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DYNAMICS IN QUANTUM THERMODYNAMICS

Abstract. A thermodynamical system being in contact with its envirentris in-
vestigated by use of quantum-thermodynamical descripamce the considered
system can only described by a restricted set of relevargreaisles, it performs
an irreversible non-equilibrium process. Different sttital operators accompa-
nying the non-equilibrium process are investigated, ifrtkdgnamics determine
the expectation values of the set-variables correctlynreti The positivity of the
entropy production of one of the dynamics is discussed.

1. Introduction

Thermodynamics is the theory of non-equilibrium system&e Tain problem that arises, if
we want a quantum mechanical description of thermodynarisidew to get irreversibility into
the reversible theory of quantum dynamics in order to getsitige entropy production. One
possibility is to introduce dissipative terms int@ $RODINGER'S equation or into th&oN NEU-
MANN dynamics. This leads to an irreversible quantum theory f@eimstance [1]). An other
possibility is this mesoscopic description of a thermodgitasystem using only its restricted
macroscopic information with respect to the observabldse fMicroscopic background theory
remains unchanged (see for instance [2], [3]). There isalsombination of these two meth-
ods treated in [4], [5]. We will use here the second one of theva-mentioned methods, the
mesoscopic theory using conventional microscopic dynamic

Let us consider a discrete syst&n The interaction betweefi and its environment shall
be completely described by their heat exchange, power agehand material exchange. Such
systems are calledc$OTTKY systems according to [6]. L&tbe included in an isolated system,
so that we can call that part of the isolated system, thatti§nohe environmeng .

isolated compound system

A

£

Since the isolated compound system does not interact wite@rironment, we can choose
a quantum mechanical description using its density magisfying thevoN NEUMANN dy-
namics.

The mesoscopic description &fis based on the choise of a restricted set of observables
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that are relevant to the considered problem. This set ofamteobservables which have to be
linearily independent of each other is callegbbachtungseberjg]

B .= {G]_,...,Gn}
Gi =G;t foralli e{l....,n}.
Let us introduce the abbreviation
G:=(Gy...Gn'.
The expectation values of those observables are given by
g = tr(Gjo) forallief{l,...,n}
or g = tr(Go),

if o is the microscopic density operator of the considered tedlaompound system.

In the standard situation, the observalesf the beobachtungsebene depend on some work
variablesa; (1), ...,am(t). This is for instance the case, if we vary the volume of thesatered
discrete systen with a piston during the experiment. The abbreviation

a:=(@g...am)"

will be used henceforth.

On the mesoscopic level of description we are not interaatiik exact microscopic stage
but in the expectation valugs= tr (G o) of the observables which we are able to measure. For a
chosen set of observabl€ga), there exist a lot of microscopical states that are macpicatly
indistinguishable, because their expectation vafp@® the same. In this context, we can define:

A density operatop is calledaccompanying process @fwith respect td3, if
tr (G(t) o)) = tr (G(t) (1))
trot) =1 trot)=0  fort eR.
We are now free to choose any of the accompanying processdgdoribing the original

process.

2. Dynamics of accompanying processes

2.1. Canonical dynamics

The accompanying procegf ¢ with respect td3 that maximalizes the entropy of the consid-
ered system will be denoted &

1) Sz = —kmin(tr (¢ Ing)) = —ktr(RInR).
o

Herek is the BoLTzZMAN constant.R has the following form [8] [9]:
1
@) R=-e "G

with the partition function

(3) Z:=tre*C,
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R is calledgeneralized canonical operatqwith respect taB). The A are called Lagrangian
multipliers. Dynamics which preserve the canonical fornthef density operator of maximal
entropy for all times are callecanonical

From (2) and (3) we can see that the generalized canonicahtopelepends on thie and
theG(a). Thus we can derive the canonical dynamics as follows:

R—aR a+aR by
~ da o

and the coefficients are calculated in [2]. Inserting thentame state:
Canonical dynamicss given by

R= RA-(tr(RE>—&>~a+ R(tr (RG) —G) - 4

oa 0A
with
1
G = /0 e C G e Gy
& — /leu)vG E ef,u)vG du
0A 0 fa '

2.2. The relevant part of the density operator

The vector space of linear operators omLBERT space is called louviLLE spacel [10].
For instance the density matrix and the observables areeelsnof this space. Now we can
introduce linear mappings aoff, so-called super-operators. An example of a super-opeisato
the LiouviLLE operator (5). Here super-operators are interesting whietble us to derive
dynamics of the generalized canonical operator.

Since the operators in a chosen beobachtungsebene do noafoomplete base in the
LIouVILLE spaceL, the density matrix has for this particular beobachtungseba relevant
part, which contributes to the calculation of expectatiafugs, and an irrelevant part, which
does not show any effect on the trace in the expectation salue

o(t) = orel(t) + Qirrel (V)
with
r(GMe®) = tr(GM)erl®),
0 = tr (G(t) Qirrel (t))
tropl(t) =1 , tropt)=0.
The isolation of these two parts is achieved by a linear nrappn L. This operator transforms

the vON NEUMANN equation — the quantum-mechanical dynamics of the denpityator in
SCHRODINGER' picture

4 ot) =—iL o(t)

— into a mesoscopic dynamics of the generalized canonieabtgr. Herel is the LIOUVILLE
operator

(5) LX:=%[H, X].
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(For more detailed information about the relevant/irratevpart ofp see [11].)

There are two different methods to isolate the relevantgfatte microscopic density oper-
ator. This mapping can be either linear or local linear.

1. relevant part by &near mapping
(6) orelt) = P o(t),
2. relevant part by &ocal linear mapping
(7 orelt) = PM o).
Here,P(t) is supposed to be an idempotent super-operator, becassiesirable that
P(®) orel(t) = grel()

or
P() orel(t) = orel(t)
is valid. Let us define the operator

Q) :=1-P().

If P isidempotentQ is idempotent, too.

We can also project an accompanying process instead of #r@soopic density operator.
Both procedures should yield the same relevant part, bedaoth o and ¢ describe the same
macroscopic state and yield the same expectation values.

P® o)

P(t)o(t) = orel(t),

respectively

Pt)ot) = P(t)o(t) = drel(t) .

Fick-Sauermann dynamics

The case (6) in whicl® mapso(t) specially toRg(t) (cf. [8] [9]) has been treated byi€k and
SAUERMANN [10]. Starting out with thevoN NEUMANN equation (4) they derived the
Fick-Sauermann dynamics

® Rel) = —i(POLM®+iP®)Rel®)
- /t: (P L) +iP®) T(t.s) (Q(s) L(s)
— iP(9) Rel(9)ds
with
%T(t,s) = Tt 9 (Q()L(s)—iP(9),
Tt,t) = 1,
and

o(tp) = Reel(to)



Dynamics in quantum thermodynamics 151

One possible operatd? for this dynamics is the
Kawasaki-Gunton operatdi 2]

PKG. 2 ¢
3
©) PKC X := RgItrX + ?&e' (tr (G X) —gtrX) .

In this case, the dynamics (8) is an implicit differentiabiation, becaus®g| is included in
PKG(t), which appears on the right hand side of the equation.
Robertson dynamics

Let us consider the dynamics using the local linear mappihgThis case has been treated by
ROBERTSON[13]. He started out with theoN NEUMANN equation (4) and assumed thgt) (t)
preserves the form of the generalized canonical operatadifime:

(10) Reel(t) = P(t) o(t).

Then he derived the so-call&bbertson dynamics

. t
11) Rrel(t) = =i P(t) L(t) Ree(t) —/ PO LM®T(t,s) Q(s) L(s) Rel(s) ds

to

with

(12) %T(t,s) = iT@,5)Q(s)L(s)),
(13) T, t) = 1,

(14) oto) = Re(lp).

Although RoBERTSONderived this dynamics only for constant work variables,djieam-
ics remains its form also for time dependent work variable®wever, we must now use an
another mappind?(t) than the RBERTSONOperator [13] or the KWASAKI-GUNTON oper-
ator (9), which are used in@BERTSONdynamics, because they only satisfy (10) if the work
variables are constant in time. This problem is treated4ij §hd partly in [15], too.

3. Positivity of entropy production

From (1) and (2) we get for the rate of entropy in canonicalayits [2]:
(15) S=—ktr(RINR) =ktr(A-GR).

The rate of entropy in an isolated system is cadetropy productiorn:
(16) o:=S 420, 00, e

Considering a systeid in contact with its environmerf during a contact time\t, that is suf-
ficiently short, conduction problems are out of scope anduskely the contact problem can
be treated. If all the quantum mechanical drift terms [5]\arishing in the chosen beobach-
tungsebene

v:.=—itr(GLR) =0
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and if we make a short time approximation (Taylor-expansiod neglecting quadratic and
higher powers ofAt), the FCk-SAUERMANN dynamics using the KWASAKI-GUNTON ope-
rator transforms int@ontact time dynamidd 5]

Reel = PKC Ry — (PKC L +i PKO)(L — i PKC) R AL

The corresponding rate of entrogyand the entropy production of S can be calculated by
inserting (8) into (15) and (16):

a:S‘ —Kk({xr-LG|ir LG)AL=0.

a=0, Q=0, n=0
Here, the parentheses stand for the generalizegNdroduct [16]

1
(F|G) :=/0 tr (Rel FT R, G R) du

which is a scalar product.
So it is possible to show the positivity of entropy produstissing this formalism.

4. Outlook

The question we are investigating is, if the maximum entrppgiciple is valid for systems in
non-equilibrium, too. At this point, we can say that there good prospects to answer this
question in the near future using the formalism of quantuenrttoedynamics presented here.
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