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TOWARDS AN ANALYTICAL MECHANICS OF DISSIPATIVE
MATERIALS

Abstract. A Lagrangian-Hamiltonian variational formulation is posged for the
thermoelasticity of heat conductors and its generalinati@nelasticity - described
by means of internal-state variables- by using a gauger¢kieal technique (intro-
duction of an additional variable of state - the gradienth&rimacy - that ren-
ders the system apparently Hamiltonian). Projecting thexggns resulting from
the Euler-Lagrange equations and the equations deducedtf® application of
Noether’s theorem back on the original space provides &dllIbalance equations
of the dissipative theory, including the entropy equatiod the equation of canoni-
cal momentum in material space (which are not strict coragienv laws). A canon-
ical structure clearly emerges for the anelasticity of eanadrs in finite strains.

1. Introduction

A recurrent dream of many mathematical physicists is tottoosa variational formulation for
all field equations of continuum physiagcluding in the presence of dissipative effedtée all
know that this is not possible unless one uses special tsieggls as introducing complex-valued
functions and adjoint fields (e.g., for heat conduction)t Be do present here a variational and
canonical formulation for the nonlinear continuum theofytermoelastic conductorgnd then
generalize this to the case of anelastic conductors of HEgis is made possible through the
introduction of a rather old notion, clearly insufficientiyploited, that othermacyintroduced
by Van Danzig (cf. [9]), a field of which the time derivativetige thermodynamical temperature.
It happens that we used such a notion in relativistic studitise late 60s-early 70s, (Pre-general
exam Seminar at Princeton University, Spring 1969; [101])1a time at which we found that
thermacy is nothing but theagrange multiplierintroduced to account fasentropyin a La-
grangian variational formulation. But , completely indegently and much later, Green and
Naghdi ([4]) formulated a strange “thermoelasticity witth@issipation”. Dascalu and | ([1])
identified thermacy as the unknowingly used notion by GreehNaghi (unaware of works in
relativistic variational formulations), and we formuldtéhe correspondinganonical balance
laws of momentum and energyf interest in the design of fracture criteria - which, cany

to the expressions of the classical theory, indeed presesource of dissipation and canonical
momentum, e.g., ho thermal source of quasi-inhomogesé(tie [2]). In recent works ([14],
[21]), we have shown the consistency between the expressfantrinsic dissipation and source
of canonical momentum in dissipative continua. This is t@wed within the framework of so-
calledmaterialor configurational forces‘Eshelbian mechanics”, that world of forces which, for
instance, drive structural rearrangements and materiattieof different types on the material

*Enlightening discussions with Prof. Ernst Binz (Mannhe{®&rmany) during the Torino International
Seminar are duly acknowledged.
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manifold (for these notions see [12], [13], [5] and [7]). Tioad to the analytical continuum
mechanics was explored in particular by P.Germain (199R3]irbut not in a variational frame-
work.

Herebelow we first present a consistent variational fortiuridor thermoelastic conductors
of heat, which, with the use of Noether’'s theorem, delivdrequations of interest, that is,
the balance of linear momentum, the equation of entropyb#@nce of canonical momentum,
and the energy equation, all in the apparently“dissipéggs form”. But these equations can
be transformed to those of the classical theory of (obviotisérmally dissipative) nonlinear
elastic conductors (cf. [20]). Therefore, we have a goodistapoint for a true canonical
formulation of dissipative continuum mechanics. The passextension of the formulation
to anelastic conductors of heat is also presented when #dastic behavior is accounted for
through the introduction of internal variables of stateer&énts of the present work were given
in a paper by Kalpakides and Maugin ([6]).

2. Direct Variational formulation and its results.

We use classical elements of field theory as enunciated aralevooks (e.g. [12], [14], [21]).
The reader is referred to these works for the abstract emsati

Consider Hamiltonian-Lagrangian densities (per unit k@éwof the undeformed configura-
tion Kr of nonlinear continuum mechanics given by the following eyah expression:

@ L=L(F0,8X =KX —WFH0.8X),

where 1
KW:X)=Sp0(X)V2, 6 =7, p=Vry.

Here,K is the kinetic energyV is the free energy densityg is the mass density at the reference
configuration, a superimposed dot denotes time differgotiaat constant fixed material point
X, VR denotes the material gradient, the scalar funcide called thethermacy andv andF
are the physical velocity and direct deformation gradieichshat

9 x

bl
V= F= X

) = VRx,
ot |y 9 RX

t

Xx=x(X,t), detF >0,

is the smooth placement &f at Newtonian time. The explicit dependence g andW on X
indicates material inhomogeneity (direct smooth depecelem the material point).

In the Lagrangian density (1), tHeasic fieldsare theplacementx and the thermacy,
both being assumed sufficiently smooth functions of space-time parametrizatiotX, t) ,
which is the one favored in the Piola-Kirchhoff formulatiohnonlinear continuum mechanics
(cf.Truesdell and Noll, 1965). Notice thhatis not an explicit function ok by virtue of Galilean
invariance (translations in physical space of placemert®ither is it an explicit function of
y itself, this implying a sort ofgauge invariancevery similar to that of electrostatic for the
electric potential. Since the focus is on field equationkaiathan on boundary conditions and
initial conditions, the density (1) may be integrated ovedewtonian space-time volume of
infinite extent with proper limit behavior of the various @ived functions at infinity in space
and at time limits. According to the general field theory, lre absence of external sources
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(these would be explicit functions of the fields themselyt#field equations, i.e, the Euler-
Lagrange equations (cf. egns. (A.7) in Maugin, 1999a) aatertwithy andy, are immediately
given by

ap .
2 —| —divgT =0,
2 7t |y ivR
0S
(3) —| + VRS=0,
At |x
wherein
oL oW oL
p=pV=r—=, Ti=—F=—-—,
0 X oF 9 (VRX)
oW aL AW oL
@ S=-"— = S=-o =
a0 ay ap a(VRY)

are, respectively, thinear momentum vectan physical space, thiérst Piola-Kirchhoff stress
the entropy densityby appealing to the axiom of local state and assuming thab ey density
has the same general functional definition as in thermas)atind, accordingly, thentropy flux
in material form.

Invoking now Noether’s theorem (cf. egns. (A.11) in Maudif99a) for the Lagrangian (1)
with respect to the space-time parametrizaiidnt), we obtain the following two, respectively
co-vectorial and scalar, equations:

o PP th inh
L _A(di _ (sin
®) at |, (d'”Rb )L (f )L’
and

oH
©) —‘ VR U=0,

at |y

where we have defined tloanonical momenturfmaterial-covariant) vectdPth of the present
approach, the correspondireginonical material strestensorbth, the material forceof true
inhomogeneitiefs‘”h, theHamiltonian densitytotal energy densitylH, and the material Umov-
Poynting energy-flux vectdd by [15] (compare the general definitions given in egns. (A.16
(A.17), (A.14) and (A.15)).

aL oL
@ P = —VRx.oo = VRy 7> = —p.F — S8 =P"*"—sp,
LAY ay

L aL
(8) pth = — {bK = —(LsK - (y,L— +xL ))
L L YK d XK

- —(LsLK S +T§FiL)},

fnh._ 9L
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where we have defined tmeechanical canonicalmaterial) momentunP™echand theinternal
energyper unit reference volume by

Pmech= —p.F,
(10) E=W+ .

For the first of these sometimes referred to aggdemudomomenturage, for instance [12], [13],
eqg. (10) is the usual Legendre transformation of thermoalycs between internal and free
energies. As a matter of fact, the definition (9) contains tvegendre transformations, one
related to mechanical fields, and the other to thermal ones.

If we assume, as in standard continuum thermodynamics,etitadpy and heat flux are
related by the usual relation

(11) S =Q/9,
we have

oW
(12) Q= -¢ W,

and eqgn. (6 takes on the classical form of the energy-coasenvequation (cf. Maugin and
Berezovski, 1999)

oH
(13) —| —VR.(Tv=0Q)=0.
at |y
Summing up, we have deduced from the Hamiltonian-Lagrandgmsity (1) all field equations,
balance laws and constitutive relations for the theory afemally inhomogeneous, finitely de-
formable, thermoelastic conductors of heat. As a mattemacf, feqns. (2) and (13) are the
local balance equations of linear momentum (in physicatspand energy, respectively. This is
completed by the balance equation of mass which here tyiviedds
ad
14) %1~ o
at |x
These are all formally identical to those of the classicatioelasticity of conductors (e.g., as
recalled in [18]). Another balance law if that osfoment of momentu¢m physical space). This
is deduced from (1) by considering the action of the infiniteg rotational component of the
connected group SO(3) in physical space. A classical daivgields then (in components in
order to avoid any confusion in notation)
oW _j -
(15) “Fll=0 o TEF!I =0,
oFl e
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as the action of this group is inoperative on the materiatoreg. Apart from the functional
dependence oV, eqn. (15) is also formally identical to the classical cenpart. Only the
equation of canonical momentum (5) differs from the oneioally obtained in [2] material
thermoelasticity. But, abstraction being made of matdrihbmogeneities, it is the same as
the one obtained by direct algebraic manipulations in [hia“dissipationless” formulation of
thermoelasticity. Indeed, canonical momentum (7) is mdd®vo parts, a strictly mechanical
part - which is none other than the pull back, changed of sigrhe physical momentum -
and a purely thermal part given by the constitutive behavinraddition, the canonical stress
tensor (8) - also calle@shelby stress tensduy the present author - contains a contribution of
B because, from its very definition, its captures materiadlignats of all fields. One should note
that the source term in eqn. (5) has no energetic contentthdfmore, contrary to common
use, even the entropy equation (3) is source free so thatiisiagly, in the absence of material
inhomogeneities, all equations obtained herestniet conservation lawhence the qualification
of “dissipationless theoty In this rather strange -we admit it - approach, the entribpy and
heat flux are derived from the free energy, on the same foatingntropy density , and stress
(egns. (4) and (12)).

3. Correspondence with the classical theory

Since eqns. (2), (13), (14) and (15) are formally the sama did classical theory, the limit
whereW does not depend of is trivial for these. What about eqns. (3) and (5) which are of
utmost importance for crack and phase-transition frordiegi(cf. [18]). We need to isolate the
contributions ofg in order to get some “classical” limit (this meapmjectingonto the classical
state space of the thermoelasticity of conductors). Fiesexpand egn. (5) by accounting for
the expressions (7) and (8). After some rearrangementsptanahe following equation (note
thatcurlgrB = 0; T =transposed)

9 Pmech
ot

— divgh™eN= SVRH +S.(Vgp)T + MM,
X

(16)

wherebMech— pth _ s g. But this is not all becausk in bth still depends orB. We must
isolate this dependency by writing

dW  gwmech gy T gwmech
=——+ — (VB =

9w aw T
17) X~ aX 2B IX S.(VRB) ",

where, in essencay™mech — W(F, 9, B = 0; X). On substituting (17) into the material
divergence ob™ech we finally transform (16) to

9 Pmech
Jat

_ divamechz finh + fth’
X

(18)

where
bMeCh_ _(L15 +T.F), L =K —WmeNE g:x), fh:= svge.

The last introduced quantity is the matetizrmal force of quasi-inhomogenettiearly defined
by Epstein and Maugin [2] in their general theoryrofterial uniformity and inhomogeneity
Thus equation (18) has recovered its “classical” form, thetation marks here emphasizing
that, in fact , while “classical” from our viewpoint, this eation is practically unknown to most
people, although it is the one on which thermoelastic gdizatans of theJ-integral of fracture
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must be based (cf. [18], [21]). As to eqgn. (3) we use the falhgatrick. Multiplying (3) by
6 # 0 and accounting for (11) we obtain the “heat-propagatiapiagion in the form

S .
(29) OW + VR.Q= S35,
or else, by integration by parts,
@S . .
(20) % + VR.Q= SO + Sg.
X

This equation is interesting by itself because of its stmect especially the right-hand side -
which is similar to that of eqn. (16), time derivatives regpfey material space derivatives. The
“classical” limit is obtained in (19) or (20) by ignoring tifeterm, i.e., restrictingV to wmech
The other terms then acquire their usual significance @itind S no longer derivable from a
potential. Working then in reverse, one recovers in thigagimation the equations

S S
0—+VRQ=0 —+VrS=o
ot T VRQ gt TYRS=C
wheresth = —s. VR (In 6) is thethermal entropy sourceS andQ = S/6 are now given by
a constitutive equation obtained by invoking the noncatittion of the formulation with the
second law of thermodynamics, which here locally realls > 0. This yields, for instance,
Fourier’s law of heat conduction.

4. Accounting for anelasticity

At this point we have effectively formulated a canonicaldheof the thermoelasticity of con-
ductors. All field equations, balance laws , and constituéiquations follow from it. The rela-
tionship with the “classical” formulation was establish@d proceed further, one must envisage
the case where nontherndiksipative processdg.g., anelasticity) are present. Considering the
theory ofinternal variables of statéo describe these phenomena is a sufficiently general ap-
proach as demonstrated in a recent book [15]. The arpyiori change should be accounting
for the dependency of the free eneiyon a new set of variables collectively represented by the
symbola The corresponding equation of state reads

A+ (dW/da) = 0.

The main problem, however, remains to build the evolutiaretign ofa, normally a relationship
betweeny and the thermodynamical foré&constrained by the second law of thermodynamics.
Thus the very presence efis related talissipative processesd a priori not amenable by means
of a canonical variationalformulation; « (X, t) is not a classical field; neither does it possess
inertia, nor is its gradient introduced to account for sorelocality). But it was recently shown
how variablesy andé could play parallel roles in a certain reformulation of threekasticity

of thermoconductors ([14] , [17] (2000)). This is the trendoe followed. In effect, now we
propose the following variational formulation in symbdig@m:

(21) lim & / L(V,F,a,0 =y,8=Vgy:X)d*X =0
B—0
E3xT

wherelL is the Hamiltonian-Lagrangian density per unit referengl@me. Thdimit symbolism
used in egn. (21) means that the limit@goes to zero must be takénthe equationsesulting
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from the variational formulation, this applying to both etquations and other consequences
of the principle such as the results of the application of tNees theorem. We claim that in
this limit all equations of the “classical” theory of anelastic condors of heatare obtained,
including the entropy equation and heat-propagation éguat this quite general case, a rather
surprising result, we admit it. The only change compared jaq that the free energyv now
depends ow, i.e., we have the following general expression

L=L(,F a6, B X) =KWvX) —-W(F,ab,BX).

Equations (2), (3), (5) and (6) hold true but for the additilcatependence &/ on«. The intrinsic
dissipation necessary for the expression of the dissipatiture of this variable becomes visible
only after performing manipulations of the type of those maxdSection 3. We need to isolate the
contributions due to the “dissipative” variables in eqr®). gnd (15). Equation (17) is modified
due to the dependence an

W gwmeeh 5wy T 0W -
22 — = ———+—(V — v
(22) -~ -~ +aa(R(¥)+aﬂ(R,3)
9 Wwmech

- —x— A (VR)T —S. (VR8T

where, in essencay™ech — W(F, 9, « = const, 8 = 0; X). The equation of canonical
momentum first yields

9 Pmech

o — divgb™Meh= SVRH +S.(VgB)T +fiNh.

X

But on substituting from (22) into this equation, it comes

d PmECh ; mech inh th intr
(23) T — divrb =f" 4+ 4 f
X
where
pmech — (L1 +T.F)
L = K-—W"MCNE g &= const: X),
fih. — svge,
fintr - A(VR()[)T,

The last two introduced quantities are mateftates of quasi-inhomogeneitiue to a nonuni-
form temperature field (cf. [2]) and to a nonunifornfield, respectively ([14]). The presence
of those terms on an equal footing withih means that, insofar as the material manifold is
concerned, spatially nonuniform fields efor 6 are equivalent to distributed material inho-
mogeneities (also continuously distributed defects ssctlislocations) ; they arguasi-plastic
effects(cf. [13]). As to eqn. (3), accounting for the kinetic-engtfeorem (obtained by mul-
tiplying scalarly egn. (2) by after multiplication byd # 0 and accounting for (6) and finally
making 8 = const. (this is equivalent to discardimgin the resulting equation and loosing the
connection ofSandQ with 8) we arrive at the heat-propagation” equatioin the form

3 (S9)
at

(24) +VRQ =S+ As = oth 4 ointr,
X
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Then working in reverse, in this approximation one recotleesequations (compare to [14])

S i
60— +VRQ — d>|nt|"

at
S i
E-FVR-S: ath—l—a'ntr,

wheregth = —SVR(In ) is thethermal entropy sourcand

alntr — 9_1A.d,
q)intr — Gaintr

are thentrinsic entropy source and thetrinsic dissipation , respectively. In the present classical
limit, bf Sandbf S= bf S are now given by a constitutive equation obtained by invgktre
noncontradiction with the second law of thermodynamicsciviiere locally reads

o = ath +aintr > 0.

We have recovered all equations or constraints of the “idaktheory” by applying the scheme
proposed in egn. (21).

5. Canonical four-dimensional space-time formulation

Equations (23) and (24) present an obvious space-time sym(see the two right-hand sides).
This obviously suggest considering these two equationpacesand time-like components of a
uniquefour-dimensional equatioim the appropriate space and the canonical momeRBEEH
and the quantity S (an energy which is the difference between internal and éreergies) as
dual space-time quantities, i.e., they together form a-fhorensional canonical momentum

Puy = (P Py = 65).

We let the reader check that eqns. (23) and (24) can in factwetten in the following pure
4-dimensional or 4« 4 formalism in an Euclidean 4-dim space (compare to Won@iiant
kinematics in [20])

oL

_ W
(25) ) gh_ g, =A 9 -
expl a X

axXpP - 9 X« a X«

(F,v fixed)
A=(AS) pu=(09),
X a=1,234) = {xK (K=123), x4=t}
K K 4 mech
N R R
or, introducing intrinsically four-dimensional gradisrend divergence i&* for eqn. (25),
(26) divga BTN = V4L Imech

where the right-hand side means the gradient computedrigdipé “mechanical” fieldsH,v)
fixed. Equation (26) represents the canonical form of the balahcarmnical momentum and the
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heat-propagation equation for anelastic, anisotropidtefindeformable solid heat conductors.
The 4-dimensional formalism introduced is somewhat diffefrom that used by Maugin ([17])
or Herrmann and Kienzler ([7]). However, in the absence tfrisic dissipative processes and
for isothermal processes, egns. (23) and (24) - or eqgn. @f)ce to those of Kijowski and
Magli ([8]) in isothermal thermoelasticity, the second atjon reducing obviously to the simple
equation

909/t =0.

This shows the closedness of the present approach with thergjerelativistic Hamiltonian
scheme.

6. Conclusion

The procedure used in this paper is essentially that gdiage theoryas practiced in modern
physics. We have artificially enlarged the state space dhiery by adding one coordinate (the
material gradient of the “potentialy) to this space and then projected the resulting equations
back onto the original state space. The latter could notraotadate dissipative processes,
but the enlarged one does. Recurring to the classical dissgpformulation then requires this
projection or “return to reality”. In the mean time, a vaitsial formulation has indeed been
proposed.
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