of the main problem is to define integrity basis of thremsaesCk |, ExL, TkLmMm
[23, 8]. Moreover, the basic invariants of the third and leigtank tensors have not been studied.
That is why the models were developed based on the additassaimption on a relationship
betweenJ and®. One of them is the pseudocontinuum Cosserat model. Acuptdiit

1
(3 kL =—ekLM DM, <I>M=§8MLKUK,|_,

whereegk v is the alternating tensor. The first relationship represémthe classic Cosserat
model when only rotations of solid microelements are pdssibiThe last expression in (3)
accounts for the pseudocontinuum Cosserat model when mitation vector® coincides
with the macro rotation vector. In this case the density ef plotential energy my be either
I =I(CkL,TkLm) or 1 = I(Ck L, Pk, ) [17, 20]. TensoiEk . has the form

1
Exi =5 (Uk.L +ULk + UM kUm.L —UmkUL M)
and only linear part oEk | coincides with those o€k | . Assume the microstructure is suf-
ficiently weak to be considered in the linear approximatldn[20], and the Murnaghan model
[5, 12, 16] is valid for macro motion. Then the density of tleeemtial energy may be written as

A4 21 | +2m
2

+ ZMMZ@K,L(DK,L + 1Pk, LOL K +BPK,KDL,L),

4 n 13 —2mlyly +nli3

12 —2ulp +

wherel andu are the Lamé coefficientd, n, n) are the third order elastic moduli, or the Mur-
naghan moduli,M, n andg are the microstructure constantg, p = 1, 2, 3 are the invariants
of the tensocC:

(5) 11(C) = trC, 12(C) = [(trC)% —trC?]/2, 13(C) = detC.
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Another simplified microstructure model was used by someast see [15, 19, 10]. Sometimes
it is referred to as the Le Roux continuum [9]. According to it

dkL =-Ur k., TkLm =-UL km-

When microstructure is weak and may be considered in thadiapproximation the linear part
of Ex L is zero tensor. It means that there is no difference betweésrmation of elastic mi-

croelement and elastic macrostructure. In this dése IT(Ck L, 'kLm).- Assume again the
Murnaghan model for the macro part of the energy density aedhe linear Mindlin’s model

[15] for its micro part one can obtain

A+2u | +2m
n = > |f—2ﬂ|2+Tlf—2m|1|2+n|3+a1FKKMFMLL—|—
(6) 8K LLTKMM + 83Tk KMTLLM + 84l |y + 3Tk LMTMLK -
whereg;, i = 1— 5, are the constant microstructure parameters.

3. Nonlinear waves in a rod with pseudocontinuum Cosserat narostructure

Let us consider the propagation of a longitudinal strainevewan isotropic cylindricatom-
pressiblenonlinearly elastic rod. We take cylindrical Lagrangiambnates X, r, ¢) wherex

is directed along the axis of the rodoo < X < oo; r is the coordinate along the rod radius,
0 <r < R;gpisapolaranglep €[0, 27r]. Neglecting torsions the displacement vector is
U = (u, w, 0). Then nonzero components of the macrostrain te@sare

r r2’

1 1
Cxx = Ux+§(U§+w>2<)vCrr=wr+§(ur2+wr2)vc<ﬂ<ﬂ=

\e]

1
@) Cix = Cxr= E (Ur + wx + UxUr + wxwr).

while nonzero components of the rotation tenégr are
8 Dy, x = wxx — Urx, Dy r = wxr — Urr.

The governing equations together with the boundary canditi are obtained using the
Hamilton variational principle, i.e., setting to zero thaiation of the action functional,

t1 00 R
9 58:5/ dt 271/ dx/ r £dr | =0,
to —00 0

where the Lagrangian density per unit volunfesK — TIT, with K andIT defined by Egs.(2)
(4) correspondingly. The integration in brackets in (9)asrizd out at the initial time = tg.
Initially, the rod is supposed to be in its natural, equilibn state.

The following boundary conditions (b.c.) are imposed:

(10) w — 0, atr — 0,
(11) Pr = 0, atr = R,
(12) Px = 0, atr = R,
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where the component$;, Prx of the modified Piola - Kirchhoff stress tens®rare defined
from (9) with (4), (2), (7) and (8) being taken into account:

At2u+m o

2 r
A+ 2 w2
2 2’
w A+2 5

A+ 2) uxwr + (2 —2m+n) UXT+T u2 +

w
Pr = ()»+2M)wr+)»?+)hux+

3L +6u+ 2 +4m
2

w
wr2+(k+2l>wrr—+

A+2u+m

(13) !

w>2< + (1 + M) Ur wx +4MM2 (Urrx — wxxr) ,

w
Prx = U +wx)+OG+2u+m)Uwr + (24 +2m—n) Ur —+

2m
A+ 2+ m) uxuy + ————

w
> wx?‘l'(l/-‘l'm) wxwr +

1
(1 +m) uxwx + 4MM2[wxxx — Uxxr + v (r (wxr — Urr )y —

(14) %J*(Urtt — wxtt)].

Exception of torsions provides transformation of the aliiD problem into a 2D one. Sub-
sequent simplification is caused by the consideration of tnig elastic waves with the ratio
between the rod radiuR and typical wavelength is R/L « 1. The typical elastic strain mag-
nitude B is also smallB « 1. The Hamilton principle (9) yields a set of coupled equagio
for u andw together with the b.c. (11 ), (12). To obtain a solution invensal way one usually
proceeds to the dimensionless form of the equations and lfmykthe unknown displacement
vector components in the form of power series in the smalpaters of the problem (for ex-
ampleR/L), hence, leading to an asymptotic solution of the problemwéler, this procedure
has some disadvantages. In particular, comparison of #dighions from the dimensionless
solution to the experiments suffers from the fact that d@mdL, are not well defined. Further,
the coefficients of the nonlinear terms usually contain doations of elastic moduli which may
be also small in addition to the smallness®f21, 22] something not predicted beforehand.
Finally, this procedure gives equations of only first ordetiine, t, while general equations for
displacements andw are of the second order in time. Therefore the solution ofrtbdel equa-
tion will not satisfy two independent initial conditions ¢tongitudinal strains or displacements
[21].

An alternative is to simplify the problem making some asstioms about the behavior of
longitudinal and/or shear displacements and/or straitisilastic wave-guide. Referring to the
elastic rod these relationships give explicit dependerfiaeandw upon the radius, while their
variations along the rod axis are described by some unknawcetibn and its derivatives along
the axis of the rod. Then the application of Hamilton’s pijate (9) yields the governing equation
in dimensional form for this function. This equation is okteecond order of time, hence its
solution can satisfy two independent initial conditionsnyAcombinations of elastic moduli
appear in the coefficients of the equation, hence, subseqaaling may take into account their
orders when introducing small parameters.

For an elastic rod, the simplest assumption is the planes estion hypothesis [13]: the
longitudinal deformation process is similar to the beards@ment on the thread. Then every
cross-section of the rod remains flat, henge= U (x,t) does not change along the radius
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r. However, this assumption is not enough due to the Poisseatgfe., longitudinal and shear
deformations are related. That is why Love proposed to usatianship betweew andu: w =

—r v Uy, with v the Poisson coefficient[11]. Unfortunately, the plane sfesction hypothesis
and Love’s hypothesis do not satisfy the boundary conditibat demand vanishing of both the
normal and tangential stressé%; and Prx, at the lateral surface of the rod with prescribed
precision.

Another theory has been proposed in [18] to find the relakipssbetween displacement
vector components satisfying b.c. on the lateral surfacthefrod (11), (12) as well as the
condition forw (10).

Since pure elastic wave are studid®®l,< 1, the "linear” and "nonlinear” parts of the re-
lationships may be obtained separately. A power seriesoappations is used, as generally
done for long wave processes. An additional paramgter MZ/ R? is introduced to charac-
terize the microstructure contribution. Accordingly, tbagitudinal and shear displacement in
dimensionaform are:

u = uL+unNL,
uL = Up(X,t) +rusp(x,t) + r2u2(x,t)+...,
(15) UNL = UnLoX ) +runpaxt) + ...,
w = WL+ WNL,
wl = wo 1) 4+ wiX, t) + rZwa(X, t) + ...,
(16) wNL = wNLoX ) +rwnLi(X, D + ..

Substituting the linear partg. andw| (15), (16) into the b.c. (10) and in the linear parts
of b.c. (11), (12), and equating to zero terms at equal poafar®ne obtainsl, andwy. Using
these results the nonlinear pamg,_ , wy L are similarly obtained from the full b.c. We get

2

vre 144y
17 u=U(,t —
7 x, )+ 2 1 2y

XX

_ _ v 3 _
w = —vrUx 2G-20)(1—4y) [v+ 4y 2+ v)]r°Uxxx
|:v(l+v) L A-2v)1+v)

2 E

(18) (1a—-20)2+2m(1+v) —nv)]ruxz,

wherev is the Poisson ratioE is the Young modulus. Other terms from the series (15), (16)
fori > 3 may be found in the same way, however, they are omitted hetause of no
influence on the final model equation for the strain waves.stuiing (17), (18) into (9), and
using Hamilton’s principle we obtain that longitudinalatrs,v = Uy, obey a double dispersive
nonlinear equation:

(19) vt — g vxx — a( UZ)Xx+063 vxxtt — o4 vxxxx = 0,

wherea1 = ¢2 = E/pg, a2 = B/(2p0), B = (3E+2 (1—2v)3 +4m(14v)2(1—2v) +6nv2),
azg=v(l—-v) R2/2,
VE R? 1+4y

20 14y’

ag =
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Hence the microstructure affects only dispersion in EQ.(The solitary wave solution of
Eq.(19) is

20) v=6vER2k2 (1+4y_(1—v)V2

5 T2 2 ) coshi2(k (x — V),

whereV is a free parameter while the wave numkeés defined by
2o (V2 — 2
1) k2 _ 00( C5)

- 2 (1+4y _ 1-v)V2\’
VER (—1_4V - Agv )

Therefore the contribution of the microstructure resuttshie widening of the permitted
solitary wave velocities,
V2 1 1+4y
1< ——<— .
2 1-vl-4y
Also the characteristic width of the solitary wave propamtl to I/ k becomes larger relative
to the wave width in pure elastic case,= 0. We considely to be rather small due to the
experimental data from Ref. [20]. Then the type of the splitsave (compression/tensile) is
defined by the sign of the nonlinearity paramegdike in case without microstructure.

4. Nonlinear waves in a rod with Le Roux continuum microstrudure

The procedure of obtaining the governing equations is ainbd those used in previous section.
The nonzero components of the tenEgy \ are

Ixxx = —Uxx, D'xxr = T'rxx = —Uxr, Dxrx = —wxr,

Cxrr = Trrx = —wxr, Drxr = —Urr, Tyer = —wyr .

The b.c. (11), (12) are satisfied for the strain tensor coraptsn

A+2n+m 3A+6u+ 2 +4m
g ur2 Mz wr2+

w
Prr = ()\-+2H«)wl‘+)\-r_+ )VUX+

w A+ 2 w? w
()\.+2|)wrr—+Tr—2+()\.+2|)UXWr+(2| —2m+n) er—+
A+2 5 A4+2pu+m

u
2 X 2

w2 + (i + M) Up wy + 23* uxtt + wrtt) —

1 1
(22) 2a1Uxxx — 2(a1 + 2ax)wxxr — 2(ag + aZ)F (r (wrr )y — a- (r (uxr))r ,

T
x
Il

w
w (Ur +wx) + (A + 20 +m) urwr+(2A+2m—n)ur?+

2m—n
2

w
()\.+2M+m) UxUr + er—+(/L+m) wyxWwr +

1
(23) (n+m) uxwyx + 23" urtt — agwxrr — 2(ag + 2a)Uxxr — 23-2F (r (Urr )y -

Then the approximations for the components of the displac¢wector have the form

w2 1

(24) u=U,t)+ > muxx,
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4352 —v)(L+v)(L—2v) 4
EG— 2n)R2 r Ut -
12— (1—20)(1— N)(G(L —v) —2vN) g5
r“Uxxx —
23— 21)(1— N)
v(l+v) A-2v)(1+v)
R

w = —vrUyx —

(25)

(| (1—20)2 4+ 2m(1 + v) — nv)] ru2,

whereG = 2a;/u R2, N = 2a0/ 14 R2. Like in previous section the governing equation for
longitudinal strainv = Uy is the double dispersive equation (19) whose coefficierslafined
now as

R2 2R2 CZRZ
v re +23*v2—v), a4 = o

2
=C_, = = — — =
=592 20—-N) 2 20— N)

L.
200’

Solitary wave solution has the form

6vE R2k? 1 1 43¥*2—v) V2
(26) v = ( _|:1—N v+ R2 ]

B 1-N —2) cosh2(k (x — V1)),

%k
whereV is a free parameter, and the wave number defined by

2(1— N)po(V2 —c2)
VE R2 [cﬁ —V2(1—v(1— N) +4J*(1— N)(2 — v)/Rz)] '

27) k2 =

Physically reasonable case corresponds to rather $indl < 1. Then the influence of the
microstructure yields an alteration of the permitted sojitwave velocities interval,

V2 1

1<—2< .
2  1-v(1—N)+43*1-N)2-v)/R2

The widening or narrowing of the interval depends upon thetimship betweeMN and the
parameter of microinertid*. Like in previous section the type of the solitary wave isgmed
by the sign of the nonlinearity paramet@r At the same time the characteristic width of the
solitary wave proportional to/k turns out smaller than the wave width in a pure macroelastic
caseN =0,J* =0.

5. Discussion

It is found that the double dispersive equation (19) accotmtlongitudinal strain wave propa-
gation inside the rod even in presence of the microstructuma only dispersion term coefficients
alter in comparison with the pure macroelastic case. Theguhare proposed in [18] is profitably
applied for the derivation of the governing equation in digienal form for both the Cosserat
and the Le Roux models. The assumption of the linear coritoibbiof the microstructure is
correct since its nonlinear contribution, being weakery piovide alterations only in the ne-
glected higher order nonlinear and dispersion terms in tiverming equation. Hence we don’t
need in an additional nonlinear terms in the density of theq@l energyl1 thus avoiding the
additional unknown parameters (like Murnaghan’s thirdeonshoduli) describing the nonlinear
contribution of the microstructure.
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The alterations of the amplitude and the wave width, causethd microstructure, have
been found in both case under study. The important result feé opposite changing of the
wave width which gives a possibility to distinguish the Garsg and the Le Roux models in
possible experiments.

The dispersion caused by the microstructure may be obsexmetimentally, and numer-
ical data on microstructure parameters my be obtained[ROExperiments on solitary waves
propagation [3] the amplitude and the velocity of the wavey rha measured. Therefore ex-
pressions (20), (21) provide possible estimation of thempaterM in the pseudocontinuum
Cosserat model. In case of the Le Roux continuum there istaa parameted*, see (26), (27),
and parameterSl and J* cannot be estimated separately.
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R. Sege¥

NOTES ON STRESSES FOR MANIFOLDS

Abstract. The geometric structure of stress theory on differentiabémifolds
is considered. Mechanics is assumed to take place an-dimensional and no
additional metric or parallelism structure is assumed. ifferent approaches are
described. The first is a generalisation of the traditiorali€hy approach where
the resulting stresses are represented mathematicallgcasrwalued(m — 1)-
forms. The second approach is variational and stressesgmesented by densities
valued in the dual of the first jet bundle. Itis shown how aatiohal stress induces
a Cauchy stress.

1. Introduction

This work describes some issues related to the formulafistress theory on manifolds. In pre-
vious works (see [1, 2, 3, 4]), stress theory for the case &vheth body and space are modeled
by differentiable manifolds rather the traditional Euelith spaces was developed. In [1] a gen-
eral weak formulation of stress theory was presented. Obakées of some general guidelines
(see the motivation for the introduction of variationaksses below), stresses were presented as
measures on the body manifold valued in the dual of a jet leurlilich a stress measure repre-
sents a force using a representation theorem for the forei€unal. In that work, assuming that
the stress measures may be represented by smooth derbdiesiditional geometric structure
of a connection was used in order to allow the representafiarforce by a body force field and
a surface force field. In the sequel, we will refer to this aggh as the variational approach. In
the more recent works, [2, 3] stress theory was presentedamifoids without any additional
geometric structure (e.g., a connection) from a point ofwileat is analogous to the classical
Cauchy theory of stresses. In [2] the theory was presentdtidaase of scalar valued quantities
and in [3] the theory was extended to forces. We will referhis method as the generalized
Cauchy approach. In [4], some aspects of the relation betwe= Cauchy approach and the
variational approach were considered.

After a presentation of the generalized Cauchy approactetti@ 2, Section 3 is con-
cerned with the Cauchy postulates given in [3]. It is showat the boundedness postulate in
[3], that is a generalization of the balance of momentum @tthditional formulation, is not
general enough. A revised version of the boundedness ptstigl suggested and it is shown
that the weaker assumption does not alter the proof of thergéned Cauchy theorem in the
aforementioned paper.

Sections 4 and 5 review the variational approach and ittiealéo the generalized Cauchy
approach presented in [4]. Section 6 extends this relatidnshows how the representation of

*The research leading to this paper was partially supporethé Paul Ivanier Center for Robotics
Research and Production Management at Ben-Gurion Urtiyersi
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forces by body forces and surface forces in the Cauchy appisacompletely equivalent to the
representation of forces by variational stress densiti¢ise variational approach.

2. Cauchy'’s stress theory for manifolds

Letw: W — U be a vector bundle over the-dimensional orientable manifold. It is assumed
that a particular orientation is chosen &n The vector bundle is interpreted as the bundle of
generalized velocities ovéf. The manifold/ is interpreted as the universal body and the vector
bundle is interpreted as the bundle of generalized vetscitiverl/. Cauchy’s stress theory
for manifolds, presented in [3], considers for each compactimensional submanifold with
boundaryR of U linear functionals of the generalized velocity fields camiteg a volume term
and a boundary term of the form

Fr(w) = / br(w) + / tr(w).
R R

Here, using the notatiof\ P(T*X) for the bundle ofp-forms on a manifoldX, w is a section of
W, by, thebody forceis a section of. (W, A™(T*R)) andty theboundary forcés a section

of L(W, /\m_l(T*aR)). The functionalFy, is interpreted as the force, or power, functional and
the valueFz (w) is classically interpreted as the power of the force for thieegalized velocity
field w.

Cauchy'’s postulates for the force syst¢Ry = (b, tr)} presented in [3] may be sum-
marized as follows.

(i) Foreveryx € U and every bodyR, by (X) = b(x), that is, the value of the body force at
a point is independent of the body containing it. Accordingle will omit the subscript
R.

(i) Let us consider the Grassmann bundle of hyperplabgs1(TU) — U whose fiber
Gm—1(Txl{) at any pointx € U is the Grassmann manifold of hyperplanes, (& 1)-
dimensional subspaces of the tangent spaéé Let

m—1

LW, /\ Gm-1(TU)*) > Gm_1(TU)

be the vector bundle oves,_1(TU) whose fiber over a hyperplarté C Txl/ is the

vector space of linear mappingiwx, /\m*1 H *) Then, the dependencetgf onR is
via a smooth section

m—1
T G (TU) —> LW, /\ Gm_1(TU)*),
the Cauchy sectiopsuch thatp = X' (H) whereH = TxaR.
(iii) The Cauchy sectiolX' is continuous.
(iv) Thereis a sectiog of L(W, A™(T*1)) such that

/tR(w)’ S/C(w)
R

|Frw)| = Vb(w)+
R IR

for every bodyR.
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Using the results of [2], it is shown in [3] that there is a urécsectior of L (W, /\m_l(T*L{))
called theCauchy stressuch that

tr(w)(vy, ..., vym—1) =0 (w)(vy, ..., vm-1),

for any collection ofm — 1 vectors(vy, ..., vm—1) € TxdR, X € R, where the dependence on
x was omitted in order to simplify the notation. Using the niota.: 9R — U/ for the natural
inclusion mapping, so that : /\m_l(T*L{) - AM —1(T*oR) is the restriction of forms, we
may writetg (w) = * (o (w)) which we will also write asz = *(o)—the generalized Cauchy
formula. We will refer to this result as thgeneralized Cauchy theorem

Assume tha(xi , w*) are local vector bundle coordinates in a neighborheod(U) c W,
U c U with local basis elementdV*e,} so a section ofV is represented locally by“ W%e,.
Then, denoting the dual base vectors{ly* e, } a stressr is represented locally by

W, @ dxtA ... AdXKA ... AdX™,

%1..k..m

where a “hat” indicates the omission of an item (an index oacdr). The value of (w) is
represented locally by

. oyl Tk m
01 k. mW dx A ADXEA L AdX T

3. The revised boundedness postulate

If we substitute the generalized Cauchy formula into theesgion forFz (w) we obtain

Fr(n = [br+ [ traw)
R R

=/b7z(w)+ / (o (w))
R

R

=/bR(w)+/d(a(w)),
R

R

where Stokes’ theorem was used in the last line. It is clean fihe local expression far (w)
that the exterior derivativdo (w) depends on the derivative of an not only on the local value
of w. In other wordsF5 (w) is a local linear functional on the first order igtw).

Using the observation th&tp should be a local linear functional on the first jetwof we
replace the boundedness postulatglfy the following

Revised boundedness postulate

There is a sectio of L (J Tow), A™(T*U)) such that

|Fr(w)| = ’/b(w)-i-/t?z(w)‘ < [|stiw)
R R R

)

where the absolute value of amform 6, S(j 1(w)) in this case, is given as

6(x) if 6(x) is positively oriented,
—6(x) if 6(x) is negatively oriented

60Ol = {
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relatively to the orientation chosen th
It is noted that the revised boundedness postulate may alsgitien as

’/ tR(w)‘ < [|soli*w).
R R

for some sectior of L (J1(W), A™(T*2)). This follows from

—‘/b(w)‘+‘/tn(w)‘ < ‘/b(w)+/tn<w) < [|stiw)
R R R R R
SO
’/ tR(w)‘ < [[stita)|+ ’/b(w)’
R R R
s/IS(jl(w>)]+/]b<w)\
R R
= [ ([strwn)] +[oe])
R
s/’So(jl(w>)’,
R
for someS,.

For an arbitraryi € U we want to show that
tr(w) = Z(TxdR)(w) = * (o (w)),

for a unique element oL(WX, /\m —1(TXL{)), where in the equation above we omitted the
dependence or.

Just as in [3], the proof the generalized Cauchy theoremsisan the following points:

(8 The assertion is local and written in an invariant form aadde it may be proved in any
vector bundle chart.

(b) Using a local basigWe,} for the neighbohood where the vector bundle chart is used,
any vectorw € Wx may be expressed in the form= w*W%g, , sotp (w) = w¥rR,,
where,rp, = tr (W%ey).

(c) For the local vector fieldV“e, in the chart neighborhood of, the scalar valued exten-
sive property given by the volume terfi, = b(W%g,), the flux density termr, =
tr (W*ey), and the source ters, = \S(j 1(Wa3@))] satisfies the generalized Cauchy
postulates for scalar valued quantities (see [2]). In paldr, it is noted that iS(j 1(w))
is represented locally by

S(j1w) 1 mdX¥A - ADXT = (Sy1 mw® + Sy pwd)dxtAL L Adx™

(the components dual 0* and those dual te* differ in notation only by the number

of indices), thensy = |S,1._ml- Hence, by the Cauchy theorem for scalars [2], there is a
unique collection ofdimWy) (m — 1)-formso, such thatrg, = t*(oy). These forms
represent (x) € L(WX, /\m_1 TxaR) in the given chart.
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4., Variational stress densities

Let7: W — U be a vector bundle as in the previous sectiornvafiational stress densitis a
section ofL(Jl(W)l /\m(T*L{)), whereJ1(W) is the first jet bundle associated wht.

For the vector bundle coordinate systexh w¥),i=1,. , m, « =1,...,dim(Wy), the
jet of a section is represented locally by the functi¢n$ (xi ) w (xk)} where a subscript fol-
lowing a comma indicates partlal differentiation. A vaigaial stress density will be represented
locally by the functiongS,1. m, ﬁl,..m} so that the single component of threform S( 1(w))
in this coordinate system is

Sy = S mo® + Sy

Note that the notation distinguishes between the compenein® that are dual to the values
of the section and those dual to the derivatives by the nuroberdices only. The next few
paragraphs motivate the introduction of variational stidensities.

The rational behind the generalized variational formolatf stress theory is the frame-
work for mechanical theories where a configuration manikbnstructed for the system under
consideration, generalized velocities are defined as eienud the tangent bundle to the con-
figuration manifold, and generalized forces are defined emehts of the cotangent bundle of
the configuration space. For the mechanics of continuougebod configuration is an embed-
ding of the bodyR in spaceM. The natural topology for the collection of embeddings & th
Cl-topology for which the collection of embeddings is opentia tollection of aICl-mappings
of the body into space. Using this topology, the tangentespadhe configuration manifold at
the configurationr: R — M is Cl(K*(TM)), the Banachable space@f—sections of the pull-
back«*(TM). Thus forces in continuum mechanics are eIement@l()f*(TM))* — linear
functionals on the space of differentiable vector fieldsigged with theCl-topology.

The basic representation theorem (see [1]) states that@ fanctionalF € Cl(K*(TM))*

may be represented by measureséfithevariational stress measuresalued inJ 1(/c*(TM))*,
the dual of the first jet bundlél(*(TM)) — U. Thus, the evaluation of a forder on the
generalized velocity is

Fr(w) = / du(jtw)),
R

wherep is the J1(«* T M)*-valued measure — a section Schwartz distribution.

Assuming thatc is defined on all the material univergé we use the notatioW for
k*(TM). This vector bundle can be restricted to the individual bedand with some abuse
of notation, we use the same notation for both the bundle @snikstriction to the individual
bodies.

Thus, in the smooth case, a variational stress measureeis giterms of a sectio8 of the
vector bundle of linear mappings(Jl(W), /\mfl(T*u)) )

Fr(w) = / S Yw)).

This expression makes sense&;’;l(w)), is an(m — 1)-form whose value at a point € R is
S0 (jLw)(x)).
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Since in the sequel we consider only the smooth case, we séll'variational stresses” to
refer to the densities.

5. The Cauchy stress induced by a variational stress

In [4] we defined a canonical mapping

m m—1
po: L(IT W), A\(T*)) = L(W, A (T*w)),

that assigns to a variational stress denSity Cauchy stress satisfying the following relation.
At everyx € U (we suppress the evaluationxain the notation)

¢ Ao(w) = S(jpeuw)-

Here, jpgw is roughly the jet ai of a section whose value is 8 Wy and its derivative is
¢ ®w. More precisely, ifu: / — W is the section whose first jet atis jyg,, then,u
satisfies the following conditionsu(x) = 0; denoting the zero section &% by 0, Txu —
Tx0 e L(TXL{, TO(X)WX) induces the linear mapping w through the isomorphism dy ) Wx
with Wy. The local representative qi, is as follows. Ifoc = ps(S), then, using the local
representatives af andSas in the previous sections,

OpL..m= (—1)"1S+'ﬂl._.m, (no sum ovet).

The mappingp, is clearly linear and surjective.

6. The divergence of a variational stress

Given a variational stress densiBjts generalized divergence Dis the section of the bundle
L(W, A™(T*U)) defined by

DivS(w) = d(ps (S)(w)) — S(IL(w)).

The local expression for Di%(w) is

(s

wl.mi — Ser.m)w¥dxtA. . AdX™,

which shows that DivS depends only on the values of and not its derivative. With these
definitions one obtains for the case where

Fr(w) = / S(itw))
R

that
Fr(w) = / br(w) + / tR(w)
R R

wheretg (w) = t}"z(a(u))) and DivS+ bi = 0. We conclude that every variational stress
induces a unique force systeftbg, tg)} through the Cauchy stress it induces and its diver-
gence. Actually, we obtained a decompositiorﬁ()fl(w)) into an exact differential and a term
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that is linear in the values af. The converse is also true. If we have a force system that sat-
isfies Cauchy’s postulates, then, the induced Cauchy stresges us to define a secti&of
L(3*w), A™1(T*1)) by S(j1(w)) = b(w) + do (w). Clearly, writing the local expression
for S, itis linear in the jet ofw. Hence,

Fr(w) =/b(w)+/da(w) =/S(j1(w)).
R R R

If for a given variational stress Dig = 0, thenS(j 1(w)) =do(w),foro = py o S.
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NON-LOCAL CONTINUUM THERMODYNAMIC
EXTENSIONS OF CRYSTAL PLASTICITY TO INCLUDE
THE EFFECTS OF GEOMETRICALLY-NECESSARY
DISLOCATIONS ON THE MATERIAL BEHAVIOUR

Abstract. The purpose of this work is the formulation of constitutivedels
for the inelastic material behaviour of single crystals godlcrystals in which
geometrically-necessary dislocations (GNDs) may devatopinfluence this be-
haviour. To this end, we focus on the dependence of the davelot of such dis-
locations on the inhomogeneity of the inelastic defornratiothe material. More
precisely, in the crystal plasticity context, this is a tiela between the density of
GNDs and the inhomogeneity of inelastic deformation in @l&ystems. In this
work, two models for GND density and its evolution, i.e., &lglsystem-based
model, and a continuum model, are formulated and investibad\s it turns out,
the former of these is consistent with the original two-dnsienal GND model of
Ashby (1970), and the latter with the more recent model ofdvai Parks (1997).
Since both models involve a dependence of the inelastie stat material point on
the (history of the) inhomogeneity of the glide-systemaiséic deformation, their
incorporation into crystal plasticity modeling necedyaiinplies a correspond-
ing non-local generalization of this modeling. As it turng,ca natural quantity
on which to base such a non-local continuum thermodynanmergdization, i.e.,
in the context of crystal plasticity, is the glide-systemalar) slip deformation.
In particular, this is accomplished here by treating ead slip deformation as
either (1), a generalized “gradient” internal variable,(®y, as a scalar internal
degree-of-freedom. Both of these approaches yield a goneing generalized
Ginzburg-Landau- or Cahn-Allen-type field relation forsthicalar deformation
determined in part by the dependence of the free energy attiglueation state in
the material. In the last part of the work, attention is famien specific models for
the free energy and its dependence on this state. After susinggand briefly dis-
cussing the initial-boundary-value problem resultingrrthe current approach as
well as its algorithmic form suitable for numerical implentation, the work ends
with a discussion of additional aspects of the formulatiangl in particular the
connection of the approach to GND modeling taken here whircdpproaches.

*| thank Paolo Cermelli for helpful discussions and for dragvimy attention to his work and that of
Morton Gurtin on gradient plasticity and GNDs.
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1. Introduction

Standard micromechanical modeling of the inelastic malttéehaviour of metallic single crys-
tals and polycrystals (e.g., Hill and Rice, 1972; Asaro,398uitifio and Ortiz, 1992) is com-
monly based on the premise that resistance to glide is duelynai the random trapping of
mobile dislocations during locally homogeneous defororatSuch trapped dislocation are com-
monly referred to as statistically-stored dislocationS[PS), and act as obstacles to further dis-
location motion, resulting in hardening. As anticipatedhie work of Nye (1953) and Kroner
(1960), and discussed by Ashby (1970), an additional dmution to the density of immobile
dislocations and so to hardening can arise when the comtinengthscale (e.g., grain size) ap-
proaches that of the dominant microstructural featureg,(mean spacing between precipitates
relative to the precipitate size, or mean spacing betweile gilanes). Indeed, in this case,
the resulting deformation incompatibility between, e‘gard” inclusions and a “soft” matrix,

is accomodated by the development of so-called geomédyrinatessary dislocations (GNDs).
Experimentally-observed effects in a large class of maleguch as increasing material hard-
ening with decreasing (grain) size (i.e., the Hall-Petdbaf are commonly associated with the
development of such GNDs.

These and other experimental results have motivated a nuaibgorkers over the last
few years to formulate various extensions (e.g., basedramgjradients: Fleck and Hutchin-
son, 1993, 1997) to existing local models for phenomenokigilasticity, some of which have
been applied to crystal plasticity (e.g., the strain-geattbased approach: Shu and Fleck, 1999;
Cosserat-based approach: Forest et al., 1997) as welloldarecent efforts in this direction
based on dislocation concepts, and in particular on theafiédye (1953) that the incompati-
bility of local inelastic deformation represents a contimumeasure of dislocation density (see
also Kroner, 1960; Mura, 1987), include Steinmann (19B&),and Parks (1997), Shizawa and
Zbib (1999), Menzel and Steinmann (2000), Acharya and Bag28€00), and most recently
Cermelli and Gurtin (2001). In addition, the recent work afi©®and Repetto (1999) and Ortiz
et al. (2000) on dislocation substructures in ductile grgl/stals demonstrates the fundamental
connection between the incompatibility of the local inétadeformation and the lengthscale of
dislocation microstructures in FCC single crystals. Irtipatar, the approaches of Dai and Parks
(1997), Shizawa and Zbib (1999), and Archaya and Bassa@Djj2fre geared solely to the mod-
eling of additional hardening due to GNDs and involve no tiddal field relations or boundary
conditions. For example, the approach of Dai and Parks (183 used by Busso et al. (2000)
to model additional hardening in two-phase nickel supeyalland that of Archaya and Bassani
(2000) by Archaya and Beaudoni (2000) to model grain-sifectf in FCC and BCC polycrys-
tals up to moderate strains. Except for the works of AchangBassani (2000) and Cermelli
and Gurtin (2001), which are restricted to kinematics, Bthese presume directly or indirectly
a particular dependence of the (free) energy and/or othgerakent constitutive quantities (e.g.,
yield stress) on the gradients of inelastic state variatdad in particular on that of the local
inelastic deformation, i.e., that determine its incompiity. Yet more general formulations of
crystal plasticity involving a (general) dependence offtke energy on the gradient of the local
inelastic deformation can be found in, e.g., Naghdi andi&sa (1993, 1994), Le and Stumpf
(1996), or in Gurtin (2000).

From the constitutive point of view, such experimental aratieling work clearly demon-
strates the need to account for the dependence of the cnstitelations, and so material
behaviour, on the inhomogeneity or “non-locality” of theemal fields as expressed by their
gradients. In the phenomenological or continuum field cangich non-locality of the material
behaviour is, or can be, accounted for in a number of exigpgoaches (e.g., Maugin, 1980;
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Capriz, 1989; Maugin, 1990; Fried and Gurtin, 1993, 1994:tiBu1995; Fried, 1996; Valanis,
1996, 1998) for broad classes of materials. It is not the gaef the current work to compare
and contrast any of these with each other in detail (in tigam, see, e.g., Maugin and Muschik,
1994; Svendsen, 1999); rather, we wish to apply two of thefartoulate continuum thermody-
namic models for crystal plasticity in which gradients o thelastic fields in question influence
the material behaviour. To this end, we must first identify thlevant internal fields. On the
basis of the standard crystal plasticity constitutivetiefafor the local inelastic deformatiaf,

a natural choice for the principal inelastic fields of thenfatation is the set of glide-system
deformations. In contrast, Le and Stumpf (1996) worked @irthariational formulation directly
with F, and Gurtin (2000) in his formulation based on configuraldiorces with the set of
glide-system slip rates. In both of these works, a principallt takes the form of an extended
or generalized Euler-Lagrange-, Ginzburg-Landau- or Galten-type field relation for the re-
spective principal inelastic fields. Generalized formswaftsfield relations for the glide-system
deformations are obtained in the current work by modelirggrttin two ways. In the simplest
approach, these are modeled as “generalized” internahlag (GIVs) via a generalization of
the approach of Maugin (1990) to the modeling of the entrapy. fAlternatively, and more gen-
erally, these are modeled here as internal degrees-afeéne¢DOFs) via the approach of Capriz
(1989) in the extended form discussed by Svendsen (200d&ddition, as shown here, these
formulations are general enough to incorporate in padicainumber of models for GNDs (e.qg.,
Ashby, 1970; Dai and Parks, 1997) and so provide a thermadignframework for extended
non-local crystal plasticity modeling including the effeof GNDs on the material behaviour.

After some mathematical preliminaries (§2), the paperrse@3) with a brief discussion
and formulation of basic kinematic and constitutive issaugrelations relevant to the continuum
thermodynamic approach to crystal plasticity taken in thisk. In particular, as mentioned
above, the standard constitutive form B} in crystal plasticity determines the glide-system
slip deformations (“slips”) as principal constitutive urdwns here. Having then established the
corresponding constitutive class for crystal plastioitg turn next to the thermodynamic field
formulation and analysis (884-5), depending on whethewgtlie-system slips are modeled as
generalized internal variables (GIVs) (84), or as intetwgrees-of-freedom (DOFs) (85). Next,
attention is turned to the formulation of two (constitu)ietasses of GND models (86), yielding
in particular expressions for the glide-system effecttugrface) density of GNDs. The first class
of such models is based on the incompatibility of glide-systocal deformation. To this class
belong for example the original model of Ashby (1970) andrdwent dislocation density tensor
of Shizawa and Zbib (1999). The second is based on the indililpof FJ, and is consistent
with the model of Dai and Parks (1997). With such models indh#éime possible dependence of
the free energy on quantities characterising the dislooatiate of the material (e.g., dislocation
densities) and the corresponding consequences for theilfation are investigated (§7). Beyond
the GND models formulated here, examples are also givenistirex SSD models which can be
incorporated into models for the free energy, and so intatheent approach. After discussing
simplifications arising in the formulation for the case ofadhdeformation (88), as well as the
corresponding algorithmic form, the paper ends (89) withszussion of additional general
aspects of the current approach and a comparison with atleed work.

2. Mathematical preliminaries

If W and Z represent two finite-dimensional linear spaces, le{WWinZ) represent the set of
all linear mappings fronW to Z. If W and Z are inner product spaces, the inner products
on W and Z induce the transposd” € Lin(Z, W) of any A € Lin(W, Z), as well as the inner
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productA - B : = trW(ATB) = trz(ABT) on Lin(W, 2) for all A, BeLin(W, Z). The main
linear space of interest in this work is of course three-disienal Euclidean vector spave Let
Lin(V, V) represent the set of all linear mappings\binto itself (i.e., second-order Euclidean
tensors). Elements &f and Lin(V, V), or mappings taking values in these spaces, are denoted
here as usual by bold-face, lower-case. . . and upper-casd, .. ., italic letters, respectively.
In particular, I <Lin(V, V) represents the second-order identity tensor. As usualtetisor
producta ® b of any twoa,beV can be interpreted as an elementz beLin(V, V) of
Lin(V,V)via(@a® b)c := (b-c)aforalla,b,ccV. Let symA) := %(A + A" and
skw(A) = % (A — A7) represent the symmetric and skew-symmetric parts, rasphgtof
any A € Lin(V, V). The axial vector axiW) € V of any skew tensoWW e Lin(V, V) is defined
by axiW) x a := Wa. Leta, b, c <V be constant vectors in what follows.

Turning next to field relations, the definition
Q) curlu : = 2 axi(skw(Vu))

for the curl of a differentiable Euclidean vector fieldis employed in this worky being the
standard Euclidean gradient operator. In particular, (it the basic result

2) Vifu) =u® Vf + f(Vu)

for all differentiable functionsf and vector fields: yield the identity
(©)] curl(fu) = Vf x u + f(curlu)

In addition, (1) yields the identity

(4) curlu-axb=vV,u-b—-Vyu-a
for curlw in terms of the directional derivative

®) Vu 1= (Vua

of w in the directiona € V. Turning next to second-order tensor fields, we work heré tie
definition*

(6) (curlT)'a :=curl(T"a)

for the curl of a differentiable second-order EuclidearsterfieldT' as a second-order tensor
field. From (3) and (6) follows in particular the identity

) curl(fT) =T x Vi) + f(curlT)

for all differentiable f andT’, where(I x a)b := b x a. Note that( x a)" = a x I with
(a x Db :=a x b. Likewise, (1) and (6) yield the identity

8) (curlTY(a x b) := (V,T)b— (}T)a
for curl T in terms of the directional derivative

v, T (vT)a

*This is of course a matter of convention. Indeed, in cont@$6), Cermelli and Gurtin (2001) define
(curlTya : = curl (T a).
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of T in the directiona € V. Here, VT represents a third-order Euclidean tensor field. Het
be a differentiable invertible tensor field. From (8) andittentity

9) AT(Ab x Ac) = detA) (b x ¢
for any second-order tensef < Lin(V, V), we obtain
(10) curl(TH ) = detH ) (cutfTYH " + T (curl H)

for the curl of the product of two second-order tensor fieldere, curf! represents the curl
operator induced by the Koszul connecti@f! induced in turn by the invertible tensor field ,
ie.,

(11) vHT . vhyH?

The corresponding curl operation then is defined in an analdashion to the standard form
(8) relative toVv.

Third-order tensors such &&T" are denoted in general in this work By, B, ... and inter-
preted as elements of either Ik, Lin(V, V)) or Lin(Lin(V, V), V). Note that any third-order
tensorA induces oneAS defined by

(12) (ASb)c := (Ac)b

In particular, this induces the split

(13) A = symg(A) + skwg(A)
of any third-order tensod into “symmetric”

(14) symy(A) 1= 3(A + A%
and “skew-symmetric”

(15) skwg(A) 1= 3(A - A9

parts. In addition, the latter of these induces the linegopiray

(16) axi; : Lin(V,Lin(V,V)) — Lin(V,V) | A+ A =axig(A)
defined by
a7 axig(A)(b x ¢) : = 2(skwg(A)b)c = (Ab)c — (Ac)b

With the help of (12)—(17), one obtains in particular the paiet form
(18) curlT = axig(VT)

for the curl of a differentiable second-order tensor fi€lds a function of its gradierMT’ from
(8). The transpossé\T eLin(Lin(V, V), V) of any third-order tensoA € Lin(V, Lin(V, V)) is
defined here vildA"B - ¢ = B - Ac.

Finally, for notational simplicity, it proves advantagediw abuse notation in this work and
denote certain mappings and their values by the same sy@tuwdr notations and mathematical
concepts will be introduced as they arise in what follows.
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3. Basic kinematic, constitutive and balance relations

Let B represent a material body,e B a material point of this body, arfel Euclidean point space
with translation vector spacé. A motion of the body with respect tB in some time interval
I C R takes as usual the form

T =& D)

relating eachp to its (current) timet € | positionz € E in E. On this basis¢ represents the
material velocity, and

(19) F (t, p) := (VE)(t, p) eLinT(V, V)

the deformation gradient relative to the (global) refeeeptacemenk of B into E. Here, we
are using the notation

VEE =" (MKié))
for the gradient of with respect ta in terms of push-forward and pull-back, whekeg.£)(t, 7,.)
= E(t, Kfl(TK)) for push-forward by, with 7, = « (p), and similarly forc*. Like &, £ and
F,_, all fields to follow are represented here as time-depentfields onB. And analogous to
that of& in (19), the gradients of these fields are all defined relatve More precisely, these
are defined at each € B relative to a corresponding local reference placel%atmachp € B,
i.e., an equivalence class of global placemantsaving the same gradient at Sincex and
the corresponding local reference placement at gaelB is arbitrary here, and the dependence
of F, and the gradients of other fields, as well as that of the doitis# relations to follow, on
x does not play a direct role in the formulation in this work, sugpress it in the notation for
simplicity.

In the case of phenomenological crystal plasticity, anyemal point p € B is endowed
with a “microstructure” in the form of a set of glide systems. The geometry and orientation
of each such glide system is described as usual by an ortimahdrasis(s,, 2,4, t;) (@ =
1,...,n). Here,s, represents the direction of glide in the plang, the glide-plane normal, and
t, = 84 x ng the direction transverse tg, in the glide plane. Since we neglect in this work
the effects of any processes involving a change in or ewwiutf either the glide directios,
or the glide-system orientatiam, (e.g., texture development), these referential unit vegtnd
sot, as well, are assumed constant with respect to the referdmcenpent. With respect to the
glide-system geometry, then, the (local) deformatlgnof each glide system takes the form of
a simple sheadr

(20) F=I+y,5,9n, |,

Y, being its magnitude in the directios), of shear. For simplicity, we refer to eagh as the
(scalar) glide-system slip (deformation). The orthogitpalf (s,, 2,4, t;) implieslﬂfnu =N,
andF; s, = s,, as well asy, = s, - F; n,. In addition,

(1) F=s,0n,y,=: L, F,

follows from (20). As such, the evolution of the glide-systdeformation tensokF; is deter-
mined completely by that of the corresponding scalargjip

TRefered to by Noll (1967) as local reference configuratiop efB in E.
*As discussed in §6, ik, and unlikeF', F; is in general not compatible.
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From a phenomenological point of view, the basic local isttadeformation at each ma-
terial point in the material body in question is represeriig@n invertible second-order tensor
field F, on| x B. The evolution ofF; is given by the standard form

(@2) 1’:; = Lo F,

in terms of the plastic velocity “gradientL,. The connection to crystal plasticity is then ob-
tained via theconstitutiveassumption

~ m m .
(23) LP = Za:l L(l = Za:l Sq ® NgVa

for Ly via (21), wherem < n represents the Seof activeglide-systems, i.e., those for which
Ya # 0. Combining this last constitutive relation with (22) thgields the basic constitutive
expression

(24) B=Y" LE=Y" (5,0n)F,

for the evolution ofF}. In turn, this basic constitutive relation implies that
(25) V=Y (3 ® 1) (V) P + (5, @ ) B ® Wy
for the evolution ofVEF;, and so that

(26) U Fp = 3" (84 ®n) (U FY) g + 84 ® (W x Fong)

for the evolution of curlF;, via (7) and (8). On this basis, the evolution relation Igris linear
inthe sety :=(y4, ..., ¥mm) Of active glide-system slip rates. Similarly, the evolatielations
for VF;, and curlF, arelinearin y and V. Generalizing the case of cuf}, slightly, which
represents one such measure, the dislocation state in tedahs modeled phenomenologically
in this work via a general inelastic state/dislocation meas whose evolution is assumed to
dependquasi-linearlyony andvy, i.e.,

27) a=Ky+JWwW

in terms of the dependent constitutive quantifi€snd.7 . In particular, on the basis of (24F,

is considered here to be an elemen&ofin turn, the dependence of this evolution relatiorign
requires that we model the as time-dependerfieldson B. As such, in the current thermome-
chanical context, the absolute temperatiréhe motions, and the sey of glide-system slips,
represent the principal time-dependent fielf5 anda being determined constitutively by the
history of y andW via (24) and (27), respectively. On the basis of determinisical action,
and short-term mechanical memory, then, the material betagf a given material poinp € B

is described by the general material frame-indifferentstitutive form

(28) R =R06.C,a,V0,y,Vy,p)

for all dependent constitutive quantities (e.g., streaéjere C = F'F represents the right
Cauchy-Green deformation as usual. In particular, sineamhbtioné, as well as the material

8n standard crystal plasticity models, the numbeof active glide system is determined among other
things by the glide-system “flow rule,” loading conditioms\d crystal orientation. As such, it is constitutive
in nature, and in general variable.
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velocity £, are not Euclidean frame-indiffererf is independent of these to satisfy material
frame-indifference. As such, (28) represents the basieoed constitutive form of the constitu-
tive class of interest for the continuum thermodynamic faliation of crystal plasticity to follow.
Because it plays no direct role in the formulation, the dejeace of the constitutive relations on
p € B is suppressed in the notation until needed.

The derivation of balance and field relations relative togiven reference configuration of
B is based in this work on the local forms for total energy antdogay balance, i.e.,

é divh +s,

(29)
n = m—dv¢ +o,

respectively. Heree represents the total energy denshyits flux density, and its supply rate
density. Likewise;r, ¢, ando represent the production rate, flux, and supply rate, dessit
respectively, of entropy, with density. In particular, the mechanical balance relations follow
from (29) via its invariance with respect to Euclidean observer. Asdisual, the thermody-
namic analysis is based on (29)n addition, it yields a field relation for the temperatuas,will
be seen in what follows.

This completes the synopsis of the basic relations reqdoethe sequel. Next, we turn
to the formulation of field relations and the thermodynammalgsis for the constitutive class
determined by the form (28).

4. Generalized internal variable model for glide-system §bs

The modeling of they as generalized internal variables (GIVs) is based in paeicon the
standard continuum forms

e = & + 30§-§,
(30) h = —q + PT¢,
s = r + f£,

for total energy densitg, total energy flux densityr, and total energy supply rate densgty
respectively, hold. Hereg represents the referential mass denditythe first Piola-Kirchhoff
stress tensor, anfl the momentum supply rate density. Furtherepresents the internal energy
density, andg the heat flux density. As in the standard continuum cd3e., q, n and ¢
represent dependent constitutive quantities in geneuddist8uting the forms (30) for the energy
fields into the local form(29), for total energy balance yields the result

(31) é+divg—r =P V& —z-£+3c£ ¢
for this balance. Appearing here are the field

(32) c:=g¢

associated with mass balance, and that

(33) z:=m—divP - f
associated with momentum balance, where

m =0k
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represents the usual continuum momentum density. As disdusy, e.g.SiIhavy (1997, Ch.
6), in the context of the usual transformation relationstfe fields appearing in (31) under
change of Euclidean observer, one can show that necessatitions for the Euclidean frame-
indifference of(29)1 in the form (31) are the mass

(34) c=0 = 0=0

via (32), momentum

(35) z=0 = m=dvP+f
via (33), and moment of momentum

(36) ST=8

balances, respectively, the latter with respect to thersb&iola-Kirchhoff stres§ = Flp.

As such, beyond a constant (i.e., in time) mass density, warothe standard forms
m = 0 + dvP + f,

(37) , L ,

E = 3 S.-C - dvg + r,

for local balance of continuum momentum and internal energpectively, in the current con-
text via (31), (35) and (36).

We turn next to thermodynamic considerations. As shownfeceby Maugin (1990), one
approach to the formulation of the entropy principle for emitl behaviour depending on internal
variables and their gradients can be based upon a weakepfdha dissipation (rate) inequality
than the usual Clausius-Duhem relation. This form follonenf the local entropy (29) and
internal energy (3%)balances via the Clausius-Duhem form

(38) o=r/0

for the entropy supply rate density in terms of the internal energy supply rate densiand
temperaturé®. Indeed, this leads to the expression

(39) 5=18.C—-y—né+divep —q)—¢ Vo
for the dissipation rate density

(40) § 1=0m

via (37), where

(41) Y i=¢e—0n

represents the referential free energy density. Substitutext the form (28) fory into (39)
yields that

_ 1 : : : . .
@) = BS—V ) C—+v vy VI—v T =y g, W

+ div(@p —q — d)y) + (@, +divd) -y —¢ - VO
for § via (27). Here,

(43) oy =K,
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oy = (o, .., Dyy), and

(44) D =TV,
with @ 1= (@4 - - - » @m)- Now, on the basis of (27) and (28)in (42) is linear in the fields

C,6,vé, y and V. Consequently, the Coleman-Noll approach to the exploitadf the
entropy inequality implies that > 0O is insured for all thermodynamically-admissible proesss
iff the corresponding coefficients of these fields in (42)ishnyielding the restrictions

S = 2vg.
no= ¥y,

(45) 0 = Yy,
0 = w,)}a’ a=1...,m,
0 = ¥y, o=1...m,

on the form of the referential free energy densityas well as the reduced expression
(46) §=div(fp —q —dJy)+ (m, +divd,) -y —6¢ - VIne

for § as given by (42), representing its so-called residual famnitfe current constitutive class.
In this case, then, the reduced form

(47) v =90.C.a)

of ¢ follows from (28) and (45).

On the basis of the residual form (46) f&r assume next that, as dependent constitutive
quantities,,, + div ®,, and¢ are defined on convex subsets of the non-equilibrium patief t
state space, representing the set of all admissitsley andVy. If w,, + div &, and¢, again
as dependent constitutive quantities, are in additionicoatsly differentiable irve, y andw
on the subset in question, one may generalize the resultdei&i (1973, 1985) to shdvthat
the requiremend > 0 oné given by (46) yields the constitutive results

) oy +dvd, = dv,y—d'Vdv,vy IR

=0 = d g+ v
for @y, + div &, and¢, respectively, in terms of the dissipation potential
(49) d, =d,0,C,a,V0,y, W)

and constitutive quantities

gvy = {Vy(G,C,a,VG,J},W),
Syvin = {Vvln(O,C,a,VG’,)},W)v
which satisfy
(50) &y ¥ &y Vine=0 .

fin fact, this can be shown for the weaker case of simply-cotetk rather than convex, subsets of the
dynamic part of state space via homotopy (see, e.g., Abrahai 1988, proof of Lemma 6.4.14).
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i.e., they do not contribute t8. To simplify the rest of the formulation, it is useful to work
with the stronger constitutive assumption tidatexists, in which casg, v and¢, g, vanish

identically. On the basis then of tlwenstitutive form
(51) p=0tq+07 M@ +d, v,y
for the entropy flux densityj is determined by the form af, alone, i.e.,

(52) §=d, -y +d v, - W+d, g - VIno

Among other things, (52) implies that a convex dependencg oh the non-equilibrium fields
is sufficient, but not necessary, to satisfy> 0. Indeed, withd, (¢, C, «,0,0,0) = 0, d, is
convex inve, y andVy if § > d, (i.e., withé§ given by (52)) for given values of the other
variables. So, ifl, is convex invé andy, andd, > 0, thens > 0 is satisfied. On the other
hand, even ifl, > 0,8 > 0 does not necessarily requite> d,, i.e.,d, convex.

Lastly, in the context of the entropy balance (23he constitutive assumption (38), together
with (40) and the results (45}, (46) and (48), lead to the expression

(53) cé=%95’9~C’+w\,+divd\,’V|n+r
for the evolution o via (47) and (49). Here,
(54) Ci= —0Y gy

represents the heat capacity at constanC', and so on,% GS, - C = 0V oo C the rate
(density) of heating due to thermoelastic processes, and

(55) oy =0y, +0K Y )7 + @, gy +0TV g,) - W
that due to inelastic processes via (27). In addition, {48plies the result
(56) dy ; =dv(T Vo +d vy) - K'Y,

for the evolution ofy via (43) and (44). Finally,

(57) —q=d, g+ TV o +d, v,y

follows for the heat flux densitg from (51) and (48). As such, the dependencewfon«, as
well as that ofd, on Vy, lead in general to additional contributionsgan the context of the
modeling of they as GIVs.

This completes the formulation of balance relations anditbemodynamic analysis for the
modeling of they as GIVs. Next, we carry out such a formulation for the casettiey are
modeled as internal DOFs.

5. Internal degrees-of-freedom model for glide-system sis

Alternative to the model for the glide-system slips as GlWghe sense of the last section is
that in which they are interpreted as so-called internatetegrof-freedom (DOFs). In this case,
the degrees-of-freeddhof the material consist of (i), the usual “external” contimu DOFs

IIThis entails a generalization of the classical concept efitde-of-freedom” to materials with structure.
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represented by the motian, and (i), the “internal” DOFsy. Or to use the terminology of
Capriz (1989), ther are modeled here as scalar-valued continuum microstaldtatds. Once
established as DOFs, the modeling of theroceeds by formal analogy with that &f the only
difference being that, in contrast to external DOFs reprieskbyé , each internal DOW,, is (i.e.,
by assumption) Euclidean frame-indifferent. Otherwibe, &nalogy is complete. In particular,
eachy, is assumed to contribute to the total energy, the total grikug and total energy supply,
of the material in a fashion formally analogoustta.e.,

e = ¢ + 35-08 + 3v-oly.
(58) h = —gq + P& + oy,
s = 1 o+ fE o+ <7,
for total energy densitg, total energy flux densitya, and total energy supply rate densgty
Here,
lr 1 7 4m —‘
L Lm]_ e me J
is the (symmetric, positive-definite) matrix of microiriartoefficients, & : = (¢, - - -, ¢%m)
the array of flux densities, and : = (5, ..., gm) the array of external supply rate densities,

associated witly . For simplicity, we assume thatis constant in this work. Next, substitution
of (58) into the general local forrf29)4 of total energy balance yields

(59) é+divg-r=P -+ —2-£—wp-y+3CE -E+y-1y)
via (32) and (33). Here,

(60) o i=p —divd. — ¢

is associated with the evolution ef,

(61) wi=oly

being the corresponding momentum density. Consider nowshal transformation relations
for the field appearing in (58) and (59) under change of Eeelidobserver, and in particular the
assumed Euclidean frame-indifference of the elemenis, of and®. As discussed in the last
section, using these, one can show that necessary corgditiothe Euclidean frame-indifference
of (29)1 in the form (59) are the mass (34), momentum (35), and monfemipoentum (36)

balances, respectively. As such, beyond a constant (i.8me) mass density, we obtain the set

m = 0 + dvP + f,
62) qo o= o + dvd. + ¢,
i = %S-C"-I-CDF-VJ?—wp)? - divg + r,

of field relations via (35), (36), (59) and (60).
Since we are modeling the as (internal) DOFs in the current section, the relevanintioer
dynamic analysis is based on the usual Clausius-Duhemitdivet forms

¢ = q/o,
o = r1/6,

(63)
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for the entropy flux¢ and supply rater densities, respectively. Substituting these into the
entropy balance (29) we obtain the result

(64) 5=38 . C+0.-W—wp-y -y —n6—6"1q- Vo

for the dissipation rate densidy: = 67 via (62)3 via (41). In turn, substitution of the constitutive
form (28) for the free energy into (64), and use of that (27) far, yields

& - 385 -V ) C—ln+v )6 —vy, W-6"q-V6
(DFN'VJ}_w’FN'))_wJ}'J'/._l//,v)}'v);;
with
(DFN = ‘p':—JTw"a,
(66) w, = w4+ Ky
N = F L

the non-equilibrium parts ob. and @, respectively. On the basis of (28),is linear in the
independent field€, 6, W, y andVy/. As such, in the context of the Coleman-Noll approach to
the exploitation of the entropy inequality,> 0 is insured for all thermodynamically-admissible
processes iff the corresponding coefficients of these fial@5) vanish, yielding

S = 20,
no= ¥y,

(67) 0 = Yy
0 = w,)}a’ a=1...,m,
0 = ¥y, . a=Ll...m.

As in the last section, these restrictions also result in¢deced form (47) foty . Consequently,
the constitutive fieldsS, ¢ andn are determined in terms @f as given by (47). On the other
hand, thedg,, @y, as well asg still take the general form (28). These are restricted furth
the context of the residual form

SZCDFN'VJ}_wFN'J}_Q_:LQ'VO

for § in the current constitutive class from (67). Treatifbg,, @y, andq constitutively in
a fashion analogous ta,, + div®, and¢ from the last section in the context of (48), the
requiremens > 0 results in the constitutive forms

Py = dF,V)} +levy
(68) _wFN = d|:’ V + ;FV )
-q = dF.,Vln +4evin

for these in terms of a dissipation potentialand corresponding constitutive quantities, T
Gy and{. v, » all of the general reduced material-frame-indifferentrfq28). As in the last
section, the latter three are dissipationless, i.e.,

(69) ley ¥V F vy W+ ey - VINO =0
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analogous to (50) in the GIV case. Consequeidtigduces to
(S =dF,}} )} +dF,V}} V]} +dF,V|n V|n9

via (68) and (69), analogous to (52) in the GIV case. In whibics, we again, as in the last
section, work for simplicity with the stronger constitgiassumption thad. exists, in which
Caselr;, {eyy and¢,y, vanish identically.

On the basis of the above assumptions and results, theneltiediation
(70) ch =368, C+op+divd, g +1
for temperature evolution analogous to (53) is obtainethéncurrent context via (54), with
(71) wp =0 ; +OKW g) ¥ + (O vy +0T TV g,) - W

the rate of heating due to inelastic processes analogaug tmm (55). Finally, (68) » lead to
the form

(72) ol +de , =dV(IT Y o + 0 v;) — Ky +¢

for the evolution ofy via (61), (62» and (66).

With the general thermodynamic framework established e l#ist two sections now in
hand, the next step is the formulation of specific models fiDGlevelopment and their inco-
poration into this framework, our next task.

6. Effective models for GNDs

The first model for GNDs to be considered in this section isfdated at the glide-system level.
As it turns out, this model represents a three-dimensioeaémlization of the model of Ashby
(1970), who showed that the development of GNDs in a givetegtiystem is directly related
to the inhomogeneity of inelastic deformation in this sgstén particular, in the current finite-
deformation context, this generalization is based on tberpatibility of F; with respect to the

reference placement. To this end, consider the vector mefdsu

(73) lGa(C) = %(‘: .F‘;tc = ﬁ Ya (nu . tc) Sa

of the length of glide-system GNDs aroundanbitraryclosed curve or circuiC in the reference
configuration, the second form following from (20). Hetg, represents the unit tangent@

orientedclockwise Alternatively,l,(C) is given bJ T

(74) 154 (C) 1= ?{ Fit. = /‘(curll"c'l)nS
c S
with respect to the material surfa&bounded byC via Stokes theorem. Here,

(75) curlFy = (83 @ Ny x Wy) = 83 @ (W, x Ny)

**Volume dv, surfaceda and lined¢ elements are suppressed in the corresponding integradsaapg
in what follows for notational simplicity. Unless otherwistated, all such integrals to follow are with
respect to line, surfaces and/or parts of the arbitraryajlogference placement of the material body under
consideration.

TTNote that curlF, appearing in (74) is consistent with the form (8) for the afrh second-order Eu-
clidean tensor field.
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from (7), (20), and the constancy 6$,, 1,4, ;). On the basis of (74)5,(C) can also be
interpreted as a vector measure of the total length of GNBscinig the material surfacg
enclosed byC. The quantity curlF; determines in particular the dislocation density tensd?
worked with recently by Shizawa and Zbib (1999) as based erirttompatibility of their slip
tensory ) 1= YU y, 8, ®n,. Indeed, we have!) := curly =30 __ curl F} inthe
current notation.

Now, from (73) and the constancy 8, note thai g, (C) is parallel to the slip directios,,
ie.,

leq(C) =lgq 84

with

(76) lga(C) 1= ?%:yana~tc = /S(curIF&)Tsa~nS

the scalar length of GNDs piercir§via (74). With the help of a characteristic Burgers vector
magnitudeb, this length can be written in the alternative form

) 160(©) =b [ 8ea-ms
in terms of the vector fielg,, determined by
(78) 9ca :=b"cur F)Ts, =b 1w, xn,

From the dimensional point of vievgg, represents a (vector-valued) GND surface (number)
density. As such, the projectig,, - 125 of g, Onto Sgives the (scalar) surface (number) density
of such GNDs piercing. The projection of (78) onto the glide-system basig, n,, t,) yields

Sa'9ca = _b_lta "W
(79) ty Goa = b~t Sq - Wa s
Ny goa = O,

for the case of constaitit. In particular, the first two of these expressions are coesisvith
two-dimensional results of Ashby (1970) for the GND densiith respect to the slip direction
and that perpendicular to it in the glide plane generalizethtee dimensions. Such three-
dimensional relations are also obtained in the recentaltggraphic approach to GND modeling
of Arsenlis and Parks (1999). Likewise in agreement with riiedel of Ashby (1970) is the
fact that (793 implies that there is no GND development perpendicular ¢ogiide plane (i.e.,
parallel ton,) in this model. ¢From another point of view, VW, were parallel ton,, there
would be no GND development at all in this model; indeed, asvshby (75), in this casel;
would be compatible.

The second class of GND models considered in this work ischaséhe vector measure
(80) l;©C) = f Ft. = /(curl F)ng
C S

of the length of GNDs from all glide systems arou@din the material as measured by the
incompatibility of the local inelastic deformatiafy.. In particular, the phenomenological GND
model of Dai and Parks (1997), utilized by them to model gsire effects in polycrystalline

metals, applied as well recently by Busso et al. (2000) toehsite effects in nickel-based
superalloys, is of this type. In a different context, theompatibility of F; has also been used
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recently by Ortiz and Repetto (1999), as well as by Ortiz ef24100), to model in an effective
fashion the contribution of the dislocation self- or coremy to the total free energy of ductile
single crystals. In what follows, we refer to the GND modetdsh on the measure (80) as
the continuum (GND) model. To enable comparison of this ioomim GND model with the
glide-system model discussed above, it is useful to exghestormer in terms of glide-system
guantities formally analogous to those appearing in therafo this end, note that the evolution
relation (24) forF;, induces the glide-system decomposition

16©) =Y 16a(©) 5,

of I5(C) in terms of the selt.1(C), ..., Ign(C) of glide-system GND lengths with respect@
formally analogous to those (76) in the context of the gigstem GND model. In contrast to
this latter case, however, ealgly here is determined by an evolution relation, i.e.,

(81) [4y(C) = 74 yo By -t = / curl (B Fy)'s, - nig .
C S
with )
curl (B F) = (84 ® Fomg)(I x W) + 8, ® (curl Fp)'mg yq
via (7) and (20). Alternatively, we can exprdgg(C) as determined by (81) in the form (77)
involving the vector-valued GND surface densigy,, with now
(82)  dea=bloun(FF) s, =b 1w, x Fin,+b L curl Fp)'n,y,

in the context of (80). As implied by the notatigjy, from (82) in the current context is formally
analogous to the time-derivative of (78) in the glide-syst@ND model. Now, from the results
(26) and (82), we have

curl = b Z:;l 8y ®dq
and so the expressibh
n
curl F, =b Zazl 8, ® 9,

for the incompatibility of F;, in terms of the setg;, ..., gn) of vector-valued GND densities.
Substituting this result into (82) then yields

gGa = Zb#a(na : Sb)ggb Ya T b=t Wa X F}':’Tna

withn, -8, =0 andzb#a = Z:‘zl,b#a. Relative to(s,, 114, t,), note that

Sq-9ca = b~ Fg'n’a X 8q-Wq + Zb#a(nu ’ Sb) Sa " 9gp Va-
ta 'gGa = bflEDTna X ta : Vl}a + Zb;ﬁa(na ’ Sb) ta "Geb J}a ’
Ny Goa = b—t E’Tna XNy - We + Zb;ﬁa(na “8p) Mg - Gop Va -

via (8) and (21), analogous to (79). In contrast to the gfigetem GND model, then, this
approach does lead to a development of (edge) GNDs perptaudio the glide plane (i.e.,
parallel tor).

*+*Assuming the integration constant to be zero for simplidity, that there is no initial inelastic incom-
patibility.
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To summarize then, we have the expressions

b=1%, x ng glide-system model

(83) Goa = .
b1V, x Fimg + Zb#a(na +8p)9cp Ya  CONtinuum model

for the evolution of the vector-valued measugg, of GND density from the glide-system and
continuum models discussed above. With these in hand, waaveeady to extend existing
models for crystal plasticity to account for the effects &f[@s on their material behaviour, and in
particular their effect on the hardening behaviour of theéemal. In the current thermodynamic
context, such extensions are realized via the constitdpendence of the free energy on GND
density, and more generally on the dislocation state in tateral, our next task.

7. Free energy and GNDs

With GND models such as those from the last section in haedjtiestion arises as to how these
can be incoporated into the thermodynamic formulation fgstal plasticity developed in the
previous sections. Since this formulation is determinedipminantly by the free energy density
¥ and dissipation potential, this question becomes one of (i), which quantities chareazt
effectively (i.e., phenomenologically) the GND, and moenerally dislocation, state of each
material pointp € B, and (ii), how doyr andd depend on these? The purpose of this section is
to explore these issues for the case of the referential fieegg densityy. In particular, this
involves the choice fow.

Among the possible measures of the inelastic/dislocatiate ©f each material point, we
have the arraypg = (P15 -+ -+ Psn) andg; = g1 -+ > Yon) of glide-system effective SSD
and GND densities, respectively. Choosing thes (Fp, pg, &), ¥ takes the form

1//(95 C» (X) = 1//D(97 C» F ’ ps; g‘G)
for ¢ from (47), with

m .
> ot Ksab Ve -

Psg =
(84) : m . :
Joa = Z(,:lkeub Vo + JoasWp »
from (27). This choice induces the decompositions
(85) Ko = B pWop + Koy + Kiog.
TV = 0 + 0 + JaVo.g, -

from (24) of the constitutive quantitidéTt//’ o andJTt//, . determining the form (56) or (72) of
the field relation fory . In particular, the models (83) f@j,, yield

0 glide-system model
86 k
(89) Gab 86 Zc#b(nb -8.)gsc  continuum model
and
) Ixmn, glide-system model
(87) Joap =" 0gp T .
Ix Fyny continuum model



224 B. Svendsen

for kg, andJy . respectively. And from (87), we have

. . 1| Pax Vb, g4 glide-system model
88) (J V.g)a=(Ts ¥p, g)a=b" ’
e ¢ g&a Fing xyp g continuum model
for the flux contribution appearing in the evolution relati®6) or (72) fory. From (84), (85
and (86), we have
(KT, o)a = —Ta + X + SGNYa) I
where

(89) =, )V pla= (581 F- ¥ p
represents the glide-system Schmid stress via (24),

0 glide-system model

“ Zb#(na - Sp) Vp, 9ca " Iob continuum model

(a contribution to) the glide-system back stress, and

m
(91) fg = szl lpa ¥o. pg,

the glide-system yield stress, Wimsba = lspa sgr(yb). Note that sg(y ) is a constitutive
quantity in existing crystal plasticity models. For examph the case of the (non-thermody-
namic) glide-system flow rule

n

SgM7,)

Ja
Tca

of Teodosiu and Sideroff (1976) (similar to the form used Isaf and Needleman, 1985; see
also Teodosiu, 1997), we have $gR) = sgn(z,). Here, ., represents the critical Schmid
stress for slip. In particular, such a constitutive assimngnsures that the contributiony , =

It llval = I7glv, to the dissipation rate density remains greater than orlequeero for all
ac{l,...,m}. Such a constitutive assumption is made for other typesidegystem flow
rules, e.g., the activation form

(92) Ya="7q0

AGy (I, Teq)

TIESI

o= Faa |-
used by Anand et al. (1997) to model the inelastic behaviédamtalum over a much wider
range of strain rates and temperatures than possible withh kere, AG (|7, ], 7o) represents

the activation Gibbs free energy for thermally-inducedatiation motion.

Consider next the dependenceogf, on Ve i.e., Keqp: AS it turns out, a number of existing
approaches model this dependence. For example, in theambpod Estrin (1996, 1998) to
dislocation-density-based constitutive modeling (see*alEstrin et al., 1998; Sluys and Estrin,
2000), this dependence follows from the constitutive retat

. n . . .
(93) Psq = {szl Jsap Psp — kSa psq} Sgr()’a) Ya

*Because their model for SSD flux includes a Fickian-diffagi&e contribution due to dislocation
cross-slip proportional tay, - Vpg,, the approach of Sluys and Estrin (2000) does not fit into theeat
framework as it stands. The necessary extension involgasing the SSD densitigg; as, e.g., (independent)
GIVs, analogous to the.
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for the evolution ofpg, in terms of magnitudgy ;| = sgnyy) yq of ygfora=1,...,m. In
(93), jg11> ig1 - - - represent the elements of the matrix of athermal dislonatiorage coeffi-
cients, which in general are functions pf, andk, the glide-system coefficient of thermally-
activated recovery. In this case, then,

n .
lsap = Sap {Zczl Isbe Vs — Kgp 'Osb}

holds, and so

(KQWD, ps)a = Ksaa WD, Psg = Sgr(ya) Isaa WD, Psq
from (91). Other such models fdt_ , can be obtained analogously from existing onessfgr
in the literature, e.g., from the dislocation-densitydzhapproach of Teodosiu (1997).

Models such as those (83for g4, Or that (93) in the case @k, account in particular for
dislocation-dislocation interactions. At least in theases, then, such interactions are taken into
account in the evolution relations for the dislocation nueas, and so need not (necessarily) be
accounted for in the form af . From this point of viewy, could take for example the simple
“power-law” form

1 —1 n 2s -1 n 29
Vp = iEE'CEEE + s Csp.za:lesa + g CG,uZazl €6a

= Ve + Vbs + Yoo

in the case of ductile single crystals, perhaps the simplessible. HereC. represents the
referential elasticity tensor, and

(94)

E.:=iC.-1
the elastic Green strain determined by the correspondiig Gauchy-Green tensor
(95) C..=F 'CF!

Further,cg andcg are (scaling) constants,andg exponentsy the average shear modulus, and
€sa = lsvVPsa>

= Lg/l9cal -

non-dimensional deformation-like internal variablesogssted with SSDs and GNDs, respec-
tively, involving the characteristic lengtldg and{g, respectively. In particular, the GND contri-
bution 4 to ¥, appearing in (94) is motivated by and represents a powegdaweralization of
the model of Kuhlmann-Wilsdorf (1989) for dislocation seliergy (see also Ortiz and Repetto,
1999) as based on the notion of dislocation line-length.n(84), we have in particular the
simple expression

€ca

7, =8,0Mn, 2C. Vo, C.

for the Schmid stresg, from (89) in terms of the Mandel stress)r FPF;,T =2C; Voe C In
addition,

-1
Y, e = GCsi 5525 ,Ossa )
2 _
I:bD, 9a = CG " ZGg |gGa|g ZQGa 5
then hold. From these, we obtain in turn
0 glide-system model

(96) %= 2 _ .
Co i 650 19al9 2 Zb#a(na “8p) 9oa * Gop continuum model
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from (90) forx,,

Ny X g glide-system model

1.2 _ a Ga

(97) (I3 ¥ g)a = Con b 19609721 - _
Fng x ggq continuum model

from (88), as well as the result

_ 2s M s—1
(98) g =Csi 0% ) lopa P

from (91) forr,. On the basis of models like that (93) of Estrin (1998)4gy, this last form forr,
is consistent with and represents a generalization ofiblised dislocation strength models (e.qg.,
Kocks, 1976, 1987) to account for the effects of GNDs on gfigstem (isotropic) hardening.

Indeed, fors = 1,r, becomes proportional tg,oSb in the context of (93).

The simplest case of the formulation as based on (94) ans#eicontext of the glide-
system model for GNDs when we s 1 andg = 2. Then

b~Iln, x (W, xn,)  glide-system model
(99) (JGT WD, gG)a =CglU eé b—l { : a a a -
Fong X ggq continuum model

follows from (87) for the flux contribution via (78) and (83)\ote that (99) follows from the
fact that (83) is integrable. Then, the corresponding reduction,dfom (98), (56) and (99)
implies in particular the evolution-field relation

4,.—2 3 2 m
(100) dy . = Con g 2 divg(Vry) + 7 — Cs 1 £ Zb: 1 Kspo

for y, modeled as a GIV via (56), again in the context of the glidstesyy GND model, assuming
Cg, 4 andfg constant. The perhaps simplest possible non-trivial foiri@0) for the evolution
of y, in the current context follows in particular from the copeading simplest (i.e., quasi-
linear) fornt dv’ e = By v for dv’ Va in terms of the glide-system damping modufgs> 0

with units of J s nT3 or Pa s (i.e., viscosity-like). In addition,
divg (W) i= T — Mg @ M) - UMW) = (84 ® Sq + 1, ®Ty) - W)

represents the projection of the divergence operator dre@lide plane spanned lgg,, t,).
Given suitable forms for the constitutive quantities, thée field relation (100) can in principal
be solved (i.e., together with the momentum balance in ththésmal case) fop,. On the other
hand, sincel, does not depend explicitly op, and, in contrast to the glide-system modgl,
does not depend explicitly op and Vy in the continuum GND model, no “simple” expression
like (100) for the evolution of, is obtainable in this case. Indeed, in all other cases, ors mu
proceed more generally to solve initial-boundary-valugbfgms forg, they, andd. We return

to this issue in the next section.

A second class of free energy models can be based on the eheicdfy, v, curl F}), i.e.,
(101) v (©,.C.a)=y:0.C,F,v,culF) |

with

‘}a = |Va|

*The coupling withV in d,, and the dependence @f on Wy, is neglected here.
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the glide-system accumulated slip rate. In this case, we hav
(KW g = —Tg+X +5gnyyr, .

(102)
TV oo = Fngx W gqum) S

via (26) and (89), where now
(103) Xg 1= 8q ® Mg - Y, curlF;,(CU” B’

and
g *= l//C, Vo
Consider for example the particular form
Vo = 3E.CE. + v + g rcgutdlcurl Fyd
(104)
= Vee +  Yes + Yee

for v analogous to (94) fogy,. In this context, the choice

_ (s’ ho
wCS = T In [COSh(‘L'S——‘L'O v

yields the simple model for isotropic or Taylor hardening.(idue to SSDs) proposed by Hutch-
inson (1976), with
X n
V.= Za:l Va

the total accumulated inelastic slip in all glide systemserdiizs represents a characteristic
saturation strengtt’r0 a characteristic initial critical resolved shear streasthb a characteristic
initial hardening modulus, for all glide systems. Anothesgibility for ¢4 is the form

n —1p S
Ves = Za:l o +S “hgv

consistent with the model of Ortiz and Repetto (1999) foeri&thardening in single crystals,

with now
n

Vo= Za,f,:l sab "o '

the effective total accumulated slip in all glide systemseinms of the interaction coefficients
lsgpr @0 =1....n.In particular, this model is based on the assumptions thatardening is
parabolic in single slip (i.e., fos = 2/3), and (i), the hardening matrifcs ,, " is dominated
by its off-diagonal components. Beyond such models foregigstem (isotropic) hardening,
(104) yields the expression

Xq = Cg it g |curl |92 8, ® Mg - (curl Fy)(curl F;)T
for glide-system back-stress from (103), as well as that
(T, o)a = Co i €3 lcur Fp|972 Fng x (curl F)'s,

for (jGT wc, curl
model, becaus#;, and curlF}, do not depend explicitly oy andVy, no field relation fory, of
the type (100) follows from (104), and we are again forcedrtwped numerically.

Fp)u from (102). Analogous taF}, andgg, in the case of the continuum GND
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8. The case of small deformation

Clearly, the formulation up to this point is valid for largefdrmation. For completeness, con-
sider in this section the simplifications arising in the fatation under the assumption of small
deformation. In particular, such a simplification is relevéo comparisons of the current ap-
proach with other modeling approaches such as the distocatimputer simulation of Van der
Giessen and Needleman (1995). This has been carried outlse¢®vendsen & Reese, 2002)
in the context of the (isothermal) simple shear of a cryistalstrip containing one or two glide
planes. This model problem has been used in the recent wdskwfet al.(2001) in order to
compare the predictions of the discrete dislocation coemimulation with those of the non-
local strain-gradient approach of Fleck and Hutchinsor®7)@nd applied to crystal plasticity
(e.g., Shu and Fleck, 1999). As dicusssed by them, it reptesemodel problem for the type of
plastic constraint found at grain boundaries of a polyaiygir the surface of a thin film, or at
interfaces in a composite.

In the crystal plasticity context, the small-deformati@amrfiulation begins with the corre-
sponding form

n
(105) H, = Zazl(s“ QM) Vg

for the local inelastic displacement “gradienEl, assuming no initial inelastic deformation
in the material. Note that this measure is in effect equivate the slip tensory(') =
2221 Ya Sq ® Ty Of Shizawa and Zbib (1999). In addition, note tHdk, can be considered
as a function ofy in this case. In turn, (105) yields the expression

(106) curH, =Y 5,® (Vg x 1)

for the incompatibility of H,. This is equivalent to the dislocation density tenaéP : =
curly (") of Shizawa and Zbib (1999). Note that either cE) or this latter measure may be
considered a function ofy . In this context, then, rather than for example with the choi
(Hp, v, curl Hp,), we could work alternatively with that = (y, v, V) as a measure for the
inelastic/dislocation state in the material at any makgriént p € B. In fact, it would appear
to be the simplest possible choice. Indeed, any such chaisedbalternatively on the small-
deformation form

b1 x 1, glide-system model
9ca = 1= . .
b~ 1%y x ng + Zb#a(na - 80)9ep Va continuum model
of (83) for the development of vector-valued glide-systedOGdensityg, would appear, at
least in the context of the continuum model, to be more carapd sincgjg, is not exactly
integrable, i.e., even in the small-strain case. On thissb#ise general constitutive form (28)
reduces to

R=RO.E.y.v.W.V0,y.W.p)
for all dependent constitutive quantities (e.g., strasf)é small-deformation context, again with
o = (y,v, W). Here,
FE :=symVu)

represents the symmetric part of the displacement gradBnanalogy, the results of the ther-
modynamic formulations in 8§4-5 fer modeled as GIVs or as internal DOFs can used to obtain
those for the case of small strain. Further, the reduced {dithof v becomes

v=vy0 E yv W).
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Consider for example the class

(107) v, E,y,v, W) =190, E, Exy),v, curl Hy(Vy))
of forms foryr analogous to (101), with

(108) E; :=symH;)

the inelastic strain. From (107) follow

(KTW, a)a = W, Ya + Sgr(ya) WC, Vo —Tq + Sgr(ya) WC, Vo

(ij, o()a nq X (WC, curIHP)TSa )

ws VVa
by analogy with (102) via (108) and (106), with now
T

a = —Sa-wc,Epna

for the Schmid stress. In the case of small deformation,, tencontributiorx, from inhomo-
geneity to the glide-system back stress vanishes idelytic@in the basis of these results, the
form

(109) d, Ya div[ng x (Y curIHP)Tsa +d, V)}u] + 74 — S9Ny g) Ve, v,

of the evolution relation for thg from (56) in the context of their modeling as GIVs, holds.

Further insight into (109) can be gained by introducing ecetecforms fory. andd,. For
example, consider that

(110 Y = % E. - CeEg + Yies(v) + 9™ i €9 [curl Hy|9

for ¥ analogous to (104), witl). : = E — E, now the (small) elastic strain, arfd, : =
sym(H) the (small) inelastic strain. Further, the power-law form

(n+1)/n

_n . m | yql

for the dissipation potential, is perhaps the simplest one fdy of practical relevance. Here,
represents a characteristic energy scale for activatialis@dcation glide motion with units of J
m—3 or Pa, andj, a characteristic value ¢f 4|. Substituting (110) and (111) into (109) results
in the evolution/field relation

1. m .
Sl Wa=n Y Ay W) + 8y CeEong —sgnyy) Yies o,

for the glide system slip, viatheg = 2 andn = 1, with A 1= (84-8,) [(Mg 1) -1, ®
n,]. In particular, note that ;- (V) = [T -1 ®M]- (Vi) = [84® 8¢+, @] - Vi)
represents the divergence af, projected onto thath glide plane. It is worth emphasizing that
the form of this projection results from the dependence ain curl H,. For comparison, note
that Ay = (84 - 8p) (g - nb)I, and soA - VW) = (8- 8p) (Mg - ) div(Vyy ), would
hold if v+ depended on the inhomogeneW,, instead of on the incompatibility cufi, of H.

In the crystal plasticity and current context, at least,dis¢inction is significant in the sense that
no additional hardening results in the current context whetepends directly oWH,.
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9. Discussion

Consider the results of the two approaches to the modelingeofjlide-system slipg from
§84-5. Formally speaking, these differ in (i), the respectorms (56) and (72) for the evolution
of the y, (ii), those (55) and (71) for the rate of heatimgdue to inelastic processes, and (iii),
those (57) and (68)for the heat flux densitg. In particular, in view of the corresponding forms
(53) and (70) for temperature evolution, this latter difece is of no consequence for the field
relations. Indeed, except for the contributm]} to @, in the internal DOF model for the,

the total energy flux densith has the same form in both cases, i.e.,

h = —q+P'¢ =d, yin +éyyn T T ¥, +d, ¢, +P'g,
-q+P% + oy = d|=,Vln + 8evin +(‘7Tw,a +dF.,VJ? +§FV)})T)} + P,

from (30), (57), (66) and (68). This fact is related to the observation of Gurtin (1971 tfabe

1) in the context of classical mixture theory concerningittterpretation of “entropy flux” and
“heat flux” in phenomenology and the relation between thege There, the issue was one of
whether diffusion flux is to be interpreted as a flux of enegg.( Eckhart, 1940; Gurtin, 1971)
or a flux of entropy (e.g., Meixner and Reik, 1959; DeGroot dMakur, 1962; Miller, 1968).
In the current context, the flux (density) of interest is that Vot d’ vy)T)}' In the GIV
approach, the constitutive form (51) shows that this flux (idivided byo) is being interpreted
as an entropy flux. On the other hand, (68nd (63) imply that it is being interpreted as an
energy flux in the internal DOF approach. In this point, theoth approaches are consistent
with each other.

As it turns out, the field relation (56) for thederived on the basis of the modeling of these
as generalized internal variables, represents a gerettdtizm of the Cahn-Allen field relation
(e.g., Cahn, 1960; Cahn and Allen, 1977) for non-consemgthase fields, itself in turn a gener-
alization of the Ginzburg-Landau model for phase transgidn particular, (56) would reduce to
the Cahn-Allen form (i), ifl, were proportional to a quadratic formynand independent &fy ,
and (i), if ij,a and KTw,a were reduceable tg. vy andy, o respectively. In particular,
this latter case arises only for monotonic loading and sdeftbrmation. The Cahn-Allen rela-
tion has been studied quite extensively from the mathewalgtinint of view (see, e.g., Brokate
and Sprekels, 1996). As such, one may profit from the correfipg literature on the solution
of specific initial-boundary value problems in applicagoof the approach leading to (56), or
more generally that leading to (72), which are currentlyriogpess.

From a phenomenological point of view, the concrete form) (@4 v, and in particular
that of e, or that of ¢ in (104), is contingent upon the modeling B} as an elastic mate-
rial isomorphism (e.g., Wang and Bloom, 1974; Bertram, 18&ndsen, 1998), i.e., inelastic
processes represented By do not change the form of the elastic constitutive relat®ach an
assumption, quite appropriate and basically universakifagle-crystal plasticity, may be vio-
lated in the case of strong texture development, inducesb&npy and/or anisotropic damage
in polycrystals. As discussed by Svendsen (1998), one goesee of the modeling dff, as an
elastic isomorphism is the identification of

(112) F. .= FF!

as the local (elastic) deformation in the material, and itipalar that of the crystal lattice in
single-crystal plasticity. More generall§;, can be modeled as a material uniformity (Maugin
and Epstein, 1998; Svendsen, 2001b) in the case of simplerialat In the current context,



Non-local continuum thermodynamic 231

(112) implies the connection
curl®F. = —det By H F.(curl By FY

via (9) and (8) between incompatibility of the local lattideformationFg with respect to the
intermediate (local) “configuration” and that &}, with respect to the reference (local) “config-
uration” (i.e., placement) at eaghe B via (10), (11), and the compatibility df'. Alternatively,
we have

curIE’FE =-F G,

where
(113) G, :=detF) L (curl By ) = detFy) (curlf R HFT

represents the geometric dislocation tensor recentlgdoired by Cermelli and Gurtin (2001).
As shown by them() represents the incompatibility df, relative to the surface element

n, da = detF) F, "'ngdag
in the intermediate configuration. Indeed, relative to gié&snent, the equivalence
(curl Fp)ngdag = Gin, dg

holds. As such, cudf}, gives the same measure of GNDs with respect to surface elsiinethe
reference configuration as do€% with respect to such elements in the intermediate configura-
tion. Note thatGy, like curl F;, has units of inverse length. The definition (11 &hplies the
form

(114) G =cutL,+ L,G + G L} - G (I- L)

for the evolution ofGy via (22). Alternatively, this can be expressed “objectivels

(115)  detFy ! F[detF) Fy ‘G Fy "1 By = det(Fy) 1 F, GLFY = curtf?L,
relative to the “upper” Oldroyd-Truesdell derivative @} with respect taF;, where
G, :=detF) F, G F " = F lcul R

represents the referential form 6 via (113). In the current crystal plasticity context, the
right-hand side of (115) reduces to

n T n _ .
curtPLo=by" 84 ®F 'Goa=)  _ 8a®F '[Wqx ]

via (6) and (23) in terms of the evolution of the vector-valu@ND surface densitgg, for the
glide-system GND model from (78). As such, (114) implies

G =Y [(5®n)G + Gy ® 8] 7a+ Y 84® Fy [ x ]

for the evolution ofG in the case of crystal plasticity via (23) and the fact thatL, = 0 in
this context. So, another class of specific formsfofrom (47) can be based on the choice

o = (B, v, Gy, implying
v (0,.C,a,p)=90,C v, G, p)

*Recall that we have defined the curl of a second-order tereddifii (6) via(curlT)Ta : = curl (T a),
rather than in the fornicurl T)a : = curl (T"b) used by Cermelli and Gurtin (2001).
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via (95). In turn,g itself is a member of the class defined by the cheice: (F;, v, VF}), as
can be concluded directly from (25) and the fact that &gris a function of VF, via (18). As
shown by Cermelli and Gurtin (2001), constitutive funcidir any p € B depending orVEF,
must reduce to a dependence @ for their form to be independent of change of compatible
local reference placementpte B, i.e., one induced by a charigef global reference placement.
This requirement is in turn based on the result of Davini 6)98nd Davini and Parry (1989) that
such changes leave dislocation measures su€i asmchanged, representing as such “elastic”
changes of local reference placement. As it turns out, onesbaw more generally (Svendsen,
2001c) thaty reduces tq for all pe B, i.e., for B as a whole, under the assumption ttgt
represents a particular kind of material uniformity.
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THE STRUCTURE OF MATERIAL FORCES IN
ELECTROMAGNETIC MATERIALS

Abstract. Material forces govern the behaviour and the evolution oéfect or
of an inhomogeneity in a solid material. In elastic materihlese forces are as-
sociated with the Eshelby tensor, as is known. In structoreehicro-structured
materials, an Eshelby-like stress can be assembled byfotica simple rule. By
appealing to this rule, one is able to propose an expreseiamé Eshelby tensor
in electromagnetism.

A variational procedure is hereby expounded, from which xgression for
the classical electromagnetic stress tensor, whose foathéswise controversial,
stems straightforwardly. The electromagnetic Eshellag—tensor is derived on
this base.

1. Introduction

Material forces and configurational forces are customarilgerstood as two synonymous which
label the same notion. In the continuum framework, the canditional forces are usually associ-
ated with the energy—stress tensor and they acquire a pepi@tance in structured materials.
Most people, who are concerned with materials with an imtlestructure or with microstruc-
tures, are familiar with the notion of energy—stress. Sutkrgergy—stress naturally appears in
the theory whenever the material response depends on tthegraf the fields or of the micro-
fields of interest. We shall stress out that there are twosk{atlleast) of configurational forces
and only one of the two is related to the notion of materiatéorThe latter governs the behaviour
of material defects or inhomogeneities [1, 2].

The Maxwell electromagnetism can be viewed as one of thetfiesiries of a material
endowed with a structure (i.e.the electromagnetic fiemf)pugh the Maxwell-Faraday’s elec-
tromagnetic fields are defined also out of a body of finite ext&s the electromagnetic fields
pervade the whole physical space, the mathematical profdethe electromagnetic materials
has to be formulated not only in the domain occupied by theybldt also in the exterior do-
main, accordingly. The electromagnetic fields obey a setifedrdntial equations that are in
general coupled with the mechanical equations [3, 4]. Shtheé Maxwell equations possibly
decouple from the mechanical ones, one could think to sbkmnffirst and afterward to look for
the associated stress tensor, in order to enquire aboutebleamical behaviour of the material.

Some people who are interested in liquid crystals shareattiiside with those who deal
with electromagnetic materials or with other sort of stanetl materials. However, in most of
the cases, the form of the mechanical stress to associdteavgtructured material may be a
controversial matter [5, 6, 7]. This is the case for electagnetic materials [4]. It is worth to
recalling that the quarrel, about the proper form the stfasd the momentum) should have in
electromagnetic materials, is still unsettled [8]. As thirnot a general agreement on the form
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of the electromagnetic stress, a challenge for new propdsalpen.

Here, we discuss this point basing on a variational apprdadis approach, the Maxwell
electromagnetic stress tensor will naturally stem from enhtan-like principle for a Lagrangian
that we are going also to introduce. Along with the electrgnedic stress, other electromagnetic
guantities of interest are derived. These quantities aetilior recovering the final form of the
energy—stress tensor which is related tortfsterial forceq9, 10]. This energy-stress definitely
differs from the Maxwell energy—stress. Maxwell introddci his treatise, the electromagnetic
stress tensor in order to evaluate the electromagnetie facting over a body [11]. Thus, the
Maxwell tensor is an energy-stress tensor that it is relaiete classical notion of forceotto
thematerial forcesas we will try to show in evidence.

Nonetheless, the procedure suggested by Maxwell in estédj the stress and the force
acting on a material body is appealing, as it can be re—pegpos other fields of Continuum
Mechanics or Continuum Physics. Eshelby [1] was the first prioposed to apply the Maxwell’s
procedure to elasticity, in order to evaluate the forcengctipon a point-wise defect. In this
respect, Eshelby introduced the notion of material force.

2. Maxwell equations in material form

Hereafter, we consider a solid body of infinite extent, wHitth the whole physical space. This
space is here represented by the Euclidean spacé he classical Maxwellian fieldg, D, B,
H, P andM (the electric field, the electric displacement, the magnetiuction, the magnetic
field, the polarisation and the magnetisation, respegiiaietransformedn a suitable chosen
reference configuration of the deformable body, in the fity fashion:

¢ = FI(E4+VAB) =F'¢g;
D = JFlp;
1 B = JFlB;
$H = FIH=F'H4+VAD;
B = IFp;
M = F'M

The introduction of the following auxiliary fields will be s useful:

¢* = FTE=€+4+VAB;
B* JF1B = JF 1B - (1/c?)v A E]
B + (1/cAC LV A ggdC1e");
M = FTM=IM—VAP).
The transformation has to be understood as through the m@appi: (X,t) — X, which is
assumed here to be regular enough for our purposes.

X belongs to the reference configuration ant the actual configuration of a body<e R
represents the timé& = VR, whereVg stands for the spatial gradient in the referential frame.
J = detF. FT denotes the transposeBf v = x andV = —F~1v. We also assume, as usual,
thatJ > 0.

The fields introduced in (1) satisfy the Maxwell equationshia following form:

@)

divg® = Jpe
3) divgB = 0
rotr€+ (0%B/at)|lx = O

rotr$) — (89 /dt)|x

g.
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divg represents the divergence operator emigk the curl operator in the reference configura-
tion; g is defined as follows:

4) g=JF 1 + JpeV.

pe andj are the free charge and the free current densities, regplgctper unit volume of the
current configuration.

The transformations of the electromagnetic fields, suchiandy the relationships (1)
and (2), provide the Maxwell equations (3) in the referdrfiteame. These equations are clearly
form—invariant.

The reader is referred to [10] for further details on thisypoi
For future use, we will introduce the following relationgbi

(5) P =2 —eodClE*
and
(6) M = gl ~1CB — H.

whereC = FTF. ¢y and g are the electric permittivity and the magnetic permeabibit a
vacuum, respectively.

2.1. The material electromagnetic potentials

The classical electrodynamical potentials, namely thiasgatential® and the vector potential
A are also transformed in two analogous fighdand.4, respectively, in such a way that they are
consistent with the equations (3) [10, 11, 12, 13]. More Hjmadly, one introduces the vector
field A, (the vector potential in the material form) as follows:

(M rotrd =B

so that the equation (3)is identically satisfied. It is worth to mentioning thatis uniquely
defined, provided that the quantityvr.4 is specified.
Basing on the equations and (7), one also introduces the material scalar potepitisd that

(8) €=-Vgo—A

The superposed dot o4 denotes the total time derivative gf.

The equations (3) can be now written in termspofA, P andT*, by taking into account
the equations (1), (4), (5), (6), (7) and (8). Hereafter, vilkbe concerned with this form of the
Maxwell equations, which is known as the Lorentz form [4,.12]

It is worth to recalling that, had we dealt with bounded damsathe field$3 and))t* would
have been identically vanishing out of these domains.

3. A Lagrangian approach

Motivations for introducing the Lagrangian density in thaterial form, such as written be-
low, will not be reported here as they are illustrated in [18¢re, we only remark that such a
Lagrangian provides the equations (3), in the Lorentz foFiis Lagrangian reads:

2
@ L = %{SOJG*-C’lé*—(MOJ)’l%-C%}+‘}3-Q§+§m*-%+%

— WG, FB, IFTom* x).
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L is a Lagrangian density per unit volume of the reference gardition and possibly is of the
following form:

(10) L =L(¢,d, VR, A, A, VRA, B, B, VP, I*, M", VRI*, x, X, F, X) .

The corresponding Lagrange equations read:

daL oL oL
di

53_43_%4_ v dVRe
ia—l_.—£+diVR—aL =
dtaA oA aVRA
daoL aL . oL

(11) aa—k—&-l-leRa—F:O,
d aL aL . L
a%—@‘f' Rov R ,

With reference to the expression (9), one notes that:

L
ity
0
oL
12 — =0
12) — =0
L_o
0

The equations (131)and (11)» simplify accordingly and provide, as a final result, two oé th
Maxwell equations of interest, in the Lorentz form.

For sake of simplicity, we also assume that

il

-

.,Ew
=

*|
|

(13) oM
NP
AVRINT®

I
o o o o

In accordance with this assumption, the equations,(ahy (11} reduce to the following alge-
braic equations:

oW

_E =,
AW
(14) P =B,

which happen to correspond to the classical constitutiveons. The equation (1 has a
natural mechanical interpretation, according to whichghantityo L /9X represents themomen-
tum
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4. The electromagnetic stress tensor and momentum

With reference to the expression (9) the momentum densiljcitly reads:

aL 1. oL
15 — = pgV — (F — = pgV + J(Dg A B),
(15) ax = Pov = ( )5y =rov+IDOoAB)
whereDg = ¢gE. The electromagnetic stress tensor, in the Piola form,l@fotlowing explicit
expression

L _ 1 _ _
—F = E®©0+M018®%—EJ[50E2+M0182]F 1T _J[DpAB®V] +
AW W 1 AW
16 4 —J F———
(16) + 8F+8(F‘13)®§‘B M® (aJF—lTim*>+
oW —1T —1T
+ | ————JF mﬁ]F ,
[aJF—lTﬂn*

having noted that the dependence_adn F is throughV = —F~1x and throughW. W, in turn,
depends or- explicitly and throughJ3 and J99t*. The tenso®L /dF can be transformed in
the Cauchy—formand, if we take into account the equation (g,1)L1) and (14), we eventually
write:

-1k

(@7 oF

1
FI' = [00E®E+uy'B®B] - E[soE2 + g tB2 +
[eo(EAB) ® V] +

rl(%—vFV)FTJrs@P—M@BJr(M-B)L

The expression (17) is consistent with the classical espaof the Maxwell stress tensor in a
vacuum, which reads:

_ 1 _
(18) tm =80E®E+MOlB®B—5(80E2+M0152)|,

having disregarded the velocityof the material points.

5. The electromagnetic material tensor

The variational procedure which is based on the Lagrangé@nsity L not only provides the
Maxwell equations and the balance of momentum [10, 13]. ¢t f@ong with themomentum
dL /ax, two additional canonical momental /3¢ anddL /3.4, are also introduced.

In the specific case of electromagnetism, one of these manvanishes:

oL

(19) =

as remarked previously in (1)
The following result holds true for the second canonical rantam:

oL

(20) s

-3,
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taking into account the relationships {2]8), (9) and (10).

Having this remarked, aadditional mechanical quantityvhich is a combination of the two
non-vanishing canonical momenta, can be introduced. Thihamical quantity is defined as
follows [10]:

_ _pTiL 7oL

The expression (21) is a density per unit volume of the refeeonfiguration and leads to the
definition of thematerial momenturor pseudomomentuf{B, 14, 15], which writes as follows:

(22) PR = poCV + P A DB = poCV + J(P A B)
or, per unit volume of the current configuration,
(23) p=pCV+PAB.

This procedure for defining the novel mechanical quantity mat be unfamiliar to people who
work on materials with microstructures, from the viewpahtontinuum mechanics. An analo-
gous procedure can be employed for a combination of the tjiesr#tL /0 VR¢, dL/dVR.A and
aL/oF.

This combination defines thmaterial energy—streg@n Eshelby-like stress) as follows

o 7oL oL T oL
(24) b= —LI+FT 2 + (VR#) 8 7o + (VRA) 55—

The expression (24) can be explicitly evaluated by taking &tcount the equations (41)11)
and (14). The computations will not reported here as theybediound in [10].

One of the result of interest is the expressiot difiat specialises in the following form, for
the electrostatics of a dielectric material:

(25) bdid:(W—‘B-(’S)I—FT¥—(’S®‘B.

The corresponding Cauchy—like stress is reported herevifelocomparison. With reference to
the formula (17), it reads:

: 1 W

(26) Tdiel = _ B2 +E®@D+ JT1EZFT.
2 aF

where

27 D = ¢oE + P.

6. Comments

By comparing (26) with (25) one can notice the following. sEiralthough the two mentioned
expressions are in the form of energy—stress tensors thegletely differ from one another. It
is not possible to transform one into the other by means ahalsirule, like in pure elasticity.

Second, the Cauchy form of the electromagnetic stressiteadoces to the Maxwell stress
tensor, not only in a vacuum but also in all simple cases thatdealt with in the classical
literature. Third, the electrostatic stress tensor sesviglso out of the domain occupied by
the material, whereas the correspondaigctrostatic material stress tensofie! identically
vanishes in a vacuum.
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A COSSERAT DETECTOR FOR DYNAMIC GEOMETRY

Abstract. Itis proposed to explore the interaction of weak gravitadidields with
slender elastic materials in order to assess the viabfliaghieving enhanced laser
interferometric sensitivities for the detection of gratibnal waves with frequen-
cies between 10% and 1 Hz. The aim is the design of novel gravitational antenna
in interplanetary orbit. The implementation of these ideasild be complimen-
tary to existing programmes of gravitational wave resebtdtexploiting a current
niche in the frequency spectrum.

The dynamics of slender structures, several km in length,idgeally suited
to analysis by the simple theory of Cosserat rods. Such aigéen offers a
clean conceptual separation of the vibrations induced byibg, shear, twist and
extension and the coupling between eigen-modes due toadwmalerations can
be reliably estimated in terms of the constitutive propsriof the structure. The
detection of gravitational waves in the 1 Hz region wouldvite vital information
about stochastic backgrounds in the early Universe anddiesance of super-
massive black holes to the processes that lead to procedbesdentre of galaxies.

1. Introduction

One of the most striking predictions of Einstein’s theorygodvitation follows from solutions
describing gravitational waves. Such solutions are thotaghe produced by astrophysical phe-
nomena ranging from the coalescence of orbiting binarigglent events in the early Universe.
Their detection would herald a new window for the observati natural phenomena. Great
ingenuity is being exercised in attempts to detect such svavéhe vicinity of the earth using
either laser interferometry or various resonant mass de\allowing Weber’s pioneering efforts
with aluminum cylinders. Due to the masking effects of cotimgeinfluences and the weakness
of gravitation compared with the electromagnetic inteécans the threshold for the detection of
expected gravitationally induced signals remains tagitadly close to the limits set by currently
technology. In order to achieve the signal to noise ratieslad for the unambiguous detection of
gravitational waves numerous alternative strategieslaceweder consideration. These include
more sophisticated transducer interfaces, advancedrfdtezchniques and the use of dedicated
arrays of antennae. Earth based gravitational wave deseretquire expensive vibration insula-
tion in order to discriminate the required signals from thekground. This is one reason why
the use of antennae in space offer certain advantages. rijugé here that the gravitationally
induced elastodynamic vibrations of slender materialcstines in space offer other advantages
that do not appear to have been considered. Multiple streetf such continua possess attrac-
tive properties when used as coincidence detectors oftgternal disturbances with a dominant

*RWT is grateful to BAE-Systems (Warton), the Leverhulmestrand PPARC for support. Both au-
thors are indebted to valuable conversations with J Houghvaruise.
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spectral content in the I to 1 Hz region. Furthermore this window can be readily exéertd
lower frequencies and higher sensitivities by enlargirgdize of the structures.

Newtonian elastodynamics [1] is adequate as a first appatiom if supplemented by the
tidal stressegyenerated by the presence of spacetime curvature that i$ isn@mparison
with the detector. The latter are estimated from the acatiters responsible for spacetime
geodesic deviations. Since the constituents of materigian@ve their elasticity to primarily
non-gravitational forces their histories are non-geadé€Bhe geodesic motions of particles offer
a reference configuration and the geodesic deviation ohbeigrs in a geodesic reference frame
provide accelerations that are additionally resisted ina¢enml held together by elastic forces.
Since in practical situations the re-radiation of grauitaal waves is totally negligible the com-
putation of the stresses induced by the tidal tensor of agvadkd incident gravitational wave
offers a viable means of exploring the dynamical responseréterial domain to a fluctuating
gravitational field.

Surprisingly little recent attention seems to have beero@el/to problems in gravito-
elastodynamics beyond the recognition that the shape,asidedensity of a material may be
tuned in order to expedite the excitation of particular n@rmodes of vibration by resonance
[2, 3, 4, 5]. There appear to be no detailed studies of therdimeesponse of interplanetary ma-
terial structures to gravitational wave phenomena. Ctiresonant mode detectors are designed
to permit reconstruction of the direction and polarisatidrgravitational waves that can excite
resonances. Clearly such detectors are designed to respamrrow spectral window of grav-
itational radiation and are not particularly good at defaeing the temporal profile of incident
gravitational pulses. A significant advantage of spacetastennae based on slender material
structures is that they can be designed to respond to trdargriavitational pulses, to polarised
uni-directional gravitational waves or omni-directionalpolarised waves.

In 1985 V. Braginsky and K. Thorn proposed [6] an Earth-dnlitgravitational wave de-
tector, called a “skyhook”, which could operate in the 10@0Q mHz band. It consisted of two
heavy masses, one on each end of a long cable with a sprirgycatitre. The proposal was re-
fined by R W R Drever who suggested that certain noise pofiutald be reduced by increasing
the rigidity of the design. These authors explored manyetthmpeting noise perturbations and
concluded that such devices offer an attractive, simpletmgent with gravity-wave sensitivity
in an interesting range where sources might exist. Howéheset conclusions were based on a
particular non-resonant radial string configuration irtfearbit and to our knowledge no detailed
simulations of the elastic wave excitations in the conmgctiable have ever been performed in
this or more general scenarios. The proposal here, to useatematerial structures, differs in
a number of important respects not the least of which is tbetfat laser technology has ad-
vanced enormously since this original proposal. Furtheertiee analysis of the original detector
ignored the ability of a continuum structure to be tuned tdhtire acceleration field of a gravi-
tational wave. Resonant response to such circumferextitbéions optimise power absorption
from the wave. Such mechanisms deserve a more comprehansilyesis, not only to update the
viability of the general skyhook concept but to exploit tovatage the detection of both axial,
torsional and flexural elastic wave excitatiamfghe cable itselby laser interferometry in much
more general dynamical configurations than were origiratlyisaged.

The general mathematical theory of non-linear Newtoniastadity is well established.
The general theory of one-dimensional Newtonian Cossergtrwa derived as limits of three-
dimensional continua can be consulted in [1]. The theoryilémentally formulated in the
Lagrangian picture in which material elements are labdted. The behaviour of a Cosserat
structure at tim¢ may be described in terms of the motiRts, t) in space of the line of cen-
troids of its cross-sections and elastic deformations &that line. Such a structure is modelled
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mathematically by an elastic space-curve with structuhgs $tructure defines the relative orien-
tation of neighbouring cross-sections along the structBpecifying a unit vectods (which may
be identified with the normal to the cross-section) at eadhtf@ong the structure enables the
state of flexure to be related to the angle between this vecidithe tangent to the space-curve.
Specifying a second vectal; orthogonal to the first vector (thereby placing it in the glaf
the cross-section) can be used to encode the state of beaalihtyvist along its length. Thus
a field of two mutually orthogonal unit vectors along the stawe provides three continuous
dynamical degrees of freedom that, together with the caotis three degrees of freedom de-
scribing a space-curve relative to some arbitrary origispiace, define a simple Cosserat model.
It is significant for this proposal that the theory includesrinal variables that can be coupled to
the dynamical equations of motion, compatible with the lafvhermodynamics. The theory is
completed with equations that relate the deformationrsdraf the structure to the elastodynamic
forces and torques. The simplest constitutive model toidenss based on Kirchoff relations
with shear deformation and viscoelasticity. Such a Cosseoalel provides a well defined six
dimensional quasi-linear hyperbolic system of partiafedéntial equations in two independent
variables. It may be applied to the study of gravitationabevmteractions by suitably choosing
external body forcebto represent the tidal interaction with each element in tediom. A typi-
cal system might consist of at least two material structarbging in interplanetary space. Each
structure would be composed of several km of hollow segnaepifge. A structure, several km
in length , made up of transportable segments, could be gedv® an orbiting station and the
system constructed in space. The lowest quadrupole d@rcitata steel circular structure would
be about 0.4Hz and vary inversely as the (stress-free)Hesfghe structure. Actuator and feed-
back instrumentation could be placed inside the pipe toe'ttime system to an optimal reference
configuration. A series of laser beams from sources attatthtfte structure, deflected across
its diameters from one side to another and along segmertie afrcumference of a polygon in-
scribed within the loop could form the structure of a laséeiferometer system. In this manner
vibrations induced by a quadrupole deformation of the stinec(in which both the variations in
length of orthogonal diameters and circumferential elels)erontribute to a path difference for
laser interference. The precise details of the density &astie moduli needed to enhance the
sensitivity of the receiver would result from an in-deptfagtic analysis of the Cosserat equa-
tions for free motion. The ability to readily optimise thesomant behaviour for coupled axial,
lateral and torsional vibrations by design is a major acag@tover other mechanical antennae
that have been proposed.

By contrast a broad band detector would consist of an opercdesttucture coiled into
a spiral. For planar spirals with traction free open endssiectral density of normal trans-
verse and axial linearised modes increases with the deofsibe spiral winding number. They
form an ideal broad band detector with directional charties. Such antennae can sustain
non-resonant weakly dispersive axial travelling wavestegdy incident gravitational pulses.
Furthermore by coupling such a spiral at its outer end tol# ligass by a short length of high-Q
fibre (such as sapphire) one can tune such an extension tndahtesonances, thereby amplify-
ing the spiral elastic excitation. Such excitations offewrdetection mechanisms based on the
enhanced motion of the outer structure of the spiral.

2. Cosserat equations

The dynamical evolution of the structure with mass densitg, [0, Lg] — p(s), and cross-
sectional areg € [0, Lg] — A(S), is governed by Newton’s dynamical laws:

pAR =n' +f
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dplw) =m +R xn+l
applied to a triad of orthonormal vectors:e [0, Lg] — {d1(s,t),d2(s, 1), d3(s, 1)} over the
space-curve:s € [0, Lg] — R(s,t) at timet wheren’ = dsn, R = &R, f and| denote
external force and torque densities respectively ardO, Lg] — pl is a structure moment of
inertia tensor. In these field equations tlantact forcesh andcontact torquesn are related to
the strainsu, v, w by constitutive relations. The strains are themselves eefin terms of the
configuration variableR anddy for k = 1, 2, 3 by the relations:

R =v
d/kzuxdk
dy = w x dy.

The latter ensures that the triad remains orthonormal undsgution. The last equation identifies

1 3
W:Ekzldkxdk

with the local angular velocity vector of the director triaélhe general model accommodates
continua whose characteristics (density, cross-sedtianaa, rotary inertia) vary witls. For
a system of two coupled continua with different elastic eltgristics on 0< s < 59 and
S < S < Lgrespectively one matches the degrees of freedmn=aty according to a junction
condition describing the coupling.

To close the above equations of motion constitutive refatiappropriate to the structure
must be specified:

nes,t) = AW t), Vs, t), u(s), vi(s),...,S)
m(s,t) = m(s,t), v(s,t), ut(s), vi(s),...,S)

whereut (S) etc., denote the history af(s, t) up to timet. These relations specify a reference
configuration (say at = 0) with strainsU(s), V(s) in such a way that(U(s), V(s), ..., s) and
m(U(s), V(s), ..., s) are specified. A reference configuration free of flexure Ra&, 0) =
ds(s, 0), i.e. V(s) = d3(s, 0). If a standard configuration is such thag¢s, 0) is a space-curve
with Frenet curvatureg and torsionrg and the standard directors are oriented so dhés, 0)
is the unit normal to the space-curve aghg(s, 0) the associated unit binormal théhs) =
k(s) dz(s, 0) + to(s) d3(s, 0).

For a “rod” of densityp and cross-sectional areain a weak plane gravitational wave
background the simplest model to consider consists of thetdtéan Cosserat equations with a
time dependent body force modelled by the tidal interactianpARCSC where¢ = x ad_x +

y 31 +z 3% is the Newtonian vector locating an element of the strudiu@Newtonian frame
defined by the gravitational wave aR) y is the pseudo-Riemannian curvature operator. The
plane gravitational wave metric fix, y, z, t} coordinates is expressed as

g=-@ +elpel +f ol +S e

where
dt+dz dt—2 dt-2
0 _
e = 2 +‘7:(t,x;y;z) 2 + 2 ’
el = d x,
&€ = dy,
S8 - d(t+z)+_7—'(t,x,y,z)d(t_z)—d(t_z)

2 2 2
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and serves to anchor the wave to a Minkowski spacetime When0. An exact plane gravita-
tional wave is given by

2 2
X= — X
2y +f><(t_z)7y

F = f+(t—Z)

for arbitrary profilesf, and f.. The vectorC is the normalised 4-velocity associated with a
time-like observer curve in a geodesic reference frameénatbove metric. In the absence of
elastic forces each element in the structure would then Berged by the equation of geodesic
deviation. Additional stationary Newtonian gravitatibfialds add terms of the form Ag to f
whereg is the “effective local acceleration due to gravity”. PogviNonian gravitational fields
(such as gravitomagnetic and Lens-Thirring effects) candmmmodated with a more refined
metric background.

It should be stressed that unlike many current low frequetetgctors (e.g. LISA), based
on measuring the relative motion of a small number of discnedsses, the loop antennae under
discussion provide a response from a vibrating mass caminwhere every element of each
structure can be made to respandn optimal manneto the acceleration field of a gravitational
perturbation. By choosing material with a critical ratictloé shear to Youngs modulus of elastic-
ity, the quadrupole mode of the structure can be inducedgorabmaximum power from a plane
gravitational wave propagating orthogonal to a circulamploIn such a mode the deformation
of each structure element remains along the accelerationia the tidal field. This important
observation follows by linearising the Cosserat equatadaut a circular loop of lengthg with
the deformation fields

_ (Lo 27
R(s,t) = (Z +$(s,t)> cos(L—O(s+k(s,t))>,
(52 +e)sn(Terian) o
— +&(s,t) )sinf —(s+A(s, 1)) ),0
2 Lo
ox{ fp+ota) sn(sros) o
d, = cos| —s+ (s, t) ), sinf —s+¢(s,t)),0
L Lo Lo
d, = 1[0,0,1]
dz3 = dixd»

and a tidal perturbation due to a plane gravitational wavthentransverse trace-free gauge.
The linearised vibrations correspond to a spectrum of cnetbiflexural and circumferential
modes and the quadrupole mode alone can be excited intcargsmby the passage of the entire
gravitational wave. Such modes have no analogue in detectonposed of discrete masses. A
further intriguing property of this system deserves furingestigation. Loops can be endowed
with a uniform longitudinal speed along their circumfererand the damping of the induced
resonant modes due to the viscoelasticity of the structutieeireby diminished. More generally
by solving for the dynamical evolution of the structure,egiV, initial and boundary data and
suitable constitutive relations the dynamical behavidithe structure can be used as a guide to
decide how to interface Fabry-Perot devices to the systeonder to detect gravitational wave
environments by laser interferometry.

3. Anelastic modelling

An important consideration of any modelling of Cosseratticwa to low levels of excitation
is the estimation of signal to noise ratios induced by atieiasand temperature. To gain an
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insight into the former one may attempt to extend the esthbd theory of linear anelasticity to

a Cosserat structure. For a slender straight rod with umifdensityp, static Young's modulus

E and area of cross sectioh, the free damped motion in one dimension is modelled by the
equation:

pAdtX(s,t) =n'(st)
where the axial strain(x, t) = dsx(s, t) = X/(s, t) and
t
nes,t) = EAw(s, t) — 1) — EA/OO ot —tHhotHhdt
for some viscoelastic modelwith 0 < s < L. For free motion in the mode:

X(s, 1) = s+ &(t) cogms/L)

the amplitude: (t) satisfies
. 2 2 t .
E) + 0B E(t) = / Bt — tHEH)Y

. 2 . . L
with a)g = % while for a forced harmonic excitation:

t
s(t)+w§§(t) =a)(2)/ ¢t —tHEW )Y + Fgexp(—i Q).
o0

With £(0) = £(0) = O the Laplace transformed amplitude of forced axial mot®then given
in terms of the Laplace transforfn

_ o
$(0) = / pte ldt
0
of the anelastic modelling functiap(t) as:

Fo
(0 (02— wi0p(0) + )

E(0) =

To extend this approach in a simple manner to a 3-D Cossegglmba slender rod with uniform
static moduliE andG, geometric element8, Koo = J11+ J22, Jug, One adopts the following
constitutive relations for the local director componentshe contact forcen and torquem in

*For a “Hudson” type solid :
E(o) =ks’ = E(Q1—0¢(0))

for some constants andv.
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terms of the local strain vectovsandu and anelastic response functiahis andgg:

t
na(s,t) = EA(v3(s,t)—1)—EA/ P —tHva(s, t)dt
o0
t
nis,t)y = GAvl(s,t)—GA/ ot —t)vy(s, t)dt’
o0
t
no(s,t) = Gsz(s,t)—GA/ ot —t)va(s, t)dt
o0
t
ma(s,t) = KaaGu;;(s,t)—KaaG/ ot —tHuz(s tHdt
o0
2 2 t
Me(s,t) = EZJaﬂuﬂ(s,t)—EZJaﬂ/ Pt —tHug(s,tHdt
p=1 p=1 o0
fora, =1, 2.

4. Estimate of equilibrium thermal noise at resonance

The detailed effects of temperature on low levels of elastititation are more difficult to esti-
mate. However order of magnitude estimates may be base@omptary considerations. Let
be the mean thermal R.M.S. displacement of the elastic metita thermal equilibrium state
at temperaturd@ , for an antenna of mass resonating with angular frequenay Then

KT _ mw?x?

2 2

wherek is the Boltzman constant. For an antenna of effective lelgtinass density and
Young’s modulusE take

and
m=pLA

in terms of the cross-section ar@aof the structure. IQ is the quality factor of the antenna one
may estimate the gravitational signal from a harmonic gasignal wave with amplitudé and
frequencyw to be given bydl = hL Q. If S= dl/x is the signal to noise ratio:

S kT
h(T E.A LS > — ) —.
(T,Q,E,A LY orVLEA

ChoosingQ = 1E6, E = 2.02E11, A = (0.01)2, S = 5 in MKS units andT = 100K one
sees that with. = 1km one could detedt = 1E — 21 provided the signadl = 1E — 12

is detectable. This corresponds to a resonance at 0.2Hng tls¢ above parameters one may
estimate the mass and corresponding lowest resonant fregfier such a detector. These are
illustrated in Figures 1 and 2.
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5. Estimate of thermal fluctuation noise induced by laser mesurements

The act of measuring "small” elastic strains can inducerttarfluctuations that contribute to
elastodynamic noise. According to Braginsky et al. [7], penature fluctuations can be induced
by laser measurement of strain. Such fluctuations act ashasttic source for elastic deforma-
tions in the structure that compete with the strains indunedravitational excitations. If one
neglects the geometry of the structure and applies the &&in [7] one finds a temperature
dependence for the spectral density of the average indwgied y(T, w)? given by:

2_4 V2a(T)2(1+ )%k T2z
— VEp(MC(Mrol+ t20?)

where the relaxation time = rgp(T)C(T)/K(T), K (T) is the thermal conductivityy the
Poisson ratiog (T) the coefficient of linear expansion af@dT) the specific heat of the elastic
medium. The radiusg is a measure of the spatial dimension of the laser spot usextite the
temperature fluctuations of the structure, taken here to@gnt

The square roog (T, w) of the spectral density for a structure composed of a Felbly &
plotted as a function of temperature for the series of fragigs, OHz, 0.001Hz, 0.01Hz, 1Hz in
Fig. 3. The noise is limited by the top OHz curve. To make a canispn with the thermal noise
x(T) above at a resonance frequeizyone may integrate the spectral fluctuation noise induced
by laser measurement over a band [w>] centered on the resonant frequency:

x(T, ®)

w2
X(T)[Zwl,wz] = Ll X(T,w)zdal

If one takes the window, = 0 andw, = 2<2 for a choice of2 corresponding to the lowest
resonance in structures with lengths of 0.01m, 1, 100m, kail@km, then the full curve in Fig.
4 is obtained forX (T)[0,2q]. On this scaleX(T)o,2q] is insensitive to the choice of frequency
window. By contrast the dotted curves indicate the resoRalt.S. thermal noisex(T) with
the lowest curve corresponding to the shortest length amdtiers showing noise increasing
with length. Clearly the thermal fluctuation noise inducgdheasurement is several orders of
magnitude smaller compared with the thermal R.M.S. noisa $tructure of several km in length
resonating in the mHz region. The strong temperature depaedaround = 60 andT = 250
is due to the behaviour of the thermal expansion coefficienhése regions. It offers another
means of tuning the antenna by careful selection of materégerties. The thermal fluctuation
noise may have more significance for the broad band detemtdigcrations mentioned above.

6. Conclusions

Cosserat modelling offers a natural approach to analysénteeaction between gravitational
fluctuations and slender elastic structures. Unlike ctipeoposals for low frequency orbiting
detectors based on measuring the relative motion of a smaiber of discrete masses, the an-
tennae discussed above provide a response from an exteimlating mass continuum where
every element can be made to respamdn optimal manneto the acceleration field of a grav-
itational perturbation. Cosserat methods may be genedalsinclude a more detailed study of
the thermo-mechanics of antennae constrained by the G&gihem inequality and promise a
clearer picture of the competing effects of thermal nois¢hendetection of gravitational waves.
If thermal noise is such that cryogenic cooling is not maadatvith current technology they
may also provide a cheaper alternative.
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