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A. Kato - W. Muschik - D. Schirrmeister ∗

DYNAMICS IN QUANTUM THERMODYNAMICS

Abstract. A thermodynamical system being in contact with its environment is in-
vestigated by use of quantum-thermodynamical description. Since the considered
system can only described by a restricted set of relevant observables, it performs
an irreversible non-equilibrium process. Different statistical operators accompa-
nying the non-equilibrium process are investigated, if their dynamics determine
the expectation values of the set-variables correctly in time. The positivity of the
entropy production of one of the dynamics is discussed.

1. Introduction

Thermodynamics is the theory of non-equilibrium systems. The main problem that arises, if
we want a quantum mechanical description of thermodynamics, is how to get irreversibility into
the reversible theory of quantum dynamics in order to get a positive entropy production. One
possibility is to introduce dissipative terms into SCHRÖDINGER’s equation or into theVON NEU-
MANN dynamics. This leads to an irreversible quantum theory (seefor instance [1]). An other
possibility is this mesoscopic description of a thermodynamic system using only its restricted
macroscopic information with respect to the observables. The microscopic background theory
remains unchanged (see for instance [2], [3]). There is alsoa combination of these two meth-
ods treated in [4], [5]. We will use here the second one of the above-mentioned methods, the
mesoscopic theory using conventional microscopic dynamics.

Let us consider a discrete system
�

. The interaction between
�

and its environment shall
be completely described by their heat exchange, power exchange and material exchange. Such
systems are called SCHOTTKY systems according to [6]. Let

�
be included in an isolated system,

so that we can call that part of the isolated system, that is not
�

, the environment� .

�

�

�����	
� ��
����� ���	



Since the isolated compound system does not interact with any environment, we can choose
a quantum mechanical description using its density matrix satisfying theVON NEUMANN dy-
namics.

The mesoscopic description of
�

is based on the choise of a restricted set of observables
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that are relevant to the considered problem. This set of relevant observables which have to be
linearily independent of each other is calledbeobachtungsebene[7]

�
:= {G1, . . . , Gn}

Gi = G+
i for all i ∈ {1, . . . , n} .

Let us introduce the abbreviation

G := (G1 . . . Gn)t .

The expectation values of those observables are given by

gi := tr (Gi %) for all i ∈ {1, . . . , n}

or g := tr (G %) ,

if % is the microscopic density operator of the considered isolated compound system.

In the standard situation, the observablesG of the beobachtungsebene depend on some work
variablesa1(t), . . . ,am(t). This is for instance the case, if we vary the volume of the considered
discrete system

�
with a piston during the experiment. The abbreviation

a := (a1 . . . am)T

will be used henceforth.

On the mesoscopic level of description we are not interestedin the exact microscopic state%,
but in the expectation valuesg = tr (G %) of the observables which we are able to measure. For a
chosen set of observablesG(a), there exist a lot of microscopical states that are macroscopically
indistinguishable, because their expectation valuesg are the same. In this context, we can define:

A density operator̂% is calledaccompanying process of% with respect to
�

, if

tr
(

G(t) %(t)
)

= tr
(

G(t) %̂(t)
)

tr %̂(t) = 1 tr ˙̂%(t) = 0 for t ∈ � .

We are now free to choose any of the accompanying processes for describing the original
process.

2. Dynamics of accompanying processes

2.1. Canonical dynamics

The accompanying process%̂ of % with respect to
�

that maximalizes the entropy of the consid-
ered system will be denoted asR:

(1) S� := −k min
%̂

(tr (%̂ ln %̂)) = −k tr (R ln R) .

Herek is the BOLTZMAN constant.R has the following form [8] [9]:

(2) R =
1

Z
e−λ·G

with the partition function

(3) Z := tr e−λ·G .
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R is calledgeneralized canonical operator(with respect to
�

). Theλ are called Lagrangian
multipliers. Dynamics which preserve the canonical form ofthe density operator of maximal
entropy for all times are calledcanonical.

From (2) and (3) we can see that the generalized canonical operator depends on theλ and
theG(a). Thus we can derive the canonical dynamics as follows:

Ṙ =
∂ R

∂a
· ȧ +

∂ R

∂λ
· λ̇ ,

and the coefficients are calculated in [2]. Inserting them wecan state:

Canonical dynamicsis given by

Ṙ = Rλ ·

(

tr

(

R
∂G
∂a

)

−
∂�
∂�

)

· ȧ + R
(

tr (RG) − �
)

· λ̇

with

� :=
∫ 1

0
eµλ·G G e−µλ·G dµ

∂�
∂� :=

∫ 1

0
eµλ·G ∂G

∂a
e−µλ·G dµ .

2.2. The relevant part of the density operator

The vector space of linear operators on HILBERT space is called LIOUVILLE space� [10].
For instance the density matrix and the observables are elements of this space. Now we can
introduce linear mappings on� , so-called super-operators. An example of a super-operator is
the LIOUVILLE operator (5). Here super-operators are interesting which enable us to derive
dynamics of the generalized canonical operator.

Since the operators in a chosen beobachtungsebene do not form a complete base in the
L IOUVILLE space� , the density matrix has for this particular beobachtungsebene a relevant
part, which contributes to the calculation of expectation values, and an irrelevant part, which
does not show any effect on the trace in the expectation values:

%(t) = %rel(t) + %irrel (t)

with

tr
(

G(t) %(t)
)

= tr
(

G(t) %rel(t)
)

,

0 = tr
(

G(t) %irrel (t)
)

tr %rel(t) = 1 , tr %̇rel(t) = 0 .

The isolation of these two parts is achieved by a linear mapping on� . This operator transforms
the VON NEUMANN equation – the quantum-mechanical dynamics of the density operator in
SCHRÖDINGER’s picture

(4) %̇(t) = −i L %(t)

– into a mesoscopic dynamics of the generalized canonical operator. Here,L is the LIOUVILLE

operator

(5) L X :=
1

h̄
[� , X] .
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(For more detailed information about the relevant/irrelevant part of% see [11].)

There are two different methods to isolate the relevant partof the microscopic density oper-
ator. This mapping can be either linear or local linear.

1. relevant part by alinear mapping

(6) %rel(t) = P(t) %(t) ,

2. relevant part by alocal linear mapping

(7) %̇rel(t) = P(t) %̇(t) .

Here,P(t) is supposed to be an idempotent super-operator, because it is desirable that

P(t) %rel(t) = %rel(t)

or
P(t) %̇rel(t) = %̇rel(t)

is valid. Let us define the operator

Q(t) := 1 − P(t) .

If P is idempotent,Q is idempotent, too.

We can also project an accompanying process instead of the microscopic density operator.
Both procedures should yield the same relevant part, because both%̂ and% describe the same
macroscopic state and yield the same expectation values.

P(t) %(t) = P(t) %̂(t) = %rel(t) ,

respectively
P(t) %̇(t) = P(t) ˙̂%(t) = %̇rel(t) .

Fick-Sauermann dynamics

The case (6) in whichP maps%(t) specially toRrel(t) (cf. [8] [9]) has been treated by FICK and
SAUERMANN [10]. Starting out with theVON NEUMANN equation (4) they derived the
Fick-Sauermann dynamics

Ṙrel(t) = −i
(

P(t) L(t) + i Ṗ(t)
)

Rrel(t)(8)

−

∫ t

t0

(

P(t) L(t) + i Ṗ(t)
)

T(t, s)
(

Q(s) L(s)

− i Ṗ(s)
)

Rrel(s) ds

with

∂

∂s
T(t, s) = iT (t, s)

(

Q(s) L(s) − i Ṗ(s)
)

,

T(t, t) = 1 ,

and
%(t0) = Rrel(t0) .
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One possible operatorP for this dynamics is the
Kawasaki-Gunton operator[12]

PKG : � → �

(9) PKG X := Rrel trX +
∂ Rrel

∂g
· (tr (G X) − g trX) .

In this case, the dynamics (8) is an implicit differential equation, becausėRrel is included in
ṖKG(t), which appears on the right hand side of the equation.

Robertson dynamics

Let us consider the dynamics using the local linear mapping (7). This case has been treated by
ROBERTSON[13]. He started out with theVON NEUMANN equation (4) and assumed that%rel(t)
preserves the form of the generalized canonical operator for all time:

(10) Ṙrel(t) = P(t) %̇(t) .

Then he derived the so-calledRobertson dynamics

(11) Ṙrel(t) = −i P(t) L(t) Rrel(t) −

∫ t

t0
P(t) L(t) T(t, s) Q(s) L(s) Rrel(s) ds

with

∂

∂s
T(t, s) = iT (t, s) Q(s) L(s) ,(12)

T(t, t) = 1 ,(13)

%(t0) = Rrel(t0) .(14)

Although ROBERTSONderived this dynamics only for constant work variables, thedynam-
ics remains its form also for time dependent work variables.However, we must now use an
another mappingP(t) than the ROBERTSONoperator [13] or the KAWASAKI -GUNTON oper-
ator (9), which are used in ROBERTSONdynamics, because they only satisfy (10) if the work
variables are constant in time. This problem is treated in [14] and partly in [15], too.

3. Positivity of entropy production

From (1) and (2) we get for the rate of entropy in canonical dynamics [2]:

(15) Ṡ = −k tr (Ṙ ln R) = k tr (λ · G Ṙ) .

The rate of entropy in an isolated system is calledentropy productionσ :

(16) σ := Ṡ
∣

∣

∣

ȧ=0, Q̇=0, ṅ=0
.

Considering a system
�

in contact with its environment� during a contact time1t , that is suf-
ficiently short, conduction problems are out of scope and exclusively the contact problem can
be treated. If all the quantum mechanical drift terms [5] arevanishing in the chosen beobach-
tungsebene

v := −i tr (GL R) = 0
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and if we make a short time approximation (Taylor-expansionand neglecting quadratic and
higher powers of1t), the FICK-SAUERMANN dynamics using the KAWASAKI -GUNTON ope-
rator transforms intocontact time dynamics[15]

Ṙrel = PKG Rrel − (PKG L + i ṖKG)(L − i ṖKG) Rrel 1t .

The corresponding rate of entropẏS and the entropy productionσ of
�

can be calculated by
inserting (8) into (15) and (16):

σ = Ṡ
∣

∣

∣

ȧ=0, Q̇=0, ṅ=0
= k (i λ · L G

∣

∣ i λ · L G)1t ≥ 0 .

Here, the parentheses stand for the generalized MORI product [16]

(F
∣

∣ G) :=
∫ 1

0
tr (Rrel F+ Ru

rel G R−u
rel ) du

which is a scalar product.

So it is possible to show the positivity of entropy production using this formalism.

4. Outlook

The question we are investigating is, if the maximum entropyprinciple is valid for systems in
non-equilibrium, too. At this point, we can say that there are good prospects to answer this
question in the near future using the formalism of quantum thermodynamics presented here.
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