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ON BIFURCATIONS FROM NORMAL SOLUTIONS TO
SUPERCONDUCTING STATES

Abstract. Motivated by the paper by J. Berger and J. Rubinstein [3] ahéro
recent studies [10], [15], [16], we analyze the Ginzburgrdau functional in an
open bounded s&®. We mainly discuss the bifurcation problem whose analysis
was initiated in [17] and show how some of the techniquesIdpeel by the first
author in the case of Abrikosov’s superconductors [7] caaygied in this con-
text. In the case of non simply connected domains, we comletbd8] and [13],
[14] for giving the analysis of the structure of the nodalssfetr the bifurcating
solutions.

1. Introduction

1.1. Our model

Following the paper by Berger-Rubinstein [3], we would ltkeunderstand the minima (or more
generally the extrema) of the following Ginzburg-Landandiional. In a bounded, connected,
regulaﬂ, open sef2 C R2 and, for anyr > 0 andx > O, this functionalG,_, is defined, for
ue HY(Q: ©) andA e HY_(R%; R?) such that curA € L2, by

Gy (U, A) =/ (A (—|u|2 + %|u|4) + (V- iA)u|2> dxq - dxp
Q

(1)
+/c2)f1/ lcurl A — He|2dx1 -dxo.
R2
Here, forA = (A1, Ap), curl A = dx; Ap — dx, A1, div A = 3x; A1 + 9x, A2 and He is aC8O
function onR? (or more generally some function in?(R?)). Physically He represents the
exterior magnetic field.
Let Ae be a solution of

curl Ae = He

L) div Ae =0.

It is easy to verify that such a solution exists by looking f& in the form Ae = ( — I, Ve,
9%, Ve). We have then to solva e = He and it is known to be solvable i’ (R%) N C> (R?)
(orin 8’(R?) N HZ(R?) if He e L2(R?)). Of courseAe is not unique but we shall discuss
about uniqueness modulo gauge transform later and at théhenid mainly the restriction of
Ae to © which will be considered.

We shall sometimes use the identification between vectalsfigland 1-formswa.

1 with ¢ boundary
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When analyzing the extrema of the GL-functional, it is natuo first consider the corre-
sponding Euler-Lagrange equations (called in our contémtiftirg-Landau equations). This is
a system of two equations (with a boundary equation):

(GL)y —(V—iA2u+au(u2-1)=0, inQ,
3) (GL), curl*(curlA — He) = Ak ~2Im[a- (V —iAW] - 1o,
(GL)z (V—iAu-v=0, indQ.

Herev is a unit exterior normal t8$2. The operator cuflis defined by cufi f :=(dx, f, —dx, f).
Moreover, without loss of generality in our problem, we $hald the condition

4) (GL)g4 divA=0 inQ.
One can also assume if necessary that the vector potentidiesa
®) AT =0,

on the boundary of2, wherev is a normal unit vector t6<2.

Let us briefly recall the argument. One would like to finéh C*° (%) such thatA = A + do
satisfies (4) and (5). One can proceed in two steps. The fsisto find a gauge transformation
such that (5) is satisfied. This is immediate if the boundamggular.

We now assume this condition.

The second step consists in solving

AO = —divA inQ,
a6
— =0, onadQ.
av

This is a Neumann problem, which is solvable if and only if tight hand-side is orthogonal to
the first eigenfunction of the Neumann realization of thelaejan, that is the constant function
x > 1. We have only to observe thft div Adx = 0 if (5) is satisfied.

An important remark is that the paif, Ae) is a solution of the system. This solution is
called the normal solution. Of course, any solution of thenfg0, Ae + V¢) with ¢ harmonic
is also a solution.

REMARK 1. Note also that the normalization of the functional leadthe property that
(6) G« (0, Ag) = 0.

The first proposition is standard.

ProPosITIONL. If © is bounded, the functional 5, admits a global minimizer which is
a solution of the equation.

We refer to [8], for a proof together with the discussion df tiext subsection.
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1.2. Comparison with other models
Let us observe that there is another natural problem whighbeaconsidered. This is the prob-
lem of minimizing, for(u, A) € H1(Q, ©) x H1(Q, R?), the functionalG$? defined by

1 .
G, (U, A) =/Q (A (—|u|2 + E|u|4> + (V- |A)u|2> dxq - dxp

O
+/c2)ﬁ1/ |curl A — He|2dx1-dx2.
Q

This may lead to a different result in the case wiseis not simply connected. According to
discussions with Akkermans, this is the first problem whiglthie most physical (see also the
discussion in the appendix).

A comparison betwee6; andGiz_’KD whereD is a ball containing2 andGiz!’KD is defined by

1 .
G0 . A) =/ (x (—|u|2 + 5|u|“> +1(v - |A)u|2> dx - dx
’ Q

(8)
+K2r1/ lcurl A — He|2dxq - dxo.
D

is useful. Ifb is given with support outside of the bdll, it is easy to see (assuming thats
regular) that there existswith support outsided such that curh = b. It is indeed sufficient to
take the usual transversal gauge

1 1
9) a; = —x2/ sh(sx)ds, a»= x1/ sh(sx) ds.
0 0
This shows that, for anp containing2, we have
. : Q.D
(10) infG;, (U, A) =infG;” ~(u, A).
In particular it is enough to consider minimizing sequen@gs Ae + an) where supgn C D
andD is a ball containing2. The proof of the existence of minimizers is then greatlypified.
Finally, it is naturaf to think that one can replade by

(11) Q:=QU U,

where theD; are the holes, that are the bounded connected compondﬁ?s\cﬂz. A proof can
be obtained by analyzing the Ginzburg-Landau equationsfigak by a minimizer oGiZ’KD. We
finally get: ’

(12) inf Gy, (U, A) = inf G- (u. A).

REMARK 2. If (u, Ae + @) is a solution of the GL-equation then carl= 0 in the un-
bounded component @2 \ € and curla = const in each hole (see Lemma 2.1 in [10]). It
would be interesting to discuss the possible values of tbesstants.

2 This is at least clear wheft is a star-shaped domain by the previous proof. See SectiontBe
proof of Proposition 8 for a complementary argument.
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1.3. Standard results

The second proposition which is also quite standard (seex@mple [8]) is

PrRoPOSITION2. If u is a solution of the first GL-equation with the Neumann rimtary
condition then

(13) lux)] <1, VxeQ.

We note also for further use that the solutions of the GLesysare inC>($2) under the
assumption tha® is regular.

2. Is the normal state a minimizer?

The aim of this section is to give a proof of a result suggestd8] who said “We expect the
normal state to be a stable solution for small”.

Although, this result is probably known as folk theorem, Wik it is useful to give a proof
(following considerations by M. Dutour in a near context) [@] this property.

Note that connected results are obtained in [10] and moemnthcin [15], [16].

Before stating the theorem, let us recall that we have caltedhal statea pair (u, A) of the
form:

(14) U, A) = (0, Ae),

whereAg is any solution of (1).

As already observedie is well defined up to gauge transformation afdAe) is a solution of
the GL-system.

So it is effectively natural to ask 0, Ae) is a global minimum. The first result in this direction
is the following easy proposition about the normal statet IBuus first introduce:

DEFINITION 1. We denote by (D the lowest eigenvalue of the Neumann realizatiogin
of
—Ap, = —(V —iAe)?.

We shall frequently use the assumption
(15) 2D > 0.
Note the following necessary and sufficient condition fas firoperty (cf. [12]).

PrRopPosITION3. The condition (15) is satisfied if and only if one of the twdofwing
conditions is satisfied:

1. Heis notidentically zero irf2;
2. Heisidentically zero ir€2 but there exists a closed paghin €2 such that% fy op, 7.

Let us observe that the second case can only occur Wsmon simply connected.

PROPOSITION4. Under condition (15) and ik e ]0, 2(V[, the pair (0, Ae) is a non-
degenerate (up to gauge transforms) local minimum gf.G
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The Hessian at0, Ae) of the GL-functional is indeed the map
(8u,8a) — ((—Ap, — M) 8u, curl*curlsa),

where we assume that dia = 0 andsa - v = 0 at the boundary of.
Note that this proof gives also:

PROPOSITIONS. If & > 1D, the pair(0, Ae) is not a local minimum of .

We refer to [15] for a connected result. Proposition 5 dogsanswer completely to the
question about global minimizers. The next theorem givesnaptementary information.

THEOREM1. Under assumption (15), then, for ary> 0, there exists.g(x) > 0 such
that, fori €]0, 1o(x)], G, has only normal solutions as global minimizers.

REMARK 3. By a variant of the techniques used in [7] in a similar cefitene can actually
show that, for any > 0, there exists.1 (k) > 0 such that, foi €]0, A1(«)], all the solutions of
the Ginzburg-Landau equations are normal solutions. THidb@analyzed in Section 5.

Proof of Theorem 1Let (u, A) := (u, Ae + &) be a minimizer of th€GL) functional. So itis
a solutior? of (GL) and moreover we have, using (6), the following prayper

(16) Gy (U, A) <0.

Using the inequality—|u|2 > —%|u|4 — % and (16), we first get, with = curla:

2

K 2 A
17 — bcdx < = |Q
17 k/RZ x< e,

where|2| is the area of2.
We now discuss the link betweéranda in €. So we shall only use from (17):

2

K 2 A
1 — =
(18) A/Slib dX§2| [,

Let us now consider ig2, & the problem of finding a solution of

curla diva=0,

:b,
(19) ~ ~
a-v=0, onadR.

We have the following standard proposition (see Lemma 2[301).

PROPOSITIONG. The problem (19) admits, for any b L2(2), a unique solutiord in
H(<). Moreover, there exists a constant C such that

(20) I8ll2(g = Clbl 25y YD E L2,

3we actually do not use this property in the proof.
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Proof. Following a suggestion of F. Bethuel, we look for a solutioithie form:a = curl*yr. We
then solve the Dirichlet problem Ay = b in . This gives a solution with the right regularity.
For the uniqueness, we observe tﬁmbeing connected and simply connected a solution of
curla = 0 is of the forma = dé (with 6 € H~2(§~2)), and if diva = 0 anda - v on 98, we

get the equationad = 0 andVe - v = 0 on a2, which implies¢ = const and consequently
a=0. |

We can now use the Sobolev estimates in order to get
(21) ||a|\|_4(§) < ClHa”Hl(Q) .
From (18), (20) and (21), we get the existence of a congarstuch that
(22) llall L4(&) = CZ% .

The second point is to observe, that, for ang]0, 1[, we have the inequality

. . 1—e¢)
(23) /Q IV —iAuPdx = A= ell(V —iAulTz ) — ——laulfz g, -
Takinge =  and using Holder’s inequality, we get
. 3 .
(24) /Q |V —iAuRdx = 21V —iAeulF2 ) —3lalf s g IUlFa g, -

Using now the ellipticity of—A , in the form of the existence of a constaBit
(25) lulZ1gy = C1 (17 —iAeuIZz g + IulZsg )
and again the Sobolev inequality, we then obtain the existefia constant, such that

3
; 2 2 ; 2
/;2 |(V - |A)U| dx = (Z - CZHa” L4(Q)> ”(V - |Ae)U|| LZ(Q)

— Callallf s g 1l 2 -

(26)

We get then from (16) and (22), and for a suitable new congafdepending only o2 and
He),

27 3@ Ck2 Al ul?,,., <0
( ) Z - ﬁ - HUHLZ(Q) — Y-

Using the assumption (15), this gives= 0 for A small enough and the proof of Theorem 11

REMARK 4. Note that with a small improvement of the method, itis iinjes(takinge =1

K
in (23)) to show that one can choose, in the limit> +o00, Ag(x) satisfying:

(28) rok) = 2D —0 <E> .
K

This will be developed in Section 4.
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REMARK 5. Observing that. +> %GA,K(U, A) is monotonically decreasing, one easily
obtains that the set of’s such that(0, Ae) is a global minimum is an interval of the form

10. 23 )]. Inequality (28) implies:

(29) 1P = 2V — o (3> .

K

Similar arguments are used in [7] for the Abrikosov’s case rétall that, in this case, the do-
maing, is replaced by a torLRZ\LZ whereL is the lattice generated OVEP by two independent
vectors ofR2.

Observing now that — G, _,(u, A) is monotonically increasing, one easily obtains that the
mapx +—> kgpt(x) is increasing. Using (29) and Proposition 7, one gets)tﬁgﬁ is increasing

from 0 toA D for « €]0, +ool.

3. Estimates in the cas& small

We have already shown in Proposition 5 that, i 2@ then the normal state is not a minimizer.
In other words (see Remark 5), under condition (15), we have:

(30) 0< 2P ) <2 @,

If we come back to the formula (27), one immediately obtalresfollowing first result:

PROPOSITION7. There exist constanisg € ]0, 2(Y'] andag > 0such that, for. €]0, xo]
satisfying

(31) A =< apk,

the minimizer is necessarily the normal solution.

In order to get complementary results, it is also intergstm compute the energy of the
pair (u, A) = (1, 0). This will give, in some asymptotic regime, some informatabout the
possibility for the normal solution (or later for a bifuroa solution) to correspond to a global
minimum of the functional. An immediate computation gives:

(32) G (10)——&|Q| K—Z/ HZ dx
A dB B = 2 + A JR2 e ’

We see in particular that whefi is small, the normal solution cannot be a global minimizer of
G-
As already observed in Subsection 1.2, what is more relésgrbbably the integrafs He2 dx

instead of [p2 Hezdx in (32). Note also that it would be quite interesting to detiele the
minimizers in the limitk — 0. We note indeed thatl, 0) is not a solution of the GL-system,
unlessHe is identically zero ir2. Let us show the following proposition.

ProOPOSITIONS. If

12| 2
(33) K<hi|l——5—] .
2 [ Hg dx

and if Q is simply connected, then the normal solution is not a globaimum.
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Proof. Let ¢y be a sequence @ functions such that
e 0<yn<=<1
e Y = 0in a neighborhood ai;
o Yn(X) = 1L, VX ¢ Q;

We observe that
(34) / ((1—¢n)He)2dx—>/ HZ dx.
R2 Q

We can consequently choosesuch that:

1
kol 2

35 A )

(39) = (2/Rz((1—wn)He>2dx>

We now try to findAn such that
e curl An = w'n He,
e SUPPAN N Q2 = (.

We have already shown how to proceed whkis starshaped. In the general case, we first choose
An such that: curB, = Y He, without the condition of support (see (2) for the argument)

We now observe that cufln = 0 in Q. Using the simple connexity, we can figg in C° (<)

such thatAn = V¢n. We can now extengy, outside2 as a compactly supportéeP° function

in RZ @. We then takeAn = An — Vn.

It remains to compute the energy of the pélr An) (which is strictly negative) in order to
achieve the proof of the proposition. |

REMARK 6. Inthe case whef is not simply connected, Proposition 8 remains true, if we
replaceR by 2, where2 is the smallest simply connected open set contaifing

REMARK 7. It would be interesting to see how one can use the techsigfl] for ana-
lyzing the properties of the zeros of the minimizers, whegytare not normal solutions. The
link between the two papers is given by the relatios (kd)2.

In conclusion, we have obtained, the following theorem:

THEOREM2. Under condition (15), there existg > 0, such that:

1
(36) 2\ _Pw @
2z HEdx) — kT L

4. Localization of pairs with small energy, in the case large

Whenc is large andh — AD is small enough, we will show as in [7] that all the solutioris o
non positive energy of the GL-systems are in a suitable heidtood of(0, Ae) independent of
k > kg > 0. This suggests that in this limiting regime these solgiohthe GL-equations (if
there exist and if they appear as local minima) will furnisbbgl minimizers. Let us show this
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localization statement. The proof is quite similar to thegfrof Theorem 1. We recall that we
have (17)-(23). Now we add the condition that, for some 0,

(37) r<2® 4y,

Note that we have already solved the problem when A — % so we are mainly interested
in the.’s in an interval of the fornfa ™ — € A 4 4],
The second assumption is that we consider only gair#) € H1(Q) x HL (R?) such that

(38) Gr(u, A) <0.

We improve (23) into

Cc Cc
i 2 P 2 @ > 2 2
(39) ”(V IA)UH LZ(Q) = <(1 € P ”a” L4(Q)>+ A € ”a” L4(Q)> ”U” LZ(Q) .

Takinge = % we get, using also (22), the existencecgfandC such that, foi [0, A D 4 n]
and forx > «q,

(40) IV —iAul? > ((1— 9) pAC 9) 2,
K K

for any (u, A) such thaiG; . (u, A) <O0.
Coming back to (1), and, using again the negativity of the@n&; . (u, A) of the pair
(u, A), we get

C
4 2
(41) o itaes (0 ) iy

But by Cauchy-Schwarz, we have

1
(42) /|u|2dx5|9|%</ |u|4dx>2.
Q Q

So we get

1 1
R1\Z(  C\?

43 < et
(43) I|UI|L2(Q) = ( . ) <7I+ K)

We see that this becomes small wittand % It is then also easy to control the norm win
H1(Q). We can indeed use successively (25), (26), (38) and thaltimequality:

(44) IV = TAUIE ;g < MUl g, + Galu, A).

The control of(A — Ag) in the suitable choice of gauge is also easy through (17) 20 (
Note also that if. < A(), we obtain the better

C
(45) lull 2(q) = -
KA

So we have shown in this section the following theorem:
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THEOREM3. There exists)y > 0 such that, for0 < 5 < ng and forx < A + 5, then
there exists such that, forw > «q, all the pairs(u, A) with negative energy are in a suitable
neighborhood? (n, %) of the normal solution in H(Q, C) x Hl(Q, ]RZ) whose size tends

with p and 2.

REMARK 8. Using the same techniques as in [7], one can also showhia &re no solu-
tions of the Ginzburg-Landau equations outside this naigitiod. This is discussed in Section
5.

5. A priori localization for solutions of Ginzburg-Landau equations

In this section, we give the proof of Remarks 3 and 8. The pi®aflapted from Subsection 4.4
in [7] which analyzes the Abrikosov situation. Similar estites can also be found in [10] (or in
[1]) but in a different asymptotical regime.

We assume thatu, A) is a pair of solutions of the Ginzburg-Landau equations (8} a
rewrite the second Ginzburg-Landau equation, wita: Ae + a in the form:

(46) La= %Im(ﬂ-(V—i(Ae—i—a))u) .
K

HerelL is the operator defined on the spde&(§2), where, fork € N*,

47) EkQ) :={ae Hk<Q;]R2> ’diva:O, a-u/m:o},
by
(48) L = curf*curl = —A.

One can easily verify that is an isomorphism fronE2(Q2) onto L2(Q). One first gets the
following

LEMMA 1. If (u, Ae + @) is a solution of the GL-system (3) for some- 0, then we have:

|Q|%)L:’23

(49) ILal < ==
K

Proof. We start from (46) and using Proposition 2, we obtain:
2

A .
(50) ILa)® < IV —iAu|?.

K
Using the first GL-equation, we obtain:

23
2 _ A~ 2(1_ 12

(51) ILal 5K4/Q'”' (1 1u?) dx.
Using again Proposition 2, we obtain the lemma. |

So Lemma 1 shows, together with the propertiet pfhat there exists a constadg, such
that

>
SJINTM

(52) ”a”HZ(Q) <Cq P
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This permits to control the size afwhena is small orx is large. In particular, using Sobolev’s
injection Theorem, we get the existence of a consB{nsuch that:

3
(53) lall L) < ngﬁ .

The second step consists in coming back to our solutiprd) of the Ginzburg-Landau
equations. Let us rewrite the first one in the form:

(54) — AU =AU (1—|u|2) —Zia- (V—iAeu —[a2u.

Taking the scalar product within L2(2), we obtain:

A

AUl + 2lfall L ull,/(—Aagu, u) + llall? s fJull?

1 2 2
A+ 1+e lallfoo | Ul + €{—AaU, U).

We have finally obtained, for ary<]0, 1[ and any paiKu, A) solution of the GL-equations, the
following inequality:

A 1uiZ]? + (= A agu, u)

IA

(55) A/Q uEOI*dx + (—AaU, U) < 1# . (A + <1+ %) ||a|\ﬁoo> lull?.

Forgetting first the first term of the left hand side in (55), get the following alternative:

e Eitheru =0,
1 1
W<~ (- (1+2) 18P ).
=1 ( +< +E>II It

e OrF
If we are in the first case, we obtain immediately (see (46),dquation_a = 0 and conse-
guentlya = 0. So we have obtained that, A) is the normal solution.

The analysis of the occurence or not of the second case depenithe assumptions done
in the two remarks, through (53) and for a suitable choice éd = %) So we get immediately

the existence ohq(x) and its estimate when — +oo. If we now assume (see (37)) that
re 2@ —n, 2@ 4+ y[, we come back to (55) and write:

x/ U4 dx < (L : (x + (1+ 1) |\a||Eoo> —A1> lull?.
Q 1—¢ €

Using (42), this leads to

1 1
(56) Mu|? < (—1_6 : (A + (1+ ;) ||a|\ﬁoo> —A“)) 9.
+

This shows, as in (43), thatis small in L2 with n and%.
We can then conclude as in the proof of Theorem 3. The controiim H1 is obtained through
(55).

THEOREM4. There exists)g > 0 such that, for0 < n < ng and forx < A + 5, then
there existgq such that fonc > «q, all the solutiongu, A) of the GL-equations are in a suitable
neighborhood? (n, El) of the normal solution in H(Q, C) x Hl(Q, ]RZ) whose size tends

with 7 and 2.
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6. About bifurcations and stability

6.1. Preliminaries

Starting from one normal solution, a natural idea is to se&/ffen increasing. from 0, one
can bifurcate for a specific value af Proposition 4 shows that it is impossible befare).

A necessary condition is actually thiatbecomes an eigenvalue of the Neumann realization of
—Ap, in ©2. So we shall consider what is going om&b .

Note here that there is an intrinsic degeneracy to the probgated to the existence of 3t
action. We have indeed the trivial lemma

LEMMA 2. If (u, A) is a solution, ther{expifu, A) is a solution.

In order to go further, we add the assumption
(57) 2D is a simple eigenvalue

In this case, we denote lyj a corresponding normalized eigenvector.

Now, one can try to apply the general bifurcation theory @du€randall-Rabinowitz. Note
that, although, the eigenvalue is assumed to be simpleydtisxactly a simple eigenvalue in the
sense of Crandall-Rabinowitz which are working with reacgs. Actually, this is only simple
modulo thisS!-action. We are not aware of a general theory dealing with sttuation in full
generality (see however [11]) but special cases involviolgr&linger operators with magnetic
field are treated in [17], [2] and [7]. The article [2] is desdtto the case of the disk and [17]
(more recently [7]) to the case of Abrikosov’s states.

All the considered operators are (relatively to the wavecfiom or order parameter) suitable
realizations of operators of the type

U —Aau—Af (|u|2)u,
with f (0) = 1.

The main theorem is the following:

THEOREMS5. Under the assumptions (15) and (57), there exjsand a bifurcating family
of solutions(u( - ; @), A(-; @), A(a)) in HX(Q, C) x EL(Q) x RT, witha € D(0, ¢g) C C for
the Ginzburg-Landau equations such that

u(-sa) = aug +alel2u®@ (- a), with (u, u®) = 0,
(58) A(-, @) = Ae+ e + a*a® (- ),
) = 2 4 el + O(laY) .

Here U3 (-; a) and &4 (-; «) are bounded in H.
This solution satisfies/s € C, |s| = 1:

(59) u(-;sa)=su(-;a), A(-;sa)=A(-;a).

Moreover, if dx) # 0O, all the solutions(u, A, 1) of the Ginzburg-Landau equations lying in a
sufficiently small neighborhood inHx E* x R* of (0, Ae, 1) are described by the normal
solutions(0, Ae, A) and the bifurcating solutions.

The constant(x) will be explicited in the next subsection.
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6.2. About the proof, construction of formal solutions

The starting point is the GL-system written in the form

(—Aap—2AD)u= (=2 D)u - 2uju? - 2ia- (V —iAe)u — [|a)%u

(60) A

La= —zlm @G- (V—=iAu
K

We then use the standard method. We look for a solution indime f

u = (XU1+Ot|a|2U3+O(|Ot|5),

a l)?ap + O(jal?)

and
ae) = 2+ cw) |l + O(jal?) .

We can eliminate th&!-degeneracy by imposing real (keeping only the parity). We refer to
[7] for details and just detail the beginning of the formab@fwhich gives the main conditions.
We first obtain, using the second equation,

A
(61) = _2b27
K
with
(62) by := L~dm (01 - (V — i Ag)uq) .

Taking then the scalar product irf with uq, in the first equation, we get that

(63) cx) = 2D (Io - %Ko) :
K
with
(64) lo:= / 1001 dx.
Q
and
(65) Ko = —(iba - (V —iAe)ug, ug).

REMARK 9. From (63), we immediately see that there existsuch that, forx > «q,
c(x) > 0. Moreover, the uniqueness statement in Theorem 5 is traenigighborhood which
can be chosen independently«0E& [k1, +o0[.

Let us now observe, thabp being divergence free, it is immediate by integration byt par
thatKg is real. Computing R&(, we immediately obtain:

(66) Ko = ReKo = (L™13, 31,
whereJq is the current:

(67) Jpi=1m (@1 - (V —iAe)uy).
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We observe thaKg > 0 if and only if J1 is not identically 0. In the non simply connected
case, we shall find a case whén= 0. (See Lemma 5).
Following the argument of [7] (Lemme 3.4.9), let us analyize tonsequences df = 0. By
assumptioruq does not vanish identically. lf; (xg) # 0, then we can perform in a sufficiently
small ball B(xg, rg) centered akg, the following computation in polar coordinates. We write
up = r(x)expif(x) and getd; = r(x)z(Ae — V6O) = 0. SoAe = V4 in this ball and this
implies He = 0 in the same ball. Using the properties of the zero set;oh © [9] and the
continuity of He, we then obtairHe = 0 in 2. But we know that, if2 is simply connected, then
this impliesr(Y = 0. So we have the following lemma

LEMMA 3. If Qis simply connected and® > 0, then Ky > 0.

Coming back to the first equation and projecting on the omhagjspace ta in L2(Q)

ui, we get:

(68) uz = Rovs,

whereuvs is orthogonal tai; and given by:

(69) vg i=2ap - (V —iAe)uy),

andRy is the inverse of — A a, — (D) on the space;- and satisfies
Roui = 0.

We emphasize that all this construction is uniform with tleeameters = % in 10, Bol.

One can actually extend analytically the equation in ordenave a well defined problem in
[—Bo. Bol-
6.3. About the energy along the bifurcating solution

The proof is an adaptation of [7]. Let us just present heredmeputation of the value of the GL-
functional along the bifurcating curve. Although it is nbetproof, this gives the right condition
for the stability. For this, we observe thaf(if, Ae + a) is a solution of the GL-system, then we
have:

A 4 IC2 2
(70) Gy U A =—= ] |u”+— [ |curlaj“dx.
’ 2Jq rJo

It is then easy to get the main term of the energy of the fundio (u, Ae + @) with a(-; @) =
lea2(+) + O(je|?) andu(-; @) = au1(+) + O(jrf®).

JXEY 2
(71) GieUCi), ACia) = laft (—T/Q|u1|4+m/9|cunaz|2dx +0(ja[®).

Let us first analyze the structure of the term:

K2 2 IC2
(72) Kq:= e /Q lcurlag|“dx = m(Laz,az).



On bifurcations from normal solutions 273

But we have:
A P 21D
(73) K1 3=7(|—b27 b2) = 7“- Yo, ) = K_ZKO'
With these expressions, we get
A D 2
(74) GA(O{),K(U(' ;a), A o) = —|05|4 o <|0 — ﬁKO) + 0(|(¥|6) .

So we get that the energy becomes negative along the bifugcsdlution for O< |a| < pg, if

the following condition is satisfied:

K
(75) K2 >2-9
lo
Another way of writing the result is:

PrRoPOSITION9. Under conditions (15) and (57), then, if
K
(76) k2 £ 20
lo
there existeg > O such that, for alkx satisfying0 < || < «q,
77) () = AD)Gj gy (U(- 1), AC-1 @) < 0.
In particular, we have shown, in conjonction with Theorernth®, following theorem:

THEOREM®6. There existy > 0andxg, such that, fok > xgandi < A() 4+, the global
minimum of G, is realized by the normal solution for € ]0, AY] and by the bifurcating

solution fora € JAM, 2@ + p].
In particular, and taking account of Remark 5, we have:

COROLLARY 1. There exist&c such that the map — )\.gpt(K) is an increasing function
from0to A for k € [0, xc] and is constant and equal ¢V for x > «c.

REMARK 10. Note that Theorem 4 gives an additional information. #emall enough
andk large enough, there are actually no other solutions of thee@lation.

6.4. Stability

The last point is to discuss the stability of the bifurcatiodution. We expect that the bifurcating
solution gives a local minimum of the GL-functional ferlarge enough, and more precisely
under condition (75). The relevant notion is here the notibstrict stability. Following [2], we
say that(u, A) (with u not identically 0) is strictly stable foB,;_, if it is a critical point, if its
Hessian is positive and if its kernel 1 x El is the one dimensional spaBgiu, 0).

We then have the following theorem:

THEOREM7. Under conditions (15), (57), and if (75) is satisfied, thearéhexistsg > O,
such that, fol0 < || < €q, the solution(u(-; &), A(-; «)) is strictly stable.

We refer to [7] for the detailed proof.
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7. Bifurcation from normal solutions: special case of non shply connected models

7.1. Introduction

In this section, we revisit the bifurcation problem in theeavhert2 is not simply connected and
when the external field vanishes insi@e In this very particular situation which was considered
by J. Berger and J. Rubinstein in [3] (and later in [13], [14])s interesting to make a deeper
analysis leading for example to the description of the ned#s of the bifurcating solution. The
situation is indeed quite different of the results obtaitgd[9] in a near context (but with a
simply connected2). We mainly follow here the presentation in [14] (for whiclewefer for
other results or points of view) but emphasize on the linklie previous section.

7.2. The operatorK

We shall now consider the specific problem introduced by fi8] eonsider the case

(78) suppHe N Q2 =1,
and, in any hol&); of ©, the flux of He satisfies

1 1
79 — HeeZ+ =.
(79) 27 Jo, e€ L+ 5

We recall in this context, what was introduced in [13]. Weete that under conditions
(78) and (79), there exists a multivalued functipsuch that expp € C*°(2) and

(80) dop = 2wp,

wherewp is the 1-form naturally attached to the vectar
We also observe that, for the complex conjugation opefator

(81) Tu=a,

we have the general property

(82) F'Ap=A_pl.
Combining (80) and (82), we obtain, for the operator
(83) K := (exp—i¢)T,
which satisfies

(84) K2=1Id,

the following commutation relation

(85) KAp=ApK.

Let us also observe that the Neumann condition is respegtéd b
As a corollary, we get

LEMMA 4. If v is an eigenvector oA, then Kv has the same property.

This shows that one can always choose an orthonormal basigearivectorsi; such that
Kuj =uj.
] ]
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7.3. Bifurcation inside special classes

Following [3] (but inside our point of view), we look for sdlan of the GL-equation in the form
(u, Ae) with Ku = u. Let us observe that

(86) LZ (20 = [ue LA2;0 | Ku=u},

is a real Hilbert subspace afz(sz; O.
We denote b)H{<n the corresponding Sobolev spaces:

(87) HP(Q; 0 = HM(@; 0 NLE .
We now observe the
LEMMA 5. Ifu e H&,thenlm (@ - (V —iAe)u) = 0 almost everywhere.

Proof. Let us consider a point where= 0. Then we havel = p expid with 260 = ¢ modulo
27 7Z. Remembering that\e = %qu, itis easy to get the property. |

Once this lemma is proved, one immediately sees(hafe) (with Ku = u) is a solution
of the GL-system if and only il € H} and

— Apu—au(l— |u|2) =0,

(88) .
(V—iAgu-v=0, onoQ2.

We shall call this new system the reduced GL-equation. But we can apply the theorem
by Crandall-Rabinowitz [6]. By assumption (57), the kerak( — A a, — A1) is now a one-
dimensional real subspace Ier-< Let us denote by, a normalized “real” eigenvector. Note
thatuq is unique up to multiplication by-1. Therefore, we have the

THEOREMS8. Under assumptions (57), (78) and (79), there exists a kafimg family of

solutions(u( - ; o), A(a)) in H& x RT witha €] — g, +¢g[, for the reduced GL-equation such

that
U(e) = aug + o3 v(a),
(89) Uz, v(e)) 2 =0,
lv(e)l] H2(Q) = 01,

(90) ) =1 4 ca? + O(a?),
with
(91) c=2® / lup*dx.
Q
Moreover
(92) U(—a) = —u(a@), A(—a)=Arla).

REMARK 11. Note that the property (92) is what remains of 8teinvariance when one
considers only “real” solutions.
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Let us give here the formal computations of the main termselfienote by g the operator
Lo:=—Apa, — A, writing v(a) = uz + O(a), we get:

(Lo — Caz) (OlU]_ + 0[3U3) + (K(l))a3U1|U]_|2 = O((x4) .

Projecting onuq, we get (91). Projecting ouf and denoting byRg the operator equal to the
inverse ofL g on this subspace and to 0 on Kej, we get

(93) ug = 2D Ry(ugfug?) = —A D Ry(ugug)? — cuy) .

REMARK 12. By the uniqueness part in Theorem 5, we see that the@oluti - ; «), Ae)
is actually the solution given in this theorem.

Another remark is that

A
(94) G (o) (U(@0), Ae) = == ot ( /Q |u1<x)|4dx> +0(lal),

so that wherw # O the energy is decreasing. This is of course to compare Wih(6ote that
we haveKg = 0). Once we have observed this last property, the locallitabf the bifurcated
solution near the bifurcation is clear.

The second result we would like to mention concerns the neetsl In the case when
is simply connected, the analysis of the nodal set @fhen (u, A) is a minimizer of the GL-
functional is done in [9], using the analyticity of the saduis of the GL-equation and techniques
of Courant.

In the non simply connected case, very few results are kndtre following theorem is
true [3], [14]:

THEOREM9. Under assumptions (22), (78) and (79), there exists- 0 such that, for any
a €]0, €1], the nodal set of () in H& slits 2 in the sense of [13]. In particular, if there is only
one hole, then the nodal set afa) consists exactly in one line joining the interior boundangda
the exterior boundary.

An elegant way to recover these results (see [13], [14]) iffttthe situation to a suitable
two-fold coveringQ”.

8. Appendix: Analysis of the various scalings

When considering asymptotical regimes, it is perhaps Usehave an interpretation in terms of
the initial variables. According to the statistical intexation of the Ginzburg-Landau functional
(see for example [4]), the starting point is the functiofial A) — F (o, A) with:

F@,A) = %/2|curlﬂ—ﬁe|2df<
R
2 2
+/ L (V—iz—eﬂ)a’ dg
Q 4m c

b
+/ <a|0|2 + —|G|4> dx .
o 2
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Herea is a parameter which is proportional @ — T¢) (we are only interested in the case< 0)
andb is essentially independent of the temperature. The othanpeters are standard:= %
h is the Planck constang is the charge of the electron andis the mass of the electron. With

u= %U andA = 2 A we obtain:

_ & lalh?
.7:( ) )_MGA,K(Uv A,
- 1
with He = ﬁ—%He, A= 4':‘2&" andx = € (%) %, Here we emphasize that between the two

functionals, no change of space variables is involved.

Let now compare with another standard representation obtheburg-Landau functional.
We make this time the change of variabbes= Lkﬁ and if we changeu and the form

corresponding ta accordingly, we obtain the standard functional:

£(0,A) =Gy (U, A),

with
£(0,A) = /CZ/Q(—|0|2+%|0|4)(1)A(
+/A](V—i®0\2dk
)
+/A|curlﬂ—ﬁe|2df<,
)
with
2
He = %He,
Q = QQ.
K

Here we observe that the open €eils not conserved in the transformation. We have to keep this
in mind when comparing in the limic — +oo the contributions of Sandier and Serfaty [19] or
[15] with the results presented in this paper.
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