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GEOMETRY OF THE BOUNDARY AND DOUBLING

PROPERTY OF THE HARMONIC MEASURE FOR GRUSHIN

TYPE OPERATORS

Abstract. In this note we prove a doubling formula near the boundary forthe
harmonic measure associated with a class of degenerate elliptic equations known
in the literature as Grushin type operators.

1. Introduction

The aim of this note is to apply new boundary regularity results for the harmonic measure asso-
ciated with subelliptic operators recently obtained in [7]to the study of a class of Hörmander’s
sum-of-squares operators known sometimes in the literature as Grushin type operators, since
their hypoellipticity was first proved by Grushin in [11]. Let us start by summarizing the main
results of [7]; to this end, we introduce now the main notations. A more complete introduction
to the subject, together with a richer list of references canbe found in [7].

Let X = {X1, . . . , Xp} be a family of smooth vector fields in
�n, n ≥ 3, satisfying Hörman-

der’s rank condition

rank Lie(X1, . . . , Xp) = n ,(1)

where Lie(X1, . . . , Xp) is the Lie algebra generated byX1, . . . , Xp. In other words, we assume
that there existn linearly independent commutators ofX1, . . . , Xp of order less or equal tor for
somer ∈ � , and, to fix our notations, from now on we shall indicate bym the minimum natural
numberr that enjoys uniformly this property in a fixed compact set. Weshall denote by� the
differential operator

� =

p∑

j =1

X∗
j X j ,

and we shall say that a functionu is �-harmonic if�u = 0.

It is well known that we can associate withX the so-called Carnot–Carathéodory distance
(CC–distance), see e.g. [15], where in particular the authors prove that metric balls enjoy the
doubling property with respect to the Lebesgue measure, i.e., denoting byBx,s the ρ-metric
ball of centerx and radiuss, if K ⊂

�n is a compact set, then there exist positive constants
A = A(K ) ands0 = s0(K ) such that

|Bx,2s| ≤ A|Bx,s| ,(2)

∗The authors are partially supported by MURST, Italy, and by the University of Bologna funds for
selected research topics. The second author is supported byGNAMPA of INdAM, Italy, project “Analysis in
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for everyx ∈ K and for every 0< s < s0, where|E| denotes the Lebesgue measure of the set
E. It follows that

|Bx,δs| ≥ δQ|Bx,s|(3)

for x ∈ K andδ < 1, whereQ = log2 A is called thelocal homogeneous dimensionof
�n

endowed with the CC–distance.

Throughout this paper,� will be an open bounded subset of
�n =

�n−1 ×
�

, and we shall
write y = (y′, yn) ∈

�n, wherey′ ∈
�n−1, yn ∈

�
. We assume that the boundary of� is

locally the graph of a functionf ∈ C1,α
(�n−1), α ∈]0, 1], such thatf (0) = 0 and∇ f (0) = 0.

In particular, since the following assumption is not restrictive for our goal, we suppose that

� =
{(

y′, yn
)

∈
�n : f

(
y′
)

< yn < f
(
y′
)
+ M1,

∣∣y′
∣∣ < M2

}

for some positive numbersM1 andM2.

If m is defined above, letb andr be positive numbers; we set

Fm
b =

{(
y′, yn

)
∈
�n : f

(
y′
)

< yn < f
(
y′
)
+ bm} ,

while for everyx = (x′, xn) ∈
�n we put

4m(x, b, r ) =
{(

y′, yn
)

∈
�n : f

(
y′
)

< yn < f
(
y′
)
+ bm,

∣∣y′ − x′
∣∣ < r

}
,

∂s 4 (x, b, r ) =
{(

y′, yn
)

∈
�n : f

(
y′
)

≤ yn ≤ f
(
y′
)
+ bm,

∣∣y′ − x′
∣∣ = r

}
,

∂u 4 (x, b, r ) =
{(

y′, yn + bm) ∈
�n :

∣∣y′ − x′
∣∣ ≤ r

}
(4)

andδ(x) = xn − f (x′).

Moreover, for everyσ ∈ Fm
b we setAm

σ,b = Fm
b ∩ Bσ,c1b, wherec > 1 is a constant

depending only on the operator� .

Finally, throughout this paper, the symbolsC, c, C′, c′ will indicate a constant that can
change from formula to formula and even in the same string, whereasc0, C0, c′

0, C′
0, a, · · · will

denote fixed constants.

It follows from Bony’s classical results ([2], [3]) that we can associate with� , with a
bounded connected open setU ⊂

�n , and with a pointx ∈ U a probability measure on∂U
(the� -harmonic measure, or, shortly, the harmonic measure if there is no way to misunderstand-
ings) denoted byωx

U such that for anyφ ∈ C(∂U) we have

HU
φ (x) =

∫

∂U
φ(σ ) dωx

U (σ ) ,

whereHφ
U is the Perron–Wiener–Brelot solution (PWB-solution) of the Dirichlet problem

{
�u = 0 in U ,

u ≡ φ on∂U

(see the Appendix of [7] for more details). The following property of the�-harmonic measure
will be used through the paper.

THEOREM 1. If V ⊆ ∂U is a Borel set, thenωx
U (V) is the PWB-solution evaluated at the

point x of the Dirichlet Problem




�u = 0 in U ,

u ≡ 1 on ∂V ,

u ≡ 0 on ∂U \ V .
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When dealing with the Laplace operator, the regularity of the harmonic measure has been
intensively studied in the last years (see for instance [13], [5] and [14] for different crucial steps
in the theory). Recently, in [6] the first author proved regularity results for Hölder domains
adapting a probabilistic approach ([1]). Basically, our approach relies on the analogy between
cusps for elliptic operators and characteristic points forsubelliptic operators.

We can state now our first result, i.e. the upper estimate of

ω
y
4m(x,b,r )

(
∂s 4m (x, b, r )

)
.

PROPOSITION1. There exists a positive real constant c∈]0, 1[ such that for every x∈ �,
for every positive real numbers b and r, r≥ c2b, and for every y∈ 4m(x, b, r ), if y′ = x′, then

ω
y
4m(x,b,r )

(
∂s 4m (x, b, r )

)
≤ c[r/b] .

Let us state now a lower bound for the harmonic measure provedin [7] that, together with
Proposition 1, will yield the doubling estimate for the harmonic measure itself. To this end, let us
introduce the definition ofφ-Harnack’s domains. Let us start with some preliminary definitions.

DEFINITION 1. We shall say that a quasi-metric̃ρ is compatible with� if ρ̃ is equivalent
to the Carnot–Carathéodory metricρ, i.e. there exist constants c, C such that

cρ(x, y) ≤ ρ̃(x, y) ≤ Cρ(x, y)(5)

for all x, y ∈
�n .

DEFINITION 2. Let ρ̃ be a compatible quasi-metric; ãρ-Harnack’s chain of balls of length
ν connecting x1, x2 ∈ � is a finite sequence of opeñρ balls contained in�, with centers
y1 = x1, y2, . . . , yν = x2 and radii r1, . . . , rν , r j ≤ distρ̃(y j , ∂�), j = 1, . . . , ν, such that

ρ̃
(
y j , y j +1

)
≤ θ min

{
r j , r j +1

}
,(6)

whereθ is a given geometric constant, that will be chosen small, seethe Remark below.

REMARK 1. The meaning ofθ in Definition 2 must be better explained. To this end, we
recall that it is well known that positive�-harmonic functions onρ-balls satisfy an invariant
Harnack’s inequality, and the same result can be extended toρ̃-balls, whereρ̃ is compatible with
� . The above constantθ depends on such inequality, since it satisfies the followingproperty: if
u is �-harmonic inBx,r , then

sup
Bx,θr

u ≤ C inf
Bx,θr

u ,

whereC is a positive constant independent ofu, x andr ≤ r0.

If x andy can be connected by a chain ofρ̃-balls of lengthν then, by the Harnack’s principle

h(x)

h(y)
> cν

for every positive�-harmonic functionh in �, wherec > 0 is independent onx, y, andh.
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REMARK 2. In fact, in the sequel we shall not always use Harnack’s chains of balls; instead
we shall use families of sets depending on a point (the center) and a positive real number (the
radius) that are in a natural sense equivalent to metric balls (see [10], [8]). This will not change
the result.

We want now to classify open sets� according the possibility of connecting a pointx ∈ �

close to the boundary with another point that is ‘away enoughfrom the boundary’ by means
of a ρ̃-Harnack’s chain whose length is controlled in terms of a given function ofδ(x1), where
δ(x) = xn− f (x′). We shall see that, even if the boundary of our domain� is a smooth manifold,
nevertheless the estimate of the length of a Harnack’s chainmay be that of Hölder domains for
uniformly elliptic operators.

Thus, we introduce now the definition ofφ-Harnack domain.

DEFINITION 3. Let ρ̃ be a compatible quasi-metric, and letφ :]0,∞[→]0, ∞[ be a non-
increasing function. We shall say that� is a φ-Harnack’s domain in a neighborhood U of the
origin if there exist c(U) > 0, c2(U), c3(U), c4(U) > 1, such that, for every r, b > 0 sufficiently
small, b ≤ c4(U)r , and for everyw ∈ U ∩ � with 4m(w, c2(U)b, c3(U)r ) ⊂ U ∩ �, if
x ∈ 4m(w, b, r ), then there exist y∈ �, δ(y) > (c2(U)b)m, |y′ − w′| < c3(U)r , and a
ρ̃-Harnack’s chain H=

{
B̃ j , 1 ≤ j ≤ ν

}
connecting x with y such that:

i) B̃ j ⊂ 4m (w, 1, c3(U)r );

ii) ν ≤ φ(δ(x)) − φ
(
(c2(U)b)m

)
;

iii) if we set S=
⋃ν

j =1 B̃ j , then

ω
y
S

(
∂S\ Fm

c2(U )b

)
≥ c(U) .

In fact, it would be more precise to speak ofφ-Harnack’s domain with respect tõρ and to a
given choice of cylinders4m, see [7], Remark 3.2.

We can state now the second crucial estimate, i.e. the estimate from below of

ωx
4m(0,c2(U )b,c3(U )r )

(
∂u 4m (0, c2(U)b, c3(U)r )

)

in φ-Harnack’s domains.

PROPOSITION2. Let � be aφ-Harnack’s domain. With the notations of Definition 3, if
b, r > 0 are such that4m(0, c2(U)b, c3(U)r ) ⊂ U, then for x∈ 4m(0, b, r ) we have

ωx
4m(0,c2(U )b,c3(U )r )

(
∂u 4m (0, c2(U)b, c3(U)r )

)
≥ C(U)c−(φ(δ(x))−φ((2b)m)) ,

where C(U) > 0 is independent of u, b and r.

For every positive real numberγ let us denote by∂g 4m (x, γ b, γ r ) the following subset
of the boundary of the cylinder4m(x, γ b, γ r ),

∂g 4m (x, γ b, γ r ) = ∂ 4m (x, γ b, γ r ) \
(
∂� ∪ ∂s 4m (x, b, γ r )

)
.

To avoid cumbersome notations, from now on we shall takec2(U) = c3(U) = 2; our doubling
estimate for�-harmonic functions reads as follows.
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THEOREM 2. Suppose� is a φ-Harnack domain and let{bk}k∈� , {rk}k∈� be decreasing
sequences of real positive numbers such that:

i) r 0 = 2r , rk → (1 + θ)r , θ > 0 and b0 = b, bk → 0;

ii) r k − rk+1 ≥ c2bk+1, where c2 is defined in Proposition 1;

iii)
∑∞

j =0 exp
(
φ

(
bm

j +2

)
− φ

(
(2b)m

)
−

c̃(r j −r j +1)

b j +1

)
< ∞, wherec̃ = | logc|, c being de-

fined in Proposition 1.

If b, r > 0, then there exists a positive constant c= c(r, b) (independent of u) such that for
every y∈ 4m(x, b, r ), x in a neighborhood U of the origin, we have

ω
y
4m(x,2b,2r )

(
∂s 4m (x, b, 2r )

)
≤ c(b, r )ω

y
4m(x,2b,2r )

(
∂g 4m (x, 2b, 2r )

)
,

where

c(b, r ) ≤ C(U)

{
exp

(
φ
(
bm

1
)
− φ

(
(2b)m

))

+

∞∑

k=0

exp
(
φ

(
bm

k+2

)
− φ

(
(2b)m

)
− c̃

(
rk − rk+1

)
/bk

)}
.

Hence the following doubling formula holds

ω
y
4m(x,2b,2r )

(
∂ 4m (x, 2b, 2r ) \ ∂�

)
≤ (1 + c(b, r )) ω

y
4m(x,2b,2r )

(
∂g 4m (x, 2b, 2r )

)
.(7)

The role of the functionφ and in particular the importance of the logarithmic case is illus-
trated by the following corollaries.

COROLLARY 1. With the notations of Theorem 2, ifφ(st) ≤ s−αφ(t) for t > 0, 0 <

s < 1, 0 < α < 1/m, then the sum in ii i) converges by choosing bk = 2−k/mb and rk =

2r − r
8
∑k

j =0( j + 1)−2 for k ≥ 0.

Proof. Indeed

φ

(
bm

k+2

)
− φ

(
(2b)m

)
− c̃

rk+1 − rk

bk+1

≤
(
2(k+m+2)α − 1

)
φ
(
(2b)m

)
− c̃

r

b
2(k+1)/m 1

(k + 1)2

= −
2(k+1)/m

k2

(
c̃

r

b
+ φ

(
(2b)m

)
o(1)

)

ask → ∞, so that the series ini i i ) converges.

COROLLARY 2. With the notations of Theorem 2, ifφ(s) = c| logs|, then the sum in iii)
converges and in addition when r≈ b the constant c(r, b) can be bounded by an universal
constant, yielding a scale–invariant doubling inequality.

Proof. We have

φ
(
bm

k+2

)
− φ

(
(2b)m

)
− c̃

rk+1 − rk

bk+1
≤ (k + m + 2) log 2− c̃′ r

b
2(k+1)/m 1

(k + 1)2

≤ −
2(k+1)/m

k2

(
c̃′ r

b
+ o(1)

)
,
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ask → ∞ and we are done.

2. Geometry for Grushin operators

In this section, we shall examine in particular the notion ofφ-Harnack’s domain associated with
the family X = {X1, · · · , Xn} of vector fields in

�n
(x,y)

=
�n−1

x ×
�

y

X j =
∂

∂x j
, j = 1, . . . , n − 1 , Xn = |x|`

∂

∂y
,

for ` ∈ � . Clearly, these vector fields are smooth vector fields satisfying Hörmander’s condition
only if ` is even; nevertheless, the geometry of the associated Carnot-Carathéodory distance is
fully understood for̀ ≥ 1 ([10], [8]). Before giving a precise description of the metric balls
associated withX1, . . . , Xn, we recall that the sub-Laplacian� =

∑
j X2

j is invariant under
vertical translation, so that, ifu is �-harmonic, thenu(x, y + k) is �-harmonic too.

THEOREM 3 ([8], [10]). If x0 ∈
�n−1, y0 ∈

�
, z0 = (x0, y0), r > 0, put

i) F (x0, r ) = r (|x0| + r )`;

ii) Q(z0, r ) = Beuc(x0, r ) × (y0 − F(x0, r ), y0 + F(x0, r )),

where Beuc is the(n−1)-dimensional Euclidean ball of radius r centred at x0. Then there exists
b > 1 such that

Q(z0, r/b) ⊂ Bz0,r ⊂ Q(z0, br)

when0 < r < 1. In addition

iii) ρ((x1, y1), (x2, y2))

≈ ρ1((x1, y1), (x2, y2)) = max{|x1 − x2|, ϕ(x1, |y1 − y2|), ϕ(x2, |y1 − y2|)}

≈ |x1 − x2| + ϕ(x1, |y1 − y2|) ≈ |x1 − y1| + ϕ(x2, |y1 − y2|) ,

where
ϕ(x, t) = F(x, ·)−1(t)

for t > 0.

iv) Moreover, there existsβ ≥ 1 such that

F(x, σ r ) ≥ σβ F(x, r )

for σ ∈]0, 1[.

In the sequel, we shall callQ(z, r ) ‘metric cubes’.

We state now an estimate from below of the�-harmonic measure that we shall use in the
sequel when provingi i i ) of Definition 3 for special classes of open domains.

LEMMA 1. For every Q= Q(z̄, r ), z̄ = (x̄, ȳ),

ωz̄
Q (∂Q ∩ {y > ȳ − F(x̄, r )}) ≥

1

2
.
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Proof. By definition, z → u(z) = ωz
Q(∂Q ∩ {y > ȳ − F(x̄, r )}) is the PWB-solution of the

Dirichlet problem: {
�u = 0 on Q
u = χ{y>ȳ−F(x̄,r )} in ∂Q .

On the other hand, the function

l (y) =
y + F(x̄, r )

2F(x̄, r )

is �-harmonic and 0≤ l (y) ≤ χ{y>ȳ−F(x̄,r )} on ∂Q. By the maximum principle,u(z) ≥ l (z)
for z ∈ Q, and the assertion follows.

DEFINITION 4. If α > 0 and z0 = (x0, y0) ∈
�n , we put

0z0,α =
{
(x, y) ∈

�n : αF(x0, |x − x0|) < y − y0
}
.

We shall say that open set� is X − Lipschitz if there existsα > 0 such that (locally)

0z0,α ⊂ �

for all z0 ∈ �.

We notice that, if� = {y > f (x)}, then the above condition is equivalent to

f (x) − f (ξ) ≤ αF(x, |x − ξ |) for x, ξ ∈
�n−1 .(8)

LEMMA 2. Let � = {y > f (x)} ⊂
�n be such that f∈ C`,1(�n−1). If ∂γ f

∂xγ = O(|x|),
as x→ 0 when|γ | ≤ `, then� is a X-Lipschitz domain in a neighborhood of the origin.

Proof. From Taylor formula it follows that there existsξ = ξ(x), |ξ − x0| ≤ |x − x0| such that

f (x) − f (x0) =
∑̀

k=1

1

k!

∑

|γ |=k

∂γ f

∂xγ
(x0)(x − x0)γ

+
1

`!

∑

|γ |=`

(
∂γ f

∂xγ
(ξ) −

∂γ f

∂xγ
(x0)

)
(x − x0)γ

≤ |x − x0|


c

∑̀

k=1

∣∣∣∣
∂γ f

∂xγ
(x0)

∣∣∣∣ |x − x0|k−1 + c′|x − x0|`


 .

Notice now
∣∣∣ ∂

γ f
∂xγ (x)

∣∣∣ =
(
|x|l−|γ |+1

)
, by iteration. Hence

f (x) − f (x0) ≤ c′′|x − x0|
(
|x0|` + |x − x0|`

)

≤ c′′′|x − x0| (|x0| + |x − x0|)` = c′′′F(x0, |x − x0|) ,

and we are done.

LEMMA 3. Let � = {y > f (x)} ⊂
�n be a X-Lipschitz domain. Then there exists a

positive constant C such that, for every z= (x, y), w = (x, y + h) ∈ �, h > 0, then there exists
a Harnack’s chain in� of lengthν connecting z andw such that

ν ≤ C

∣∣∣∣log
h

y − f (x)

∣∣∣∣(9)
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Proof. By assumption, there existsα > 0 such that0α,(x, f (x)) ⊂ � andz, w ∈ 0α,(x, f (x)).
Thus, (9) will be proved by constructing a Harnack’s chain contained in0α,(x, f (x)). To this
end, we define a sequence of metric cubes{Q(z j , r j ), j = 1, . . . , ν} such thatz0 = z, zν = w,
z j = (x, y j ), with y j +1 = y j + F(x, σ r j ), whereσ is a positive (small) constant to be chosen
in such a way (6) holds. The sequence(r j ) j ∈� is defined as follows:

r j = ϕ

(
x,

y j − f (x)

α + 1

)
, j = 1, . . . , ν .(10)

Let us prove thatQ(z j , r j ) ⊂ 0α,(x, f (x)); indeed, ifζ = (ξ, η) ∈ Q(z j , r j ), then, by (10),

η − f (x) = η − y j + y j − f (x) ≥ −F(x, r j ) + y j − f (x)

= αF(x, r j ) = αr j (|x| + r j )
`

> α|ξ − x|(|x| + |ξ − x|)` ,

as we held. Now the proof will be accomplished by proving a bound for ν; to this end, if we put
δ j = y j − f (x), again by (10), we have

δ j +1 = δ j + F(x, σ r j ) ≥ δ j + σβ F(x, r j )

= δ j

(
1 +

σβ

1 + α

)
.

By iteration (9) follows.

THEOREM 4. X-Lipschitz domains areφ-Harnack’s domains, withφ(t) = C| log t |.

Proof. Let r, b be given 0< b ≤ r . Takew = (w′, w′′) in a neighborhood of the origin, and
let z = (x, y) be such that|x − w′| < r , f (x) < y < f (x) + b`+1, and consider the sequence
of metric cubes described in Lemma 3 withh = (2b)`+1 − y + f (x). Let us prove that this
chain satisfies conditioni ) of Definition 3. If (ξ, η) belongs to someQ j = Q(z j , r j ), j ≤ n,

see Lemma 3, then|ξ − x| < rνϕ

(
x,

yν− f (x)
α+1

)
, so that

(2b)`+1

α + 1
≥

yν − f (x)

α + 1
> F(x, |ξ − x|) ≥ |ξ − x|`+1 ,

so that|ξ − x| ≤ c1b, and hence

|ξ − w′| ≤ (c1 + 1)r ,

so that(ξ, η) ∈ 4`+1(w, 1, (c1 + 1)r ). By (9),

ν ≤ C

∣∣∣∣∣log
(2b)`+1 − δ(x)

δ(x)

∣∣∣∣∣ = C
(
| logδ(x)| −

∣∣∣log
(
(2b)`+1 − δ(x)

)∣∣∣
)

≤ C
(
| logδ(x)| −

∣∣∣log(2b)`+1
∣∣∣
)

,

that provesi i ).

Finally, we have to show thati i i ) of Definition 3 holds. Recalling that our metric cubesQ j
have increasing radii and the centers are on a vertical line,if S =

⋃ν
j =1 Q j , then

∂Qν ∩ {y > yν − F(x, rν)} ⊂ ∂S.
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Suppose firstQ̄ν ⊂
(
F`+1

b

)c. Then

∂Qν ∩ {y > yν − F(x, rν)} ⊂ ∂S\
(
F`+1

b

)c
.

By the maximum principle

ω
zν

S

(
∂S\ F`+1

b

)
≥ ω

zν

Qν
(∂Qν ∩ {y > yν − F(x, rν)}) ≥

1

2
,

by Lemma 1 and we are done. If the metric cubeQν is not completely contained in
(
F`+1

b

)c,
it is enough to addN copies ofQν centered at the point(x, yν+k), yν+k = yν + kF(x, σ rν),
ν = 1, · · · , N with 1

α+1

(
Nσβ − 1

α+1

)
> 0. In fact, if (ξ, η) ∈ Q((x, yν+N), rν), keeping in

mind the definition ofrν and (8), we have

η ≥ yν+N − F(x, rν) = yν + N F(x, σ rν) − F(x, rν)

≥ yν + F(x, rν)
(
Nσβ − 1

)

= f (x) + (2b)`+1 +
(2b)`+1

α + 1

(
Nσβ − 1

)

≥ f (ξ) − F(x, |x − ξ |) + (2b)`+1
(

Nσβ +
α

α + 1

)

≥ f (ξ) − F(x, rν) + (2b)`+1
(

Nσβ +
α

α + 1

)

≥ f (ξ) +
(2b)`+1

α + 1

(
Nσβ −

1

α + 1

)

> f (ξ) + (2b)`+1 ,

so that(η, ξ) ∈
(
F`+1

b

)c. Clearly, to addN metric cubes does not invalidate our estimate of
ν.

COROLLARY 3. Let � = {y > f (x)} ⊂
�n be such that f∈ C`,1(�n−1). If ∂γ f

∂xγ =

O(|x|), as x→ 0 when|γ | ≤ `, then� is aφ-Harnack’s domain, withφ(t) = C| log t |.

REMARK 3. In fact, domains� = {y > f (x)} ⊂
�n such thatf ∈ C`,1(�n−1) are not

‘interesting’ from our point of view, since it can be proved they are NTA-domains with respect to
the Carnot–Carathéodory metric, and then the general results of [4] apply (in other words, they
do not have cusps, when we look at them through the Carnot–Carathéodory geometry).

Thus, in the spirit of the present note, we shall not study domains� = {y > f (x)} ⊂
�n

such that f ∈ C`,1(�n−1); let us show now that, on the contrary, iff ∈ C`,α
(�n−1), with

0 < α < 1, then� can be aφ-Harnack’s domain for a suitable non–logarithmic functionφ.
More precisely, we have:

THEOREM 5. Put�α =
{
y > |x|`+α

}
, 0 < α < 1; then� is aφ-Harnack’s domain, with

φ(t) ≈ t1− `+1
`+α .

Moreover, the above estimate is sharp, in the sense that, ifθ > 0 is the constant introduced in the
Definition 2 and Remark 1, then there exists cθ such that the length of any Harnack’s chain of
parameterθ connecting(x, y) ∈ � with a point(x̄, ȳ) ∈ � with ȳ > b`+1 + |x̄|`+α is bounded
from below by cθϕ(δ(x, y)).
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The proof of the above Theorem will be accomplished through several steps. Let us start by
proving that the constantθ of (6) can be chosen as small as we need, still taking under control
the length of the chain.

LEMMA 4. Let H be a Harnack’s chain of length m and parameterθ in (6); then, for every
θ ′ < θ there exists a Harnack’s chain of length M(θ ′)m and parameterθ ′, where M(θ ′) is a
positive number depending only onθ ′.

Proof. Let Q((x j , y j ), r j ) andQ((x j +1, y j +1), r j +1) be two consecutive metric cubes of the
given Harnack’s chain. We shall prove that for everyθ ′ < θ we can connect(x j , y j ) and
(x j +1, y j +1) with a Harnack’s chain of lengthM(θ ′) and parameterθ ′ .

For the sake of simplicity and without loss of generality, weassume|x j | ≤ |x j +1|. We put

r̄ j = min {r j − θ min {r j , r j +1}, r j +1 − θ min {r j , r j +1}} .

Notice thatr̄ j = (1 − θ) min {r j , r j +1}.

Since
r̄ j < min{r j , r j +1} ≤ rk ,

for k = j , j + 1, then

Q((xk, yk), r̄ j ) ⊂ Q((xk, yk), min{r j , r j +1}) ⊂ Q((xk, yk), rk) ,

for k = j , j + 1. Letq ∈ � , p ≤ q, and consider the points

(up, y j +1) =

((
1 −

p

q

)
x j +1 +

p

q
x j , y j +1

)
.

In particular,

|up+1 − up| =
|x j − x j +1|

q
.

We hold thatQ((up, y j +1), r̄ j ) ⊂ Q((x j +1, y j +1), r j +1) ⊆ � for every integerp such that
p ≤ q. Indeed, let us show first that, ifξ is such that|ξ − up| < r̄ j , then|ξ − x j +1| < r j +1.
We have

|ξ − x j +1| ≤
p

q
|x j +1 − x j | + r̄ j ≤ θ min {r j , r j +1} + (1 − θ) min {r j , r j +1} ,

and the statement is proved. Thus, we need only to prove that,for every p ≤ q and for every
η ∈

�
such thatϕ(up, |η − y j +1|) < r̄ j , thenϕ(x j +1, |η − y j +1|) < r j +1; to this end, since

F(up, ·) is increasing, we obtain

|η − y j +1| < F(up, ϕ(up, |η − y j +1|))

thus, the assertion is proved, since|up| < |x j +1|, and hence

|η − y j +1| < F(x j +1, r̄ j ) ≤ F(x j +1, r j +1) .

We can now give an upper bound ofq for a given parameterθ ′. Chooseq ∈ � such that

q ≥
|x j +1 − x j |

r̄ j

1

θ ′
,
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and
|x j +1 − x j |

r̄ j

1

θ ′
≤ q ≤ 1 +

θ

1 − θ

1

θ ′

(keep in mind that|x j +1 − x j | < θ min {r j +1, r j }). Then

|up+1 − up| =
|x j +1 − x j |

q
< θ ′r̄ j

so that condition (6) is satisfied.

In this way, we connected the point(x j +1, y j +1) with (x j , y j +1); to complete the proof
we have now to move vertically from(x j , y j +1), to (x j , y j ). We can assume that

|x j − x j +1| < θ min {r j , r j +1} ,

|y j − y j +1| < F(x j , θ min {r j , r j +1}) ≤ F(x j +1, θ min{r j , r j +1}) .

Let us prove that for anỹy lying on the segment betweeny j andy j +1 we have

Q((x j , ỹ), r̄ j ) ⊆ Q((x j , y j ), r j ) ∩ Q((x j +1, y j +1), r j +1) .

To this end, take(ξ, η) ∈ Q((x j , ỹ), r̄ j ), i.e.

|ξ − x j | < r̄ j , |η − ỹ| < F(x j , r̄ j ) .

Clearly,|ξ − x j | < r j ; on the other hand

|ξ − x j +1| ≤ r̄ j + |x j − x j +1| < (1 − θ) min {r j , r j +1} + θ min {r j , r j +1} ≤ r j .

Now

max{|η − y j |, |η − y j +1|} ≤ F(x j , r̄ j ) + max{|y j − ỹ|, |ỹ − y j +1|}

≤ F(x j , r̄ j ) + |y j − y j +1|

< F(x j , (1 − θ) min {r j , r j +1}) + F(x j , θ min {r j , r j +1})

≤ (1 − θ)F(x j , min{r j , r j +1}) + θ F(x j , min {r j , r j +1})

≤ F(x j , min{r j , r j +1}) = min {F(x j , r j ), F(x j +1, r j +1)} .

Now we ‘climb’. We suppose, without loss of generality, thaty j < y j +1 and we define a
new finite sequence of points as follows:

(x j , wk) =

(
x j ,

(
1 −

k

m

)
y j +1 +

k

m
y j

)
.

Arguing as above, choose nowm ∈ � such that

m ≥
|y j +1 − y j |

F(x j , θ
′r̄ j )

,

and

m ≤ 1 +
|y j +1 − y j |

F(x j , θ
′r̄ j )

≤ 1 +
F(x j , θ min{r j , r j +1})

F(x j , (1 − θ)θ ′ min{r j , r j +1})

≤ 1 +

(
θ

(1 − θ)θ ′

)β

,
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by Theorem 3.

As we proved above, the metric cubesQ((x j , wk), r̄ j ) are contained in

Q((x j , y), r j ) ∩ Q((x j +1, y j +1), r j +1) ⊆ � ,

and

|wk − wk+1| =
1

m
|yk+1 − yk| ≤ F(x j , θ

′r̄ j ) ,

and then (6) holds with parameterθ ′.

LEMMA 5. Let �α be defined as in Theorem 5,α ∈ (0, 1). Then for anyθ ≤ 1 there
exists a positive constant Cθ such that for every b, r > 0, r, b ≤ 1 and for every point(x, y) ∈

4`+1(0, b/2, r ), there exists a Harnack’s chain H= {Q j = Q j ((x j , y j ), r j )}, j = 0, · · · , ν,

connecting(x, y) with a point(x̄, ȳ), δ(x̄, ȳ) > b`+1, such that Qj ⊂ 4`+1(0, b, 2r ), for every
j = 0, · · · , ν, and

ν ≤ Cθ

(
δ(x, y)

1− `+1
`+α − b

(`+1)
(
1− `+1

`+α

))
.

Moreover, without loss of generality, we can assume that thelast metric cube of H is contained
in
(
Fb`+1

)c.

Proof. By Lemma 4 we have only to consider the caseθ = 1. We can split the chain we shall
build below into two parts. First, if we are very close to the boundary, we can suppose that the
largest metric cube contained in� and centered at the starting point(x, y) has radius smaller
than |x|/2. In this case, we move on the segment [(x, y), (0, y)] taking, roughly speaking,
metric cubes as large as possible till the radii of metric cubes are larger than|x|/2. Then we
move vertically, till the center of the last metric cube is above the levelb`+1. If the radius of the
first cube is grater than|x|/2 we just move vertically as just described.

We recall that for every(x, y) ∈ � we put, as usual in this note,δ = δ(x, y) = y − |x|`+α .
Notice that for every(x, y) ∈ � the radiusr of the largest metric cube contained in� satisfies
the following equation

δ + |x|`+α = r (|x| + r )` + (|x| + r )`+α .(11)

Indeed for every(u, v) ∈ Q((x, y), r ),

|u − x| < r , and |v − y| < F(x, r ) ;

on the other hand
|u|`+α ≤ (|u − x| + |x|)`+α ≤ (r + |x|)`+α ,

and recalling (11)

|u|`+α ≤ (r + |x|)`+α = δ + |x|`+α − r (|x| + r )` = y − F(x, r )

≤ v + |v − y| − F(x, r ) < v ,

i.e. (u, v) ∈ �. For such kind of maximal metric cube we give a lower and an upper bound of the
radiusr depending on|x|. From (11) and Lagrange’s Theorem, there existsη = η(x, r ) ∈ (0, r )

such that
δ − (` + α)r (|x| + η)`+α−1 − r (|x| + r )` = 0 .
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In particular we get

r =
δ

(` + α)(|x| + η)`+α−1 + (|x| + r )`
.(12)

Hence, if|x|/2 > r , then

(
2

3

)`+α−1 1

` + α + 1

δ

|x|`+α−1
≤ r ≤

1

(` + α)

δ

|x|`+α−1
,(13)

sinceα < 1 andη ∈ (0, r ).

Analogously, if|x|/2 ≤ r , from (12) it follows that

(
1

3

)`+α−1 1

` + α + 1

δ

r `+α−1
≤ r ,(14)

and from (14) we get

(
1

3

) `+α−1
`+α 1

(` + α + 1)1/(`+α)
· δ1/(`+α) < r < δ1/(`+α) ,(15)

notice that the second inequality follows directly from (11) for anyx since

δ + |x|`+α ≥ (|x| + r )`+α ≥ |x|`+α + r `+α .

For sake of simplicity we divide the proof by stressing the main steps.

First step. Assume that|x|/2 = |x0|/2 < r0; otherwise we skip all this part of the construc-
tion. Let Q((xk, yk), rk), 0 ≤ k ≤ k0 be the sequence defined as follows:(x0, y0) = (x, y),
(xk, yk) ∈ [(x, y), (0, y)], yk = y, and

|xk+1| = |xk| − rk ,(16)

whererk is the solution inr of the equation

δk + |xk|`+α = r (|xk| + r )` + (|xk| + r )`+α ,(17)

δk = δ(xk, y) andk0 is the first integer such thatrk > |xk|/2. Clearly, if for somek we get
rk > |xk| so that (16) is meaningless, then we stop at the stepk + 1 by takingxk+1 = 0.

Notice that, as we have proved before, the metric cubes just defined are contained in�.

The sequence(|xk|)0≤k≤k0 is by definition (16) strictly decreasing, while(rk)0≤k≤k0 is
strictly increasing; indeed,

δk+1 + |xk+1|`+α = y = δk + |xk|`+α

= rk(|xk| + rk)` + (|xk| + rk)`+α

= rk(|xk+1| + 2rk)` + (|xk+1| + 2rk)`+α ,

by (16). Now, arguing by contradiction, ifrk ≥ rk+1, then 2rk > rk+1, and by previous
equalities, we get

δk+1 + |xk+1|`+α > rk+1(|xk+1| + rk+1)` + (|xk+1| + rk+1)`+α

obtaining a contradiction, sinceδk+1, |xk+1|, andrk+1 satisfy equation (17).
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Now, we put

ρk = c
δk

|xk|`+α−1
, c =

2`+α−1

(` + α + 1)3`+α−1
.

Notice that, recalling (13),ρk ≤ rk holds.

Now we are able to give an upper bound fork0. Indeed for any integerk such thatrk ≤
|xk|
2

we get

|xk+1| = |xk| − rk ≤ |xk| − c
δk

|xk|`+α−1
.(18)

Moreover(|xk|)k∈� is decreasing, hence, by (18),

|xk+1|`+α ≤ |xk+1||xk|`+α−1 ≤ |xk|`+α + c|xk|`+α − cy

= (1 + c)|xk|`+α − cy .
(19)

In particular we get, by iteration,

|xk+1|`+α ≤ (1 + c)k+1|x0|`+α − cy
k∑

j =0

(1 + c) j

= −(1 + c)k+1(y − |x|`+α
)
+ y = −(1 + c)k+1δ(x, y) + y ,

and eventually we obtain

y

δ(x, y)
≥

y − |xk+1|`+α

δ(x, y)
≥ (1 + c)k+1 .

Thus (remembery ≥ δ andy ≤ |x|`+α + b`+1 since(x, y) ∈ 4`+1(0, b, 2r ))

k0 ≤
log y

δ(x,y)

log (1 + c)
≤

log
(
b`+1+|x|`+α

)

δ(x,y)

log (1 + c)
(20)

holds and the first step is proved.

Second step. Now rk > |xk0 |/2, so that we must ‘climb’. To this end we define(xk, yk),
0 ≤ k ≤ k1 as follows:xk ≡ xk0 ,

yk+1 = yk + F
(
xk0, rk

)
,(21)

whererk is the solution inr of the equation

δk +
∣∣xk0

∣∣`+α
= r

(∣∣xk0

∣∣+ r
)`

+
(∣∣xk0

∣∣+ r
)`+α

,

with δk = δ(xk0, yk) andk1 is the first integer such thatδk > b`+1. We recall that, because of
the above choice ofrk, the metric cubesQ((xk, yk), rk) are contained in�. Now, in order to
give an upper bound fork1, we put

ρk = c′δ
1

`+α

k ,(22)
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where

c′ = 3− `+α−1
`+α (` + α + 1)

−1
`+α .

By (15) we getρk ≤ rk.

Now from (21) it follows that

yk+1 = yk + F(xk, rk) ≥ yk + F(xk, ρk) .

Thus, by (22), we obtain

yk+1 ≥ yk + c′δ
1/(`+α)
k

(∣∣xk0

∣∣+ c′δ
1/(`+α)
k

)`

≥ yk +
(
c′
)`+1

δ
(`+1)/(`+α)
k .

Replace now the pointsyk by the pointsỹk defined by

yk+1 = yk + cδ
`+1
`+α

k ,(23)

where(c′)`+1 = c. Sinceyk+1 − yk ≥ ỹk+1 − ỹk, then the first indexk such thatỹk > b`+1

will provide an upper bound fork1 (a sharp one, indeed, since ifxk0 = 0 thenyk = ỹk). To
avoid cumbersome notations, let us writeyk yk instead ofỹ, yk being defined by (23).

As a consequence, from (23), it follows that

δk+1 = δk + cδ
`+1
`+α

k .(24)

Notice that

δ
1−(`+1)/(`+α)
k − δ

1−(`+1)/(`+α)

k+1 =

(
` + 1

` + α
− 1

)∫ δk+1

δk

t−(`+1)/(`+α)dt

≥

(
` + 1

` + α
− 1

)
δ
−(`+1)/(`+α)

k+1 (δk+1 − δk) ,

(25)

sinceδk is increasing. On the other hand, recalling that we are interested in the caseb < 1, from
(24) it follows that

1 −
cδk

δk+1
≤ 1 −

cδ
`+1
`+α

k
δk+1

=
δk

δk+1
,

since `+1
`+α

> 1. Thus
1

1 + c
≤

δk

δk+1
,

and then, recalling (25) and (24), we get

δ
1−(`+1)/(`+α)
k − δ

1−(`+1)/(`+α)
k+1 ≥ c

(
` + 1

` + α
− 1

)(
1

1 + c

)(`+1)/(`+α)

= c̄ .

Eventually, summing up from 0 tok, we have

δ
1−(`+1)/(`+α)
0 − δ

1−(`+1)/(`+α)
k+1 ≥ (k + 1)c̄ ,



296 F. Ferrari – B. Franchi

and in particular

k1 ≤ C

(
δ(x, y)

1− `+1
`+α − δ

(
xk0, y

)1− `+1
`+α

)

≤ C

(
δ(x, y)

1− `+1
`+α − b

(`+1)
(
1− `+1

`+α

))

achieving the proof of the second step. Thus, to prove Lemma 5we have only to prove that the
last metric cube can be chosen in such a way it is fully contained in

(
F`+1

b

)c. To this end, we
add to our chainN copies of the last metric cube centered atyk1 + hF(xk0, rk1), h = 1, · · · , N,
with

b`+1

F
(
xk0, rk1

) ≤ N ≤
b`+1

F
(
xk0, rk1

) + 1

If (ξ, η) belong toN-th metric cube we have to show thatη > |ξ |`+α + b`+1. Now

b`+1 + |ξ |`+α ≤ b`+1 +
(∣∣xk0 − ξ

∣∣+
∣∣xk0

∣∣)`+α
< b`+1 +

(
rk1 +

∣∣xk0

∣∣)`+α

≤ b`+1 + yk1 − F
(
xk0, rk1

)

< yk1 + N F
(
xk0, rk1

)
− F

(
xk0, rk1

)
< η .

We need now an upper bound for b`+1

F(xk0,rk1 )
. Since|xk0 | ≤ 2rk0 < 2rk1 , we have (by (15))

rk1 ≥ cδ1/(`+α)
k1

≥ cb(`+1)/(`+α) ,

so that
b`+1

F
(
x0, rk1

) ≤ b`+1−(`+1) `+1
`+α = b

(`+1)
(
1− `+1

`+α

)

.

On the other hand, sinceδ(x, y) < (b/2)`+1, then

δ(x, y)
1− `+1

`+α − b
(`+1)

(
1− `+1

`+α

)

≥

(
2
(`+1)

(
`+1
`+α

−1
)

− 1

)
b
(`+1)

(
1− `+1

`+α

)

≥ cN ,

and then the estimate ofN is similar to that ofk1 and the proof is complete.

REMARK 4. Let us notice that from Lemma 5 it follows that�α satisfies conditioni i ) of

Definition 3, withϕ(t) = Ct1− `+1
`+α .

LEMMA 6. Let�α be the set defined in Theorem 5. For anyθ ∈ (0, 1), there exists cθ > 0
such that for any given Harnack’s chain,{Qk, k ≤ ν}, of parameter theta in�, connecting a
point (0, y) ∈ � with a point(x̄, ȳ), ȳ > b`+1 +|x̄|`+α , there exists another chain of parameter
θ ,
{
Q̃k, k ≤ cν

}
, connecting(0, y) with (0, ȳ).

Proof. By previous Lemma 4, we can replace{Qk : k ≤ ν}, by a new Harnack’s chain
{
Q′

k, k ≤

cθ ν
}

with parameterθ ′ = θ`+1 < θ . If Q′
k = Q((xk, yk), rk), denote now bỹQk the metric

cubes defined by
Q̃k = Q ((0, yk), ρk) ,
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whereρ`+1
k = rk(|ξk| + rk)`, |ξk| = min{|xk|, |xk+1|}. If ξ = xk + rk

xk
|xk|

, the point(ξ, yk −

F(ξk, rk)) belongs toQk ⊂ �α , sinceF(ξk, rk) ≤ F(xk, rk), and hence

yk − rk(|ξk| + rk)` > |ξ |`+α = (|ξk| + rk)`+α .(26)

Hence we can prove that̃Qk ⊂ �. To this end it is enough to verify that

yk − ρ`+1
k > ρ`+α

k .(27)

Indeed, by (26), we get

yk − ρ`+1
k = yk − rk(|ξk| + rk)` > (|ξk| + rk)`+α ;(28)

on the other hand, sinceρ`+1
k = rk(|ξk| + rk)`, we get

ρ`+1
k ≤ (|ξk| + rk)`+1 ,

so thatρk ≤ |ξk| + rk and then (27) follows from (28). Since the first metric cube iscentred at
(0, y) and the last one contains(0, ȳ), we eventually proved that there exists a chain of metric
cubes connecting these metric cubes with length comparablewith that of the first Harnack’s
chain from which we started. Moreover the centers of the new chain have first coordinate zero.
It remains to prove that the last chain is a Harnack’s chain. Indeed we know that

|xk − xk+1| ≤ θ ′ min {rk, rk+1} ,

ϕ(ξk, |yk − yk+1|) ≤ θ ′ min {rk, rk+1} .

Let us denotẽrk = min {rk, rk+1}. Then

|yk − yk+1| ≤ F
(
ξk, θ ′r̃k

)
≤ θ ′rk(|ξk| + rk)` = θ ′ρ`+1

k = F(0, θρk) .

Proof of Theorem 5.By Lemma 5, Lemma 6 and Lemma 1 we can state that�α is aφ−Har-

nack’s domain withφ(t) = ct
`+1
`+α .

In order to prove that the estimate is sharp, it will be enoughto show that, ifx = 0, then any
Harnack’s chain{Q1, . . . , Qν} connecting(x, y) = (0, y) with a point(x̄, ȳ), ȳ > b`+1 cannot
have less than

const.

(
y1− `+1

`+α − b
`

(
1− `+1

`+α

))
(29)

elements. By Lemma 6 we can assume without loss of generalitythat the centers of theQ j ’s lie
on {x = 0}. Moreover, we can replace it bỹQ1, . . . , Q̃ν , whereQ̃k = Q((0, ỹk), r̃k), where
r̃ `+α
k = ỹk − r̃ `+1

k and ỹk+1 = ỹk + (θ r̃k)`+1 (in other words, the chain becomes shorter if we

take the metric cubes ‘as large as possible’). Nowỹk ≥ r̃ `+α
k , so thatỹk+1 ≤ ỹk + θ`+1ỹ

`+1
`+α

k ,
and hence keeping in mind̃yk+1 ≥ ỹk, we get

ỹ
1− `+1

`+α

k ≤ ỹ
1− `+1

`+α

k+1 + θ`+1 ,

that yields

cθν ≥ y1− `+1
`+α − b

(`+1)
(
1− `+1

`+α

)

,

and hence (29) follows.
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[10] FRANCHI B. AND LANCONELLI E., Hölder regularity theorem for a class of linear
nonuniformly elliptic operators with measurable coefficients, Ann. Sc. Norm. Super. Pisa,
Cl. Sci.10 (1983), 523–541.

[11] GRUSHIN V.V., On a class of hypoelliptic operators, Math. USSR, Sbornik12 (1970-
1971), 458–476.
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