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GEOMETRY OF THE BOUNDARY AND DOUBLING
PROPERTY OF THE HARMONIC MEASURE FOR GRUSHIN
TYPE OPERATORS

Abstract. In this note we prove a doubling formula near the boundaryttier
harmonic measure associated with a class of degenergitcadiuations known
in the literature as Grushin type operators.

1. Introduction

The aim of this note is to apply new boundary regularity ressfdr the harmonic measure asso-
ciated with subelliptic operators recently obtained intfyihe study of a class of Hormander's
sum-of-squares operators known sometimes in the literaarGrushin type operators, since
their hypoellipticity was first proved by Grushin in [11]. Les start by summarizing the main
results of [7]; to this end, we introduce now the main notagioA more complete introduction
to the subject, together with a richer list of referencestwafound in [7].

LetX = {Xj, ..., Xp} be afamily of smooth vector fields R, n > 3, satisfying Horman-
der’s rank condition

Q) rank Lie(Xg, ..., Xp) =n,
where Lie(Xy, ..., Xp) isthe Lie algebra generated By, . .., Xp. In other words, we assume
that there exist linearly independent commutators Xf;, . .., Xp of order less or equal tofor

somer € N, and, to fix our notations, from now on we shall indicatenbyhe minimum natural
numberr that enjoys uniformly this property in a fixed compact set. $iiall denote by the
differential operator

p
L= XIXj,
j=1

and we shall say that a functianis £-harmonic ifCu = 0.

It is well known that we can associate wikhthe so-called Carnot—Carathéodory distance
(CC—distance), see e.g. [15], where in particular the asthoove that metric balls enjoy the
doubling property with respect to the Lebesgue measurg,demoting byBy s the p-metric
ball of centerx and radiuss, if K ¢ R" is a compact set, then there exist positive constants
A = A(K) andsy = s9(K) such that

(2 |Bx,2sl < AlBx,sl,
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for everyx € K and for every O< s < 59, where|E| denotes the Lebesgue measure of the set
E. It follows that

©) |Bx.ssl = 69By.s|
for x € K ands < 1, whereQ = log, A is called thelocal homogeneous dimensiofi R"

endowed with the CC—distance.

Throughout this papef? will be an open bounded subset®ff = R"~1 x R, and we shall
write y = (Y, yn) € R", wherey’ € R"1, y, € R We assume that the boundary @fis
locally the graph of a functiori € C1¢(R"~1), & €]0, 1], such thatf (0) = 0 andV f (0) = 0.
In particular, since the following assumption is not retive for our goal, we suppose that

Q={(y.yn) eR": f(Y) <yn< f(Y)+ M |Y] <My}

for some positive numbengl; and M».
If mis defined above, ldi andr be positive numbers; we set

F' = {(y.yn) eR": f (y) <yn < f(y)+b™},
while for everyx = (X', xn) € R™ we put
A b ) ={(Y.yn) R F(Y) <y < F(y)+b" |y =X|<r},
@ abn={(,yn) R f(y) <yn = (y)+0" |y =xX|=r},
MAX Db ={(,yn+bMeR": |y - x| <r}

ands(x) = xn — f(x)).

Moreover, for evernyy € F[" we setAT', = FJ' N B, ¢,h, Wherec > 1 is a constant
depending only on the operat6r '

Finally, throughout this paper, the symbdls c, C’, ¢’ will indicate a constant that can
change from formula to formula and even in the same stringredeco, Co, ¢, Cy, @, - - - Will
denote fixed constants.

It follows from Bony’s classical results ([2], [3]) that wean associate witlC, with a
bounded connected open s¢étc R", and with a pointx € U a probability measure obU
(the £-harmonic measure, or, shortly, the harmonic measureriétiseno way to misunderstand-
ings) denoted by){j such that for any € C(aU) we have

Hg 00 = /w ¢ () dof (o),

WhereHL‘ﬂ’ is the Perron—Wiener—Brelot solution (PWB-solution) af Dirichlet problem
Lu=0 inU,
u=¢ onaU

(see the Appendix of [7] for more details). The following peoty of theL-harmonic measure
will be used through the paper.

THEOREM1. If V C 9U is a Borel set, thela){j (V) is the PWB-solution evaluated at the
point x of the Dirichlet Problem

u=1 onav,

Lu=0 inU,
u=0 ondU \ V.
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When dealing with the Laplace operator, the regularity eftlarmonic measure has been
intensively studied in the last years (see for instance, [B3jand [14] for different crucial steps
in the theory). Recently, in [6] the first author proved regity results for Holder domains
adapting a probabilistic approach ([1]). Basically, oupegach relies on the analogy between
cusps for elliptic operators and characteristic pointsstdrelliptic operators.

We can state now our first result, i.e. the upper estimate of

¥mix by (95 8™ (X, b)) .

PrRoPOSITION1. There exists a positive real constan&0, 1[ such that for every x €,
for every positive real numbers b and r zr cob, and for every ye AM(x, b, r), if y’ = x/, then

‘“Xmu.b.r) (85 A™M (x, b,r)) < /Pl

Let us state now a lower bound for the harmonic measure priovgq that, together with
Proposition 1, will yield the doubling estimate for the hamt measure itself. To this end, let us
introduce the definition ap-Harnack’s domains. Let us start with some preliminary digdins.

DEFINITION 1. We shall say that a quasi-metricis compatible withC if g is equivalent
to the Carnot—Carathéodory metrig i.e. there exist constants € such that

(%) Co(X, y) < p(X, ¥) < Cp(x,y)
forall x, y e R".

DEFINITION 2. Letp be a compatible quasi-metric; @Harnack’s chain of balls of length
v connecting x, xo € Q is a finite sequence of opeh balls contained inQ2, with centers
Y1 =X1, Y2,..., Yv = Xp and radiiry, ..., ry, rj <dist;(yj, 92), j = 1,..., v, such that

®6) B (Yj: Yj+1) s@min{rj,rjia},
whereé is a given geometric constant, that will be chosen smalllse®emark below.

REMARK 1. The meaning of in Definition 2 must be better explained. To this end, we
recall that it is well known that positiv€-harmonic functions om-balls satisfy an invariant
Harnack’s inequality, and the same result can be extendgbtils, wherep is compatible with
L. The above constadtdepends on such inequality, since it satisfies the follovpirggperty: if
uis £-harmonic inBx r, then

supu < C inf u,
By or Bx.or

whereC is a positive constant independentupfx andr < rg.

If x andy can be connected by a chain@balls of lengthv then, by the Harnack’s principle

ho)
Fy)>c

for every positiveC-harmonic functiorh in 2, wherec > 0 is independent or, y, andh.
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REMARK 2. Infact, in the sequel we shall not always use Harnack'sshaf balls; instead
we shall use families of sets depending on a point (the ceatet a positive real number (the
radius) that are in a natural sense equivalent to metris kgdle [10], [8]). This will not change
the result.

We want now to classify open se@saccording the possibility of connecting a point ©
close to the boundary with another point that is ‘away enofrgm the boundary’ by means
of a p-Harnack’s chain whose length is controlled in terms of @gifunction ofs(x1), where
8(X) = xn— f (x"). We shall see that, even if the boundary of our donsaia a smooth manifold,
nevertheless the estimate of the length of a Harnack’s ahainbe that of Holder domains for
uniformly elliptic operators.

Thus, we introduce now the definition ¢fHarnack domain.

DEFINITION 3. Let 5 be a compatible quasi-metric, and kgt:]0, co[—]0, oo[ be a non-
increasing function. We shall say th@tis a ¢-Harnack’s domain in a neighborhood U of the
origin if there exist ¢U) > 0, cp(U), c3(U), c4(U) > 1, such that, for every,ib > 0 sufficiently
small, b < c4(U)r, and for everyw € U N Q with AM(w, cp(U)b, cgU)r) c U N, if
x € AMw, b,r), then there exist ye , §(y) > (co(U)b)™, |y — w'| < c3(U)r, and a
p-Harnack’s chain H= {Ej L 1<j< v} connecting x with y such that:

) Bj c AM(w, 1, cgU)r);

i) v<9@Bx)—¢(caU)b™);
iii) if we set S= \UV_; Bj, then

wd (98\ Flyyp) = cU).

In fact, it would be more precise to speakgeHarnack’s domain with respect foand to a
given choice of cylindera™, see [7], Remark 3.2.

We can state now the second crucial estimate, i.e. the dstinoan below of
wzm(O,CQ(U)b,Cg(U)I’) (au Am (O; CZ(U)b; CS(U)r))
in ¢-Harnack’s domains.

PrROPOSITION2. Let Q be a¢-Harnack’s domain. With the notations of Definition 3, if
b,r > 0are such thatn\™(0, cp(U)b, c3(U)r) c U, then for xe A™(0, b, r) we have

_ _ m
DAm 0.6, )b.caUyr) (8 AT (0. c2(U)b, c3(U))) = C(U)e™(#OON=A (),
where GQU) > Ois independent of tb andr.

For every positive real number let us denote by9 A™ (x, yb, yr) the following subset
of the boundary of the cylindex™(x, yb, yr),

39 AM (X, yb,yr) =9 A™(x, yb, yr)\ (32U 3% AT (x, b, y1)).

To avoid cumbersome notations, from now on we shall @k&/) = c3(U) = 2; our doubling
estimate forC-harmonic functions reads as follows.
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THEOREM2. Suppose& is a¢-Harnack domain and lefboy }ken, {rklken be decreasing
sequences of real positive numbers such that:

) ro=2rrg—> (1+6)r,0>0andlp=b, bk — 0;
i) Ik —rkse1 > Cobky1, where g is defined in Proposition 1;

iii) ZT":O exp(¢ (b’j“Jrz) —¢(2)™M) — CL”%) < 00, whereé = |logc], ¢ being de-
fined in Proposition 1.

If b, r > 0, then there exists a positive constanta(r, b) (independent of u) such that for
every ye AM(x, b, r), x in a neighborhood U of the origin, we have

hmx 20,20y (85 A™ (%, b, 20) < €0, @Yy o 21, (09 A™ (x, 2b,20)),

where

chry < C(U){ exp(¢ (") — ¢ (20)™))

+ i eXp(¢ (brkn+2) — ¢ (@0)M) —&(rk —rks1) /bk)} .
k=0

Hence the following doubling formula holds

(7) Ohmex.2b.2r) (3 5™ (%, 20,20) \ 9Q) < (14 (B, 1)) @Yimy g1 21y (99 A™ (x, 20, 20)) .

The role of the functio and in particular the importance of the logarithmic casdlis-
trated by the following corollaries.

COROLLARY 1. With the notations of Theorem 2,df(st) < s™¢(t) fort > 0,0 <
s < 1,0 < o < 1/m, then the sum in i)i converges by choosing b= 2-kK/mp and K =
2 — rgzlj(zo(j +1)~2fork > 0.

Proof. Indeed

o (bIT-i-Z) —¢(2)™M) —¢ Tk+1 =Tk

byt1
1
< (2k+m+2a _ 1) 4 ((2p)M) — & Lotk+y/m__ 2
< ( )o (@M -cp 1
ok+h/m .
=~ (eg + o (@M)o)
ask — oo, so that the series iti ) converges. |

COROLLARY 2. With the notations of Theorem 2,¢f(s) = c|logs|, then the sum in iii)
converges and in addition when# b the constant ¢, b) can be bounded by an universal
constant, yielding a scale—invariant doubling inequality

Proof. We have

m ) _ m) _ g Tkl ~ Mk _¢lokrym__1
o (BfL,) — ¢ (@D™) —¢ bt (k+m+2)log2-¢ -2 T

2(k+1)/m r
< T2 (6/ b + 0(1)) )

IA
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ask — oo and we are done. |

2. Geometry for Grushin operators

In this section, we shall examine in particular the notiog-dfiarnack’s domain associated with

the family X = {X1, - -+ , Xn} of vector fields iR, ., =RY"* x Ry
a . 9

Xj=—.,j=1...,n=1, Xn=x‘—,

9% ay

for ¢ € N. Clearly, these vector fields are smooth vector fields s@tigiHormander’s condition
only if £ is even; nevertheless, the geometry of the associated 2@arathéodory distance is
fully understood for¢ > 1 ([10], [8]). Before giving a precise description of the meballs
associated withX4, ..., Xp, we recall that the sub-Laplaciah = Zj Xj2 is invariant under
vertical translation, so that, if is £-harmonic, thenu(x, y + k) is £-harmonic too.

THEOREM3 ([8], [10]). Ifxg € R™ 1, yp € R, 79 = (Xg, Yo), I > O, put
i) F(xo.1) =r(lxol + 1%
i) Q(z0,1) = BeudXo, ) x (Yo — F(Xo, 1), Yo+ F (X0, 1)),

where B cis the(n — 1)-dimensional Euclidean ball of radius r centred gt X hen there exists
b > 1 such that

Q(2g,1/b) C Bgzyr C Q(2g, br)
when0 < r < 1. In addition

i) p((X1. Y1), (X2, ¥2))

p1((X1, Y1), (X2, ¥2)) = maxX{|X1 — Xa|, (X1, [Y1 — Y2, (X2, Y1 — Y21}
X1 — Xo| + (X1, 1Y1 — Y2I) & X1 — Y1l + ¢(X2, Y1 — Y2D) »

%

%

where
p(x. 1) = F(x, )X
fort > 0.
iv) Moreover, there existg8 > 1 such that
F(x,or) > oPF(x,1)
foro €]0, 1].

In the sequel, we shall ca(z, r) ‘metric cubes’.

We state now an estimate from below of thenarmonic measure that we shall use in the
sequel when provingi ) of Definition 3 for special classes of open domains.

LEMMA 1. Forevery Q= Q(z,r),z= (X, V),

NI =

a)zQ @QN{y>y—Fxn}h >
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Proof. By definition,z — u(z) = wQ(aQ N{y > y— F(X,r)}) is the PWB-solution of the
Dirichlet problem:

{ Lu=0 onQ
U= xiy>y-Fxn) indQ.
On the other hand, the function FR)
y+ F(X,r
V= TF
is L-harmonic and 6< I1(y) < x{y>y—F(x,r)) 0N 3Q. By the maximum principley(z) > |(z)
for z € Q, and the assertion follows. |

DEFINITION 4. If @ > 0and = (Xg, Yo) € R", we put
Tz = {(X.¥) € R" :aF (X0, X — Xo|) < Y — Yo} -
We shall say that open sgtis X — Lipschitz if there exists > 0 such that (locally)
Tzp0 CQ

for all zg € Q.
We notice that, if2 = {y > f(x)}, then the above condition is equivalent to

(8) f(x)— f(&) <aF(x,|x—£&) forx,& e R 1,

LEMMA 2. Let@ = {y > f(x)} C R be such that fe CE-L(RM1). 1f &1 — o(x)),
as x— Owhen|y| < ¢, thenQ is a X-Lipschitz domain in a neighborhood of the origin.

Proof. From Taylor formula it follows that there exisis= &(X), |§ — Xg| < |X — Xg| such that

14
Z > —(XO)(X - %0

f0 — f(xo) =
k= 1 Clyl= k
1 av f 0
=2 (W@) W(Xm)(x—w

lyl=t

[X — Xol (

Notice now‘ o~ (x)’ (|x|'—“"+1) , by iteration. Hence

A

— x4 ¢ |x — xm‘) :

f0— oo = ¢Ix—ol (1%l + Ix = xol)

///l /1!

c”’|x — ol (IXol + Ix — X)) = ¢”"F(xq, X — Xol) ,

IA

and we are done. O

LEMMA 3. LetQ = {y > f(x)} ¢ R" be a X-Lipschitz domain. Then there exists a
positive constant C such that, for everygz(x, y), w = (X, y+h) € @, h > 0, then there exists
a Harnack’s chain ir®2 of lengthv connecting z ana such that

9) v < Cllog

y— ()
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Proof. By assumption, there exists > 0 such thaly, (x f(x)) C 2 andz, w € Iy (x, f (x))-
Thus, (9) will be proved by constructing a Harnack's chaintated inl'y (x, f (x))- TO this
end, we define a sequence of metric cuﬁ@gzj- TP, j=1,...,v}suchthatzg = z,z, = w,

zj = (X, yj),with yj 11 = yj + F(X, or}), whereo is a positive (small) constant to be chosen
in such a way (6) holds. The sequericg)jc is defined as follows:

yj — ) )
1 = - =1...,v.
(10) 2 ga(x, —) =1
Let us prove thaQ(zj, ) C Ty (x, f (x)); INdeed, if¢ = (§,n) € Q(zj, rj), then, by (10),

n—fx)

n=Yyj+yj— 0 =-Frjp+yj—f(x
= aF(xrj) =arj(x|+rp°
ale — x|(x] + & —xD*,

\

as we held. Now the proof will be accomplished by proving arfabior v; to this end, if we put
§j =yj — f(x), again by (10), we have

§jp1 = 8 +F(X.or)) =8 +oPFxrj)

s [1+ o
! 14+a/’

By iteration (9) follows. O

THEOREM4. X-Lipschitz domains arg¢-Harnack’s domains, witkp (t) = C|logt]|.

Proof. Letr, b be given 0< b < r. Takew = (w’, w”) in a neighborhood of the origin, and
letz = (x, y) be such thapx — w'| <r, f(x) <y < f(x) + b‘t1 and consider the sequence
of metric cubes described in Lemma 3 whh= (2b)¢+1 — y + f(x). Let us prove that this
chain satisfies condition) of Definition 3. If (¢, n) belongs to som&; = Q(zj.rj), j < n,

see Lemma 3, thelf — X| < rvg (x, y”;—ﬂx)) so that

@)y - f0)

F(x, | —x|) > |& — x|t+T,
el > at1 > F(X, 1§ = X]) > [§ — X]|

so that|é — x| < ¢1b, and hence
| —w'| < (cL+Dr,
so that(¢, n) € A1 (w, 1, (c1 + Dr). By (9),

@byt —5(x)
8(x)

¢ (110g500| - [log20) ).

v < Cllog —C <| log s (x)| — ’Iog ((Zb)”l _ S(X))D

IA

that provesi).
Finally, we have to show thaii ) of Definition 3 holds. Recalling that our metric cub®s
have increasing radii and the centers are on a verticalifi®= [ J7_, Qj, then

aQyN{y >y, —F(xry)} Cas.
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Suppose firsQ, c (F:™)C. Then

aQu N{y > y» — F(x, 1)} €3S\ (FL)°.

By the maximum principle

NI =

wg (IS\FM) = 0g 0QuN{y >y —Fom)h =5,
by Lemma 1 and we are done. If the metric cuDg is not completely contained i("Fﬁ“)C,
it is enough to addN copies ofQ, centered at the poiri, ¥, k), Yu+k = Yv + KF(X, ory),
v = 1., N \(\{ith %H(Naﬁ — a—}rl) > 0. Infact, if (5, 7)) € Q((X, Yy+N), I'v), Keeping in
mind the definition of , and (8), we have

n > YypeN— FX 1) =Y+ NF(X, ory) — F(X, Iy)

> Y+ F(x,ry)(No# —1)

— +1 (Zb)“_l B _

= 100+ @™+ == (No¥ —1)
_ _ +1 B @

> (&) —F(x [x— &)+ (2b) (Na o 1)
o 041 B o

> f(&) —F(x, )+ (2b) (Na t o 1)

(2b)£+1 P 1
> 1@+ (N - )

> f&)+ @yttt

so that(n, &) € (Fé*l)c. Clearly, to addN metric cubes does not invalidate our estimate of
V. |

COROLLARY 3. LetQ = {y > f(x)} c R" be such that fe CH-L(R"L). If % =
O(|x]), as x— O0when|y| < ¢, thenQ is a¢-Harnack’s domain, withy (t) = C|logt].

REMARK 3. In fact, domain2 = {y > f(x)} ¢ R" such thatf € C“-1(R"~1) are not
‘interesting’ from our point of view, since it can be provéey are NTA-domains with respect to
the Carnot—Carathéodory metric, and then the generdtsesfif4] apply (in other words, they
do not have cusps, when we look at them through the Carncéti@&dory geometry).

Thus, in the spirit of the present note, we shall not studyalos = {y > f(x)} c R"
such thatf € C41(R"1); let us show now that, on the contrary, fif e C*(R"~1), with
0 < o < 1, thenQ can be ap-Harnack’s domain for a suitable non-logarithmic functipn
More precisely, we have:

THEOREM5. PutQy = {y > |x|‘5+"‘}, 0 < «a < 1; thenQ is a¢-Harnack’s domain, with

£+1
pt) ~t1 e

Moreover, the above estimate is sharp, in the sense that; iD is the constant introduced in the
Definition 2 and Remark 1, then there exisjsstich that the length of any Harnack’s chain of

parameter connecting(x, y) € 2 with a point(x, ¥) € Q with y > b1 + |x¢*¢ is bounded
from below by gp(§(X, y)).
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The proof of the above Theorem will be accomplished throwylersal steps. Let us start by
proving that the constamt of (6) can be chosen as small as we need, still taking underaton
the length of the chain.

LEMMA 4. Let H be a Harnack’s chain of length m and parameten (6); then, for every
0’ < 6 there exists a Harnack’s chain of length(8)m and paramete#’, where M#’) is a
positive number depending only 6h

Proof. Let Q((Xj, ¥j),rj) and Q((Xj+1, Yj+1), I'j+1) be two consecutive metric cubes of the
given Harnack's chain. We shall prove that for evéfy < 6 we can connectx;, yj) and
(Xj+1, Yj+1) With a Harnack’s chain of lengtM (¢") and parametet’ .

For the sake of simplicity and without loss of generality, assumeX; | < [Xj1|. We put
Fj=min{rj —emin{rj,rij},rjy1—omin{rj,rj;1}}.

Notice that'; = (1—9)min{rj,rj+1}.
Since
Fj <min{rj,rjza} <rg.
fork =j,j +1,then

Q((Xks YK, Tj) € QX Yk) min{rj, rji1h) C Q% Yk)s k) s

fork =j,j +1. Letq € N, p < g, and consider the points

p p

(Up, Yj4+1) = ((1— —> Xj+1+ —Xj, yj+1> .
q q

In particular,

IXj — Xj41l

7(1 .

We hold thatQ((up, ¥j+1),Fj) € Q((Xj41. Yj+1),Tj+1) S  for every integerp such that

p < g. Indeed, let us show first that, §fis such thaté — up| < fj, then|§ — Xj 1] <rji1.

We have

lUp4+1 —Upl =

p . . .
1€ — Xj41l < a|Xj+1—Xj|+l’j <omin{rj,rjy1}+ @ —0)min{rj,rj4a},

and the statement is proved. Thus, we need only to proveftitadvery p < g and for every
n € R such thatp(up, [n — yj1aD) < j, thenp(Xj 1, In — Yj+1l) < rj4q; to this end, since
F(up, -) isincreasing, we obtain

In —Yj+1l < F(up, ¢(up, In — Yj+11)
thus, the assertion is proved, sifog| < |Xj 1/, and hence
m—Yj+al < FXj42, 7)) < FXj41.Mj+1) -
We can now give an upper boundgfor a given parametet’. Chooseg € N such that

Xi —Xjl 1
L ez xlL
ri 6’
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and | 1 6 1
Xj11 — Xj
i+1 = cg<1 il
Fj o'~ a=i+ 1-0¢
(keep in mind thatxj 1 — Xj| <@ min{rjq,rj}). Then
Xit1 — Xi
| j+1 J| <

9/Fj
q

lUp4+1 — Upl =

so that condition (6) is satisfied.

In this way, we connected the poititj 1, ¥j+1) with (X, yj+1); to complete the proof
we have now to move vertically froix;, yj 1), to (X, yj). We can assume that

IXj —Xj41l < Omin{rj.rj1},
lyj = Yj+1l < F&j,0min{rj,rj 1) < F(Xjpg, 0min{rj,rji1}).
Let us prove that for any lying on the segment betwesf andy;j 1 we have
QUXj, 9. 1j) € QUXj, ¥j). 1)) N QAUXj+1, Yj+1), Fj+1) -
To this end, takét, n) € Q((Xj, ), Tj), i.e.
€ =Xjl <fj, In—=Yl<FX,r).
Clearly,|¢ — xj| <rj; on the other hand

1§ = Xj41l SFj +IXj = Xj41l < A=)y minfrj,rj g} +omin{rj,rjq) <rj.

Now
max{|n = yjl.In — Yj+1l} < F&j.Fj+max{lyj — .19 — yj11/}
< R +1yj — Yj4al
< FXj, A=0)yminfri,rjy1}) + FXj, 0 min{rj,rjy1})
< (A-0FXj, mn{rj,riy1}) +0FXj, min{rj,rj 1}
< F&j,min{rj,rj11}) = min{FX;j,rj), F(Xj11,rj+1)}-

Now we ‘climb’. We suppose, without loss of generality, thyat< yj 1 and we define a
new finite sequence of points as follows:

k k
(Xj, wk) = (Xj, (1— —) yj+1+—yj>.
m m

Arguing as above, choose nawe N such that

- IYj+1—Yj|7
- F(Xj,@’r_j)
and
m < [Yj+1— Yjl
- F(Xj,@’fj)
F(Xj, @ min{rj,r;
< 14 (X /{'] j+1b
F(xj, (L—0)0'min{rj,rj1)

0 B
= 1+<u—mw>’
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by Theorem 3.
As we proved above, the metric cub®g(x;, wk), I'j) are contained in

QU(Xj» ¥), ) N QUXj41, Yj+1): Tj+1) € 2,
and 1
k= wier 1l = —IWiers = Y < Fxj.0'F)),

and then (6) holds with paramet&t. O

LEMMA 5. Let Q, be defined as in Theorem &, € (0,1). Then for anyd < 1 there
exists a positive constantyGuch that for every Ir > 0, r, b < 1 and for every pointx, y) €
A0, b/2,1), there exists a Harnack’s chain B {Qj = Qj((Xj, yj).rj)}, j =0,--- v,
connecting(x, y) with a point(x, ¥), §(X, §) > b*+1, suchthat @ c A“*1(0, b, 2r), for every

j=0,---,v,and
1 _ 4l
v <Cy (6(x, y-t e Ha)) .

Moreover, without loss of generality, we can assume thatasiemetric cube of H is contained
in (sz+1)c.

Proof. By Lemma 4 we have only to consider the case- 1. We can split the chain we shall
build below into two parts. First, if we are very close to tfeibdary, we can suppose that the
largest metric cube contained §u and centered at the starting poiix, y) has radius smaller
than |x|/2. In this case, we move on the segmeg, ), (0, y)] taking, roughly speaking,
metric cubes as large as possible till the radii of metricesultre larger thatx|/2. Then we
move vertically, till the center of the last metric cube imabthe leveb!*1. If the radius of the
first cube is grater thajx|/2 we just move vertically as just described.

We recall that for everyx, y) € © we put, as usual in this noteé,= §(x, y) = y — [x|¢+.
Notice that for every(x, y) € @ the radiug of the largest metric cube containedsnsatisfies
the following equation

(11) S+ X =r (x| + )¢ + (x| + 1)t
Indeed for every(u, v) € Q((x, y),r),
lu—x| <r, and |v—yYy| < F(,r);

on the other hand
Ul < (Ju— x|+ XD < + xpETe,
and recalling (11)

|t 0+ XD =5+ x| —r (x| +1)f =y - F(x,1)

v+jv—yl—-FXr)<uv,

[u <
<

i.e. (U, v) € Q. For such kind of maximal metric cube we give a lower and areuppund of the
radiusr depending orix|. From (11) and Lagrange’s Theorem, there exjsts n(x,r) € (0,r)
such that

s—+aor(x+mtet—rox+nf=o0.
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In particular we get

)
T G e T (Xt

12

Hence, if|x|/2 > r, then

2\te=l g s 1 8
(13) = <r=< ,
3 L+a+1 |x|tte—l (L +a) |xtta-l

sincea < 1 andn € (O, r).
Analogously, if|x|/2 < r, from (12) it follows that

1 l+a—-1 1 s
(14 2 T a1 ="
3 C+a+1rtta-l

and from (14) we get

L+a—1

1\ e 1 1/(4a) 1/(4a)
<§> (tatpUcra =r=e ’

notice that the second inequality follows directly fromYfdr anyx since

(15)

84 IXITFY = (x| + 1) = x| r e

For sake of simplicity we divide the proof by stressing themsteps.

First step. Assume thatx|/2 = |xg|/2 < rg; otherwise we skip all this part of the construc-
tion. Let Q((Xk, Yk) k), 0 < k < kg be the sequence defined as followsg, yo) = (X, y),
(X, Yk) € [(x, ¥), (0, )], Yk =y, and

(16) X1l = Xkl =Tk,
wherery is the solution irr of the equation
7 B+ X =1 (el + 0+ (il + 0,

Sk = 8(Xk, y) andkg is the first integer such thak > |xx|/2. Clearly, if for somek we get
rk > || so that (16) is meaningless, then we stop at thelstefd. by takingxy,1 = 0.
Notice that, as we have proved before, the metric cubes @istet! are contained if2.
The sequence|xk|)o<k<k, IS by definition (16) strictly decreasing, whilek)o<k<k, IS
strictly increasing; indeed,

=y = kI

r(%x] + )¢ + (Xl + ot
= (X1l + 200 + (xipa] + 20+,

Sk1 + [Xkg1

by (16). Now, arguing by contradiction, ik > riy1, then 2 > ri41, and by previous
equalities, we get

|Z+ot )Z+ot

¢
Sk41 + X1 > T (Xkga ] + kD)™ + (Xiaea |+ Fkgen

obtaining a contradiction, Sin@g1, [Xk+1|, andry1 satisfy equation (17).
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Now, we put

Sk 2(+0!71

=CcC——, C=————.
Pk |Xk|e+°‘*1 « +a+1)3l+a71

Notice that, recalling (13)px < rg holds.

Now we are able to give an upper bound fkgr Indeed for any integee such thaty < ‘X—Zkl
we get

3k

= — < —C——
(18) |Xk+1| |Xk| Kk = |Xk| C|Xk|[+a71 .

Moreover(|xk ke is decreasing, hence, by (18),

as) X117 < g a0 < I3l + e[ FFY — ey
= 1+ 0o)lx|T* —cy.

In particular we get, by iteration,

k
X1l = @+ R xo T —cy Y @+ o))
j=o

= —@4+ oM (y - xH) +y = —@+ 0 Ls(x, y) + y,

and eventually we obtain

Y Y= Xl
sx.y) T X Y)

> 1+ oktl

Thus (remembey > § andy < |x|¢T® + bt*1 since(x, y) € A0, b, 2r))

bl+l+|xll+a)
log - log (
- XY _ 3(X,Y)

ko = log(l+¢c) = log(1+c)

(20)

holds and the first step is proved.

Second step.Now rg > [Xk,|/2, so that we must ‘climb’. To this end we defiie, yk),
0 < k < kq as follows:xy = Xy,

(21) Yk+1 = Yk + F(Xio: Tk) -
wherery is the solution irr of the equation

{4+ {4+

1
Skt il =1 (M| 1)+ (x| +1)7
with 8k = 8(Xi, Yk) andkg is the first integer such thdg > bf*1. We recall that, because of
the above choice afi, the metric cube®((Xk, Yk), rk) are contained irf2. Now, in order to
give an upper bound fd¢, we put

1
/ o {+a
(22) pk=
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where
+a—1

_t =1
=3 "tt« U+a+1)TFe,
By (15) we getok < rk.
Now from (21) it follows that

Ykl = Yk + FO% k) = Yk + F(Xk, oK) -

Thus, by (22), we obtain

1/(¢ 1/(¢ ¢
Yit1 > Yk + C’Sk/( +o) <|X|<o| + C’Sk/( +°‘))
> Vi + (C/)Z+18l((8+1)/(13+05).

Replace now the pointg by the pointsjy defined by

4+1

(23) Vi1 = Yk + 08

where(c)¢+1 = c. Sinceyk,1 — Yk > Yk+1 — Yk, then the first index such thatjy > bf+1
will provide an upper bound fok; (a sharp one, indeed, sincexif, = 0 thenyx = ¥x). To
avoid cumbersome notations, let us wijeyy instead ofy, yi being defined by (23).

As a consequence, from (23), it follows that

+1

(24) Sit1 = Sk + G .
Notice that

L (EFD/ (e _ A Dy/ceva) _ (L 1, Bt (= (D) /(e gy
k k+1 S

(25) T \U+a

t+1 —(£+1)/ (L+a)
> (“_a —1> Skt (Ok+1 — 8K »

sincedy is increasing. On the other hand, recalling that we areésted in the cade < 1, from

(24) it follows that
+1

) cs {+a S
I S e S S
Sk+1 Sk+1  Sk+1
since% > 1. Thus
E S
1+ C 5k+1

and then, recalling (25) and (24), we get
LD/t _ D era) (LD (1P
k ~ %41 zc - =C.
L+o 1+c

Eventually, summing up from 0 tio, we have

1-(+D)/ (L 1-(+1)/¢ _
LoD/ ha) LD/ o gy
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and in particular

k1

IA

1
C <S(X, y)1*f+ii — 8 (X y)lf%)

41
C (8(x, y)l_t%lc — b(Hl)( Ha))

IA

achieving the proof of the second step. Thus, to prove Lemma Bave only to prove that the
last metric cube can be chosen in such a way it is fully corthin (Fé“)c. To this end, we

add to our chairN copies of the last metric cube centeregigt+hF(xy,, k), h=1,--- , N,
with
0+1 0+1
L N
F (Xo: Tkt ) F (4% ")

If (€, ) belong toN-th metric cube we have to show that- [£]¢1¢ + bf*1. Now

g1 < b ((xg — £+ [0 ) Y < B (rig + [ )
< by — F (% i)
< Yyt NF (Xko,rkl) —F (Xko,rkl) <.

We need now an upper bound fgl&’s;%. Sincelx,| < 2ry, < 2rg,, we have (by (15))
R
My > CSI:<L1/(K+a) > cht+D/(E+a)

so that
bZ+1

F (X0. i)
On the other hand, siné&x, y) < (b/2)¢*1, then

six, 2 () (2(“1)(515—1) - 1>b(f+1>(1—fi§) > cN

< pitl DL D) (1—%) .

)

and then the estimate &f is similar to that ok, and the proof is complete. |

REMARK 4. Let us notice that from Lemma 5 it follows th@t, satisfies conditioni) of
£+1
Definition 3, withe (t) = Ct1~ ¢,

LEMMA 6. Let2y be the set defined in Theorem 5. For &g (O, 1), there existsg£ > 0
such that for any given Harnack’s chaifQy, k < v}, of parameter theta if2, connecting a
point (0, y) € © with a point(X, y), ¥ > bt*1 4 |x|¢+ there exists another chain of parameter
9, {Qk. k < cv}, connecting0, y) with (0, ).

Proof. By previous Lemma 4, we can replaid®y : k < v}, by a new Harnack’s chai{Q’k, k <

cov} with parametep’ = pttl < g, i Qi = Q((%, Yk), rk), denote now byOk the metric
cubes defined by

Qk = Q (0, Y, pK) »
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whereptt = ric(lgk| + o, &l = min{xl, Xicral}. If & = X + kg, the point(, vk —
F (&k, rk)) belongs toQy C Q, sinceF (&, rk) < F(x, rk), and hence

(26) Yk — (gl + 110" > 1§17 = (] + o
Hence we can prove th&) C . To this end it is enough to verify that
(27) Yk — p|f+l > pﬁ“‘ )

Indeed, by (26), we get

(28) Yk — o = Y= Ti(lgkl 10 > (gl + 10t

on the other hand, singg ™ = ric(1&k| + )¢, we get

1
ot < (lad + ottt

so thatpy < |&k| + rk and then (27) follows from (28). Since the first metric cubedstred at

(0, y) and the last one contairt§, y), we eventually proved that there exists a chain of metric
cubes connecting these metric cubes with length compareitiethat of the first Harnack’s
chain from which we started. Moreover the centers of the neainchave first coordinate zero.
It remains to prove that the last chain is a Harnack’s chaide¢d we know that

Xk — Xke1l < O'min{rg, resal,
oEk 1Yk — k1) < 0" min{ry, reeal-

Let us denot€, = min{ry, rgy1}. Then

Yk — Ykl < F (6, 6'Fk) < 01l + 0% = 0/pi T = F(0, 6pk) -
O

Proof of Theorem 5By Lemma 5, Lemma 6 and Lemma 1 we can state hatis a p—Har-
41
nack’s domain withp (t) = ctt+e .
In order to prove that the estimate is sharp, it will be enadiogthow that, ifx = 0, then any

Harnack’s chair{ Q1. . .., Q,} connecting(x, y) = (0, y) with a point(x, ¥), ¥ > b1 cannot
have less than

£+1
(29) const(yl_% - be<1“i“)>

elements. By Lemma 6 we can assume without loss of genetiaditythe centers of th@;’s lie
on {x = 0}. Moreover, we can replace it bQ4, ..., Q,, whereQx = Q((0, ¥x), fk), where
FET = g — FETL andi 1 = Yk + (6Fi) 1 (in other words, the chain becomes shorter if we

o1
take the metric cubes ‘as large as possible’). Npwe fi ™, so thatfi1 < Yk + 641y,

and hence keeping in ming1 > ¥, we get

41

~a g
yk +a < yk+1+(x + 2] ,
that yields

cov > yl—% B b([“)(l*%) 7

and hence (29) follows. O
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