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NON-LOCAL CONTINUUM THERMODYNAMIC
EXTENSIONS OF CRYSTAL PLASTICITY TO INCLUDE
THE EFFECTS OF GEOMETRICALLY-NECESSARY
DISLOCATIONS ON THE MATERIAL BEHAVIOUR

Abstract. The purpose of this work is the formulation of constitutivedels
for the inelastic material behaviour of single crystals godlcrystals in which
geometrically-necessary dislocations (GNDs) may devatopinfluence this be-
haviour. To this end, we focus on the dependence of the davelot of such dis-
locations on the inhomogeneity of the inelastic defornratiothe material. More
precisely, in the crystal plasticity context, this is a tiela between the density of
GNDs and the inhomogeneity of inelastic deformation in @l&ystems. In this
work, two models for GND density and its evolution, i.e., &lglsystem-based
model, and a continuum model, are formulated and investibad\s it turns out,
the former of these is consistent with the original two-dnsienal GND model of
Ashby (1970), and the latter with the more recent model ofdvai Parks (1997).
Since both models involve a dependence of the inelastie stat material point on
the (history of the) inhomogeneity of the glide-systemaiséic deformation, their
incorporation into crystal plasticity modeling necedyaiinplies a correspond-
ing non-local generalization of this modeling. As it turng,ca natural quantity
on which to base such a non-local continuum thermodynanmergdization, i.e.,
in the context of crystal plasticity, is the glide-systemalar) slip deformation.
In particular, this is accomplished here by treating ead slip deformation as
either (1), a generalized “gradient” internal variable,(®y, as a scalar internal
degree-of-freedom. Both of these approaches yield a goneing generalized
Ginzburg-Landau- or Cahn-Allen-type field relation forsthicalar deformation
determined in part by the dependence of the free energy attiglueation state in
the material. In the last part of the work, attention is famien specific models for
the free energy and its dependence on this state. After susinggand briefly dis-
cussing the initial-boundary-value problem resultingrrthe current approach as
well as its algorithmic form suitable for numerical implentation, the work ends
with a discussion of additional aspects of the formulatiangl in particular the
connection of the approach to GND modeling taken here whircdpproaches.

*| thank Paolo Cermelli for helpful discussions and for dragvimy attention to his work and that of
Morton Gurtin on gradient plasticity and GNDs.
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1. Introduction

Standard micromechanical modeling of the inelastic malttéehaviour of metallic single crys-
tals and polycrystals (e.g., Hill and Rice, 1972; Asaro,398uitifio and Ortiz, 1992) is com-
monly based on the premise that resistance to glide is duelynai the random trapping of
mobile dislocations during locally homogeneous defororatSuch trapped dislocation are com-
monly referred to as statistically-stored dislocationS[PS), and act as obstacles to further dis-
location motion, resulting in hardening. As anticipatedhie work of Nye (1953) and Kroner
(1960), and discussed by Ashby (1970), an additional dmution to the density of immobile
dislocations and so to hardening can arise when the comtinengthscale (e.g., grain size) ap-
proaches that of the dominant microstructural featureg,(mean spacing between precipitates
relative to the precipitate size, or mean spacing betweile gilanes). Indeed, in this case,
the resulting deformation incompatibility between, e‘gard” inclusions and a “soft” matrix,

is accomodated by the development of so-called geomédyrinatessary dislocations (GNDs).
Experimentally-observed effects in a large class of maleguch as increasing material hard-
ening with decreasing (grain) size (i.e., the Hall-Petdbaf are commonly associated with the
development of such GNDs.

These and other experimental results have motivated a nuaibgorkers over the last
few years to formulate various extensions (e.g., basedramgjradients: Fleck and Hutchin-
son, 1993, 1997) to existing local models for phenomenokigilasticity, some of which have
been applied to crystal plasticity (e.g., the strain-geattbased approach: Shu and Fleck, 1999;
Cosserat-based approach: Forest et al., 1997) as welloldarecent efforts in this direction
based on dislocation concepts, and in particular on theafiédye (1953) that the incompati-
bility of local inelastic deformation represents a contimumeasure of dislocation density (see
also Kroner, 1960; Mura, 1987), include Steinmann (19B&),and Parks (1997), Shizawa and
Zbib (1999), Menzel and Steinmann (2000), Acharya and Bag28€00), and most recently
Cermelli and Gurtin (2001). In addition, the recent work afi©®and Repetto (1999) and Ortiz
et al. (2000) on dislocation substructures in ductile grgl/stals demonstrates the fundamental
connection between the incompatibility of the local inétadeformation and the lengthscale of
dislocation microstructures in FCC single crystals. Irtipatar, the approaches of Dai and Parks
(1997), Shizawa and Zbib (1999), and Archaya and Bassa@Djj2fre geared solely to the mod-
eling of additional hardening due to GNDs and involve no tiddal field relations or boundary
conditions. For example, the approach of Dai and Parks (183 used by Busso et al. (2000)
to model additional hardening in two-phase nickel supeyalland that of Archaya and Bassani
(2000) by Archaya and Beaudoni (2000) to model grain-sifectf in FCC and BCC polycrys-
tals up to moderate strains. Except for the works of AchangBassani (2000) and Cermelli
and Gurtin (2001), which are restricted to kinematics, Bthese presume directly or indirectly
a particular dependence of the (free) energy and/or othgerakent constitutive quantities (e.g.,
yield stress) on the gradients of inelastic state variatdad in particular on that of the local
inelastic deformation, i.e., that determine its incompiity. Yet more general formulations of
crystal plasticity involving a (general) dependence offtke energy on the gradient of the local
inelastic deformation can be found in, e.g., Naghdi andi&sa (1993, 1994), Le and Stumpf
(1996), or in Gurtin (2000).

From the constitutive point of view, such experimental aratieling work clearly demon-
strates the need to account for the dependence of the cnstitelations, and so material
behaviour, on the inhomogeneity or “non-locality” of theemal fields as expressed by their
gradients. In the phenomenological or continuum field cangich non-locality of the material
behaviour is, or can be, accounted for in a number of exigpgoaches (e.g., Maugin, 1980;
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Capriz, 1989; Maugin, 1990; Fried and Gurtin, 1993, 1994:tiBu1995; Fried, 1996; Valanis,
1996, 1998) for broad classes of materials. It is not the gaef the current work to compare
and contrast any of these with each other in detail (in tigam, see, e.g., Maugin and Muschik,
1994; Svendsen, 1999); rather, we wish to apply two of thefartoulate continuum thermody-
namic models for crystal plasticity in which gradients o thelastic fields in question influence
the material behaviour. To this end, we must first identify thlevant internal fields. On the
basis of the standard crystal plasticity constitutivetiefafor the local inelastic deformatiaf,

a natural choice for the principal inelastic fields of thenfatation is the set of glide-system
deformations. In contrast, Le and Stumpf (1996) worked @irthariational formulation directly
with F, and Gurtin (2000) in his formulation based on configuraldiorces with the set of
glide-system slip rates. In both of these works, a principallt takes the form of an extended
or generalized Euler-Lagrange-, Ginzburg-Landau- or Galten-type field relation for the re-
spective principal inelastic fields. Generalized formswaftsfield relations for the glide-system
deformations are obtained in the current work by modelirggrttin two ways. In the simplest
approach, these are modeled as “generalized” internahlag (GIVs) via a generalization of
the approach of Maugin (1990) to the modeling of the entrapy. fAlternatively, and more gen-
erally, these are modeled here as internal degrees-afeéne¢DOFs) via the approach of Capriz
(1989) in the extended form discussed by Svendsen (200d&ddition, as shown here, these
formulations are general enough to incorporate in padicainumber of models for GNDs (e.qg.,
Ashby, 1970; Dai and Parks, 1997) and so provide a thermadignframework for extended
non-local crystal plasticity modeling including the effeof GNDs on the material behaviour.

After some mathematical preliminaries (§2), the paperrse@3) with a brief discussion
and formulation of basic kinematic and constitutive issaugrelations relevant to the continuum
thermodynamic approach to crystal plasticity taken in thisk. In particular, as mentioned
above, the standard constitutive form B} in crystal plasticity determines the glide-system
slip deformations (“slips”) as principal constitutive urdwns here. Having then established the
corresponding constitutive class for crystal plastioitg turn next to the thermodynamic field
formulation and analysis (884-5), depending on whethewgtlie-system slips are modeled as
generalized internal variables (GIVs) (84), or as intetwgrees-of-freedom (DOFs) (85). Next,
attention is turned to the formulation of two (constitu)ietasses of GND models (86), yielding
in particular expressions for the glide-system effecttugrface) density of GNDs. The first class
of such models is based on the incompatibility of glide-systocal deformation. To this class
belong for example the original model of Ashby (1970) andrdwent dislocation density tensor
of Shizawa and Zbib (1999). The second is based on the indililpsof FJ, and is consistent
with the model of Dai and Parks (1997). With such models indh#éime possible dependence of
the free energy on quantities characterising the dislooatiate of the material (e.g., dislocation
densities) and the corresponding consequences for theilfation are investigated (§7). Beyond
the GND models formulated here, examples are also givenistirex SSD models which can be
incorporated into models for the free energy, and so intatheent approach. After discussing
simplifications arising in the formulation for the case ofadhdeformation (88), as well as the
corresponding algorithmic form, the paper ends (89) withszussion of additional general
aspects of the current approach and a comparison with atleed work.

2. Mathematical preliminaries

If W and Z represent two finite-dimensional linear spaces, le{WWinZ) represent the set of
all linear mappings fronW to Z. If W and Z are inner product spaces, the inner products
on W and Z induce the transposd” € Lin(Z, W) of any A € Lin(W, Z), as well as the inner
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productA - B : = trW(ATB) = trz(ABT) on Lin(W, 2) for all A, BeLin(W, Z). The main
linear space of interest in this work is of course three-disienal Euclidean vector spave Let
Lin(V, V) represent the set of all linear mappings\binto itself (i.e., second-order Euclidean
tensors). Elements &f and Lin(V, V), or mappings taking values in these spaces, are denoted
here as usual by bold-face, lower-case. . . and upper-casd, .. ., italic letters, respectively.
In particular, I <Lin(V, V) represents the second-order identity tensor. As usualtetisor
producta ® b of any twoa,beV can be interpreted as an elementz beLin(V, V) of
Lin(V,V)via(@a® b)c := (b-c)aforalla,b,ccV. Let symA) := %(A + A" and
skw(A) = % (A — A7) represent the symmetric and skew-symmetric parts, rasphgtof
any A € Lin(V, V). The axial vector axiW) € V of any skew tensoWW e Lin(V, V) is defined
by axiW) x a := Wa. Leta, b, c <V be constant vectors in what follows.

Turning next to field relations, the definition
Q) curlu : = 2 axi(skw(Vu))

for the curl of a differentiable Euclidean vector fieldis employed in this worky being the
standard Euclidean gradient operator. In particular, (it the basic result

2) Vifu) =u® Vf + f(Vu)

for all differentiable functionsf and vector fields: yield the identity
(©)] curl(fu) = Vf x u + f(curlu)

In addition, (1) yields the identity

(4) curlu-axb=vV,u-b—-Vyu-a
for curlw in terms of the directional derivative

®) Vu 1= (Vua

of w in the directiona € V. Turning next to second-order tensor fields, we work heré tie
definition*

(6) (curlT)'a :=curl(T"a)

for the curl of a differentiable second-order EuclidearsterfieldT' as a second-order tensor
field. From (3) and (6) follows in particular the identity

) curl(fT) =T x Vi) + f(curlT)

for all differentiable f andT’, where(I x a)b := b x a. Note that( x a)" = a x I with
(a x Db :=a x b. Likewise, (1) and (6) yield the identity

8) (curlTY(a x b) := (V,T)b— (}T)a
for curl T in terms of the directional derivative

v, T (vT)a

*This is of course a matter of convention. Indeed, in cont@$6), Cermelli and Gurtin (2001) define
(curlTya : = curl (T a).
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of T in the directiona € V. Here, VT represents a third-order Euclidean tensor field. Het
be a differentiable invertible tensor field. From (8) andittentity

9) AT(Ab x Ac) = detA) (b x ¢
for any second-order tensef < Lin(V, V), we obtain
(10) curl(TH ) = detH ) (cutfTYH " + T (curl H)

for the curl of the product of two second-order tensor fieldere, curf! represents the curl
operator induced by the Koszul connecti@f! induced in turn by the invertible tensor field ,
ie.,

(11) vHT . vhyH?

The corresponding curl operation then is defined in an analdashion to the standard form
(8) relative toVv.

Third-order tensors such &&T" are denoted in general in this work By, B, ... and inter-
preted as elements of either Ik, Lin(V, V)) or Lin(Lin(V, V), V). Note that any third-order
tensorA induces oneAS defined by

(12) (ASb)c := (Ac)b

In particular, this induces the split

(13) A = symg(A) + skwg(A)
of any third-order tensod into “symmetric”

(14) symy(A) 1= 3(A + A%
and “skew-symmetric”

(15) skwg(A) 1= 3(A - A9

parts. In addition, the latter of these induces the linegopiray

(16) axi; : Lin(V,Lin(V,V)) — Lin(V,V) | A+ A =axig(A)
defined by
a7 axig(A)(b x ¢) : = 2(skwg(A)b)c = (Ab)c — (Ac)b

With the help of (12)—(17), one obtains in particular the paiet form
(18) curlT = axig(VT)

for the curl of a differentiable second-order tensor fi€lds a function of its gradierMT’ from
(8). The transpossé\T eLin(Lin(V, V), V) of any third-order tensoA € Lin(V, Lin(V, V)) is
defined here vildA"B - ¢ = B - Ac.

Finally, for notational simplicity, it proves advantagediw abuse notation in this work and
denote certain mappings and their values by the same sy@tuwdr notations and mathematical
concepts will be introduced as they arise in what follows.
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3. Basic kinematic, constitutive and balance relations

Let B represent a material body,e B a material point of this body, arfel Euclidean point space
with translation vector spacé. A motion of the body with respect tB in some time interval
I C R takes as usual the form

T =& D)

relating eachp to its (current) timet € | positionz € E in E. On this basis¢ represents the
material velocity, and

(19) F (t, p) := (VE)(t, p) eLinT(V, V)

the deformation gradient relative to the (global) refeeeptacemenk of B into E. Here, we
are using the notation

VEE =" (MKié))
for the gradient of with respect ta in terms of push-forward and pull-back, whekeg.£)(t, 7,.)
= E(t, Kfl(TK)) for push-forward by, with 7, = « (p), and similarly forc*. Like &, £ and
F,_, all fields to follow are represented here as time-depentfields onB. And analogous to
that of& in (19), the gradients of these fields are all defined relatve More precisely, these
are defined at each € B relative to a corresponding local reference placel%atmachp € B,
i.e., an equivalence class of global placemantsaving the same gradient at Sincex and
the corresponding local reference placement at gaelB is arbitrary here, and the dependence
of F, and the gradients of other fields, as well as that of the doitis# relations to follow, on
x does not play a direct role in the formulation in this work, sugpress it in the notation for
simplicity.

In the case of phenomenological crystal plasticity, anyemal point p € B is endowed
with a “microstructure” in the form of a set of glide systems. The geometry and orientation
of each such glide system is described as usual by an ortimahdrasis(s,, 2,4, t;) (@ =
1,...,n). Here,s, represents the direction of glide in the plang, the glide-plane normal, and
t, = 84 x ng the direction transverse tg, in the glide plane. Since we neglect in this work
the effects of any processes involving a change in or ewwiutf either the glide directios,
or the glide-system orientatiam, (e.g., texture development), these referential unit vegtnd
sot, as well, are assumed constant with respect to the referdmcenpent. With respect to the
glide-system geometry, then, the (local) deformatlgnof each glide system takes the form of
a simple sheadr

(20) F=I+y,5,9n, |,

Y, being its magnitude in the directios), of shear. For simplicity, we refer to eagh as the
(scalar) glide-system slip (deformation). The orthogitpalf (s,, 2,4, t;) implieslﬂfnu =N,
andF; s, = s,, as well asy, = s, - F; n,. In addition,

(1) F=s,0n,y,=: L, F,

follows from (20). As such, the evolution of the glide-systdeformation tensokF; is deter-
mined completely by that of the corresponding scalargjip

TRefered to by Noll (1967) as local reference configuratiop efB in E.
*As discussed in §6, ik, and unlikeF', F; is in general not compatible.
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From a phenomenological point of view, the basic local isttadeformation at each ma-
terial point in the material body in question is represeriig@n invertible second-order tensor
field F, on| x B. The evolution ofF; is given by the standard form

(@2) 1’:; = Lo F,

in terms of the plastic velocity “gradientL,. The connection to crystal plasticity is then ob-
tained via theconstitutiveassumption

~ m m .
(23) LP = Za:l L(l = Za:l Sq ® NgVa

for Ly via (21), wherem < n represents the Seof activeglide-systems, i.e., those for which
Ya # 0. Combining this last constitutive relation with (22) thgields the basic constitutive
expression

(24) B=Y" LE=Y" (5,0n)F,

for the evolution ofF}. In turn, this basic constitutive relation implies that
(25) V=Y (3 ® 1) (V) P + (5, @ ) B ® Wy
for the evolution ofVEF;, and so that

(26) U Fp = 3" (84 ®n) (U FY) g + 84 ® (W x Fong)

for the evolution of curlF;, via (7) and (8). On this basis, the evolution relation Igris linear
inthe sety :=(y4, ..., ¥mm) Of active glide-system slip rates. Similarly, the evolatielations
for VF;, and curlF, arelinearin y and V. Generalizing the case of cuf}, slightly, which
represents one such measure, the dislocation state in tedahs modeled phenomenologically
in this work via a general inelastic state/dislocation meas whose evolution is assumed to
dependquasi-linearlyony andvy, i.e.,

27) a=Ky+JWwW

in terms of the dependent constitutive quantifi€snd.7 . In particular, on the basis of (24F,

is considered here to be an elemen&ofin turn, the dependence of this evolution relatiorign
requires that we model the as time-dependerfieldson B. As such, in the current thermome-
chanical context, the absolute temperatiréhe motions, and the sey of glide-system slips,
represent the principal time-dependent fielf5 anda being determined constitutively by the
history of y andW via (24) and (27), respectively. On the basis of determinisical action,
and short-term mechanical memory, then, the material betagf a given material poinp € B

is described by the general material frame-indifferentstitutive form

(28) R =R06.C,a,V0,y,Vy,p)

for all dependent constitutive quantities (e.g., streaéjere C = F'F represents the right
Cauchy-Green deformation as usual. In particular, sineamhbtioné, as well as the material

8n standard crystal plasticity models, the numbeof active glide system is determined among other
things by the glide-system “flow rule,” loading conditioms\d crystal orientation. As such, it is constitutive
in nature, and in general variable.
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velocity £, are not Euclidean frame-indiffererf is independent of these to satisfy material
frame-indifference. As such, (28) represents the basieoed constitutive form of the constitu-
tive class of interest for the continuum thermodynamic faliation of crystal plasticity to follow.
Because it plays no direct role in the formulation, the dejeace of the constitutive relations on
p € B is suppressed in the notation until needed.

The derivation of balance and field relations relative togiven reference configuration of
B is based in this work on the local forms for total energy antdogay balance, i.e.,

é divh +s,

(29)
n = m—dv¢ +o,

respectively. Heree represents the total energy denshyits flux density, and its supply rate
density. Likewise;r, ¢, ando represent the production rate, flux, and supply rate, dessit
respectively, of entropy, with density. In particular, the mechanical balance relations follow
from (29) via its invariance with respect to Euclidean observer. Asdisual, the thermody-
namic analysis is based on (29)n addition, it yields a field relation for the temperatuas,will
be seen in what follows.

This completes the synopsis of the basic relations reqdoethe sequel. Next, we turn
to the formulation of field relations and the thermodynammalgsis for the constitutive class
determined by the form (28).

4. Generalized internal variable model for glide-system §bs

The modeling of they as generalized internal variables (GIVs) is based in paeicon the
standard continuum forms

e = & + 30§-§,
(30) h = —q + PT¢,
s = r + f£,

for total energy densitg, total energy flux densityr, and total energy supply rate densgty
respectively, hold. Hereg represents the referential mass denditythe first Piola-Kirchhoff
stress tensor, anfl the momentum supply rate density. Furtherepresents the internal energy
density, andg the heat flux density. As in the standard continuum cd3e., q, n and ¢
represent dependent constitutive quantities in geneuddist8uting the forms (30) for the energy
fields into the local form(29), for total energy balance yields the result

(31) é+divg—r =P V& —z-£+3c£ ¢
for this balance. Appearing here are the field

(32) c:=g¢

associated with mass balance, and that

(33) z:=m—divP - f
associated with momentum balance, where

m =0k
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represents the usual continuum momentum density. As disdusy, e.g.SiIhavy (1997, Ch.
6), in the context of the usual transformation relationstfe fields appearing in (31) under
change of Euclidean observer, one can show that necessatitions for the Euclidean frame-
indifference of(29)1 in the form (31) are the mass

(34) c=0 = 0=0

via (32), momentum

(35) z=0 = m=dvP+f
via (33), and moment of momentum

(36) ST=8

balances, respectively, the latter with respect to thersb&iola-Kirchhoff stres§ = Flp.

As such, beyond a constant (i.e., in time) mass density, warothe standard forms
m = 0 + dvP + f,

(37) , L ,

E = 3 S.-C - dvg + r,

for local balance of continuum momentum and internal energpectively, in the current con-
text via (31), (35) and (36).

We turn next to thermodynamic considerations. As shownfeceby Maugin (1990), one
approach to the formulation of the entropy principle for emitl behaviour depending on internal
variables and their gradients can be based upon a weakepfdha dissipation (rate) inequality
than the usual Clausius-Duhem relation. This form follonenf the local entropy (29) and
internal energy (3%)balances via the Clausius-Duhem form

(38) o=r/0

for the entropy supply rate density in terms of the internal energy supply rate densiand
temperaturé®. Indeed, this leads to the expression

(39) 5=18.C—-y—né+divep —q)—¢ Vo
for the dissipation rate density

(40) § 1=0m

via (37), where

(41) Y i=¢e—0n

represents the referential free energy density. Substitutext the form (28) fory into (39)
yields that

_ 1 : : : . .
@) = BS—V ) C—+v vy VI—v T =y g, W

+ div(@p —q — d)y) + (@, +divd) -y —¢ - VO
for § via (27). Here,

(43) oy =K,
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oy = (o, .., Dyy), and

(44) D =TV,
with @ 1= (@4 - - - » @m)- Now, on the basis of (27) and (28)in (42) is linear in the fields

C,6,vé, y and V. Consequently, the Coleman-Noll approach to the exploitadf the
entropy inequality implies that > 0O is insured for all thermodynamically-admissible proesss
iff the corresponding coefficients of these fields in (42)ishnyielding the restrictions

S = 2vg.
no= ¥y,

(45) 0 = Yy,
0 = w,)}a’ a=1...,m,
0 = ¥y, o=1...m,

on the form of the referential free energy densityas well as the reduced expression
(46) §=div(fp —q —dJy)+ (m, +divd,) -y —6¢ - VIne

for § as given by (42), representing its so-called residual famnitfe current constitutive class.
In this case, then, the reduced form

(47) v =90.C.a)

of ¢ follows from (28) and (45).

On the basis of the residual form (46) f&r assume next that, as dependent constitutive
quantities,,, + div ®,, and¢ are defined on convex subsets of the non-equilibrium patief t
state space, representing the set of all admissitsley andVy. If w,, + div &, and¢, again
as dependent constitutive quantities, are in additionicoatsly differentiable irve, y andw
on the subset in question, one may generalize the resultdei&i (1973, 1985) to shdvthat
the requiremend > 0 oné given by (46) yields the constitutive results

) oy +dvd, = dv,y—d'Vdv,vy IR

=0 = d g+ v
for @y, + div &, and¢, respectively, in terms of the dissipation potential
(49) d, =d,0,C,a,V0,y, W)

and constitutive quantities

gvy = {Vy(G,C,a,VG,J},W),
Syvin = {Vvln(O,C,a,VG’,)},W)v
which satisfy
(50) &y ¥ &y Vine=0 .

fin fact, this can be shown for the weaker case of simply-cotetk rather than convex, subsets of the
dynamic part of state space via homotopy (see, e.g., Abrahai 1988, proof of Lemma 6.4.14).
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i.e., they do not contribute t8. To simplify the rest of the formulation, it is useful to work
with the stronger constitutive assumption tidatexists, in which casg, v and¢, g, vanish

identically. On the basis then of tlwenstitutive form
(51) p=0tq+07 M@ +d, v,y
for the entropy flux densityj is determined by the form af, alone, i.e.,

(52) §=d, -y +d v, - W+d, g - VIno

Among other things, (52) implies that a convex dependencg oh the non-equilibrium fields
is sufficient, but not necessary, to satisfy> 0. Indeed, withd, (¢, C, «,0,0,0) = 0, d, is
convex inve, y andVy if § > d, (i.e., withé§ given by (52)) for given values of the other
variables. So, ifl, is convex invé andy, andd, > 0, thens > 0 is satisfied. On the other
hand, even ifl, > 0,8 > 0 does not necessarily requite> d,, i.e.,d, convex.

Lastly, in the context of the entropy balance (23he constitutive assumption (38), together
with (40) and the results (45}, (46) and (48), lead to the expression

(53) cé=%95’9~C’+w\,+divd\,’V|n+r
for the evolution o via (47) and (49). Here,
(54) Ci= —0Y gy

represents the heat capacity at constanC', and so on,% GS, - C = 0V oo C the rate
(density) of heating due to thermoelastic processes, and

(55) oy =0y, +0K Y )7 + @, gy +0TV g,) - W
that due to inelastic processes via (27). In addition, {48plies the result
(56) dy ; =dv(T Vo +d vy) - K'Y,

for the evolution ofy via (43) and (44). Finally,

(57) —q=d, g+ TV o +d, v,y

follows for the heat flux densitg from (51) and (48). As such, the dependencewfon«, as
well as that ofd, on Vy, lead in general to additional contributionsgan the context of the
modeling of they as GIVs.

This completes the formulation of balance relations anditbemodynamic analysis for the
modeling of they as GIVs. Next, we carry out such a formulation for the casettiey are
modeled as internal DOFs.

5. Internal degrees-of-freedom model for glide-system sis

Alternative to the model for the glide-system slips as GlWghe sense of the last section is
that in which they are interpreted as so-called internatetegrof-freedom (DOFs). In this case,
the degrees-of-freeddhof the material consist of (i), the usual “external” contimu DOFs

IIThis entails a generalization of the classical concept efitde-of-freedom” to materials with structure.
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represented by the motian, and (i), the “internal” DOFsy. Or to use the terminology of
Capriz (1989), ther are modeled here as scalar-valued continuum microstaldtatds. Once
established as DOFs, the modeling of theroceeds by formal analogy with that &f the only
difference being that, in contrast to external DOFs reprieskbyé , each internal DOW,, is (i.e.,
by assumption) Euclidean frame-indifferent. Otherwibe, &nalogy is complete. In particular,
eachy, is assumed to contribute to the total energy, the total grikug and total energy supply,
of the material in a fashion formally analogoustta.e.,

e = ¢ + 35-08 + 3v-oly.
(58) h = —gq + P& + oy,
s = 1 o+ fE o+ <7,
for total energy densitg, total energy flux densitya, and total energy supply rate densgty
Here,
lr 1 7 4m —‘
L Lm]_ e me J
is the (symmetric, positive-definite) matrix of microiriartoefficients, & : = (¢, - - -, ¢%m)
the array of flux densities, and : = (5, ..., gm) the array of external supply rate densities,

associated witly . For simplicity, we assume thatis constant in this work. Next, substitution
of (58) into the general local forrf29)4 of total energy balance yields

(59) é+divg-r=P -+ —2-£—wp-y+3CE -E+y-1y)
via (32) and (33). Here,

(60) o i=p —divd. — ¢

is associated with the evolution ef,

(61) wi=oly

being the corresponding momentum density. Consider nowshal transformation relations
for the field appearing in (58) and (59) under change of Eeelidobserver, and in particular the
assumed Euclidean frame-indifference of the elemenis, of and®. As discussed in the last
section, using these, one can show that necessary corgditiothe Euclidean frame-indifference
of (29)1 in the form (59) are the mass (34), momentum (35), and monfemipoentum (36)

balances, respectively. As such, beyond a constant (i.8me) mass density, we obtain the set

m = 0 + dvP + f,
62) qo o= o + dvd. + ¢,
i = %S-C"-I-CDF-VJ?—wp)? - divg + r,

of field relations via (35), (36), (59) and (60).
Since we are modeling the as (internal) DOFs in the current section, the relevanintioer
dynamic analysis is based on the usual Clausius-Duhemitdivet forms

¢ = q/o,
o = r1/6,

(63)
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for the entropy flux¢ and supply rater densities, respectively. Substituting these into the
entropy balance (29) we obtain the result

(64) 5=38 . C+0.-W—wp-y -y —n6—6"1q- Vo

for the dissipation rate densidy: = 67 via (62)3 via (41). In turn, substitution of the constitutive
form (28) for the free energy into (64), and use of that (27) far, yields

& - 385 -V ) C—ln+v )6 —vy, W-6"q-V6
(DFN'VJ}_w’FN'))_wJ}'J'/._l//,v)}'v);;
with
(DFN = ‘p':—JTw"a,
(66) w, = w4+ Ky
N = F L

the non-equilibrium parts ob. and @, respectively. On the basis of (28),is linear in the
independent field€, 6, W, y andVy/. As such, in the context of the Coleman-Noll approach to
the exploitation of the entropy inequality,> 0 is insured for all thermodynamically-admissible
processes iff the corresponding coefficients of these fial@5) vanish, yielding

S = 20,
no= ¥y,

(67) 0 = Yy
0 = w,)}a’ a=1...,m,
0 = ¥y, . a=Ll...m.

As in the last section, these restrictions also result in¢deced form (47) foty . Consequently,
the constitutive fieldsS, ¢ andn are determined in terms @f as given by (47). On the other
hand, thedg,, @y, as well asg still take the general form (28). These are restricted furth
the context of the residual form

SZCDFN'VJ}_wFN'J}_Q_:LQ'VO

for § in the current constitutive class from (67). Treatifbg,, @y, andq constitutively in
a fashion analogous ta,, + div®, and¢ from the last section in the context of (48), the
requiremens > 0 results in the constitutive forms

Py = dF,V)} +levy
(68) _wFN = d|:’ V + ;FV )
-q = dF.,Vln +4evin

for these in terms of a dissipation potentialand corresponding constitutive quantities, T
Gy and{. v, » all of the general reduced material-frame-indifferentrfq28). As in the last
section, the latter three are dissipationless, i.e.,

(69) ley ¥V F vy W+ ey - VINO =0
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analogous to (50) in the GIV case. Consequeidtigduces to
(S =dF,}} )} +dF,V}} V]} +dF,V|n V|n9

via (68) and (69), analogous to (52) in the GIV case. In whibics, we again, as in the last
section, work for simplicity with the stronger constitgiassumption thad. exists, in which
Caselr;, {eyy and¢,y, vanish identically.

On the basis of the above assumptions and results, theneltiediation
(70) ch =368, C+op+divd, g +1
for temperature evolution analogous to (53) is obtainethéncurrent context via (54), with
(71) wp =0 ; +OKW g) ¥ + (O vy +0T TV g,) - W

the rate of heating due to inelastic processes analogaug tmm (55). Finally, (68) » lead to
the form

(72) ol +de , =dV(IT Y o + 0 v;) — Ky +¢

for the evolution ofy via (61), (62» and (66).

With the general thermodynamic framework established e l#ist two sections now in
hand, the next step is the formulation of specific models fiDGlevelopment and their inco-
poration into this framework, our next task.

6. Effective models for GNDs

The first model for GNDs to be considered in this section isfdated at the glide-system level.
As it turns out, this model represents a three-dimensioeaémlization of the model of Ashby
(1970), who showed that the development of GNDs in a givetegtiystem is directly related
to the inhomogeneity of inelastic deformation in this sgstén particular, in the current finite-
deformation context, this generalization is based on tberpatibility of F; with respect to the

reference placement. To this end, consider the vector mefdsu

(73) lGa(C) = %(‘: .F‘;tc = ﬁ Ya (nu . tc) Sa

of the length of glide-system GNDs aroundanbitraryclosed curve or circuiC in the reference
configuration, the second form following from (20). Hetg, represents the unit tangent@

orientedclockwise Alternatively,l,(C) is given bJ T

(74) 154 (C) 1= ?{ Fit. = /‘(curll"c'l)nS
c S
with respect to the material surfa&bounded byC via Stokes theorem. Here,

(75) curlFy = (83 @ Ny x Wy) = 83 @ (W, x Ny)

**Volume dv, surfaceda and lined¢ elements are suppressed in the corresponding integradsaapg
in what follows for notational simplicity. Unless otherwistated, all such integrals to follow are with
respect to line, surfaces and/or parts of the arbitraryajlogference placement of the material body under
consideration.

TTNote that curlF, appearing in (74) is consistent with the form (8) for the afrh second-order Eu-
clidean tensor field.



Non-local continuum thermodynamic 221

from (7), (20), and the constancy 6$,, 1,4, ;). On the basis of (74)5,(C) can also be
interpreted as a vector measure of the total length of GNBscinig the material surfacg
enclosed byC. The quantity curlF; determines in particular the dislocation density tensd?
worked with recently by Shizawa and Zbib (1999) as based erirttompatibility of their slip
tensory ) 1= YU y, 8, ®n,. Indeed, we have!) := curly =30 __ curl F} inthe
current notation.

Now, from (73) and the constancy 8, note thai g, (C) is parallel to the slip directios,,
ie.,

leq(C) =lgq 84

with

(76) lga(C) 1= ?%:yana~tc = /S(curIF&)Tsa~nS

the scalar length of GNDs piercir§via (74). With the help of a characteristic Burgers vector
magnitudeb, this length can be written in the alternative form

) 160(©) =b [ 8ea-ms
in terms of the vector fielg,, determined by
(78) 9ca :=b"cur F)Ts, =b 1w, xn,

From the dimensional point of vievgg, represents a (vector-valued) GND surface (number)
density. As such, the projectig,, - 125 of g, Onto Sgives the (scalar) surface (number) density
of such GNDs piercing. The projection of (78) onto the glide-system basig, n,, t,) yields

Sa'9ca = _b_lta "W
(79) ty Goa = b~t Sq - Wa s
Ny goa = O,

for the case of constaitit. In particular, the first two of these expressions are coesisvith
two-dimensional results of Ashby (1970) for the GND densiith respect to the slip direction
and that perpendicular to it in the glide plane generalizethtee dimensions. Such three-
dimensional relations are also obtained in the recentaltggraphic approach to GND modeling
of Arsenlis and Parks (1999). Likewise in agreement with riiedel of Ashby (1970) is the
fact that (793 implies that there is no GND development perpendicular ¢ogiide plane (i.e.,
parallel ton,) in this model. ¢From another point of view, VW, were parallel ton,, there
would be no GND development at all in this model; indeed, asvshby (75), in this casel;
would be compatible.

The second class of GND models considered in this work ischaséhe vector measure
(80) l;©C) = f Ft. = /(curl F)ng
C S

of the length of GNDs from all glide systems arou@din the material as measured by the
incompatibility of the local inelastic deformatiafy.. In particular, the phenomenological GND
model of Dai and Parks (1997), utilized by them to model gsire effects in polycrystalline

metals, applied as well recently by Busso et al. (2000) toehsite effects in nickel-based
superalloys, is of this type. In a different context, theompatibility of F; has also been used
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recently by Ortiz and Repetto (1999), as well as by Ortiz ef24100), to model in an effective
fashion the contribution of the dislocation self- or coremy to the total free energy of ductile
single crystals. In what follows, we refer to the GND modetdsh on the measure (80) as
the continuum (GND) model. To enable comparison of this ioomim GND model with the
glide-system model discussed above, it is useful to exghestormer in terms of glide-system
guantities formally analogous to those appearing in therafo this end, note that the evolution
relation (24) forF;, induces the glide-system decomposition

16©) =Y 16a(©) 5,

of I5(C) in terms of the selt.1(C), ..., Ign(C) of glide-system GND lengths with respect@
formally analogous to those (76) in the context of the gigstem GND model. In contrast to
this latter case, however, ealgly here is determined by an evolution relation, i.e.,

(81) [4y(C) = 74 yo By -t = / curl (B Fy)'s, - nig .
C S
with )
curl (B F) = (84 ® Fomg)(I x W) + 8, ® (curl Fp)'mg yq
via (7) and (20). Alternatively, we can exprdgg(C) as determined by (81) in the form (77)
involving the vector-valued GND surface densigy,, with now
(82)  dea=bloun(FF) s, =b 1w, x Fin,+b L curl Fy)'n,y,

in the context of (80). As implied by the notatigjy, from (82) in the current context is formally
analogous to the time-derivative of (78) in the glide-syst@ND model. Now, from the results
(26) and (82), we have

curl = b Z:;l 8y ®dq
and so the expressibh
n
curl F, =b Zazl 8, ® 9,

for the incompatibility of F;, in terms of the setg;, ..., gn) of vector-valued GND densities.
Substituting this result into (82) then yields

gGa = Zb#a(na : Sb)ggb Ya T b=t Wa X F}':’Tna

withn, -8, =0 andzb#a = Z:‘zl,b#a. Relative to(s,, 114, t,), note that

Sq-9ca = b~ Fg'n’a X 8q-Wq + Zb#a(nu ’ Sb) Sa " 9gp Va-
ta 'gGa = bflEDTna X ta : Vl}a + Zb;ﬁa(na ’ Sb) ta "Geb J}a ’
Ny Goa = b—t E’Tna XNy - We + Zb;ﬁa(na “8p) Mg - Gop Va -

via (8) and (21), analogous to (79). In contrast to the gfigetem GND model, then, this
approach does lead to a development of (edge) GNDs perptaudio the glide plane (i.e.,
parallel tor).

*+*Assuming the integration constant to be zero for simplidity, that there is no initial inelastic incom-
patibility.
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To summarize then, we have the expressions

b=1%, x ng glide-system model

(83) Goa = .
b1V, x Fimg + Zb#a(na +8p)9cp Ya  CONtinuum model

for the evolution of the vector-valued measugg, of GND density from the glide-system and
continuum models discussed above. With these in hand, waaveeady to extend existing
models for crystal plasticity to account for the effects &f[@s on their material behaviour, and in
particular their effect on the hardening behaviour of theéemal. In the current thermodynamic
context, such extensions are realized via the constitdpendence of the free energy on GND
density, and more generally on the dislocation state in tateral, our next task.

7. Free energy and GNDs

With GND models such as those from the last section in haedjtiestion arises as to how these
can be incoporated into the thermodynamic formulation fgstal plasticity developed in the
previous sections. Since this formulation is determinedipminantly by the free energy density
¥ and dissipation potential, this question becomes one of (i), which quantities chareazt
effectively (i.e., phenomenologically) the GND, and moenerally dislocation, state of each
material pointp € B, and (ii), how doyr andd depend on these? The purpose of this section is
to explore these issues for the case of the referential fieegg densityy. In particular, this
involves the choice fow.

Among the possible measures of the inelastic/dislocatiate ©f each material point, we
have the arraypg = (P15 -+ -+ Psn) andg; = g1 -+ > Yon) of glide-system effective SSD
and GND densities, respectively. Choosing thes (Fp, pg, &), ¥ takes the form

1//(95 C» (X) = 1//D(97 C» F ’ ps; g‘G)
for ¢ from (47), with

m .
> ot Ksab Ve -

Psg =
(84) : m . :
Joa = Z(,:lkeub Vo + JoasWp »
from (27). This choice induces the decompositions
(85) Ko = B pWop + Koy + Kiog.
TV = 0 + 0 + JaVo.g, -

from (24) of the constitutive quantitidéTt//’ o andJTt//, . determining the form (56) or (72) of
the field relation fory . In particular, the models (83) f@j,, yield

0 glide-system model
86 k
(89) Gab 86 Zc#b(nb -8.)gsc  continuum model
and
) Ixmn, glide-system model
(87) Joap =" 0gp T .
Ix Fyny continuum model



224 B. Svendsen

for kg, andJy . respectively. And from (87), we have

. . 1| Pax Vb, g4 glide-system model
88) (J V.g)a=(Ts ¥p, g)a=b" ’
e ¢ g&a Fing xyp g continuum model
for the flux contribution appearing in the evolution relati®6) or (72) fory. From (84), (85
and (86), we have
(KT, o)a = —Ta + X + SGNYa) I
where

(89) = —(F, )V pla= (581 RV
represents the glide-system Schmid stress via (24),

0 glide-system model

“ Zb#(na - Sp) Vp, 9ca " Iob continuum model

(a contribution to) the glide-system back stress, and

m
(91) fg = szl lpa ¥o. pg,

the glide-system yield stress, Wimsba = lspa sgr(yb). Note that sg(y ) is a constitutive
quantity in existing crystal plasticity models. For examph the case of the (non-thermody-
namic) glide-system flow rule

n

SgM7,)

Ja
Tca

of Teodosiu and Sideroff (1976) (similar to the form used Isaf and Needleman, 1985; see
also Teodosiu, 1997), we have $gR) = sgn(z,). Here, ., represents the critical Schmid
stress for slip. In particular, such a constitutive assimngnsures that the contributiony , =

It llval = I7glv, to the dissipation rate density remains greater than orlequeero for all
ac{l,...,m}. Such a constitutive assumption is made for other typesidegystem flow
rules, e.g., the activation form

(92) Ya="7q0

AGy (I, Teq)

TIESI

o= Faa |-
used by Anand et al. (1997) to model the inelastic behaviédamtalum over a much wider
range of strain rates and temperatures than possible withh kere, AG (|7, ], 7o) represents

the activation Gibbs free energy for thermally-inducedatiation motion.

Consider next the dependenceogf, on Ve i.e., Keqp: AS it turns out, a number of existing
approaches model this dependence. For example, in theambpod Estrin (1996, 1998) to
dislocation-density-based constitutive modeling (see*alEstrin et al., 1998; Sluys and Estrin,
2000), this dependence follows from the constitutive retat

. n . . .
(93) Psq = {szl Jsap Psp — kSa psq} Sgr()’a) Ya

*Because their model for SSD flux includes a Fickian-diffagi&e contribution due to dislocation
cross-slip proportional tay, - Vpg,, the approach of Sluys and Estrin (2000) does not fit into theeat
framework as it stands. The necessary extension involgasing the SSD densitigg; as, e.g., (independent)
GIVs, analogous to the.
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for the evolution ofpg, in terms of magnitudgy ;| = sgnyy) yq of ygfora=1,...,m. In
(93), jg11> ig1 - - - represent the elements of the matrix of athermal dislonatiorage coeffi-
cients, which in general are functions pf, andk, the glide-system coefficient of thermally-
activated recovery. In this case, then,

n .
lsap = Sap {Zczl Isbe Vs — Kgp 'Osb}

holds, and so

(KQWD, ps)a = Ksaa WD, Psg = Sgr(ya) Isaa WD, Psq
from (91). Other such models fdt_ , can be obtained analogously from existing onessfgr
in the literature, e.g., from the dislocation-densitydzhapproach of Teodosiu (1997).

Models such as those (83for g4, Or that (93) in the case @k, account in particular for
dislocation-dislocation interactions. At least in theases, then, such interactions are taken into
account in the evolution relations for the dislocation nueas, and so need not (necessarily) be
accounted for in the form af . From this point of viewy, could take for example the simple
“power-law” form

1 —1 n 2s -1 n 29
Vp = iEE'CEEE + s Csp.za:lesa + g CG,uZazl €6a

= Ve + Vbs + Yoo

in the case of ductile single crystals, perhaps the simplessible. HereC. represents the
referential elasticity tensor, and

(94)

E.:=iC.-1
the elastic Green strain determined by the correspondiig Gauchy-Green tensor
(95) C..=F 'CF!

Further,cg andcg are (scaling) constants,andg exponentsy the average shear modulus, and
€sa = lsvVPsa>

= Lg/l9cal -

non-dimensional deformation-like internal variablesogssted with SSDs and GNDs, respec-
tively, involving the characteristic lengtldg and{g, respectively. In particular, the GND contri-
bution 4 to ¥, appearing in (94) is motivated by and represents a powegdaweralization of
the model of Kuhlmann-Wilsdorf (1989) for dislocation seliergy (see also Ortiz and Repetto,
1999) as based on the notion of dislocation line-length.n(84), we have in particular the
simple expression

€ca

7, =8,0Mn, 2C. Vo, C.

for the Schmid stresg, from (89) in terms of the Mandel stress)r FPF;,T =2C; Voe C In
addition,

-1
Y, e = GCsi 5525 ,Ossa )
2 _
I:bD, 9a = CG " ZGg |gGa|g ZQGa 5
then hold. From these, we obtain in turn
0 glide-system model

(96) %= 2 _ .
Co i 650 19al9 2 Zb#a(na “8p) 9oa * Gop continuum model
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from (90) forx,,

Ny X g glide-system model

1.2 _ a Ga

(97) (I3 ¥ g)a = Con b 19609721 - _
Fng x ggq continuum model

from (88), as well as the result

_ 2s M s—1
(98) g =Csi 0% ) lopa P

from (91) forr,. On the basis of models like that (93) of Estrin (1998)4gy, this last form forr,
is consistent with and represents a generalization ofiblised dislocation strength models (e.qg.,
Kocks, 1976, 1987) to account for the effects of GNDs on gfigstem (isotropic) hardening.

Indeed, fors = 1,r, becomes proportional tg,oSb in the context of (93).

The simplest case of the formulation as based on (94) ans#eicontext of the glide-
system model for GNDs when we s 1 andg = 2. Then

b~Iln, x (W, xn,)  glide-system model
(99) (JGT WD, gG)a =CglU eé b—l { : a a a -
Fong X ggq continuum model

follows from (87) for the flux contribution via (78) and (83)\ote that (99) follows from the
fact that (83) is integrable. Then, the corresponding reduction,dfom (98), (56) and (99)
implies in particular the evolution-field relation

4,.—2 3 2 m
(100) dy . = Con g 2 divg(Vry) + 7 — Cs 1 £ Zb: 1 Kspo

for y, modeled as a GIV via (56), again in the context of the glidstesyy GND model, assuming
Cg, 4 andfg constant. The perhaps simplest possible non-trivial foiri@0) for the evolution
of y, in the current context follows in particular from the copeading simplest (i.e., quasi-
linear) fornt dv’ e = By v for dv’ Va in terms of the glide-system damping modufgs> 0

with units of J s nT3 or Pa s (i.e., viscosity-like). In addition,
divg (W) i= T — Mg @ M) - UMW) = (84 ® Sq + 1, ®Ty) - W)

represents the projection of the divergence operator dre@lide plane spanned lgg,, t,).
Given suitable forms for the constitutive quantities, thée field relation (100) can in principal
be solved (i.e., together with the momentum balance in ththésmal case) fop,. On the other
hand, sincel, does not depend explicitly op, and, in contrast to the glide-system modgl,
does not depend explicitly op and Vy in the continuum GND model, no “simple” expression
like (100) for the evolution of, is obtainable in this case. Indeed, in all other cases, ors mu
proceed more generally to solve initial-boundary-valugbfgms forg, they, andd. We return

to this issue in the next section.

A second class of free energy models can be based on the eheicdfy, v, curl Fp), i.e.,
(101) v (©,.C.a)=y:0.C,F,v,culF) |

with

‘}a = |Va|

*The coupling withV in d,, and the dependence @f on Wy, is neglected here.
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the glide-system accumulated slip rate. In this case, we hav
(KW g = —Tg+X +5gnyyr, .

(102)
TV oo = Fngx W gqum) S

via (26) and (89), where now
(103) Xg 1= 8q ® Mg - Y, curlF;,(CU” E)”

and
g *= l//C, Vo
Consider for example the particular form
Vo = 3E.CE. + v + g rcgutdlcurl Fyd
(104)
= Vee +  Yes + Yee

for v analogous to (94) fogy,. In this context, the choice

_ (s’ ho
wCS = T In [COSh(‘L'S——‘L'O v

yields the simple model for isotropic or Taylor hardening.(idue to SSDs) proposed by Hutch-
inson (1976), with
X n
V.= Za:l Va

the total accumulated inelastic slip in all glide systemserdiizs represents a characteristic
saturation strengtt’r0 a characteristic initial critical resolved shear streasthb a characteristic
initial hardening modulus, for all glide systems. Anothesgibility for ¢4 is the form

n —1p S
Ves = Za:l o +S “hgv

consistent with the model of Ortiz and Repetto (1999) foeri&thardening in single crystals,

with now
n

Vo= Za,f,:l sab "o '

the effective total accumulated slip in all glide systemseinms of the interaction coefficients
lsgpr @0 =1....n.In particular, this model is based on the assumptions thatardening is
parabolic in single slip (i.e., fos = 2/3), and (i), the hardening matrifcs ,, " is dominated
by its off-diagonal components. Beyond such models foregigstem (isotropic) hardening,
(104) yields the expression

Xq = Cg it g |curl |92 8, ® Mg - (curl Fy)(curl F;)T
for glide-system back-stress from (103), as well as that
(T, o)a = Co i €3 lcur Fp|972 Fng x (curl F)'s,

for (jGT wc, curl
model, becaus#;, and curlF}, do not depend explicitly oy andVy, no field relation fory, of
the type (100) follows from (104), and we are again forcedrtwped numerically.

Fp)u from (102). Analogous taF}, andgg, in the case of the continuum GND
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8. The case of small deformation

Clearly, the formulation up to this point is valid for largefdrmation. For completeness, con-
sider in this section the simplifications arising in the fatation under the assumption of small
deformation. In particular, such a simplification is relevéo comparisons of the current ap-
proach with other modeling approaches such as the distocatimputer simulation of Van der
Giessen and Needleman (1995). This has been carried outlse¢®vendsen & Reese, 2002)
in the context of the (isothermal) simple shear of a cryistalstrip containing one or two glide
planes. This model problem has been used in the recent wdskwfet al.(2001) in order to
compare the predictions of the discrete dislocation coemimulation with those of the non-
local strain-gradient approach of Fleck and Hutchinsor®7)@nd applied to crystal plasticity
(e.g., Shu and Fleck, 1999). As dicusssed by them, it reptesemodel problem for the type of
plastic constraint found at grain boundaries of a polyaiygir the surface of a thin film, or at
interfaces in a composite.

In the crystal plasticity context, the small-deformati@amrfiulation begins with the corre-
sponding form

n
(105) H, = Zazl(s“ QM) Vg

for the local inelastic displacement “gradienEl, assuming no initial inelastic deformation
in the material. Note that this measure is in effect equivate the slip tensory(') =
2221 Ya Sq ® Ty Of Shizawa and Zbib (1999). In addition, note tHdk, can be considered
as a function ofy in this case. In turn, (105) yields the expression

(106) curH, =Y 5,® (Vg x 1)

for the incompatibility of H,. This is equivalent to the dislocation density tenaéP : =
curly (") of Shizawa and Zbib (1999). Note that either cE) or this latter measure may be
considered a function ofy . In this context, then, rather than for example with the choi
(Hp, v, curl Hp,), we could work alternatively with that = (y, v, V) as a measure for the
inelastic/dislocation state in the material at any makgriént p € B. In fact, it would appear
to be the simplest possible choice. Indeed, any such chaisedbalternatively on the small-
deformation form

b1 x 1, glide-system model
9ca = 1= . .
b~ 1%y x ng + Zb#a(na - 80)9ep Va continuum model
of (83) for the development of vector-valued glide-systedOGdensityg, would appear, at
least in the context of the continuum model, to be more carapd sincgjg, is not exactly
integrable, i.e., even in the small-strain case. On thissb#ise general constitutive form (28)
reduces to

R=RO.E.y.v.W.V0,y.W.p)
for all dependent constitutive quantities (e.g., strasf)é small-deformation context, again with
o = (y,v, W). Here,
FE :=symVu)

represents the symmetric part of the displacement gradBnanalogy, the results of the ther-
modynamic formulations in 8§4-5 fer modeled as GIVs or as internal DOFs can used to obtain
those for the case of small strain. Further, the reduced {dithof v becomes

v=vy0 E yv W).
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Consider for example the class

(107) v, E,y,v, W) =190, E, Exy),v, curl Hy(Vy))
of forms foryr analogous to (101), with

(108) E; :=symH;)

the inelastic strain. From (107) follow

(KTW, a)a = W, Ya + Sgr(ya) WC, Vo —Tq + Sgr(ya) WC, Vo

(ij, o()a nq X (WC, curIHP)TSa )

ws VVa
by analogy with (102) via (108) and (106), with now
T

a = —Sa-wc,Epna

for the Schmid stress. In the case of small deformation,, tencontributiorx, from inhomo-
geneity to the glide-system back stress vanishes idelytic@in the basis of these results, the
form

(109) d, Ya div[ng x (Y curIHP)Tsa +d, V)}u] + 74 — S9Ny g) Ve, v,

of the evolution relation for thg from (56) in the context of their modeling as GIVs, holds.

Further insight into (109) can be gained by introducing ecetecforms fory. andd,. For
example, consider that

(110 Y = % E. - CeEg + Yies(v) + 9™ i €9 [curl Hy|9

for ¥ analogous to (104), witl). : = E — E, now the (small) elastic strain, arfd, : =
sym(H) the (small) inelastic strain. Further, the power-law form

(n+1)/n

_n . m | yql

for the dissipation potential, is perhaps the simplest one fdy of practical relevance. Here,
represents a characteristic energy scale for activatialis@dcation glide motion with units of J
m—3 or Pa, andj, a characteristic value ¢f 4|. Substituting (110) and (111) into (109) results
in the evolution/field relation

1. m .
Sl Wa=n Y Ay W) + 8y CeEong —sgnyy) Yies o,

for the glide system slip, viatheg = 2 andn = 1, with A 1= (84-8,) [(Mg 1) -1, ®
n,]. In particular, note that ;- (V) = [T -1 ®M]- (Vi) = [84® 8¢+, @] - Vi)
represents the divergence af, projected onto thath glide plane. It is worth emphasizing that
the form of this projection results from the dependence ain curl H,. For comparison, note
that Ay = (84 - 8p) (g - nb)I, and soA - VW) = (8- 8p) (Mg - ) div(Vyy ), would
hold if v+ depended on the inhomogeneW,, instead of on the incompatibility cufi, of H.

In the crystal plasticity and current context, at least,dis¢inction is significant in the sense that
no additional hardening results in the current context whetepends directly oWH,.
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9. Discussion

Consider the results of the two approaches to the modelingeofjlide-system slipg from
§84-5. Formally speaking, these differ in (i), the respectorms (56) and (72) for the evolution
of the y, (ii), those (55) and (71) for the rate of heatimgdue to inelastic processes, and (iii),
those (57) and (68)for the heat flux densitg. In particular, in view of the corresponding forms
(53) and (70) for temperature evolution, this latter difece is of no consequence for the field
relations. Indeed, except for the contributm]} to @, in the internal DOF model for the,

the total energy flux densith has the same form in both cases, i.e.,

h = —q+P'¢ =d, yin +éyyn T T ¥, +d, ¢, +P'g,
-q+P% + oy = d|=,Vln + 8evin +(‘7Tw,a +dF.,VJ? +§FV)})T)} + P,

from (30), (57), (66) and (68). This fact is related to the observation of Gurtin (1971 tfabe

1) in the context of classical mixture theory concerningittterpretation of “entropy flux” and
“heat flux” in phenomenology and the relation between thege There, the issue was one of
whether diffusion flux is to be interpreted as a flux of enegg.( Eckhart, 1940; Gurtin, 1971)
or a flux of entropy (e.g., Meixner and Reik, 1959; DeGroot dMakur, 1962; Miller, 1968).
In the current context, the flux (density) of interest is that Vot d’ vy)T)}' In the GIV
approach, the constitutive form (51) shows that this flux (idivided byo) is being interpreted
as an entropy flux. On the other hand, (68nd (63) imply that it is being interpreted as an
energy flux in the internal DOF approach. In this point, theoth approaches are consistent
with each other.

As it turns out, the field relation (56) for thederived on the basis of the modeling of these
as generalized internal variables, represents a gerettdtizm of the Cahn-Allen field relation
(e.g., Cahn, 1960; Cahn and Allen, 1977) for non-consemgthase fields, itself in turn a gener-
alization of the Ginzburg-Landau model for phase transgidn particular, (56) would reduce to
the Cahn-Allen form (i), ifl, were proportional to a quadratic formynand independent &fy ,
and (i), if ij,a and KTw,a were reduceable tg. vy andy, o respectively. In particular,
this latter case arises only for monotonic loading and sdeftbrmation. The Cahn-Allen rela-
tion has been studied quite extensively from the mathewalgtinint of view (see, e.g., Brokate
and Sprekels, 1996). As such, one may profit from the correfipg literature on the solution
of specific initial-boundary value problems in applicagoof the approach leading to (56), or
more generally that leading to (72), which are currentlyriogpess.

From a phenomenological point of view, the concrete form) (@4 v, and in particular
that of e, or that of ¢ in (104), is contingent upon the modeling B} as an elastic mate-
rial isomorphism (e.g., Wang and Bloom, 1974; Bertram, 18&ndsen, 1998), i.e., inelastic
processes represented By do not change the form of the elastic constitutive relat®ach an
assumption, quite appropriate and basically universakifagle-crystal plasticity, may be vio-
lated in the case of strong texture development, inducesb&npy and/or anisotropic damage
in polycrystals. As discussed by Svendsen (1998), one goesee of the modeling dff, as an
elastic isomorphism is the identification of

(112) F. .= FF!

as the local (elastic) deformation in the material, and itipalar that of the crystal lattice in
single-crystal plasticity. More generall§;, can be modeled as a material uniformity (Maugin
and Epstein, 1998; Svendsen, 2001b) in the case of simplerialat In the current context,
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(112) implies the connection
curl®F. = —det By H F.(curl By FY

via (9) and (8) between incompatibility of the local lattideformationFg with respect to the
intermediate (local) “configuration” and that &}, with respect to the reference (local) “config-
uration” (i.e., placement) at eaghe B via (10), (11), and the compatibility df'. Alternatively,
we have

curIE’FE =-FG,

where
(113) G, :=detF) L (curl By Y = detFy) (curlf R Y FT

represents the geometric dislocation tensor recentlgdoired by Cermelli and Gurtin (2001).
As shown by them() represents the incompatibility df, relative to the surface element

n, da = detF) F, "'ngdag
in the intermediate configuration. Indeed, relative to gié&snent, the equivalence
(curl Fp)ngdag = Gin, dg

holds. As such, cudf}, gives the same measure of GNDs with respect to surface elsiinethe
reference configuration as do€% with respect to such elements in the intermediate configura-
tion. Note thatGy, like curl F;, has units of inverse length. The definition (11 &hplies the
form

(114) G =cutL,+ L,G + G L} - G (I- L)

for the evolution ofGy via (22). Alternatively, this can be expressed “objectivels

(115)  detFy ! F[detF) Fy ‘G Fy "1 By = det(Fy) 1 F, GLFY = curtf?L,
relative to the “upper” Oldroyd-Truesdell derivative @} with respect taF;, where
G, :=detF) F, G F " = F lcul R

represents the referential form 6 via (113). In the current crystal plasticity context, the
right-hand side of (115) reduces to

n T n _ .
curtPLo=by" 84 ®F 'Goa=)  _ 8a®F '[Wqx ]

via (6) and (23) in terms of the evolution of the vector-valu@ND surface densitgg, for the
glide-system GND model from (78). As such, (114) implies

G =Y [(5®n)G + Gy ® 8] 7a+ Y 84® Fy [ x ]

for the evolution ofG in the case of crystal plasticity via (23) and the fact thatL, = 0 in
this context. So, another class of specific formsfofrom (47) can be based on the choice

o = (B, v, Gy, implying
v (0,.C,a,p)=90,C v, G, p)

*Recall that we have defined the curl of a second-order tereddifii (6) via(curlT)Ta : = curl (T a),
rather than in the fornicurl T)a : = curl (T"b) used by Cermelli and Gurtin (2001).
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via (95). In turn,g itself is a member of the class defined by the cheice: (F;, v, VF}), as
can be concluded directly from (25) and the fact that &gris a function of VF, via (18). As
shown by Cermelli and Gurtin (2001), constitutive funcidir any p € B depending orVEF,
must reduce to a dependence @ for their form to be independent of change of compatible
local reference placementpte B, i.e., one induced by a charigef global reference placement.
This requirement is in turn based on the result of Davini 6)98nd Davini and Parry (1989) that
such changes leave dislocation measures su€i asmchanged, representing as such “elastic”
changes of local reference placement. As it turns out, onesbaw more generally (Svendsen,
2001c) thaty reduces tq for all pe B, i.e., for B as a whole, under the assumption ttgt
represents a particular kind of material uniformity.
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