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ON BIFURCATIONS FROM NORMAL SOLUTIONS TO

SUPERCONDUCTING STATES

Abstract. Motivated by the paper by J. Berger and J. Rubinstein [3] and other
recent studies [10], [15], [16], we analyze the Ginzburg-Landau functional in an
open bounded set�. We mainly discuss the bifurcation problem whose analysis
was initiated in [17] and show how some of the techniques developed by the first
author in the case of Abrikosov’s superconductors [7] can beapplied in this con-
text. In the case of non simply connected domains, we come back to [3] and [13],
[14] for giving the analysis of the structure of the nodal sets for the bifurcating
solutions.

1. Introduction

1.1. Our model

Following the paper by Berger-Rubinstein [3], we would liketo understand the minima (or more
generally the extrema) of the following Ginzburg-Landau functional. In a bounded, connected,
regular1, open set� ⊂ �2 and, for anyλ > 0 andκ > 0, this functionalGλ,κ is defined, for
u ∈ H1(�; � ) andA ∈ H1

loc

(�2;�2) such that curlA ∈ L2, by

Gλ,κ (u, A) =
∫

�

(
λ

(
−|u|2 + 1

2
|u|4

)
+ |(∇ − i A)u|2

)
dx1 · dx2

+ κ2λ−1
∫
�

2
|curl A − He|2dx1 · dx2 .

(1)

Here, forA = (A1, A2), curl A = ∂x1 A2 − ∂x2 A1, div A = ∂x1 A1 + ∂x2 A2 and He is aC∞
0

function on
�2 (or more generally some function inL2(�2)). Physically He represents the

exterior magnetic field.
Let Ae be a solution of

curl Ae = He

div Ae = 0 .
(2)

It is easy to verify that such a solution exists by looking forAe in the form Ae =
(

− ∂x2ψe,

∂x1ψe
)
. We have then to solve1ψe = He and it is known to be solvable in� ′(�2) ∩ C∞(�2)

(
or in � ′(�2) ∩ H2

loc

(�2) if He ∈ L2(�2)). Of courseAe is not unique but we shall discuss
about uniqueness modulo gauge transform later and at the endthis is mainly the restriction of
Ae to� which will be considered.
We shall sometimes use the identification between vector fields A and 1-formsωA.

1 with C∞ boundary
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260 M. Dutour – B. Helffer

When analyzing the extrema of the GL-functional, it is natural to first consider the corre-
sponding Euler-Lagrange equations (called in our context Ginzburg-Landau equations). This is
a system of two equations (with a boundary equation):

(GL)1 − (∇ − i A)2u + λu
(
|u|2 − 1

)
= 0 , in � ,

(GL)2 curl∗(curl A − He) = λκ−2Im [ū · (∇ − i A)u] · 1� ,

(GL)3 (∇ − i A)u · ν = 0 , in ∂� .

(3)

Hereν is a unit exterior normal to∂�. The operator curl∗ is defined by curl∗ f :=(∂x2 f,−∂x1 f ).
Moreover, without loss of generality in our problem, we shall add the condition

(GL)4 div A = 0 in� .(4)

One can also assume if necessary that the vector potential satisfies

A · Eν = 0 ,(5)

on the boundary of�, whereν is a normal unit vector to∂�.
Let us briefly recall the argument. One would like to findθ in C∞(�

)
such that̃A = A + dθ

satisfies (4) and (5). One can proceed in two steps. The first step is to find a gauge transformation
such that (5) is satisfied. This is immediate if the boundary is regular.
We now assume this condition.
The second step consists in solving

1θ = − div A in �,

∂θ

∂ν
= 0 , on∂� .

This is a Neumann problem, which is solvable if and only if theright hand-side is orthogonal to
the first eigenfunction of the Neumann realization of the Laplacian, that is the constant function
x 7→ 1. We have only to observe that

∫
� div A dx = 0 if (5) is satisfied.

An important remark is that the pair(0, Ae) is a solution of the system. This solution is
called the normal solution. Of course, any solution of the form (0, Ae + ∇φ) with φ harmonic
is also a solution.

REMARK 1. Note also that the normalization of the functional leads to the property that

Gλ,κ (0, Ae) = 0 .(6)

The first proposition is standard.

PROPOSITION1. If � is bounded, the functional Gλ,κ admits a global minimizer which is
a solution of the equation.

We refer to [8], for a proof together with the discussion of the next subsection.
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1.2. Comparison with other models

Let us observe that there is another natural problem which may be considered. This is the prob-
lem of minimizing, for(u, A) ∈ H1(�, � ) × H1(�,�2), the functionalG�

λ,κ
defined by

G�
λ,κ (u, A) =

∫

�

(
λ

(
−|u|2 + 1

2
|u|4

)
+ |(∇ − i A)u|2

)
dx1 · dx2

+ κ2λ−1
∫

�
|curl A − He|2 dx1 · dx2 .

(7)

This may lead to a different result in the case when� is not simply connected. According to
discussions with Akkermans, this is the first problem which is the most physical (see also the
discussion in the appendix).
A comparison betweenGλ,κ andG�,D

λ,κ
whereD is a ball containing� andG�,D

λ,κ
is defined by

G�,D
λ,κ

(u, A) =
∫

�

(
λ

(
−|u|2 + 1

2
|u|4

)
+ |(∇ − i A)u|2

)
dx1 · dx2

+ κ2λ−1
∫

D
|curl A − He|2 dx1 · dx2 .

(8)

is useful. Ifb is given with support outside of the ballD, it is easy to see (assuming thatb is
regular) that there existsa with support outsideD such that curla = b. It is indeed sufficient to
take the usual transversal gauge

a1 = −x2

∫ 1

0
sb(sx) ds, a2 = x1

∫ 1

0
sb(sx) ds.(9)

This shows that, for anyD containing�, we have

inf Gλ,κ (u, A) = inf G�,D
λ,κ

(u, A) .(10)

In particular it is enough to consider minimizing sequences(un, Ae + an) where suppan ⊂ D
andD is a ball containing�. The proof of the existence of minimizers is then greatly simplified.
Finally, it is natural2 to think that one can replaceD by

�̃ := � ∪ (∪i � i ) ,(11)

where the� i are the holes, that are the bounded connected components of
�2 \�. A proof can

be obtained by analyzing the Ginzburg-Landau equations satisfied by a minimizer ofG�,D
λ,κ

. We
finally get:

inf Gλ,κ (u, A) = inf G�,�̃
λ,κ

(u, A) .(12)

REMARK 2. If (u, Ae + a) is a solution of the GL-equation then curla = 0 in the un-
bounded component of

�2 \ � and curla = const. in each hole (see Lemma 2.1 in [10]). It
would be interesting to discuss the possible values of theseconstants.

2 This is at least clear wheñ� is a star-shaped domain by the previous proof. See Section 3,in the
proof of Proposition 8 for a complementary argument.
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1.3. Standard results

The second proposition which is also quite standard (see forexample [8]) is

PROPOSITION2. If u is a solution of the first GL-equation with the Neumann boundary
condition then

|u(x)| ≤ 1 , ∀x ∈ � .(13)

We note also for further use that the solutions of the GL-system are inC∞(�
)

under the
assumption that� is regular.

2. Is the normal state a minimizer?

The aim of this section is to give a proof of a result suggestedin [3] who said “We expect the
normal state to be a stable solution for smallλ...”.
Although, this result is probably known as folk theorem, we think it is useful to give a proof
(following considerations by M. Dutour in a near context [7]) of this property.
Note that connected results are obtained in [10] and more recently in [15], [16].
Before stating the theorem, let us recall that we have callednormal statea pair(u, A) of the
form:

(u, A) = (0, Ae) ,(14)

whereAe is any solution of (1).
As already observed,Ae is well defined up to gauge transformation and(0, Ae) is a solution of
the GL-system.
So it is effectively natural to ask if(0, Ae) is a global minimum. The first result in this direction
is the following easy proposition about the normal state. But let us first introduce:

DEFINITION 1. We denote byλ(1) the lowest eigenvalue of the Neumann realization in�

of
−1Ae := −(∇ − i Ae)

2 .

We shall frequently use the assumption

λ(1) > 0 .(15)

Note the following necessary and sufficient condition for this property (cf. [12]).

PROPOSITION3. The condition (15) is satisfied if and only if one of the two following
conditions is satisfied:

1. He is not identically zero in�;

2. He is identically zero in� but there exists a closed pathγ in� such that 1
2π

∫
γ ωAe 6∈ �.

Let us observe that the second case can only occur when� is non simply connected.

PROPOSITION4. Under condition (15) and ifλ ∈
]
0, λ(1)

[
, the pair (0, Ae) is a non-

degenerate (up to gauge transforms) local minimum of Gλ,κ .
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The Hessian at(0, Ae) of the GL-functional is indeed the map

(δu, δa) 7→ ((−1Ae − λ) δu , curl∗ curlδa) ,

where we assume that divδa = 0 andδa · ν = 0 at the boundary of̃�.
Note that this proof gives also:

PROPOSITION5. If λ > λ(1), the pair(0, Ae) is not a local minimum of Gλ,κ .

We refer to [15] for a connected result. Proposition 5 does not answer completely to the
question about global minimizers. The next theorem gives a complementary information.

THEOREM 1. Under assumption (15), then, for anyκ > 0, there existsλ0(κ) > 0 such
that, forλ ∈]0, λ0(κ)], Gλ,κ has only normal solutions as global minimizers.

REMARK 3. By a variant of the techniques used in [7] in a similar context, one can actually
show that, for anyκ > 0, there existsλ1(κ) > 0 such that, forλ ∈]0, λ1(κ)], all the solutions of
the Ginzburg-Landau equations are normal solutions. This will be analyzed in Section 5.

Proof of Theorem 1.Let (u, A) := (u, Ae + a) be a minimizer of the(GL) functional. So it is
a solution3 of (GL) and moreover we have, using (6), the following property:

Gλ,κ (u, A) ≤ 0 .(16)

Using the inequality−|u|2 ≥ −1
2 |u|4 − 1

2 and (16), we first get, withb = curla:

κ2

λ

∫
�

2
b2 dx ≤ λ

2
|�| ,(17)

where|�| is the area of�.

We now discuss the link betweenb anda in �̃. So we shall only use from (17):

κ2

λ

∫

�̃
b2 dx ≤ λ

2
|�| ,(18)

Let us now consider iñ�, ã the problem of finding a solution of

curl ã = b , div ã = 0 ,

ã · ν = 0 , on∂�̃ .
(19)

We have the following standard proposition (see Lemma 2.3 in[10]).

PROPOSITION6. The problem (19) admits, for any b∈ L2(�̃
)
, a unique solutioña in

H1(�̃
)
. Moreover, there exists a constant C such that

‖ã‖
H1
(
�̃
) ≤ C‖b‖

L2
(
�̃
) , ∀b ∈ L2 .(20)

3 We actually do not use this property in the proof.
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Proof. Following a suggestion of F. Bethuel, we look for a solution in the form:ã = curl∗ψ . We
then solve the Dirichlet problem−1ψ = b in �̃. This gives a solution with the right regularity.
For the uniqueness, we observe that�̃ being connected and simply connected a solution of
curl â = 0 is of the formâ = dθ

(
with θ ∈ H2(�̃

))
, and if divâ = 0 andâ · ν on ∂�̃, we

get the equations1θ = 0 and∇θ · ν = 0 on∂�̃, which impliesθ = const. and consequently
â = 0.

We can now use the Sobolev estimates in order to get

‖a‖L4
(
�̃
) ≤ C1‖a‖H1

(
�̃
) .(21)

From (18), (20) and (21), we get the existence of a constantC2 such that

‖a‖L4
(
�̃
) ≤ C2

λ

κ
.(22)

The second point is to observe, that, for anyε ∈]0,1[, we have the inequality
∫

�
|(∇ − i A)u|2 dx ≥ (1 − ε)‖(∇ − i Ae)u‖2

L2(�)
− (1 − ε)

ε
‖au‖2

L2(�)
.(23)

Takingε = 1
4 and using Hölder’s inequality, we get

∫

�
|(∇ − i A)u|2 dx ≥ 3

4
‖(∇ − i Ae)u‖2

L2(�)
− 3‖a‖2

L4(�)
‖u‖2

L4(�)
.(24)

Using now the ellipticity of−1Ae in the form of the existence of a constantC1

‖u‖2
H1(�)

≤ C1

(
‖(∇ − i Ae)u‖2

L2(�)
+ ‖u‖2

L2(�)

)
,(25)

and again the Sobolev inequality, we then obtain the existence of a constantC2 such that
∫

�
|(∇ − i A)u|2 dx ≥

(
3

4
− C2‖a‖2

L4(�)

)
‖(∇ − i Ae)u‖2

L2(�)

− C2‖a‖2
L4(�)

‖u‖2
L2(�)

.

(26)

We get then from (16) and (22), and for a suitable new constantC (depending only on� and
He),

[
3

4
λ(1) − C

λ2

κ2
− λ

]
‖u‖2

L2(�)
≤ 0 .(27)

Using the assumption (15), this givesu = 0 for λ small enough and the proof of Theorem 1.

REMARK 4. Note that with a small improvement of the method, it is possible
(
takingε = 1

κ
in (23)

)
to show that one can choose, in the limitκ → +∞, λ0(κ) satisfying:

λ0(κ) ≥ λ(1) − �
(

1

κ

)
.(28)

This will be developed in Section 4.
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REMARK 5. Observing thatλ 7→ 1
λ

Gλ,κ (u, A) is monotonically decreasing, one easily
obtains that the set ofλ’s such that(0, Ae) is a global minimum is an interval of the form]
0, λopt

0 (κ)
]
. Inequality (28) implies:

λ
opt
0 (κ) ≥ λ(1) − �

(
1

κ

)
.(29)

Similar arguments are used in [7] for the Abrikosov’s case. We recall that, in this case, the do-
main�, is replaced by a torus

�2\� where� is the lattice generated over�2 by two independent
vectors of

�2.
Observing now thatκ 7→ Gλ,κ (u, A) is monotonically increasing, one easily obtains that the

mapκ 7→ λ
opt
0 (κ) is increasing. Using (29) and Proposition 7, one gets thatλ

opt
0 is increasing

from 0 toλ(1) for κ ∈]0,+∞[.

3. Estimates in the caseκ small

We have already shown in Proposition 5 that, ifλ > λ(1), then the normal state is not a minimizer.
In other words (see Remark 5), under condition (15), we have:

0< λ
opt
0 (κ) ≤ λ(1) .(30)

If we come back to the formula (27), one immediately obtains the following first result:

PROPOSITION7. There exist constantsµ0 ∈
]
0, λ(1)

]
andα0 > 0 such that, forλ ∈]0, µ0]

satisfying

λ ≤ α0κ ,(31)

the minimizer is necessarily the normal solution.

In order to get complementary results, it is also interesting to compute the energy of the
pair (u, A) = (1, 0). This will give, in some asymptotic regime, some information about the
possibility for the normal solution (or later for a bifurcating solution) to correspond to a global
minimum of the functional. An immediate computation gives:

Gλ,κ (1, 0) = −λ
2
|�| + κ2

λ

∫
�

2
H2

e dx .(32)

We see in particular that whenκ
λ

is small, the normal solution cannot be a global minimizer of
Gλ,κ .
As already observed in Subsection 1.2, what is more relevantis probably the integral

∫
�̃ H2

e dx

instead of
∫�

2 H2
e dx in (32). Note also that it would be quite interesting to determine the

minimizers in the limitκ → 0. We note indeed that(1,0) is not a solution of the GL-system,
unlessHe is identically zero in�. Let us show the following proposition.

PROPOSITION8. If

κ < λ ·
(

|�|
2
∫
� H2

e dx

) 1
2

,(33)

and if� is simply connected, then the normal solution is not a globalminimum.
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Proof. Letψn be a sequence ofC∞ functions such that

• 0 ≤ ψn ≤ 1;

• ψn = 0 in a neighborhood of�;

• ψn(x) → 1, ∀x 6∈ �;

We observe that
∫
�2
((1 − ψn)He)

2 dx −→
∫

�
H2

e dx .(34)

We can consequently choosen such that:

κ < λ ·
(

|�|
2
∫�2((1 − ψn)He)2 dx

) 1
2

,(35)

We now try to findAn such that

• curl An = ψn He;

• suppAn ∩� = ∅.

We have already shown how to proceed when� is starshaped. In the general case, we first choose
Ãn such that: curl̃An = ψnHe, without the condition of support (see (2) for the argument).
We now observe that curl̃An = 0 in�. Using the simple connexity, we can findφn in C∞(�

)

such that̃An = ∇φn. We can now extendφn outside� as a compactly supportedC∞ function
in

�2 φ̃n. We then takeAn = Ãn − ∇φ̃n.
It remains to compute the energy of the pair(1, An) (which is strictly negative) in order to
achieve the proof of the proposition.

REMARK 6. In the case when� is not simply connected, Proposition 8 remains true, if we
replace� by �̃, where�̃ is the smallest simply connected open set containing�.

REMARK 7. It would be interesting to see how one can use the techniques of [1] for ana-
lyzing the properties of the zeros of the minimizers, when they are not normal solutions. The
link between the two papers is given by the relationλ = (κd)2.

In conclusion, we have obtained, the following theorem:

THEOREM 2. Under condition (15), there existsα0 > 0, such that:

(
|�|

2
∫
�̃ H2

e dx

) 1
2

≤
λ

opt
0 (κ)

κ
≤ inf

(
α0,

λ(1)

κ

)
.(36)

4. Localization of pairs with small energy, in the caseκ large

Whenκ is large andλ − λ(1) is small enough, we will show as in [7] that all the solutions of
non positive energy of the GL-systems are in a suitable neighborhood of(0, Ae) independent of
κ ≥ κ0 > 0. This suggests that in this limiting regime these solutions of the GL-equations (if
there exist and if they appear as local minima) will furnish global minimizers. Let us show this



On bifurcations from normal solutions 267

localization statement. The proof is quite similar to the proof of Theorem 1. We recall that we
have (17)-(23). Now we add the condition that, for someη > 0,

λ ≤ λ(1) + η .(37)

Note that we have already solved the problem whenλ ≤ λ(1) − C
κ , so we are mainly interested

in theλ’s in an interval of the form
[
λ(1) − C

κ , λ
(1) + η

]
.

The second assumption is that we consider only pairs(u, A) ∈ H1(�)× H1
loc

(�2) such that

Gλ(u, A) ≤ 0 .(38)

We improve (23) into

‖(∇ − i A)u‖2
L2(�)

≥
((

1 − ε − C

ε
‖a‖2

L4(�)

)

+
λ(1) − C

ε
‖a‖2

L4(�)

)
‖u‖2

L2(�)
.(39)

Takingε = 1
κ , we get, using also (22), the existence ofκ0 andC such that, forλ ∈

[
0, λ(1) + η

]

and forκ ≥ κ0,

‖(∇ − i A)u‖2 ≥
((

1 − C

κ

)
λ(1) − C

κ

)
‖u‖2 ,(40)

for any(u, A) such thatGλ,κ (u, A) ≤ 0.

Coming back to (1), and, using again the negativity of the energy Gλ,κ (u, A) of the pair
(u, A), we get

λ

∫

�
|u|4 dx ≤

(
η + C

κ

)
‖u‖2

L2(�)
.(41)

But by Cauchy-Schwarz, we have

∫

�
|u|2 dx ≤ |�| 1

2

(∫

�
|u|4 dx

) 1
2
.(42)

So we get

‖u‖L2(�) ≤
( |�|
λ

) 1
2
(
η + C

κ

) 1
2

(43)

We see that this becomes small withη and 1
κ . It is then also easy to control the norm ofu in

H1(�). We can indeed use successively (25), (26), (38) and the trivial inequality:

‖(∇ − i A)u‖2
L2(�)

≤ λ‖u‖2
L2(�)

+ Gλ(u, A) .(44)

The control of(A − Ae) in the suitable choice of gauge is also easy through (17) and (20).
Note also that ifλ < λ(1), we obtain the better

‖u‖L2(�) ≤ C

κλ
1
2

.(45)

So we have shown in this section the following theorem:
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THEOREM 3. There existsη0 > 0 such that, for0 < η < η0 and forλ ≤ λ(1) + η, then
there existsκ0 such that, forκ ≥ κ0, all the pairs(u, A) with negative energy are in a suitable
neighborhood�

(
η, 1

κ

)
of the normal solution in H1(�, � ) × H1(�, �2) whose size tends to0

with η and 1
κ .

REMARK 8. Using the same techniques as in [7], one can also show that there are no solu-
tions of the Ginzburg-Landau equations outside this neighborhood. This is discussed in Section
5.

5. A priori localization for solutions of Ginzburg-Landau equations

In this section, we give the proof of Remarks 3 and 8. The proofis adapted from Subsection 4.4
in [7] which analyzes the Abrikosov situation. Similar estimates can also be found in [10] (or in
[1]) but in a different asymptotical regime.

We assume that(u, A) is a pair of solutions of the Ginzburg-Landau equations (3) and
rewrite the second Ginzburg-Landau equation, withA = Ae + a in the form:

La = λ

κ2
Im (ū · (∇ − i (Ae + a))u) .(46)

HereL is the operator defined on the spaceE2(�), where, fork ∈ �∗ ,

Ek(�) :=
{
a ∈ Hk

(
�;�2

) ∣∣∣ div a = 0 , a · ν/∂� = 0
}
,(47)

by

L = curl∗curl = −1 .(48)

One can easily verify thatL is an isomorphism fromE2(�) onto L2(�). One first gets the
following

LEMMA 1. If (u, Ae + a) is a solution of the GL-system (3) for someλ > 0, then we have:

‖La‖ ≤ |�| 1
2λ

3
2

κ2
.(49)

Proof. We start from (46) and using Proposition 2, we obtain:

‖La‖2 ≤ λ2

κ4
‖(∇ − i A)u‖2 .(50)

Using the first GL-equation, we obtain:

‖La‖2 ≤ λ3

κ4

∫

�
|u|2

(
1 − |u|2

)
dx .(51)

Using again Proposition 2, we obtain the lemma.

So Lemma 1 shows, together with the properties ofL , that there exists a constantC� such
that

‖a‖H2(�) ≤ C�
λ

3
2

κ2
.(52)
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This permits to control the size ofa whenλ is small orκ is large. In particular, using Sobolev’s
injection Theorem, we get the existence of a constantC′

�
such that:

‖a‖L∞(�) ≤ C′
�

λ
3
2

κ2
.(53)

The second step consists in coming back to our solution(u, A) of the Ginzburg-Landau
equations. Let us rewrite the first one in the form:

−1Aeu = λu
(
1 − |u|2

)
− 2ia · (∇ − i Ae)u − |a|2u .(54)

Taking the scalar product withu in L2(�), we obtain:

λ
∥∥|u|2

∥∥2 + 〈−1Aeu, u〉 ≤ λ‖u‖2 + 2‖a‖L∞‖u‖
√

〈−1Aeu,u〉 + ‖a‖2
L∞‖u‖2

≤
(
λ+

(
1 + 1

ε

)
‖a‖2

L∞

)
‖u‖2 + ε〈−1Aeu,u〉 .

We have finally obtained, for anyε ∈]0, 1[ and any pair(u, A) solution of the GL-equations, the
following inequality:

λ

∫

�
|u(x)|4 dx + 〈−1Aeu, u〉 ≤ 1

1 − ε
·
(
λ+

(
1 + 1

ε

)
‖a‖2

L∞

)
‖u‖2 .(55)

Forgetting first the first term of the left hand side in (55), weget the following alternative:

• Eitheru = 0,

• or

λ(1) ≤ 1

1 − ε
·
(
λ+

(
1 + 1

ε

)
‖a‖2

L∞

)
.

If we are in the first case, we obtain immediately (see (46)), the equationLa = 0 and conse-
quentlya = 0. So we have obtained that(u, A) is the normal solution.

The analysis of the occurence or not of the second case depends on the assumptions done

in the two remarks, through (53) and for a suitable choice ofε

(
ε = 1

k

)
. So we get immediately

the existence ofλ1(κ) and its estimate whenκ → +∞. If we now assume (see (37)) that
λ ∈

]
λ(1) − η, λ(1) + η

[
, we come back to (55) and write:

λ

∫

�
|u(x)|4 dx ≤

(
1

1 − ε
·
(
λ+

(
1 + 1

ε

)
‖a‖2

L∞

)
− λ1

)
‖u‖2 .

Using (42), this leads to

λ‖u‖2 ≤
(

1

1 − ε
·
(
λ+

(
1 + 1

ε

)
‖a‖2

L∞

)
− λ(1)

)

+
|�| .(56)

This shows, as in (43), thatu is small inL2 with η and 1
κ .

We can then conclude as in the proof of Theorem 3. The control of u in H1 is obtained through
(55).

THEOREM 4. There existsη0 > 0 such that, for0 < η < η0 and forλ ≤ λ(1) + η, then
there existsκ0 such that forκ ≥ κ0, all the solutions(u, A) of the GL-equations are in a suitable
neighborhood�

(
η, 1

κ

)
of the normal solution in H1(�, � ) × H1(�, �2) whose size tends to0

with η and 1
κ .
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6. About bifurcations and stability

6.1. Preliminaries

Starting from one normal solution, a natural idea is to see if, when increasingλ from 0, one
can bifurcate for a specific value ofλ. Proposition 4 shows that it is impossible beforeλ(1).
A necessary condition is actually thatλ becomes an eigenvalue of the Neumann realization of
−1Ae in �. So we shall consider what is going on atλ(1).
Note here that there is an intrinsic degeneracy to the problem related to the existence of aS1

action. We have indeed the trivial lemma

LEMMA 2. If (u, A) is a solution, then(expi θu, A) is a solution.

In order to go further, we add the assumption

λ(1) is a simple eigenvalue.(57)

In this case, we denote byu1 a corresponding normalized eigenvector.

Now, one can try to apply the general bifurcation theory due to Crandall-Rabinowitz. Note
that, although, the eigenvalue is assumed to be simple, it isnot exactly a simple eigenvalue in the
sense of Crandall-Rabinowitz which are working with real spaces. Actually, this is only simple
modulo thisS1-action. We are not aware of a general theory dealing with this situation in full
generality (see however [11]) but special cases involving Schrödinger operators with magnetic
field are treated in [17], [2] and [7]. The article [2] is devoted to the case of the disk and [17]
(more recently [7]) to the case of Abrikosov’s states.
All the considered operators are (relatively to the wave function or order parameter) suitable
realizations of operators of the type

u 7→ −1Au − λ f
(
|u|2

)
u ,

with f (0) = 1.

The main theorem is the following:

THEOREM 5. Under the assumptions (15) and (57), there existε0 and a bifurcating family
of solutions(u( · ;α), A( · ;α), λ(α)) in H1(�, � ) × E1(�)× �+ , with α ∈ D(0, ε0) ⊂ � for
the Ginzburg-Landau equations such that

u( · ;α) = αu1 + α|α|2u(3)( · ;α) , with
〈
u1,u

(3)
〉
= 0 ,

A( · , α) = Ae + |α|2a2 + |α|4a(4)( · ; α) ,
λ(α) = λ(1) + c(κ)|α|2 + �

(
|α|4

)
.

(58)

Here u(3)( · ;α) and a(4)( · ; α) are bounded in H1.
This solution satisfies,∀s ∈ � , |s| = 1:

u( · ; sα) = s u( · ;α) , A( · ; sα) = A( · ;α) .(59)

Moreover, if c(κ) 6= 0, all the solutions(u, A, λ) of the Ginzburg-Landau equations lying in a
sufficiently small neighborhood in H1 × E1 × �+ of

(
0, Ae, λ

(1)
)

are described by the normal
solutions(0, Ae, λ) and the bifurcating solutions.

The constantc(κ) will be explicited in the next subsection.
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6.2. About the proof, construction of formal solutions

The starting point is the GL-system written in the form

(
−1Ae − λ(1)

)
u =

(
λ− λ(1)

)
u − λu|u|2 − 2ia · (∇ − i Ae)u − ‖a‖2u

L a = λ

κ2
Im (ū · (∇ − i A)u)

(60)

We then use the standard method. We look for a solution in the form

u = αu1 + α|α|2u3 + �
(
|α|5

)
,

a = |α|2 a2 + �
(
|α|4

)

and
λ(α) = λ(1) + c(κ) |α|2 + �

(
|α|4

)
.

We can eliminate theS1-degeneracy by imposingα real (keeping only the parity). We refer to
[7] for details and just detail the beginning of the formal proof which gives the main conditions.
We first obtain, using the second equation,

a2 = λ(1)

κ2
b2 ,(61)

with

b2 := L−1Im (ū1 · (∇ − i Ae)u1) .(62)

Taking then the scalar product inL2 with u1, in the first equation, we get that

c(κ) = λ(1)

(
I0 − 2

κ2
K0

)
,(63)

with

I0 :=
∫

�
|u1(x)|4 dx ,(64)

and

K0 = −〈ib2 · (∇ − i Ae)u1,u1〉 .(65)

REMARK 9. From (63), we immediately see that there existsκ1 such that, forκ ≥ κ1,
c(κ) > 0. Moreover, the uniqueness statement in Theorem 5 is true ina neighborhood which
can be chosen independently ofκ ∈ [κ1,+∞[.

Let us now observe, that,b2 being divergence free, it is immediate by integration by part
that K0 is real. Computing ReK0, we immediately obtain:

K0 = ReK0 = 〈L−1J1, J1〉 ,(66)

whereJ1 is the current:

J1 := Im (ū1 · (∇ − i Ae)u1) .(67)
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We observe thatK0 > 0 if and only if J1 is not identically 0. In the non simply connected
case, we shall find a case whenJ1 = 0. (See Lemma 5).
Following the argument of [7] (Lemme 3.4.9), let us analyze the consequences ofJ1 = 0. By
assumptionu1 does not vanish identically. Ifu1(x0) 6= 0, then we can perform in a sufficiently
small ball B(x0, r0) centered atx0, the following computation in polar coordinates. We write
u1 = r (x) expi θ(x) and getJ1 = r (x)2(Ae − ∇θ) = 0. So Ae = ∇θ in this ball and this
implies He = 0 in the same ball. Using the properties of the zero set ofu1 in � [9] and the
continuity of He, we then obtainHe = 0 in�. But we know that, if� is simply connected, then
this impliesλ(1) = 0. So we have the following lemma

LEMMA 3. If � is simply connected andλ(1) > 0, then K0 > 0.

Coming back to the first equation and projecting on the orthogonal space tou1 in L2(�)

u⊥
1 , we get:

u3 = R0v3 ,(68)

wherev3 is orthogonal tou1 and given by:

v3 := 2a2 · ((∇ − i Ae)u1) ,(69)

andR0 is the inverse of
(
−1Ae − λ(1)

)
on the spaceu⊥

1 and satisfies

R0u1 = 0 .

We emphasize that all this construction is uniform with the parameterβ = 1
κ in ]0, β0].

One can actually extend analytically the equation in order to have a well defined problem in
[−β0, β0].

6.3. About the energy along the bifurcating solution

The proof is an adaptation of [7]. Let us just present here thecomputation of the value of the GL-
functional along the bifurcating curve. Although it is not the proof, this gives the right condition
for the stability. For this, we observe that if(u, Ae + a) is a solution of the GL-system, then we
have:

Gλ,κ (u, A) = −λ
2

∫

�
|u|4 + κ2

λ

∫

�
|curla|2 dx .(70)

It is then easy to get the main term of the energy of the function for (u, Ae + a) with a( · ; α) =
|α|2a2( · )+ �

(
|α|4

)
andu( · ;α) = αu1( · )+ �

(
|α|3

)
.

Gλ,κ (u(·;α), A(·;α)) = |α|4
(

−λ
(1)

2

∫

�
|u1|4 + κ2

λ(1)

∫

�
|curla2|2 dx

)
+ �

(
|α|6

)
.(71)

Let us first analyze the structure of the term:

K1 := κ2

λ(1)

∫

�
|curla2|2 dx = κ2

λ(1)
〈La2,a2〉 .(72)
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But we have:

K1 := λ(1)

κ2
〈Lb2,b2〉 = λ(1)

κ2
〈L−1 J1, J1〉 = λ(1)

κ2
K0 .(73)

With these expressions, we get

Gλ(α),κ(u( · ; α), A( · ;α)) = −|α|4 · λ
(1)

2

(
I0 − 2

κ2
K0

)
+ �

(
|α|6

)
.(74)

So we get that the energy becomes negative along the bifurcating solution for 0< |α| ≤ ρ0, if
the following condition is satisfied:

κ2 > 2
K0

I0
.(75)

Another way of writing the result is:

PROPOSITION9. Under conditions (15) and (57), then, if

κ2 6= 2
K0

I0
,(76)

there existsα0 > 0 such that, for allα satisfying0< |α| ≤ α0,
(
λ(α)− λ(1)

)
Gλ(α),κ(u( · ;α), A( · ;α)) < 0 .(77)

In particular, we have shown, in conjonction with Theorem 3,the following theorem:

THEOREM 6. There existsη > 0 andκ0, such that, forκ > κ0 andλ ≤ λ(1)+η, the global
minimum of Gλ,κ is realized by the normal solution forλ ∈

]
0, λ(1)

]
and by the bifurcating

solution forλ ∈
]
λ(1), λ(1) + η

]
.

In particular, and taking account of Remark 5, we have:

COROLLARY 1. There existsκc such that the mapκ 7→ λ
opt
0 (κ) is an increasing function

from 0 to λ(1) for κ ∈ [0, κc] and is constant and equal toλ(1) for κ ≥ κc.

REMARK 10. Note that Theorem 4 gives an additional information. Forη small enough
andκ large enough, there are actually no other solutions of the GL-equation.

6.4. Stability

The last point is to discuss the stability of the bifurcatingsolution. We expect that the bifurcating
solution gives a local minimum of the GL-functional forκ large enough, and more precisely
under condition (75). The relevant notion is here the notionof strict stability. Following [2], we
say that(u, A) (with u not identically 0) is strictly stable forGλ,κ if it is a critical point, if its
Hessian is positive and if its kernel inH1 × E1 is the one dimensional space

�
(iu, 0).

We then have the following theorem:

THEOREM 7. Under conditions (15), (57), and if (75) is satisfied, then there existsε0 > 0,
such that, for0< |α| ≤ ε0, the solution(u( · ;α), A( · ;α)) is strictly stable.

We refer to [7] for the detailed proof.
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7. Bifurcation from normal solutions: special case of non simply connected models

7.1. Introduction

In this section, we revisit the bifurcation problem in the case when� is not simply connected and
when the external field vanishes inside�. In this very particular situation which was considered
by J. Berger and J. Rubinstein in [3] (and later in [13], [14]), it is interesting to make a deeper
analysis leading for example to the description of the nodalsets of the bifurcating solution. The
situation is indeed quite different of the results obtainedby [9] in a near context (but with a
simply connected�). We mainly follow here the presentation in [14] (for which we refer for
other results or points of view) but emphasize on the link with the previous section.

7.2. The operatorK

We shall now consider the specific problem introduced by [3] and consider the case

suppHe ∩� = ∅ ,(78)

and, in any hole� i of �, the flux of He satisfies

1

2π

∫
�

i

He ∈ �+ 1

2
.(79)

We recall in this context, what was introduced in [13]. We observe that under conditions
(78) and (79), there exists a multivalued functionφ such that expiφ ∈ C∞(�) and

dφ = 2ωA ,(80)

whereωA is the 1-form naturally attached to the vectorA.
We also observe that, for the complex conjugation operator0

0u = ū ,(81)

we have the general property

01A = 1−A0 .(82)

Combining (80) and (82), we obtain, for the operator

K := (exp−iφ) 0 ,(83)

which satisfies

K 2 = Id ,(84)

the following commutation relation

K 1A = 1A K .(85)

Let us also observe that the Neumann condition is respected by K .
As a corollary, we get

LEMMA 4. If v is an eigenvector of1N
A , then Kv has the same property.

This shows that one can always choose an orthonormal basis ofeigenvectorsu j such that
Ku j = u j .



On bifurcations from normal solutions 275

7.3. Bifurcation inside special classes

Following [3] (but inside our point of view), we look for solution of the GL-equation in the form
(u, Ae) with Ku = u. Let us observe that

L2
K (�; � ) :=

{
u ∈ L2(�; � )

∣∣ Ku = u
}
,(86)

is a real Hilbert subspace ofL2(�; � ).
We denote byHm

K the corresponding Sobolev spaces:

Hm
K (�; � ) = Hm(�; � ) ∩ L2

K .(87)

We now observe the

LEMMA 5. If u ∈ H1
K , thenIm (ū · (∇ − i Ae)u) = 0 almost everywhere.

Proof. Let us consider a point whereu 6= 0. Then we haveu = ρ expi θ with 2θ = φ modulo
2π�. Remembering thatAe = 1

2∇φ, it is easy to get the property.

Once this lemma is proved, one immediately sees that(u, Ae) (with Ku = u) is a solution
of the GL-system if and only ifu ∈ H1

K and

−1Aeu − λu
(
1 − |u|2

)
= 0 ,

(∇ − i Ae)u · ν = 0 , on ∂� .
(88)

We shall call this new system the reduced GL-equation. But now we can apply the theorem
by Crandall-Rabinowitz [6]. By assumption (57), the kernelof

(
− 1Ae − λ(1)

)
is now a one-

dimensional real subspace inL2
K . Let us denote byu1 a normalized “real” eigenvector. Note

thatu1 is unique up to multiplication by±1. Therefore, we have the

THEOREM 8. Under assumptions (57), (78) and (79), there exists a bifurcating family of
solutions(u( · ;α), λ(α)) in H1

K × �+ with α ∈] − ε0,+ε0[, for the reduced GL-equation such
that

u(α) = α u1 + α3 v(α) ,

〈u1, v(α)〉L2 = 0 ,

‖v(α)‖H2(�) = � (1) ,
(89)

λ(α) = λ(1) + cα2 + �
(
α4) ,(90)

with

c = λ(1) ·
∫

�
|u1|4 dx .(91)

Moreover

u(−α) = −u(α) , λ(−α) = λ(α) .(92)

REMARK 11. Note that the property (92) is what remains of theS1-invariance when one
considers only “real” solutions.
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Let us give here the formal computations of the main terms. Ifwe denote byL0 the operator
L0 := −1Ae − λ(1), writing v(α) = u3 + � (α), we get:

(
L0 − cα2)(αu1 + α3u3

)
+
(
λ(1)

)
α3u1|u1|2 = �

(
α4) .

Projecting onu1, we get (91). Projecting onu⊥
1 and denoting byR0 the operator equal to the

inverse ofL0 on this subspace and to 0 on KerL0, we get

u3 = −λ(1)R0
(
u1|u1|2

)
= −λ(1)R0

(
u1|u1|2 − cu1

)
.(93)

REMARK 12. By the uniqueness part in Theorem 5, we see that the solution (u( · ;α), Ae)

is actually the solution given in this theorem.

Another remark is that

Gλ(α),κ(u(α), Ae) = −λ
(1)

2
· α4

(∫

�
|u1(x)|4 dx

)
+ �

(
|α|6

)
,(94)

so that whenα 6= 0 the energy is decreasing. This is of course to compare with (72) (note that
we haveK0 = 0). Once we have observed this last property, the local stability of the bifurcated
solution near the bifurcation is clear.

The second result we would like to mention concerns the nodalsets. In the case when�
is simply connected, the analysis of the nodal set ofu when(u, A) is a minimizer of the GL-
functional is done in [9], using the analyticity of the solutions of the GL-equation and techniques
of Courant.

In the non simply connected case, very few results are known.The following theorem is
true [3], [14]:

THEOREM 9. Under assumptions (22), (78) and (79), there existsε1 > 0 such that, for any
α ∈]0, ε1], the nodal set of u(α) in H1

K slits� in the sense of [13]. In particular, if there is only
one hole, then the nodal set of u(α) consists exactly in one line joining the interior boundary and
the exterior boundary.

An elegant way to recover these results (see [13], [14]) is tolift the situation to a suitable
two-fold covering�

�
.

8. Appendix: Analysis of the various scalings

When considering asymptotical regimes, it is perhaps useful to have an interpretation in terms of
the initial variables. According to the statistical interpretation of the Ginzburg-Landau functional
(see for example [4]), the starting point is the functional

(
ṽ, Ã

)
7→ �

(
ṽ, Ã

)
with:

�
(
ṽ, Ã

)
:= 1

8π

∫
� 2

∣∣curl Ã − H̃e
∣∣2 dx̃

+
∫

�

h̄2

4m

∣∣∣∣
(

∇ − i
2e

c
Ã

)
ũ

∣∣∣∣
2

dx̃

+
∫

�

(
a|ũ|2 + b

2
|ũ|4

)
dx̃ .
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Herea is a parameter which is proportional to(T −Tc) (we are only interested in the casea < 0)
andb is essentially independent of the temperature. The other parameters are standard:h̄ = h

2π
,

h is the Planck constant,e is the charge of the electron andm is the mass of the electron. With
u = b

|a| ũ andA = 2e
c Ã, we obtain:

�
(
ṽ, Ã

)
= |a|h̄2

4mb
Gλ,κ (u, A) ,

with He = 2e
h̄c H̃e, λ = 4m|a|

h̄2 andκ = mc
eh̄

(
b

8π

) 1
2 . Here we emphasize that between the two

functionals, no change of space variables is involved.

Let now compare with another standard representation of theGinzburg-Landau functional.
We make this time the change of variablesx = κ√

λ
x̂ and if we changeu and the 1−form

corresponding toA accordingly, we obtain the standard functional:

� (
û, Â

)
= Gλ,κ (u, A) ,

with

� (
û, Â

)
= κ2

∫

�̂

(
−|û|2 + 1

2
|û|4

)
dx̂

+
∫

�̂

∣∣(∇ − i Â
)

û
∣∣2 dx̂

+
∫

�̂

∣∣curl Â − Ĥe
∣∣2 dx̂ ,

with

Ĥe = κ2

λ
He ,

�̂ =
√
λ

κ
� .

Here we observe that the open set� is not conserved in the transformation. We have to keep this
in mind when comparing in the limitκ → +∞ the contributions of Sandier and Serfaty [19] or
[15] with the results presented in this paper.
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