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D. Kapanadze — B.-W. Schulze

BOUNDARY VALUE PROBLEMS ON
MANIFOLDS WITH EXITS TO INFINITY

Abstract. We construct a new calculus of boundary value problems Wwihrans-
mission property on a non-compact smooth manifold with loauy and conical
exits to infinity. The symbols are classical both in covadealand variables. The
operators are determined by principal symbol tuples modplerators of lower
orders and weights (such remainders are compact in weigbdlev spaces).
We develop the concept of ellipticity, construct paraneeisi within the algebra
and obtain the Fredholm property. For the existence of $bdmpatinskij ellip-
tic boundary conditions to a given elliptic operator we gr@an analogue of the
Atiyah-Bott condition.

1. Introduction

Elliptic differential (and pseudo-differential) boungavalue problems are particularly simple
on either a compact smooth manifold with smooth boundaryroemon-compact manifold
under local aspects, e.qg., elliptic regularity or parametonstructions. This concerns pseudo-
differential operators with the transmission property, Bbutet de Monvel [3], or Rempel and
Schulze [16], with ellipticity of the boundary data in thense of a pseudo-differential analogue
of the Shapiro-Lopatinskij condition. An essential ackiment consists of the algebra structure
of boundary value problems and of the fact that parametiéasliptic operators can be ex-
pressed within the algebra. There is an associated bousgianiyol algebra that can be viewed
as a parameter-dependent calculus of pseudo-differesgidators on the half-axis, the inner
normal to the boundary (with respect to a chosen Riemanngriah

The global calculus of pseudo-differential boundary vatweblems on non-compact or
non-smooth manifolds is more complicated. In fact, it isyokthown in a number of special
situations, for instance, on non-compact smooth manifafitls exits to infinity, modelled near
the boundary by an infinite half-space, cf. the referencé&mh@nd then globally generated by
charts with a specific behaviour of transition maps. Psalifferential boundary value prob-
lems are also studied on manifolds with singularities,, @gnical singularities by Schrohe and
Schulze [20], [21] or edge and corner singularities by Radich, Schulze and Tarkhanov [14],
[15]. An anisotropic theory of boundary value problems orirdimite cylinder and parabolicity
are studied in Krainer [12]. Moreover, essential steps foalgebra of operator-valued symbols
for manifolds with edges may be found in Schrohe and Schal2k [23], [24]. The latter theory
belongs to the concept of operator algebras with operatiied symbols with a specific twisting
in the involved parameter spaces, expressed by strongtinconis groups of isomorphisms in
those spaces. The calculus of pseudo-differential opsrhtsed on symbols and Sobolev spaces
with such twistings was introduced in Schulze [25] in conimecwith pseudo-differential oper-
ators on manifolds with edges, cf. also the monograph [28j]s &, in fact, also a concept to
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establish algebras of boundary value problems; the carnelipg theory is elaborated in [27]
for symbols that have not necessarily the transmissiongotgpThe case with the transmission
property is automatically included, except for the aspétyes in Green and trace operators in
Boutet de Monvel’s operators; a characterization in tvdsteerator-valued symbol terms is con-
tained in Schulze [28] and also in [27]. An application of gdge pseudo-differential calculus
for boundary value problems is the crack theory that iséetat a new monograph of Kapanadze
and Schulze [10], cf. also the article [29]. An essential fopthis theory are pseudo-differential
boundary value problems on manifolds with exits to infinity.

The main purpose of the present paper is to single out a cantesubalgebra of a global
version of Boutet de Monvel’s algebra on a smooth manifolthwkits to infinity. Such a calcu-
lus with general non-classical symbols (without the edperator machinery) has been studied
by Schrohe [18], [19]. We are interested in classical symbokh in covariables and variables.
This is useful in applications (e.g., in edge boundary vaitgblems, or crack theory), where
explicit criteria for the global ellipticity of boundary aditions are desirable. Our approach
reduces all symbol information of the elliptic theory to argmact subset in the space of co-
variables and variables, though the underlying manifolabiscompact. Moreover, we derive a
new topological criterion for the existence of global boandconditions satisfying the Shapiro-
Lopatinskij condition, when an elliptic interior symbol tlithe transmission condition is given.
This is an analogue of the Atiyah-Bott condition, well-kmofor the case of compact smooth
manifolds with smooth boundary, cf. Atiyah and Bott [1] anduBet de Monvel [3]. Note that
our algebra can also be regarded as a special calculus afg@siterential operators on a man-
ifold with edges that have exits to infinity. The edge herééstioundary and the model cone (of
the wedge) the inner normal. Some ideas of our theory seerarterglize to the case of edges
in general, though there are also essential difference® nfdin new point in general is that
the transmission property is to be dismissed completel\hediy analogous to the present one
without the transmission property would be of independetarest. New elements that appear
in this context are smoothing Mellin and Green operators wan-trivial asymptotics near the
boundary. Continuity properties of such operators “up fmity” are studied in Seiler [32], cf.
also [31].

Acknowledgements: The authors are grateful to T. Krainer of the University ot$élam for
useful remarks to the manuscript.

2. Pseudo-differential operators with exit symbols

2.1. Standard material on pseudo-differential operators

First we recall basic elements of the standard pseudoréiffl calculus as they are needed for
the more specific structures in boundary value problemsabelo

Let S*(U x R") for u € R andU < R™ open denote the space of allx, £) € C® (U x
R") that satisfy the symbol estimates

@ |DgDfax &) < o)A

foralle € N", 8 ¢ N'" and allx € K for arbitraryK € U, &€ € R", with constantx =
1
cla, B, K) > 0; (£) = (1+[£]?) 2.
Moreover, letS™) (U x (R™\0)) be the space of all € C*°(U x (R" \ 0)) with the property

f(x,A&) = AL f(x, &) forallL € Ry, (x,€) € U x R\ 0). Then we have (§)S") (U x
(R"\ 0)) C S*(U xR") for any excision functiory (£) € C®*@®") (i.e.,x (§) = 0for|&| < cg,
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x (&) = 1for|&| > cq for certain 0< ¢ < ¢1). We then defines, (U x R") to be the subspace
ofall a(x, &) € $(U x R") such that there are elemerig,_j)(x. £) € S*~D(U x (R"\0)),
j € N, witha(x, &) — Zj“‘zox(@a(ﬂ,j)(x, g) e =Nty x R") for all N € N. Symbols

in S(’:‘l(U x RM) are called classical. The functioag, j) (uniquely determined bg) are called
the homogeneous componentsaasf orderu — j, and we call

oy (@)(X, &) i=ag,) (X, §)

the homogeneous principal symbol of or@e(if the orderu is known by the context, otherwise
we also writeag instead ofoy,). We do not repeat here all known properties of symbol spaces
such as the relevant Fréchet topologies, asymptotic simsbut tacitly use them. For details we
refer to standard expositions on pseudo-differentialysmis|e.g., Hormander [9] or Treves [33],
or to the more general scenario with operator-valued sysiielow, where scalar symbols are a
special case.

Often we haven = 2n,U = Q x Q for open C R". In that case symbols are also denoted
by a(x, X', £), (x, X') € Q x Q. The Leibniz product between symbal&, £) € S4(Q x R"),
b(x, &) € SY(Q2 x RM) is denoted by #, i.e.,

1
a(x. £)b(x. §) ~ Y = (Dgacc. £)) ob(x. &)

— (190 10 — (0 0 i i -
(DX = (T X 3Xn) ,0x = (axl, 3Xn)). If notation or relations refer to both clas
sical or non-classical elements, we writd) as subscript. In this sense we define the spaces of

classical or non-classical pseudo-differential opesatoibe

@) Ll (@) = {Op(a) rax, X, £) € St

fey (2% 2 x R”)}.

Here, Op is the pseudo-differential action, based on thei€amansformF = Fy_,¢ inR", i.e.,
Op@u(x) = [[*=XDsa(x, x', e)u(x)dx'd, & = (2r)~"dk. As usual, this is interpreted
in the sense of oscillatory integrals, first fore CSO(Q), and then extended to more general
distribution spaces. Recall that™>°(Q) = HMEZL“(Q) is the space of all operators with
kernel inC*®(Q x Q).

It will be also important to employ parameter-dependeniavis of pseudo-differential op-
erators, with parametefse R , treated as additional covariables. We set

Li (2:R) = {op@@ ax X, 6.0 € Sy (2 x 2 xR,

using the fact thaa(x, X', £, A) € sé‘cl) (2 x @ xR™) impliesa(x, X', £, 1) € sf‘d)(sz x Q x

R") for every fixedig € R'. In particular, we havé ~°(2; R') = S(R', L=°°()) with the
identificationL =% () = C®(Q x Q), andS(R', E) being the Schwartz space Bfvalued
functions.

Concerning distribution spaces, especially Sobolev spaee employ here the usual nota-
tion. L2(RM) is the space of square integrable function®ihwith the standard scalar product.
ThenHS®R") = {u € S'R") : (£)50(¢) € LZ(RQ)}, s € R, is the Sobolev space of smooth-
nesss € R, 0(§) = (Fx—¢W(£). Analogous spaces make sense dD°@ manifold X. Let
us assume in this section thétis closed and compact. Let V&) denote the set of all com-
plex C*® vector bundles orX and HS(X, E), E € Vect(X), the space of all distributional
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sections inE of Sobolev smoothnesse R. Furthermore, defineé‘cl)(x; E, F; R') for u € R,
E, F € Vect(X), to be the set of all parameter-dependent pseudo-difieteperatorsA(i)
(with local classical or non-classical symbols) #n acting between spaces of distributional
sections, i.e.,

A : HS(X,E) — HS™#(X,F), 1 eR' .

Forl = 0 we simply WriteL’(‘cl)(X; E, F). The homogeneous principal symbol of orgeof an

operatorA € Li‘cl)(x; E. F) will be denoted byry, (A) (or oy (A)(X, &) for (x, &) € T*X\ 0)
which is a bundle homomorphism

oy (A 7*E — 7*F for 7 T*X\0— X.

Similarly, for A(A) € L’C‘I(X; E, F;R') we have a corresponding parameter-dependent ho-
mogeneous principal symbol of order that is a bundle homomorphism*E — #*F for
7 T*X xR\ 0 — X (here, 0 indicateg, 1) = 0).

2.2. Operators with the transmission property

Boundary value problems on a smooth manifold with smootmbdacty will be formulated for
operators with the transmission property with respect o hbundary. We will employ the
transmission property in its simplest version for cladssgabols.

Let sg:,)(sz xRy xR ={a=2a xR, xR: A0 6) € sggl)(sz x R x RM)}, where
Q@ cR"lisan opensek = (y.t) € @ xR, £ = (, 7). Moreover, defineSj (2 x R x Ry

to be the subspace of @l(x, &) € 5 (2 X R x R™) such that
©) DED; {agu—j) (¥ t. 0. 1) = (=DF Ty (.t —n, —0)} = 0
onthesef(y,t,7,7) € QxRxR":yeQ,t=0,7=0,7 c R\O}, forallk e N, « ¢ N"-1

andallj e N. Setg)(2 xRy xR")y = {a=alg g o’ 8.6 € (2 xR x RNy}

Symbols inS(’:‘l(Q x R x RMy or in s{jl(sz x Ry x R”)tr are said to have the transmission
property with respect to= 0.

Pseudo-differential operators with symbale S, (Q xRy x ]R”)tr are defined by the rule
(4) Op*(@ux) =rtop@etux),

whered e sé‘l(sz x R x Ry is any extension ai to 2 x R and € is the operator of extension

by zero fromQ x Ry to Q x R, while rj is the operator of restriction frof x Rto Q x Ry.
As is well-known, Of (a) for S (2 x R+ x R"),, induces a continuous operator

(5) Opt(a) : CP (2 xRy) — C®(Q x Ry)
(that is independent of the choice of the extengipand extends to a continuous operator
©®) Op' (@) : [¢]H® (2 x Ry) — HS M (2 x Ry)

for arbitraryy € Cgo (Q X Rr) andse R, s > —%. Here, for simplicity, we assun@ c R"—1
to be a domain with smooth boundary; theif(Q2 x Ry) = HS(R")|q.R, - Moreover, ifE is

a Fréchet space that is a (left) module over an algébie] E for ¢ € A denotes the closure of
{pe:eec E}IinE.
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2.3. Calculus on a closed manifold with exits to infinity

A further important ingredient in our theory is the calcubfgpseudo-differential operators on
a non-compact smooth manifold with conical exits to infinithe simplest example is the Eu-
clidean spac®". It can be viewed as a local model for the general case.

The global pseudo-differential calculus®Y with weighted symbols and weighted Sobolev
spaces has been introduced by Parenti [13] and further ajge@lby Cordes [4]. The case
of manifolds with exits to infinity has been investigated bgh®he [17]. The substructure
with classical (in covariables and variables) symbols &etated in Hirschmann [8], see also
Schulze [27], Section 1.2.3. In Section 2.4 below we shalklig the corresponding operator
valued calculus with classical symbols.

Let S4O(RM x RM) =: §49 for ;1,8 € R denote the set of alk € C® (R} x Rg‘) that
satisfy the symbol estimates

@) D¢ D a(x, &)| < c(e) 1Al ()31l

foralla, 8 € N, (x, £) € R?", with constants = c(a, 8) > 0.

This space is Fréchet in a canonical way. Like for standgntb®l spaces we have natural
embeddings of spaces for differqnts. Moreover, asymptotic sums can be carried out in these
spaces when the orders in one group of variaklasdé, or in both variables tend teco. Basic
notions and results in this context may be found in [30], Bec2.4. Recall that

| 9 R"xR") =8 R" xR") =: S~ R" xR").
n,8eR

We are interested in symbols that are classical bothand inx. To this end we introduce some
further notation. Set

s ={a(x, £) € C® (R x (R"\ 0)) : a(x, A£) = A'a(x, £)
foralla >0, (x,§) e R" x (R"\ 0) }

and define analogously the spa&@ by interchanging the role of andé. Moreover, we set

(9% ={a(x. £) € C¥ ((R"\ 0) x (R"\0)) : aix. 7€) = 2 ra(x, §)
foralla >0, 7 >0, (x,&) e (R"\0) x (R"\0)}.

It is also useful to hav (’_‘gfj defined to be the subspace of allx, &) < Sg‘) such that
ax, &)lig=1 € C*(S"L, S, RM) whereS™~1 = (¢ € R : |¢| = 1} (clearly, ck means

>~y

that symbols are classical inwith x being treated as a covariable), asgp; (‘3() is defined in an
analogous manner, by interchanging the role ahdé.

Let S defined to be the subspace of allx, £) € C®(R" x R™) such that there is a
¢ = c(a) with

a(x, Af) = Atax, &) foralla > 1, xeR", |£] >c.

In an analogous manner we defiﬁg] by interchanging the role of andé. Clearly, for every
alx, &) € Sg"] there is a unique elemeaf;(a) € Sé“) with a(x, £) = ag(a)(x, £) for all
(x,&) € R" x R" with |£] > ¢ for a constant = c(a) > 0. Analogously, for everfp(x, &)
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L there is a uniqued (b) € S with b(x, £) = od(b)(x, &) for all (x, £) € R" x R" with
|X| > cfor somec = c(b) > 0.

Setgldl = gud 0 gl gulis — guid g Sg“]. Let S(’:‘l;[‘s] be the subspace of alx, &) €
54181 such that there are elememigx, &) € Sg‘_k] n i‘s], k € N, with

N

ax.§) — Y a(x, §) e S (NFD:
k=0

forall N € N. Clearly, the remainders automatically belongto~(N+1:[8]. Moreover, define
S(’:‘l;’S to be the subspace of alx, &) € S48 sych that there are elememrigx, &) € K8,
k € N, with

N
ax, &) — Y a(x, £) e - (N+D9
k=0
for all N € N. By interchanging the role of and¢ we obtain analogously the spac:%]:fx]“S and
S,u§5
cly -

DEFINITION 1. The space éi (R" xRM) of classical (in and x) symbols of orde(; §)
is defined to be the set of al(g, &) € %3 (R" x R") such that there are sequences

a(x, &) € S([:‘li_k];‘s, keN and hxé¢) e Sé‘l;[‘s_ll , |l eN,

such that
N N+1);8 N ;8—(N+1
ax. &) - > a o e g TP and ax.H -y bk g e N
k=0 =0
forall N e N.

REMARK 1. It can easily be proved théi’l‘xl;’S c Sé‘ljx SQ;[B] c Sé‘lfx wheresé‘lgX =
58 mn n
i’ @ xR,

The definition ofSé‘le gives rise to well-defined maps

n—K . qu;é (u—K);8 5—l . ;8 HeE)!
), .Sé‘lm — 815" keN and og .Sé‘ls;x — S(’:‘IE;X , I eN,

namelyagfk(a) = a\’;*k(ak), o8 @ = o' (by), with the notation of Definition 1. From
the definition we also see thﬁ_k(a) is classical inx of orders andcrg_I (a) is classical irg
of orderu.. So we can form the corresponding homogeneous compoaéﬁ{ial’;_k(a)) and
af//‘*k(ag’l (@) in x andé, respectively. Then we haved ! (al’;fk(a)) = af//‘*k(ag" @) =

ol @forallk.l e N.
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Fora(x, &) € Sé‘ljx (R" x R") we set

oy@ :=ol(@. oe@ =0d@. oye@ =0l @

and define
o(@) = (0y (@), 0e(@), oy e(@)) .
REMARK 2. a(x, §) € Sé‘lfx (R" x R") ando (a) = 0 impliesa(x, &) € Sglg_xl;éfl(Rn y

S,L—l;é—l(Rn x R by setting

R"™). Moreover, fromo (a) we can recovea(x, £) mod Xl
X

ax, &) = x oy @)X, &) + x (%) {oe@ (X, §) — x §)ay e@ (X, §)},

where x is any excision function ifR". More generally, letoy (X, &) € Sg_‘gl;x‘s, pe(X, &) €

S(’:‘lg(‘j() and py e(x, &) € Sé"x‘s) be arbitrary elements withe(py) = oy (Pe) = Py.e. Then
a(x, §) = x(E) Py (%, §) + X0 Pe(X. §) = x(§) Py e(x. ©)} € i’ (R x RM), and we have
oy (8) = Py, 0e(d) = Pe, 0y,e(d) = Pye-

ExamMPLE 1. Let us consider a symbol of the form

a(x, ) = w(0bx. &) + 1 — )X ™™ Y x¥ay (&)

loe|<m
with a cut-off functionw inR" (i.e.,w € Cg° (R™), » = 1in a neighbourhood of the origimnd
symbolsb(x, &) e Sgl(]R” x R"), ay (&) € SRM), |«| < m (in the notation of Section 2.1).
Then we have(x, £) € S(’:‘l;_OX(R” x R™), where

oy @& = ooy O E)+L—w)X ™ Y X¥oy (@),

loe|<m
ce@(X,6) = Y &),
|a|=m
ope.E) = Y oy@)E).
||=m

Let us now pass to spaces of global pseudo-differentialatpesr inR". We formulate some
relations both for the classical and non-classical caseratidate it by subscriptcle. ) at the
spaces of symbols aridl) at the spaces of operators. Set

Li) ®") = {op@:ax. &) e ) | (R" xR},

cf. (2.1). As itis well-known Op induces isomorphisms

8 Op: s

) )
(Clex) (R" x R") — L0 (R™)

(cl

for all i, 8 € R. Recall that. =% = ([R") = MpseRr L#:8(RM) equals the space of all integral
operators with kernels i§ (R" x R"). Let us form the weighted Sobolev spaces

HS@¢ (R") = (x) "¢HS (R")
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(RM) induces continuous operators

fors, o € R. Then everyA e LW;

(cl
© A HSC(R") — HSHe3 (R
for all s, o € R. Moreover,A restricts to a continuous operator
(10) A:S[R") — S(R").
ForAe Lgl;’s(R“) we set

oy(A) =oy@), oe(A) =o0e@), oyelA)=oye@),
wherea = Op~1(A), according to relation (8).

REMARK 3. The pseudo-differential operator calculus globallﬂi{@]with weighted sym-
bols and weighted Sobolev spaces can be generalized tothef® xR" > (x, X) with differ-

ent weights for largéx| or |X|. Instead of (7) the symbol estimates %al':lg Dg Dga(x, X, )| <

() 1Bl (x)0=1el ()5=1a] for all o, @, B and (x, X) € RN & ¢ R™1 with constants =
(a, @&, B). Such a theory is elaborated in Gerisch [6].

We now formulate the basic elements of the pseudo-diffexecdlculus on a smooth man-
ifold M with conical exits to infinity, as it is necessary for boundealue problems below. For
simplicity we restrict ourselves to the case of charts thatcanical “near infinity”. This is a
special case of a more general framework of Schrohe [17]. manifolds M are defined as

unions
k

M=KuU|J[1-e 00) x X;
j=1

for some 0< ¢ < 1, wherer, j = 1,...,k, are closed compa&®> manifolds, K is a
compact smooth manifold with smooth boundamy that is diffeomorphic to the disjoint union
Ulj(=1 Xj, identified with{1 — e} x Ulj(=1 Xj by a gluing map. On the conical exits to infinity
[1—¢,00) x Xj we fix Riemannian metrics of the fornr 8+ rzgj, r e [1-— e, o00), with
Riemannian metricgj on Xj, j = 1,...,k. Moreover, we choose a Riemannian metric on
M that restricts to these metrics on the conical exits. Skgenay have different connected
components we may (and will) assuie- 1 and setX = Xj.

Let Vect(M) denote the set of all smooth complex vector bundled/othat we represent
over [1, oco) x X as pull-backs of bundles oX with respect to the canonical projection fb) x
X — X. Hermitian metrics in the bundles are assumed to be homogengf order 0 with
respect to homotheties along o). On M we fix an open covering by neighbourhoods

(11) {U1,....UL, U 41, ..., UN}
with (Up U...UL) N ([L, 00) x X) = #andUj = (1 e, 00) x U}, where{U{};_ ;s
an open covering oK. Concerning chartg; : U; — Vj to open set¥/j, j = L + 1, ...» N,

we choose them of the forij = {x eR": x| >1-¢ € le} for certain open sets

X
TX]
vl c -1 (the unit sphere ilR"). Transition diffeomorphisms are assumed to be homogeneou
of order 1 inr = |x| forr > 1.

Let us now define weighted Sobolev spa¢€$¢(M, E) of distributional sections ifE e
Vect(M) of smoothness € R and weighte € R (at infinity). To this end, lefp; € C*°(U)),
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j =L+1,...,N, be a system of functions that are puII-baodﬁ%rZ;j under the chosen charts
xj - Uj = Vj, wheregj € C*®R"), $j = 0for |x| < 1- 5, @; = 0in a neighbourhood

of {x 1 x| > 1—¢, ﬁ € BUjl}, and@;j (Ax) = ¢j(x) for all x| > 1,1 > 1. In addition we

prescribe the values gf; = (XJ?")_lgaj on Uj1 in such a way tha[:}\'zl_Jrl ¢j = 1forall points
in M that correspond t{x| > 1 in local coordinates. Given &a € Vect(M) of fibre dimension
k we choose revitalizations that are compatible V\mjh U =V, j =L4+1...,N,
7j 1 Ely; > Vj x ck, and homogeneous of order 0 with respect to homothetiesifi, co).
Then we can easily define$:¢(M, E) as a subspace dﬂlf)C(M, E) in an invariant way by
requiring (zj)«(¢ju) € HS:eRN, CK) = HS¢R") ® CK for everyL + 1 < j < N, where
(zj)x denotes the push-forward of sections undgerSetting

(12) S(M, E) = proj Iim{H';'(M,E):I eN}

we get a definition of the Schwartz space of sections.iBy means of the chosen Riemannian
metric onM and the Hermitian metric i we getL2(M, E) = H%O(M, E) with a correspond-
ing scalar product.

Moreover, observe that the operator spak:%%s(R”) have evidentrf x k)-matrix valued

variantsL’(gl‘)S @®R"; CK, CM) = Lﬁ:;g RMH®CM®CK. They can be localized to open sets R"

that are conical in the large (i.ex, € V, |x| > Rimpliesix € V for all » > 1, for some
R = R(V) > 0). Then, given bundleg€ and F € Vect(M) of fibre dimensionk and m,

respectively, we can invariantly define the spaces of psélifterential operators

8

(M E.F)

M
I‘(cl

on M as subspaces of all standard pseudo-differential operatofordery € R, acting between
distributional sections it andF, such that

(i) the push-forwards opj Ag;j with respect to the revitalizations dﬂ‘|uj , Fluj belong to

Li‘c;l‘)s(R”; ck,CMforall j = L +1,..., N and arbitrary functiong;, ¢; of the above

kind (recall that “cl” means classical ;pandx),

(i) YAy € L=%7°%(M; E, F) for arbitraryy, € C> (M) with suppy N suppy =
andvr, v homogeneous of order zero for langéon the conical exits oM).

Here, L% 7% (M; E, F) is the space of all integral operators &M with kernels in
SM, F)®; S(M, E*) (integration onM refers to the measure associated with the chosen Rie-
mannian metricg* is the dual bundle té).

Note that the operatora € L#4(M; E, F) induce continuous maps
A:HSOM, E) — HSTH079(M, F)

forall s, o € R, andA restricts to a continuous ma&(M, E) — S(M, F).
To define the symbol structure we restrict ourselves to idakeperators. First, t&\ e
Lf:‘l;‘s(M; E, F) we have the homogeneous principal symbol of ogder

(13) aw(A):n;ZE—>rr;ZF, Ty :T*M\O0— M.
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The exit symbol components of ordeéiand («, §) are defined near = oo on the conical exit
(R, 00) x X foranyR > 1 — ¢. Given revitalizations

14) 7y Ely; — Vy x . 9 Fly, — Vv x C
of E, F on Uj we have the symbols
oe(Ap(x. &) for (x,§) e Vi xR, oy e(A)(X, &) for (x,€) € Vj x (R"\ 0),

whereA is the push-forward of\|y; with respect to (14). They behave invariant with respect
to the transition maps and define globally bundle homomemki

(15) oe(A) 1 TdE — niF, y're:T>"M|X§Q—>XA ,
(16) oy.e(A) 1) oE —> rr:Z’eF , myet (T*M\ O)lxs — X4 .

In this notationX, means the base oR], co) x X “at infinity” with an obvious geometric
meaning (for instance, foM = R" we haveXs = S 1 interpreted as the manifold that
completesR" to a compact space at infinity), and}, = Ry x Xoo.

An operatorA € Lgl"s(M; E, F) is called elliptic if (13), (15) and (16) are isomorphisms.

An operatorP € La‘“*‘s(M; F; E)is called a parametrix o if PA—1 € L= ~%(M;
E,E),AP—1| € L=~%(M; F, F).

THEOREML1. Let Ae LA°(M; E, F) be elliptic. Then the operator
A:HSOM, E) — HSTH0=9(M, F)

is Fredholm for every g € R, and there is a parametrix L;“*‘S(M; F, E).

2.4. Calculus with operator-valued symbols

As noted in the beginning the theory of boundary value proklean be formulated in a con-
venient way in terms of pseudo-differential operators wvaigierator-valued symbols. Given a
Hilbert spaceE with a strongly continuous groufx, },cg, of isomorphisms, acting of,
we define the Sobolev spad#S(RY, E) of E-valued dlstrlbutlons of smoothnesse R to
be the completion o (RY, E) with respect to the nornf [ ()25 ||k 1)) ||Edr;}2. Here,
k() = kg, and G(n) = (Fy—yu)(n) is the Fourier transform ilR9. Given an open set
QC Rq there is an evident notion of spadegomp(sz E) andWloc(Q E). Moreover, ifE and
E are Hilbert spaces with strongly continuous groups of isgiisms{iy }ycr, and{kalier .,
respectively, we define the symbol spzﬁf’e(u xRY; E, E) u e R, U C RP open, to be the set
ofall a(y, n) € C®(U x R4, L(E, E)) (with £(E, E) being equipped with the norm topology
such that

&t {pgplaw. mp e o) <

foralla € NP, 8 ¢ N4 and ally € K for arbltraryK € U, n € RY, with constants =
c(a, B, K) > 0.

Let S (U x (RY\ 0); E, E) denote the set of al (y, ) € C*(U x (RY\ 0), L(E, E))
such thatf (y, An) = A%k, f(y, n)K;1 forall » € Ry, (v, n) € U x RY\ 0). Furthermore,
let S(’:‘l(U x RY; E, E) (the space of classical operator-valued symbols of ordedefined to
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be the set of ala(y, n) € C>®°(U x RY, £(E, E)) such that there are elements, _j)(y, ) €
SH=D(U x RI\0); E,E), j €N, with

N

a(y.m — Y x(mag_j(y.m € "N (U x RY)
j=0

forall N e N (with x being any excision function in). Setoy(@)(y, n) = a(,) (¥, n) for the
homogeneous principal symbol afy, n) of order .

In the casd) = Q x , Q < RY open, the variables i will also be denoted byy, y).
Similarly to (2) we set

17 Ll (2 E.E) = {op@:a.y.m e S

) (Q x Q x RY: E, E)},

where Op refers to the action in tigevariables ort2, while the values of amplitude functions are
operators inC(E, E). For A e L5 (: E, E) we setoy (A)(y, n) = a(,)(y. Y. Mly—y, called
the homogeneous principal symbolA&bf orderu. EveryA e L“(Q; E, E) induces continuous
operators

A Weomp 2. E) — Wi (2. E)

for eachs € R. More details of this kind on the pseudo-differential céllsuwith operator-valued
symbols may be found in [26], [30]. In particular, all elerteenf the theory have a reasonable
generalization to Fréchet spadéandﬁ, written as projective limits of corresponding scales of
Hilbert spaces, where the strong continuous actions areaikfiy extensions or restrictions to
the Hilbert spaces of the respective scales [30], Secti®ri1This will tacitly be used below.
Let us now pass to an analogue of the global pseudo-difieterdlculus of Section 2.3 with
operator-valued symbols. Lst‘;‘s(Rq xRY: E, E) for u, 8 € R denote the space of a@ly, 1)
C®(RY x RY, L(E, E)) that satisfy the symbol estimates

O A ) R Vi

foralla, B € N4, (y,n) € R%, with constants = c(e, ) > 0. This space is Frechet, and
again, like for standard symbols, we have generalizatidtiseostructures from the local spaces
to the global ones. Further details are given in [30], [5¢ akso [31].

We now define operator-valued symbols that are classichlibot andy, where the group
actions onkE, E are taken as the identities for alle Ry wheny is treated as a covariable.
Similarly to the scalar case we set

S/Y ={a(y,n) € C® (RY x (R9\ 0), £ (E, E)) : a(y, an) = A*%a(y, mi;
forallx >0, (y,n) e RY x (R9\0) },

sy’ =fa(y. m) € C® ((R9\0) x RY, £ (E. E)) : aGy. m) = A*a(y. )
forallx > 0, (y,n) € (RY\0) xR},

and

s =faty, n) e C((R9\0) x (RI\0), £ (E, E)) : atty, 7n) = we%ra(y, m; *
forallA >0, 7 >0, (y,n) € (R1\0) x (R1\0) }.
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Moreover, IetS,(”fC)l;y‘s defined to be the subspace of aly, ) 5(7“) such tha@(y, n)|jy =1 €
Cco(s771, & (RY: E, E)) (where inS, (RY: E, E) the space& andE are endowed with the
y y
identities for allx € R4 as the corresponding group actigmand Sé‘ln(‘;) the subspace of all
a(y, ) € S} such thag(y, n)ljyj=1 € C> (-1, &, (R%: E. E)).
Let 3[7“] defined to be the set of al(y, n) € C°(RY x RY, L(E, E)) such that there is a
¢ = c(a) with

a(y, An) = AMaly, me; b forall a=1, yeRY, [y =c.

Similarly, the spaczsg,‘s] is defined to be the set of aly, n) € C>®(RY x RY, L(E, E)) such
that there is & = c(a) with

a(hy,n) =%a(y,n) forall A>1,|yl>c, neRY.

Clearly, for everya(y, n) € 3[7"] there is a unique element)'(a) € 3(7“) with a(y, n) =
aé‘(a)(y, n) for all (y, n) € RY x RY with || > c for a constant = c(a) > 0. Analogously,

for everyb(y, n) € @‘S] there is a uniquerd (b) € S§,‘S) with by, n) = o3 (b)(y. ) for all
(y,n) € R9 x RY with |y| > ¢ for somec = c(b) > 0. Sets#ld] = gid n S[,Y‘S], gulis —
gudn 3[7“]. Moreover, IetS(’:‘l;[‘s] denote the subspace of ally, n) € 1% such that there are
elementsy (y, n) € Sg’“k] N %‘S], ke N witha(y, n) — YR g ak(y, m) € S#~(N+D:8 for all
N € N. Similarly, we defineS([:’l‘y];‘s to be the subspace of aly, ) € 91:% such that there are

elementdy (y, ) € 3[7“] N @‘H],I e N witha(y, n) — YN ga(y,n) e 40-(N+D for g
N e N

Let S(’:‘ln‘s defined to be the set of ally, n) € $*¢ such that there are elememigy, n) €
gr=Ki3 ke N, satisfying the relatioa(y. n) — Y plg ak(y. n) € S*~NtD¥ forall N e N,
Analogously, defineisé‘l;y‘s to be the set of al(y, n) € S*% such that there are elements

a(y,n € S80-11| e N, satisfying the relatiom(y, n) — Yo a (y, n) € $43-(N+D for
allN e N.
Note thats[ﬁ“] N @5] c Julis A guldl,

DEFINITION 2. The space §5y (RY x RY; E, E) of classical (in y andy) symbols of order
N
(11; 8) is defined to be the set of allg, n) € $%:% (R4 x RY; E, E) such that there are sequences
a(y. ) € S 79 ke N and by, ) € 7071 e W, with

N N
afy, m— Y a(y.m € S(’j;(N“);'S anday,n — Y by, e Sé‘,f*(NH)
k=0 =0

forallN e N.

REMARK 4. We haveS([:’l‘]“S C S(’:‘l;‘s, 55;[8] C Sé‘l;‘s , wheresgl;‘S = Sé‘l“s (RY x
~ Yy ny n ny ny ny
RY; E, E).
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Givena € S(’:‘l;‘sy we setaé‘_k(a) = aé‘_k(ak), ag," (@ = ag," (b)), with the notation of
N
Definition 2. This gives us well-defined maps

n—k . gué

oy .y _ S(“_k);‘s, keN, U(Sfl . SM;B N S[L;(5—|)’ leN.

n;cCly e Clyy cly:y
The corresponding homogeneous compone@t‘é (ag‘fk(a)) andaé‘fk(ag,_' (a)) iny andnp,
respectively, are compatible in the sense

o (of @) = o4 ™ (o3 @) = 015" @

forallk,| e N. Fora(y, n) € Sé‘l;‘sy (Rq x RY: E, E) we set
m

0y(@) = 0 (@), 0g(@) = 0g(a), 05e(@) =)y (@
and define

(18) o (@) = (03(a), 0g (@), 0y ¢ (@) .

REMARK 5. a(y, n) € S(’:‘l;;‘sy(Rq x RY;E,E) and (@) = O impliesa(y,n) e
Sé‘l;:;s_l(Rq x RY; E, E). Moreover, ify is any excision function ifRY, we havey (7)o (a)
(Vo) + X loe @Y. 1) — x (o (@Y. m) = a(y.n) mod G HRI x RY: E,E).
More generally, let, (Y, n) € S,(’“C)ly‘s pe (Y. ) € Sgl,,(i/) andpy ¢ (Y. 1) € S,(”f;‘s) be arbitrary
elements withrg (p3) = 03(Pe) = Py,e- Thenaly, n) = x(Pa (Y. m) + x(M{pe (Y, n) —
xMpy ey, n} e Séﬁfy(Rq x RY; E, E), and we haves; (2) = py, 0¢(@) = Pe, 0 ¢(@) =
Py.e-

REMARK 6. An elemeni(y, ) € Sé‘l‘s (RY x RY; E, E) is uniquely determined by the
sequence i

—i S—ij
(19) {0 @m0 @}

mod S~ (]Rq x RY: E, E)
In fact, by the construction of Remark 5 we can form
I ) ;0
ao(y. ) = x (ol @(y. m + x ¥ ol @y, ) — xohy @(y. )}

for any fixed excision functiory, whereby(y, n) = a(y,n) — ag(y,n) € S(’:‘fyl;’sfl(]Rq X
m

RY; E, E). Thenag_l(bl)(y, n), ag,_l(bl)(y, n) is completely determined by (19), and we can
form

au(y. ) = x o~ by, m + x ) {od oD m — x ey g oDy

Thenby := by — a1 € Sé‘l*f;’sfz(Rq xRYE,E)orby =a—ag—a € Sé‘l*f;‘sfz(Rq X
~ N N
RY; E, E). Continuing this procedure successively we get a sequehsgntbolsax(y, n) €
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—k; 58—k ~ . (N D:6—(N41
S, (R xRLEE), ke N withagy,n - YN ac(y. m € Sgln:)(' +D:8—=(N+D)

(Rq x RY; E, E) for all N. Thus we can recovea(y, n) as an asymptotic sura(y, n) ~
According to the generalities about symbols with exit bébary cf. [5], Proposition 15,

we can produce(y, n) as a convergent sum(y, n) = Zﬁiox (yc—g) ak(y, n), wherey is

an excision function iR x RY andcy a sequence of non-negative reals, tending to infinity
sufficiently fast, ak — oc.

REMARK 7. a(y, n) € S(’:‘l;‘sy(Rq x RY; Eq, E), b(y, n) € S(‘:’l”‘y(Rq x RY; E, Eg) implies
UN n:
@by(y, n) € S(’:‘lJr;;’SJ”‘ (RY x RY; E, E), and we have
UN

(20) o(ab) = o(@o(b)
with componentwise multiplication.

REMARK 8. Operator-valued symbols of the clasﬁ‘g"sy(]l{q x RY; E, E) can also be
n

multiplied by scalar ones, namelyy, n) € Sgl;n’fy(Rq x RY). We then obtainab)(y, ) <

Su+v;8+/<

ey (RY x RY; E, E) including the symbol relation (20). In particular, we have
m

g (RI < RYEE) = ") ° (R xRY:ELE).

Set

;8 = . =
(21) Lig) (R%:E.E) = {op@:ay.m e S (RI xR%:E.E)}.

Notice that the subscript “cl” on the left hand side meanassical” both iny andy (in contrast
to the corresponding notation in (17)). Similarly to (8) wavh isomorphisms

. g8 .EE ;8 .E.E
(22) Op: %w) (BT x RY; E.E) — L{g) (R%EE)

for all 4, 8§ € R. This is a consequence of the same kind of oscillatory ialegnguments as in
the scalar case, cf. [5], Proposition 1.11.

Set
WS (RY, E) = (y) °WS (RY, E),

endowed with the normullyysie ra gy = 1{Y)?Ullyyswa,E)- Then everyA e L9 (RY; E, E)
induces continuous operators

(23) A WS (RI,E) — WSTHe—% (R E)
for all s, o € R, cf. [5], Proposition 1.21. In additiorA is continuous in the sense
(24) A:S(RY,E) — S(RY,E),

cf. [5], Proposition 1.8.
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REMARK 9. If we have an operator Qp) for a(y, ) € Séf:;la ) (RY x RY; E, E), choose
UN ~
anyo € R and form the operatofy)*Op(a)(y) * : SR, E) - S(RY, E). Then, there is a

unique symboky (Y, 1) € Séf;la y)(Rq x RY; E, E) such that
n.
(25) ()*Op@(y)™ = Op(aa) -
Thus, (25) has an extension by continuity to a continuousatpe(23) for alls, o € R.

This is a direct consequence ¢f)*Opa)(y)™* € Li‘c;l‘)s (Rq; E, E) and of the isomor-
phism (22).

3. Boundary value problems in the half-space

3.1. Operators on the half-axis

The operator-valued symbols in the present set-up will thk& values in a certain algebra of
operators on the half-axis. The essential features of thebaa may be described in terms of
block-matrices

HS ®R,) HS 1Ry

+

(26) az(opo(a) g>+g: @ — @
cN- CN+

for u € ZandN_, N4 € N (s € R will be specified below). The operatorbpa) = rtop(a)et
is defined for symbola(r) € S, (R)w, i.e., symbols of ordep with the transmission property,
where = and € are restriction and extension operators as in (4), whil¢.gmenotes the
pseudo-differential action dR, i.e.,

op(@u(t) = // 7ayu)) di'de .

(Here, for the moment, we consider symbols with constarfficents). Moreoverg is a Green
operator of typal € N on the half-axis, defined as a sum

d .
J
(27) 9=90+Zgj(36 g)
j=1

for continuous operators

L2®+) S(R+) L2R+) SR+)
gj: ® — B with g}‘ : ) — B
cN- CN+ CN+ cN-

(here,* denotes the adjoint with respect to the corresponding ispedducts iri_Z(RJr)GB(C'\'i )
and we seS(Ry) = S(R)|R+. Let Fd(EJr; N_, Ny ) denote the space of all such operators

(27), and IetD“*d(KJr; N_, N+) denote the space of all operators (25} d — % for arbitrary
ac @ andg € I (R4; N—, N4) (for N= = Ny = 0 we writeI'd (R ) andD*9(R.;),
respectively. The following properties are part of the boundary symbdtdas for boundary
value problems, cf. Boutet de Monvel [3], or Rempel and Soh{16].



316 D. Kapanadze — B.-W. Schulze

THEOREM2. a € D*Y(R4;No, Ni) and b e D™®(Ry; N—, No) implies ab e
D’“F”*h(ﬁJr; N_, N4) for h = maxv + d, e).

THEOREM3. Leta e D“’d(EJr; N_, N+) where g7) # Ofor all T € R, and assume
that a defines an invertible operator (26) for somgs R, 5 > max(u, d) — % Then (26) is
invertible for all se R, s > max(, d) — 3. In addition

SE)  SE:)
a: @ — @
CN’ CN+

is invertible, and we hava~! € D~ @=W" (R ; Ny, N_); herevT = max(v, 0).

3.2. Boundary symbols associated with interior symbols
In this section we introduce a special symbol classRBnthat gives rise to operator-valued
symbols in the sense of Section 2.4.

Let S(’:‘lfx (R" x RM_ defined to be the subspace ofalk, £) € Sgig-x R" x RM) vanishing
on the set ’

(28) TrRi={x=(y.) eR":|x] = R, |t| > Rlyl}
for some constanR = R(a). In an analogous manner we define the more general space

SHORN x RM).. Set S(’:‘l;i(Rn x Ry~ = Cljx R" x RN~ N sé‘I;B(Rn x Ry and

8 R®" 5 - ;8 =n 1 =

Séﬁg;x (R+ X Rn)tr,x = {a = alR:XR" tax, §) e Sgié;x (Rn X Rn)tr,x}, R+ =R" 1 X R+.
imi 7 i8 ;8 ;8

Similarly, we can define the spach%ls)(Rn x R")<, S(‘:‘Ig R" x RMr =, S(‘:‘Ig (I[i{irjr x Rn)tr,x’

where cl means symbols that are only classicalin Fora e S(’:‘l;’s(R” x RN~ we form

op(@)(y. mu(t) = [ € E7ay. t, 5, 7yut’)dt'dr and set op (a)(y. 1) = rrop(@)(y. ne*,
where i and € are of analogous meaning @as the corresponding operatofsand € in
Section 2.2.

We also form op (a)(y, n) for symbolsa(y, t, 5, ) € Sé‘l: (@1 x R"), _; the extension

et includes an extension afto a corresponding, though op™(a)(y, 1) doesr!nxot depend on the
choice ofa.
PROPOSITIONL. a(x, £) € S4S@RN x RM)~ implies
op(@)(y, m) € (R x R HS®), HS#(R))
for every se R.

The simple proof is left to the reader.

PROPOSITION2. a(x, &) € S(’:‘l; (Ei x R"),, _ implies

opt@(y, n) € SR x R"™L HSR ), HSTH(Ry))
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for every s> —% and
opt @y, n € SR xR S(Ry), S(Ry))-

The proof of this result can be given similarly to Theorem 212n [20].
Given a symboh(x, &) € S(’:‘l: [R" x R"),, we call the operator family

opt(@li=0)(y, n) : HS(Ry) — HSH(Ry),

s > —3 (or op*(@l=o)(y.n) : S(R+) — S(R4)) the boundary symbol associated with

a(x, &).
;8 (N
REMARK 10. Fora(x, &) € S(’:‘ls;x(]RJr x R"), we have
8 fon— _ _
op* @l—0)(y. m) € S (RMH x R™H HI®Ry), HSHRy)).

s> -3, andop @)y, ) € & (R x R" L S(Ry), S(R+)).

Clyy
Fora(x, &) € S(’:‘ljx (Ei x R") we form
o(8) = (04 (@), 0e(@), 0y 6(@); 7 (8), 0 (@), 7 (@)

for oy (@) = oy @1, gm0y (@) = 0@ (0, g) o v.e@ = 0y, e@ (). @m0

i ~ M58 mn n — 3l
with and € ;" (R" x R")r wherea = alRi g and

oy @y, n)
og @y, n)
o5, (@, n)

oy(opT @t=0)(y. ), (y.m) e R™ 1 x (R™1\0),
og(Opt @=o)(y. ), (v, m € R\ 0) xR,
0y.¢(0p" @—o)) (Y, ), (v, m) € (R"™1\0) x (R""1\0),

where the right hand sides are understood in the sense of (H&Ye, é is used for the exit
symbol components along € R"~1, while e indicates exit symbol components of interior
symbols with respect te € R").

It is useful to decompose symbols:Bé‘ljx (Ei X R”) into ax<-part and an interior part by
a suitable partition of unity. '

DEFINITION 3. A functiony= € C*®(R"}) is called a global admissible cut-off function in
RY if
(i) 0< x=(x) <1forallx e ﬁi,
(ii) thereis an R> Osuch thaty=(AX) = x=(X) forall » > 1, |X| > R,

(ii)g x=(x) = 1for 0 <t < & for somee > 0, x<(x) = Ofor |x| > R, t > Rjy| and
x=(X) =0for |X| < R, t> & for somes > ¢ and non-negative reals R aril.

A function x= € C“(Ei) is called a local admissible cut-off function ﬁi if it has the
properties(i), (ii ) and
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(i) x=X) = v(X)A — (X)) for = n for someo € CSO(R”), 0<wXx <1

ol

R+

for all x € R" and@(x) = 1in a neighbourhood of = 0 andv = %|Kn for some
+

x € C®@M\ 0) with x(Ax) = x(x) forall A € Ry, x € R™\ 0, such that for some
y € R"1 with lyl = 1, and certain0 < ¢ < & < %we havex(x) = 1 for all

X € Sn_lﬂﬁi with [x — y| < & andx(x) = Ofor all x € Sn_lﬂﬁi with [x — y| > &.

Fora(x, &) Sglgi (Ei X Rn) and any (local or global) admissible cut-off functign we
then get a decompoéition

acx, &) = x=(@ax, &) + (1 — x=(xna(x, &)
wherea (x, &) 1= y=(X)a(x, &) € S{:‘,:X R x R")_ and(1— x=(x))a(x, &) € s{:‘ljx [R" x
RM). '

REMARK 11. The operator of multiplicatiom,_ by any x= € C®°®R") with x= (AX) =
x= () for all |x| > Rfor someR > 0 andA > 1, can be regarded as an eIemenLﬂ?O(R”).
In other words, we havél,_A, AM,_ € Lﬁ:;g (RM) for every A ¢ Lé‘c;l‘;(R“). If x= and ¥=
are two such functions with supg. N suppy= = @ we havey=Ax= € L™ ~%R") for
arbitrary A € L’“‘;(Rn). A similar observation is true in the operator-valued case.

(cl

3.3. Green symbols

Pseudo-differential boundary value problems are destrilyea symbol structure that reflects
an analogue of Green'’s function and generates boundaryp@tedtial) conditions of elliptic
boundary value problems. This is summarized by the follgvdafinition.

DEFINITION 4. The spacm’é’O;S(R”—l x R"1: N_, N;) of Green symbols of order
n € R, typeO and weights € R is defined to be space of all operator-valued symbols

oy, m € 'R xRV LZR) 9 OV S[Ry) @ CV)
such that

g € PR RE LRy @V SRy @ CY).

Moreover, the spac&é’d;‘s(R”—l x R"™1; N_, N4 ) of Green symbols of order € R,
type de N and weights € R is defined to be the space of all operator families of the form

d j
(29) gy, m = doly, ) + Z gj (¥, m ( a(t) g )
j=1

for arbitrary g;j € R’éfj’O;’s(R”—l xRN N4 ), j=0,...,d.

PROPOSITION3. Every gy, n) € R’é’d;‘s(R”*1 xR"1; N_, Ny ) belongs to §n8 (R"-1
x R1 HS®Ry) @ CN-, S(R+) @ CN+ ) for every real s> d — 1.
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The specific aspect in our symbol calculus near exits to igfindbnsists of classical el-
ements, here with respect to ¢ R"1. Let R’é’gf‘s(R”—l x R"~1: N_, N;) denote the
subspace of alg(y, n) € Ré’d;‘s(R”—l x RN=1: N_, Ny) of the form (29) forgj(y.n) €

Rl % (R x R1N_, Ny ), whereRS %’ (R™1 x R"1; N_, Ny ) is defined to be
the space of all

gy, m € 0 (R x RL LRy @ €V S[Ry) @ CVr)

with
g*(y, n) € sgljfy R xR 2R @ CN L SRy @ CN-).
Similarly to Proposition 3 we have
RETIR™L R NZ, Ny ©

(30) G,cl

4 (@B R 0 O, S 0 )

foralls>d— % Applying (18) we then get the triple of principal symbols

(31) 0(9) = (05(9), 0e(9), 95 & (9)) -

REMARK 12. There is a direct analogue of Remark 5 in the frameworkreE® symbols

that we do not repeat in this version in detail. Let us onlyeobs that we can recove(y, n)
from (31) modRfs 1 %° MR xRML N, Ny) by x (1) (Q)(Y. m)+x () {oe (@Y. 1)~

X @y, m) € RES (R x R1N_, Ny).

LEMMA 1. Letg(y.t) € C®(RY x Ry ) and assume that for sondec R the following
estimates holdsug  [D§@(y. )| < c(y)®~lol forall y € R% and alle € N, with constants
¢ = c(a) > 0. Then the operator Wy ) of multiplication byg (y, t) fulfils the relation

(32) Mg (y.t) € S*° (Rq x RY; L2(Ry), L2(R+)).
Proof. We have to check the symbol estimates

<=2 (DD Mgy |, ( < iyt

L2(Ry))

foralle, g € N9 andall(y, ) € R4 xRY with suitablec = c(«, 8) > 0. Becausdlyy ) is in-
dependent of it suffices to considep = O. USing/c_l(n) Df,‘ My (y,tyk () = Df,‘ M¢(y!t<y)71)
we get foru € L2(R,)

”Kﬁl(n) { oly D,’; M¢(y,t)} Kk (nu(t) H @R H Dy ¢ (y, t(y)*l)u(t) ” L2®R,)

A

o 050 (v t) ™) | Il 2z,

cy)’ Ml 2y, -

IA
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LEMMA 2. Letp(y,t) € C°(RY x Rr) be a function such that there are constantssne
R such thatsup g D DM (y, )| < c(y)®~lelty™M forall y € RY, t € Ry and all
a € N9, M e N, with constants e= c(e, M) > 0. Then we have

(33) Myy.t) € SP3(RY x RY; S(R4). S(Ry))-
Proof. Let us express the Schwartz space as a projective limit
S(R+) = projlim{(t) HK®R}) : k e N} .
An operatotb is continuous irS(R.) if for everyk € N there is art = I (k) € N such that

||b||£(<t)*| H! (Ry), (t)"KHK([R})) = €

for certainc = c(k, ) > 0. The symbol estimates for (33) require for evkrg N anl = [(k)
N such that

N O A Ot < o)l g )

“KHk®R,) ~

for constants > 0 depending ok, |, «, for all « andk. Similarly to the proof of Lemma 1 the
n-derivatives may be ignored. Estimate (34) is equivalent to

(35) [0 Dge (v.tn ) = ol )

m_l UH HK®R,)

forallv € H' (R4). Settingl = k + m™ for m* = max(m, 0) we get (35) from the system of
simpler estimates

|ot {07 050 (vt )} g ) < e ivlnce,

L2Ry) —

forall0O< j <k.The functionDtj {(t)—m+ D§,‘¢(y, t(n)_l)v(t)} is a sum of expressions of the
form

Vizjais(® = €™~ 12 (DFD§9) (v tan ) DEwct)
for j3 + jo 4+ j3 = j and constants = c(jy, j2, j3). We now employ the assumption on
¢, namely sup_gz_|(DyD{*¢)(y. t(m )| < (v)° 7t~z Using t () ~h™ Iz <
(tyM=i2 form — j, > 0 and(t(n)~1)M=J2 < 1 form — j, < 0 we immediately get

DtJ3vH

L §—
1Vj1j2js O 2w, ) =€) o L2R,)

for all y € RY, with different constants > 0. This gives us finally the estimates (35). |

3.4. The algebra of boundary value problems
DEFINITION 5. RS9 (RI1 5 R1; N_, N.) for (1, d) € Z x N, € R, is defined to
be the set of all operator families

+
a(y,n) = ( @m0 ) + 90y, )

for arbitrary a(x, &) € S(’:‘lfx (ﬁi xR")._and gy, n) € Ré’ng(R”_l x R, N_, Ny).

tr,<
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Observe that the components of
(36) 0 (@) 1= (oy (@), 0e(@), oy e(d): 05 (a), 0 (8), 07 & ()
fora(y, n) € R‘C‘I’d;‘s(Rn—l x R"=1: N_, N4), given by

oy (@ =oy(@), o0e@:=0e@), oye@ :=oy.e@),

and
op™(alt= 0
op@ = (03( p (() lt=0)) ° >+03(9),
opt(ali— 0
(@) = ( oo (OP" (@l=0) >+ae«<g),
+
ope@ = < 79.¢ (0" (@l=0) O ) +05,e(9)
B O o 5
are uniquely determined ky(y, n), and thair () = 0 impliesa(y, n) € R’c‘l_l’d;‘s_l(R”—l x
RML N, NG ).

Moreover, a(y, n) € R’c‘l’d;‘s(R”—l x R"1; Ng, Ny) andb(y, n) € Ry (R x
R"~1; N_, No) implies (ab)(y, n) € Ré‘lﬂ’h;“g (R"1 x R"=1; N_, N4 for h = max(v +
d, e) whereo (ab) = o (a)o (b) (with componentwise multiplication).

Next we define spaces of smoothing operators in the halfespiwe spacg =00~ (Ri;
N_, N4 ) is defined to be the set of all block matrix operators

A K 8@*’) S®+)
A= ( T C ) : @ — @ ,
SR, cN-) S(RN-1, N+
where
(i) Au(y,t) = iji a(y, t,y, thu(y’, t') dy’dt’ for certaina(y, t, y',t’) € S(@i X Ei)
— n n_ . N
(=S® xR ”Rixﬂﬂ)' ueS®Y)),

(i) Ko(y,t) = Z|N:’1 Kiu(y.t) for Kju(y,t) = frn-1ki(y.t, Y)v (y)dy for certain
k(y.t,y) e SR} x R™1) (: S(R" x Rnil)lﬁixﬂgn—l)’ forv = (v)i=1,...N_ €
S(Rn—l’ CN, )’

(i) Tu(y) = (TmuOm=1,...N; for Tmu(y) = ffgn bm(y. y', thu(y’, t’) dy’dt” for cer-

; n-1_ ph _ n—-1 n —n _
ta'”bmi);, y.t)e SR xR}) <_S(R x R )]Rn,lxl&),m_l,..., N, for
ueSRy),

) Coy) = (X famy.yyuHdy) - for certaingm(y. y) € S(RM x

=1,.., N
R, 1 =1...,N.,m=1,...,Ny.
B‘Oo’d;—oo(ﬁi; N_, N4 ) for d € N is the space of all operators

d .
J
C=Co+ ) cj(a(t) g)

=1
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for arbitraryCj e B*"O’O;*‘X’(ﬁi; N_, N+), j=0,...,d.

Let Lf:‘l;‘s(Rn)v denote the subspace of &l e Lf:‘l;‘s(R”) such that there is aR > 0 with
¢Py =0forallg, v € CF®R") with suppp, suppyy < R" \ Tg, cf. (28). Moreover, we set

:8 Blon - B :8 B B 8 ;
Lo "R ={P=Plgn : Pe L (RN _}. ForP = Plgn. P € Lg" (R")_ we define

DEFINITION 6. The spaceB“ -d; 8(R+, N_ N+) for (u,d) €e Z x N, § € R, is defined to
be the set of all operators

(38) A=0p@+P+C

for arbitrary a(y, n) € RE; 4 RI-14RM-1; N_, Ny ), P € ( g g )with Pe LQ;B(Rn)v
andC € B~°4:~2(R": N_, N.). Moreover, we set

(39) BL U ([®]) = ule B 4P R N, Ny

Similarly, we get the subspaces of so-called Green opesdimir order i, type d, and weight

3) Bg gl‘s(R+, N_ N+ and E% ]R+) when we require amplitude functions to belong to

R’é”gi‘s(R” IxRr™1 NC, Ny andl% (R"~1xR"1), respectively. FoMeB“dS(R+,

N_, Ny ) we writeord A = (u; ).

Note that particularly simple eIementst R+) are differential operators

(40) A= Z ay (X) DY

lee]<p

with coefficientsay, = &y |pn Wheredy (x) € S®RY).
+

THEOREMA4. For everyu € Z the space g R+) (cf. the notation (39)) contains an
element R that induces isomorphisms
(41) RICHSE (RY) — HE7H0 (RT)
for all s, o € R as well as isomorphisms

=N n
(42) R SRL) — SRy,
. -1 —u,0;0 N

where R := (R4)™* € By RY).

This is a well-known result fop = 0, proved in this form for als € R in Grubb [7];

note that fors < —% we have to compose the pseudo-differential operators fhanmigght by an

extension operatdr: HS(R[} ) — HS(R"), while fors > —% we can take €. Let us mention



Boundary value problems 323

for completeness that order reductions$os ut — % have been constructed before by Boutet
de Monvel [3]. The symbols from [7] have the form

Bogy — = A
(43) L(S)—(x(aw))(n) lr>

£ = (n,7) € R" for a sufficiently large constarat > 0 and a functiory € S(R) with F_lx
supported irR_ andx (0) = 1. Itwas proved in [20], Section 5.3, that (43) is a classsgahbol

in &. In other words, we have® (¢) € (RJr x R"),, and we can seR*u = rtOp(r¥)l
wherel = et fors > _E- It is now tr|V|aI thatR* induces isomorphisms for adl ¢, because
the operators with symbols (43) R' belong toL’C‘I;O(R”), cf. (9).
Note that the operatdR* is elliptic of order(u; 0) in the sense of Definition 7 below.
Writing A € By d ‘S(I[{Jr N_, N4) in the form (38) we set

(0 (A), oe(A), oy e(A)) = (0 (@) + 0y (P), 0e(@) + 0e(P), oy (@) + oy e(P))
where we use notation from (36) and (37). Moreover, we define
(44) (03(A), 0e(A), 09 ¢ (A) = (05(@), 0e (@), 0 (@) .
cf. the notation in (36). Finally, we set
(45) o (A) = (ay (A), 0e(A), 0y e(A); 03 (A), 0 (A), 05 & (A)) ,

called the principal symbol of the operatdr
Let us set

symbBy % (R N- Ny ) = {o() A e B S (R N- NG )

REMARK 13. The space symB[; d; ‘s(]RJr N_, N4) can easily be defined intrinsically,
i.e., as a space of symbol tuplgsy,, Pe. Py.e; Pa. Pe» Py ) With natural compatibility condi-
tions between the components. Then A — o (A) is a surjective map
(46) B"“(R+, N_ N+) —>symbB“d8<R+, N_ N+)
and there is a linear right inverse

(47) op : symbsly 4 (R N, Ny ) — B2 (R N Ny )

of 0. Moreover, we have ker = Bé‘l*l’d;‘sfl(ﬁi; N_, N+). Any choice of a map (47) with
(46) is called an operator convention.

REMARK 14. An operatotA e B“ d; 5(]R+, N_ N+) induces continuous operators
—Nn =N
S(Ry) S(Ry)

(48) A ® — @ .
SR, cN-) S®R1, )
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This is an immediate consequence of the fact #hagn be written in the form

+ Aet
(49) A=(r ge g>+0p(g)+c

foranA e Lgl;a(Rn)tr (={Ac LQ;S(R”) : A has the transmission property with respect to
t = 0}), andC € B~% = (R} ; N_, N4 ), where (48) is clear fo€, while the continuity for
the other ingredients, immediately follow from (10) and)(24

THEOREMS. A ¢ B %* (R N, Ny) and B e BY®¢(R': N_, No) implies AB e
Bf:‘l”’h’“@ (R+, N_, N) for h = max(v + d, e), and we have
o (AB) = o (A)o (B)

(with componentwise multiplication). M or B is a Green operator then so i45.

The proof of this theorem is very close to the correspondirgpfpin Boutet de Monvel's
calculus in local terms. Therefore, we only sketch the fgpivelty in the framework with
weights. Compositions of the foritg + C).A or B (G + C) for smoothing operator§, C and
Green operator§ = Op(9Q), G = Op(9) in the corresponding spaces are again of the type
Green plus smoothing operator (this can easily be veriffadeirepresent4 or B like (38)). It
remains to consider compositiofis Aet) (r* Be™) that equal  ABe™ +rt A(1 - ©) Bet,
where®* denotes the characteristic functionI@ﬂ. The first summand is as desired, while
rt A(l— ®@*)Bet has to be recognized as an element@p(modulo a smoothing remainder)
for some Green symbgj(y, n) of weights + o for |y| — co. Here, we can writeh = y- A+
(1—x=)AandB = XAB+(1 x=) B for a certain global admissible cut-off functign. in R,
cf. Definition 3. Then, ¥ x= Al - O x= Bet is obV|oust of the asserted form because the
weight contributions fot — oo are cut out, whilet (1 — x~ DAL -0y~ Bet, rty_ Al -
O1)(1— x=)Bet and " (1 — x=)A(l — ©1)(1 — x=)Be™ are smoothing, cf. Remark 11.

REMARK 15. The operato§? of multiplication by diag((x)¢, (y)¢ ® idcn ) belongs to
BO o ‘S(R+, N, N) and induces isomorphisms

H e (R]) o)
8¢ ® — ®
HS;Q(Rnfl’ CN) HS(Rnfl’ CN)

for all s € R. Moreover, we have
S0 TS[R) N, N4 )82 = BLTORT; N, Ny)

(clearly, the dimensions in the factors of the latter relatare assumed to bd; and N_,
respectively).

THEOREM6. A € By} d: ‘S(RJF, N_, N4 ) induces continuous operators

HS:o (RQ-) HS—u;e—38 (Ri)
(50) A: ) — =)
H5¥9(Rn_1, CN,) Hs—u;g—a(Rn—l’ (CN+)

foralls,p e R, s> d— % If ord A < (u; 8) (i.e., the relation< holds for both components)
the operator (50) is compact.
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Proof. Write A in the form (49). The assertion f@ris obvious. ConcerninngrKeJr it suffices
to apply (9) and (10), combined with the properties (6) andl(emains Ofg). For simplicity

we assumej to be of the form of an upper left corner, i.g(y, n) € Rg’g;‘s(R”—l x R"~1), cf.
the notation in Definition 4. The other entries in the genblatk matrix case can be treated in
a similar manner which is left to the reader. So we show théirmoity

Op(g) : HS¢ (R]) — HS™He™8 (RY),
s>d-— % Applying Theorem 4 it suffices to prove the continuity of
— -s. 140; 0;0—35
RS*Op(g)R™5: HYC (R ) — H¥¢™°(RY).
,d;0

The symbolg(y, n) may be written in the forng(y, n) = (y)®a(y, n) for a(y, n) € Rg l

(R"~1 x R"1). Now, using Theorem 5 we get 6@ RS = Op(b) + C for someb(y, 1) €

RE>OORI-1 x RM1) andC e B0~ (R"). In the following C may be ignored; we

then have to show the continuity of

(51) RSH(y)’Op(b) : H%¢ (R} ) — HO%e~% (R]).

From the general pseudo-differential calculus with operaalued symbols we know that
(y)’Op(b)(y)~> = Op(c)

with some symbot(y, ») that in this case again belongsméféf’o;o(R”—l x R"~1). Thus, the
operator in (51) gets the form ’

RS1Op(c)(y)® = Op(d)(y)’ +C

for anotherC € B=°%-0:=% andd(y, n) € R%%P(R”fl x R"~1). We may concentrate on the
proof of the continuity ’

Op(d)(y)® : HO¢ (R}) — H%e=? (RT)
for arbitraryp € R. This is equivalent to the continuity of
(x)2~20p(A)(y)’ ()@ : L (R}) — L?(RY),
x = (y,1). By the argument used above in connection with (51) we find @n n) € R%%IO
(R"~1 x R"~1) such that
(x)2~20p(A) ()’ ()78 = ()27 ()*~Op(F)(y)2 (x) 2.

Now ¢ (y, t) := (y)¢(x)~¢ for o > O satisfies the assumptions of Lemma 1 o= 0. For
0 — & < 0 we can apply Lemma 1 once again fbty, t) = (x)¢ % (y)¥—2 and get

(x)2~20p(d)(y)°(x) ¢ = Op(My,) Op(f) Op(Mgy)

as a continuous operater’(R7 ) — L2(R"). Let us now examine the cage> 0 butg —
8 > 0. We then write(x)2—%(y)=€ = y(y, t)(1)0=? for yr(y.t) = (x)278(y)s=e(t)d-e.



326 D. Kapanadze — B.-W. Schulze

The functionyr satisfies the assumptions of Lemma 1, WI‘M%)Q—& belongs toSO’O(]Ri'“*1 X
R"1; S(R+), S(R+)) by Lemma 2. This gives us

Migo-s (v m) € SO (R X R4 2Ry ), L2Ry))
Hence, setting agaip(y, t) = (y)¢(x)~¢, we see that
()27 ()2 Op(1)(y)°(x) @ = Op(My) Op(Mygyo-s ) OP(My)

is a continuous operater(RQ) — LZ(R’}r). In an analogous manner we can proceed in
the remaining cases concerning the signn@ndoe — §. The compactness oA for ord A <
(u; 8) then follows from the continuity afd to spaces of better smoothness and weight and from
corresponding compact embeddings of Sobolev spaces. |

3.5. Ellipticity

The principal symbol structure of the preceding sectioegiise to an adequate notion of ellip-
ticity of pseudo-differential boundary value problemslzgtly on the half-space.

w,d; 8

L9 R N, Ny) is called elliptic (of order(y; 8))

DEFINITION 7. An operator4 € B
(i) oy (A)(x &) forall (x, &) e R} x R"\0),
ge(A)(x, §) forall (x, £) € (R \ 0) x R",
oy e(A (X, &) forall (x, &) e (R} \ 0) x (R"\ 0)
are non-zero,
(i) oy(A)(y. n forall (y,n) e R"~1 x (R1=11 0),
ag (A)(y, n) forall (y,n) € (R"110) x R",

og.e (A (y, n) forall (y, n) e (R""1\ 0) x (R"~11\ 0)
are isomorphisms

SR+) SR+)
D — D
C'\L (CN+

REMARK 16. Condition(ii) in the latter definition can equivalently be replaced by dije
tivities in the sense

HSR+) HS ™ (R+)
D — D
(CN7 (CN+
for anys > max(u, d) — 3.
w,d;é

DEFINITION 8. GivenA € B % (R]; N_, N.), an operatorP e Bé’:’e;_‘s(ﬁi; Ny,
N_) for some e< N is called a parametrix of4 if PA — Z € B~°%:=>(R}; N_, N_) and
AP -1 € B*"O’d“*"o(ﬁi; N4, N+) for certaind, dr € N.

We shall see below that the ellipticity of an operatbic Bg’d;g(ﬁi; N_, N4) entails the

existence of a parametrix. First we want to construct furxamples of elliptic boundary value
problems.
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.. . 2
The Dirichlet problem for — A, with the Laplace operatak = anl % and a constant
i

¢ > 0 is represented by the operator

N HS2 (RY)
(52) A1=( v ):HS(RQ)—> @
HS 2 (R"1).
For convenience we pass to
He~2 (&)
(53) Ap=( S22 ) Hs@®Y) — ®
Qr +
Hs—Z(Rn—l)

where Q is an order reduction on the boundary that we take of the fQms Opy ((n)%),

3
such thatQ : HS(R"1) — HS~2(R""1) is an isomorphism for ab € R. Then we have

A e Bgl’l;o(ﬁi; (0} 1). We want to show that (53) is an isomorphism forsatt % and construct
the inverse. We have for = (y, 1), & = (, 7)

oy(Ap) = 6%, oe(dp) =c+ IE12, oy.e(Ar) = 6,

o > -a [ e+ o m?—a
0y(A2) = ( LA og(A2) = (3 . 09, (A2) = e )

HenceAoy is elliptic in the sense of Definition 7. First we invert theeogtor family

=02\ . om S(R'i_)
(54) ( ﬁr,t)-S(R+)—> e

1 3
wherea = (c+ [1%)2, B := (n)2. Letus writel 1 (r) = a £ i7; thenl _ ()l 1(v) = &® + 72
anda? — 82 = opt(_14) = op*(I-)op* (I4) (the latter identity is true becaube is a minus
function; op"(I-) : S(R+) — S(R+) is an isomorphist Thus, to invert (54), it suffices to

consider
S(R+)

opt () .
(T )o@ — 2

which is an isomorphism, because'apy ) : S(R1) — S(R4 ) is surjective angr’ induces an
isomorphism of kerop(l1) = {ye ' : y € C} to C. Let us form the potentigk = k() :
C — S(R+), defined byky = yp~te™,y € C. Then

0

1)

() () 9= (5

because’Der(Ijrl) =0, and hence

(") = 1) 9.
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Consider nova(t) = o2 + 2. The operator in (54) can be written

opt@ \ _ ( optd-) 0 ( op"d4)
Br’ - 0 1 Br’
and hence
-1 -1
op*(a) _ 1 opt (1) 0
(7)) (7))
(ep* () 0" (1) 1.
Here op' (I;l)opJr (I:l) =opt(a~t) + gfor a certaing € I'O(R4 ). It follows altogether
-1
op*(a) _ =)
( o ) _<op+(a )+g k),

i.e., we calculated the inverse of (54). Inserting now theression fox = « (), 8 = B(n), we
easily see that the ingredients of

(55) oo (A2t = (op" () +om) k)

belong toRaz’O;o(I[{'“*1 x R"—1. 1, 0) (they are, of course, independentydf and it is clear
thatAz_1 = Opy (0e (Az)fl) which belongs t(Baz’O;O(Ei; 1,0). The method of calculating
(55) gives us analogousty (A5) 1 andag,e/(Az)‘l, and

-1
o (43*) = <|s|*2, (c+1g?) " 1em % op(A L 0w (A Y, aa,e/(AzH) :

It is then obvious how to expres&;l, namely

_ _ 1 0
A11=A21< 0 ot )

REMARK 17. Similar arguments apply to the Neumann problemder A in the half-
space, withid; in place of f. To get an element with unified orders we can pass to the boyinda

operatorRr’ g for R = O|oy ((n) %>. We see that

c—A 2,2:0 (N .
(% )emo(siion

is also elliptic in the sense of Definition 7 and even invéetihs an operatoHS(R7) —

HS™2(R}) ® HS2(R"1) for s > % The inverse belongs tBaz’O;o(ﬁi; 1,0). We shall
construct in Section 5.3 below a general class of furthemgtes of this kind.
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THEOREM?7. For every N e N there exist elliptic eIementAJr O o O(R+, 0, N) and
A\ € BO o O(R+, N, 0) that induce isomorphisms

HS (R])
AL HE) — o
HS(Rn_l, CN )
Ry .
AN @ — H (R+)
H S(Rn—l7 CN)
forall's > —3, whereAy = (4%) "
Proof. Let us start from the above operatdp and form
(56) Ao = RO 24,R% e BSYO[RY; 0, 1)

for any fixedsg > 2, whereR = R! ¢ B10 0(R+) is the order reducing element from
Theorem 4 an®R := diag(R?, R') for R’ = Opy( ® iden ). Then, settingd] = Ap, we
can formAJ,Q inductively by

+ + +
TRV RS VT W
A=(T+>:= Ty, O (T!F>= TN 1A
N 0o 1 L T,
+ A+ . 1 .
Here, A7 = T!F - Moreover, from the above constructiondf = and Theorem 4 it follows
1
that we may sefdy, == (Af) % O

3.6. Parametrices and Fredholm property

THEOREMS. LetA € B d; 5(R+, N_, N4) be elliptic. Then

o (R]) e (RL)
(57) A &) — ®
HS;Q(Rn_l,CN*) HS—M;Q—S(Rn—l7cN+)

is a Fredholm operator for everys max(u, d) — and every € R, and.A has a parametrix
P e By (A=) (R+, N4, N_) where ¢ = max(u, dyandd = (d—p)™ (cf. the notation
in Definition 8).

The proof of this theorem will be given below after some prafians.

REMARK 18. Applying Remark 15 we can reduce the proof of Theorem Beéactse =

0. In other words, it suffices to consider the operd®8r? AS— e B %O®]; N_, Ny).
Furthermore, we can reduce orders and pass to

Ag = RE, (SO AS TR % e BY¥O[RE: N-, Ny
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for any choice ofsy > max(u, d), whereR 4, = diag(R%, Ry, ) for Ry, = Op((n) ®
iden. ) cf. similarly (56). Clearly, the ellipticity ofA is equivalent to that of4g, and the
construction of a parametriRy for Ag gives us immediately a parametfof A, namely

—SOR So—1t go—b
(58) P =8OR IPRE, S0

So we mainly concentrate on the cade BS[O;O(ﬁi; N_, Ny).

Let p(x, &) € Sg;o(ﬁi x R"),. _ be a symbol with

tr,<

(59) ou(p)#£0 forall (x,&) eR, x (R"\0),

(60) oe(p) #0 forall (x,&) e (R} \0) xR",

(61) ope(P) #0 forall (x,£) e (R} \0) x (R"\0).
Set

(62) by (Y. ) = 0p" (Pl=0) (¥, ) ,

and consider the operator families
(63) oy (byy) (V. 0w (Bhy) (V.. oge (Bg) (Vo) i L2 (Ry) — LERy),

oy (0)4) for (v, ) e R"1 x (R"=1\ 0), o (b)) for (v, ) € (R""110) x R""L, 5 o (1)
for (y,m) € (R"~1\0) x (R"1\0).

These are families of Fredholm operators parametrizedédgdhresponding sets 6y, n)-
variables.

PrROPOSITION4. For everye > Othere exists an R= R; > 0 such that
(64) log (b11) (v, ) — o5& (b11) (¥. m) ||L(L2(R+)) <&
forall |y] > R andp € R"™11 0,

(65) loa (b11) (v, m) — oer (byy) (v, ’7)”L(L2(R+)) <¢é
forall |y > R and|n| > R,

(66) loe (b11) (v, ) = 03,6 (012) V- D (L2, y) <&
forall |y| e R"=1\ 0and|y| > R.

Proof. Let us first verify (64). Both ooy (p)lt=o) (Y, n) and op(oy. e(P)lt=0)(Y, n) can be
regarded as parameter-dependent families of pseudaoetiffal operatorstZ(RJr) — L2(R+)
with parametey € R"~1, smoothly dependent opwith || = 1.

But

(67) op(oy (Pli=0) — oye(Plt=0)) (Y. M)

is of order—1 in the parameter. A well-known result on operator normsasémeter-dependent
pseudo-differential operators, cf., e.g., [30], Sectidh?, tells us that thé(Lz(R+))-norm of
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(67) tends to zero fory| — oo, in this case uniformly fofy| = 1. Thus, composing (67) from
the right with & and from the left with ¥ we get relation (64) for ally] > R, R = R, and
Inl=1.

In a similar way we can argue for (66), now wighe R"~1 \ 0 as parameter and smooth
dependence og with |y| = 1. This gives us relation (66). Estimate (65) is then an alwio
consequence of (64) and (66). |

COROLLARY 1. Under the conditions of Proposition 4 there exists an=RR. > 0 such
that the Fredholm families

oy (b)) (v, m : L2Ry) — L2Ry)  for  O0<|y|<R, Inl=R

and
og (by7) (v, m 1 L2®R4) — L2Ry)  for  |y|=R, 0< |y <R,

satisfy |0 (by1) (v. 1) — o (011) (. D | £ 2w, ) < & forall [yl =[5 = R.
Lete > 0, and set

Te={0meR" Dy = =R}, De=Tx[0.1],

and form
2l = {o.mer™ Dy <R+, =R},
HY = o eRO Dy =R, Inl = Re+ )
for j = 0,1, co. Define the spacakg = (Zg Ug HEJ) Up De/ ~, whereUy is the disjoint

union, whileUy, is the disjoint union combined with the projection to the tigiat space, given
by natural identificationd, N Z} = T, x {0}, T. N HJ = T, x {1}.

Write for abbreviationz, = z9, H, = HY, L, = 1.2. Moreover, letD. ; := T x [0, 7]
andLg ; := Zg Ug He Up Dg,¢, 0 < T < 1, whereUy, is defined by means the identifications
TeNZg =T x {0}, T N He = T x {7}. ThusLe =L, 1, and we seB, =L, g.

Define an operator functioR (m), m € L, by the following relations:

F(y.m =0y (byq) (v.m) for m=(y.n) € Z;,
F(y.n) =og (byy) (v.m) for m=(y,n) €H,
F(y.n.8) =80y (b1q) (Y. m) + (L —8)oe (byy) (y.m) for m=(y,n,8) € De.

From Corollary 1 we get
(68) [F&v.n.8) = F (0.8 g Lom,)) <18 —8le
for all (y, n, 8), (Y, n,8") € Dg, 0< 8,8 < 1. We have
(69) FeC (]Lg, c (LZ(R+))) ,

andF|z,, F|n, are continuous families of Fredholm operators. Relati@) éhows that (69) is
a family of Fredholm operators for ath € L., providede > 0 is sufficiently small. We then get
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an index element ind F € K(L¢). Because oK (L r) = K(L¢) forall0 < r < 1,ind;, F
represents, in fact, an elementKkn(B; ) that we denote by

(70) indg, {03 (b1) (¥, ), oe (b11) (Y, M} € K(Be).

Our next objective is to check, whether the operator faifly(y, 1) for an elliptic symbol
p(x, &) € SO 0 (]RJr x R"),, can be completed to a block matrix valued symbol

b b . ~
’ _ 11 P12 0,0 n—1 n—1.
o= (P2 P2 o e P, (R RLEE),
L2(Ry) L2y
(72) E= @ E= @&
C'\L (CN+

with suitableN_, N4, such that the homogeneous symbols

(73) o) (y,mesSY,  (y,meR"x R\ 0),
(74) oo (V) (y.m) €S (y.m e R\ 0) x R,
(75) oy () (v, m) € s;f’y"), (v.m € R 0) x (R™110),

are isomorphisms.

THEOREMO. Let p(x, §) € SOEO R} x RN )ir b€ (0. 0e. oy e)-elliptic, i.e., relations
(59), (60) and (61) are fulfilled. Then the following conalits are equivalent:

(i) The families of Fredholm operators(R; ) — L2(R )

(76) oy (bhy) (v.m) for (y.m e R™1 x (R™1\0),
(77) og (Dg) (v.m) for (y.m) € R\ 0) x R,
(78) ope (B) (v.m for (y.m) e R\ 0) x (®"110)

can be completed to W(EJr; N_, N+)-valued families of isomorphisms (73), (74) and
(75), respectively.

(i)
(79) indg, {03 (b1) . o (b11)} € TEK({+D),

whererry : B, — {+} is the projection oB; to a single poin{+}, (K({+}) = Z).

Proof. (i) = (ii): In the construction of the proof we choose- 0 sufficiently small. Assume
that we have isomorphism-valued symbols (73), (74) and, @&ociated with the given upper
left corners (76), (77) and (78). Then the above Fredholniljaf(m) on L., associated with
{03 (b],). oe(b})} has the property ir]g F = [cN+] - [cN-], ie., ind, F € Z which
implies indg_ {0 (b} ,). o (b})} € Z = 7L K({+)).

(ii) = (i): Condition indg, {o (b 11),ae/ (b}1)} € 7iK({+}) implies the existence of
numbersN+ € N with indp, {03 (b7,). oe ()} = [CN+ ] — [CN- ]. ReplacingN+ by N+ +
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M for sufficiently largeM and denoting the enlarged numbers again\ay we find operator
families

km) :CN- — L2®Ry), tm):L2Ry) — CN+, gqm):CN- — N+

such that
L2(R4) L2(Ry)
F(m) k(m)
(80) f(m):= ( ) : @ — ®
t(m) q(m) cN- N+

is a family of isomorphisms, continuously parametrized by It is evident that they can be cho-
sen asDO?O(KJr; N_, N+)-valued functions, similarly to the construction of bijeetboundary
symbols in the local algebra of boundary value problems withtransmission property. In
addition it is clear that the functiogm), t (m) andq(m) can be chosen to be smooth(in 7).

Let us now define a Fredholm famify!(m) for m e L by
Fl(m) = F(m)
forme L,
FLm) = 1 = Moy (b)4) (V. ) + Aoy e (bh4) (Y. 1)
for Re < |yl < Re +1,In| = Re, Wherer = Re — |y,
FL(m) = (1 - Wog (by1) (V. n) + 20y & (b11) (V. )

for |yl = Re, Re < Inl < Re + 1, wherex = Re — [n].
Estimates (64) and (66) show th&at is a family of Fredholm operators dlmgL provided
e > 0is sufficiently small. We can construct a family of isomdgohs

2 2
1 1 Le(Ry) L“®Ry)
81 £l :=(F(m) k(m)>: e — @
®) ™=t ot )T & s

me ]Li}, similarly asf (m) (if necessary, we takid_, N larger than before), wherbths = f.
SinceF (m) is a-priori given orlL2°, we can also form

2 2
Fim) :=< Fm) kIm) >: L (El§+) - L (;RH
thm gt N Ny

m e ]L%. Due to (64) and (66) this is a family of Fredholm operatoriea@y, we may choose
f1(m) in such a way thatfllzl and f1|H; are smooth iny, ). Let us finally look afL.2°.

The operator functiorf 1, first given onle}, canonically extends th2° by homogeneity of order
zero tol.° \ Ll in y andy. Let f * denote this extension,

FOO kOO
(82) F°(m) :=< coam oo )

ie., 1 = f1. Since f* is obtained by homogeneous extension of a family of isomor-
phisms, it is again isomorphism-valued. Moreover, we can fdrm

oo (m) 12( Fm  k(m) )

t°(m) g>@m)
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which is a family of isomorphisms because of the correspangroperty of (82) and relations
(64) and (66).

Then, to get (73), (74) and (75), it suffices to defingb’)(y, ) as the extension by homo-
geneity 0 iny of f~°°|zé>o toR"1 x (R"~1\ 0), o (b)(y. 1) as the extension by homogeneity
0iny of f|p to (R"~11\ 0) x R"~1 ando, o (b')(y. n) as the extension by homogeneity 0
in'y andy of £y =Rr. 41, ;=R +1} 10 (R""1\ 0) x (R"~1\ 0). To justify the notation in
(73), (74) and (75) (i.e., to generate the latter homogenémctions in terms of a symbol (71))
we can first formb” (y, n) = x (m)oy (0)(y. n) + x (V) {oe (BN (Y. 1) — x(Mog e« O)(y. M} €
Sg;nqy (R”fl xR"1L E, E), cf. the second part of Remark 5, and then defiitg, 1) by replac-

ing the upper left entry db” (y, ) by b ;(y. n). O

REMARK 19. Notice that Theorem 9 is an analogue of the Atiyah-Bottdiion for the
existence of elliptic boundary conditions to an ellipticogtor A, cf. also Section 4.4 below.
The canonical projectio*R"~1 — R~ restricted to the subs@® c T*R"1 gives
us a projectionr, : B, — B, 1= {y € Ry < R:}. Condition (79) can equivalently be
written
indg, {03 (b11) . o (b11)} € 7K (Be)
sinceBg is contractible to a point+}.

COROLLARY 2. Given a symbol (x, £) € Sgl;;_’x (Ki x R"),, that is (oy . oe, oy e)-

elliptic, under the condition (79) for’ﬂ(y, 1) = opT (plt=0) (Y, n) we find a

bly,n) e RgiO;O(Rn_l x RN Ny )

for suitable N-, N € N, such that (76), (77) and (78) are isomorphim%(RJr) oCN- -
L2(R, )@®CN+, cf. Definition 7. To construdi(y, ») it suffices to definb(y, n) by replacing the
upper left entry ofb” (y, 1) by opt (p<) (Y, n) for p<(x, &) = x=(X) p(x, £) with some global
admissible cut-off functiop-, cf. Definition 3.

O’O?O(Ri) be an operator such that A= 1+ G is elliptic in

G,cl
the sense of Definition 7. Then there i€a Bg%o(ﬁi) such thatA := 1+ G is a parametrix

of A ie, AA—1, AA—1e B 0-0R])

PROPOSITIONS. Let G € B

Proof. Let us first observe that for every € TO(R4) (i.e., g € £(L2Ry))) with g, g* :
L2(R+) — S(R4) being continuous, cf. Section 3.1, we haag ga € FO(KJF) for every
a e L(L2(Ry)). Then, if 1+ g : L2(Ry) — L2(R4) for ag e £(L2(Ry)) is invertible,
we havea = (1+g)™! € £(L?(Ry)) anda(l +9) = 1 = a+ag, i.e.,a = 1+ § for
g = —ag € I'%(R4). Analogous conclusions are valid for the symbejgl + G), g (1 + G)
andoy ¢ (1 + G). Then, setting

Gy, = og(1+G)Ly.p -1,
Ge(Y.n) = og(1+G) Ly, —1,
Ge(y.n = oyegd+G) Ly, n-1,

we can formg(y. n) := x (MG (y. ) + x(V(Ge (y. 1) — x(NGa,e(y. M) € REG (R x

R"1) cf. Remark 5. FoiG; = Opy (@) we then havel + G)(1+ G1) = 1+ G, where
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1,0;,—-1

Gy e Bs.di (]R+) ThenG2 € BG j(@i) for all j, and we can carry out the asymptotic

sumz ° o(— 1)l G in the class of operators{ BGchO 1(RJF) (which is just a version of the

formal Neumann series argument in our operator class). Haeravords, we can find 653 €

B o H(RY}) such that(1 + Gp)(1+ G3) = 1+ C for C ¢ B~%~2(R). Because

G,cl
(1+G1)(1+G3) = 1+ G for someG e B%%P(RQ we get(1+G)(1+G) = 1+C. Similar

arguments from the left yield@ e B%%IO(RJr) with (1+G)(1+G) —1e B o0—oo(RY)

Then a standard algebraic argument giveSus: G mod B—:0 —W(Ri). In other words
A =1+ Gisas desired.

Proof of Theorem 8 As noted in Remark 18 we may content ourselves with the gased =
= 0. The ellipticity of A with respect to(oy, (A), oe(A), oy e(A)) allows us to form a
symbol p(x, &) = x(&)oy (A)1X, &) + x(0{oe(D X, &) = xE)aye(A)Hx &)} €
0 B x R"),,, where(ay (p), 0e(p), oy e(P) = (o (A% 0e() ™ 0y e(A) 7). We
now observe thap(x, &) meets the assumption of Theorem 9. In fact, the original ®yix, &)
belonging taA4 satisfies these conditions because the assumed bijexdijtist correspond to the
ellipticity of .4 with respect tooj (A), oe (A), 05 ¢ (A)). Hence relation (80) with respect to
a(x, &) is fulfilled. This implies the corresponding relation witlspect top(x, &) because the
index element int} K ({-+}) is just the inverse of that foa(x, £). By construction we have

p(x, &)alx, £) = 14r(x, ) foranr(x, ) e Sa:jx_l(ﬁi x RM),.. This yields

(83) P(x, HH#ax, §) = 1+7(x, §)

foranf(x, &) € Sclgl 1(]1&r xR"), . Aformal Neumann series argument, applied $ofXx, &)

in terms of the Leibniz multiplication # gives us a symiggk, &) € Sai;*l(ﬁi X ]R'“)tr such
that (1 + 6(x, £)#1 + F(x,£€)) = 1 mod S—OO;—OO(KQ x RM). Setting p(x, &) = (1 +
4(x, £)#p(x, &) from relation (83) we gep(x, £)#a(x,£) = 1 mod S*m?*oo(ﬁi x RM).
Applying Corollary 2 top(x, &) we can generatela(y, n) of the asserted kind, more precisely
by, n) € RO 0 O(R”—l x R"~1). Then the operator

ﬁ:=0p(b>+( R g)

for R := (1 — x=(x))Opy(P), cf. Definition 3, has the propertyU3 =7 + G for someg ¢
BO o O(RJr N, Ni). Sinced and? are both elliptic als@+ is elliptic. Applying Theorem 7
to N = N4 we can pass to the elliptic operatdiy, (Z + g)AN1 that has the form % G for a
Ge Bg %lo(R+) Proposition 5 gives us@ e Bg%o(RJr) suchthatl+G)(1+G) =1+C
foraC e B~ °°( R"). It follows thatAN+APAN (1+ &) = 1+ C for an element

C e B~:0:—20(RT ). This yields
APAG (1+G) An, = AL+ O AN, =1+C
for a remainde€ e B*"O’O;*‘X’(Ki; N1, Ny). Hence,

Po = PAG (14 6) An, < BSOO®L: N, N )
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is a right parametrix ofA. In an analogous manner we can construct a parametrix frerteth

then a standard argument shows tRatis also a left parametrix. In other words, when we go
back to the original orders of Theorem 8, we get a param@tiidy formula (58), where its type

is (d — u)T and the types| andd; of remainders are an immediate consequence of Theorem 5.
The Fredholm property of (57) follows from the fact that tkeenainders are compact operators
in the respective spaces, since they improve smoothnesweigtit. This completes the proof

of Theorem 8. |

4. The global theory

4.1. Boundary value problems on smooth manifolds

The calculus of boundary value problems that we intend t@ldgvin Section 4.2 below on a
manifold with exits to infinity will be a substructure of a cesponding calculus on a general
(not necessarily compact) smooth manifold with smooth bamn This is, in fact, Boutet de
Monvel’s algebra [3] that we employ as the correspondinggamind. Concerning details, cf.
the monograph of Rempel and Schulze [16] or Schulze [30]p@ha. For future references we
want to give a brief description.

Let M be a smooth manifold with smooth boundari, choose vector bundles, F €
Vect(M), J7, J* e Vect(dM) and sev = (E, F; J—, J*). We then have the spats °-0(M;
v) of all smoothing operator§5°(M, E) & C3°(0M, J7) — C®(M, F) & C*(aM, J7) of
type 0 that are given by correspondi@§° kernels, smooth up to boundary (in the corresponding
variables onM). Integrations refer to Riemannian metrics MhandaM that we keep fixed in
the sequel, further to Hermitian metrics in the occurringteebundles. Assume that the Rie-
mannian metric orM induces the product metric @dM) x [0, 1) in a collar neighbourhood
of M. Incidentally we employ ®1, the double ofM, obtained by gluing together two copies
of M alongaM by an identification diffeomorphism. OM we have the space DIftM; E, F)
of all differential operators of ordey acting between sections in the bundEesand F. Then
B*‘X”d(M; V), the space of all smoothing operatorsidrof typed € N, is defined to be the set

of all §
DI o
g=go+zgj( 0 o)

j=1

for arbitraryGg, ..., Gq € B_OO*O(M; v) and DI e Diffj(M; E, F). To introduce the space
of Green operators oM we first consider an open s& < R"™1 n = dimM, and define

R’é’d (Q x R"=1: k. m; N_, N+), the space of all Green symbols of ordeand typed, to be
the set of all

d j
9(y. 1 = Go(y. m + Y 9j (y. m) ( a(t) g )
j=1

for gj(y. ) € R0 x ROk mi No Ny ). HereR®(2 x R™1; k,m; N_, Ny) >
g(y, n) is given by the conditions

ay.m e SH(exRHL2(Re ) ach S(R CM)ac),
g*(y.m) e sg,(ssz”—l; L2(R+,(Cm)@CNﬂS(E_,_,Ck)@(CN*),

X = (y,t) is the splitting of variables in local coordinates n@ (cf. analogously Defini-
tion 4), andk, m, N_ and N are the fibre dimensions d&&, F, J~ and J*, respectively.
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Now Bg’d(M; V) is defined to be the set of all operators of the fofig+ C for arbitrary
¢ e B~°4(M;v) and operatorgjg that are concentrated in a collar neighbourhood bf
and are locally finite sums of operators of the form @pfor certaing(y, n) € R’é’d(Q X
RM1: k m; N_, N+). The pull-backs refer to chartd — Q x R+ for coordinate patched
neardM and trivializations of the involved bundlesj§ concentrated neaxM” means that for
certain functionsp, ¥ € C°°(M) that equal 1 in a collar neighbourhood @ and 0 outside
another collar neighbourhood 6M we haveGg = MyGoMy, cf. similar notation in (92)
below.

Finally, letL% (2M; E, F), for E, F € Vect(2M) denote the subspace of dile L (2M;
E, ﬁ) (classical “in&-variables”) pseudo-differential operators oM 2of order . acting be-
tween sections of the bundlds, F that have the transmission property with respech kb.
We employ the standard Sobolev spacté&mp(M, BE), Hlf)c(M, E) of smoothness € R
for bundles € Vect(M). “comp” and “loc” are understood in the senbl@omp(M, E) =
Heomp(2M. E) [y, Hgc(M. E) = HR (2M. E)|, for any E < Vect(2M) with E = E|.
For everyA e Lf:‘l(ZM; E, F)tr andE = E|y, F = F|y we can form ¥ Aet, where & is
the extension by zero from ikt to 2M and r" the restriction from ® to intM; this gives us
continuous operators

rtAet : HompM. E) — He (M, F)

1
forall s > -3

DEFINITION 9. The spaca8*d(M;v) forp € Z,d e N, v = (E,F; 37, J%), is defined
to be the set of all operators

+ Rt
(84) A=<r€e g)+g

for arbitrary A € L% (2M; E, F),, andg e Bg’d(M; V).

An operatorA € B*4(M; v) induces continuous operators

Héomp(M. E) He ol (M, F)
A: ® — &)
Heomp(9M. J7) Hoe' (aM, J%)

foralls > d— % (which entails continuity betwee@® sections). In particular, i is compact,
“comp” and “loc” are superfluous, and we get continuous djpesa

HS(M, E) HS~(M, F)
(85) A e — &
HS (M, 37) HS=# (M, JF).

The principal symbol structure oA B“’d(M; V) consists of a pair
o (A) = (oy (A), 03(A)),
whereoy, (A), the homogeneous principal interior symbol of ordeis a bundle homomorphism

(86) oy (A) =0y (A) |remyo : 7y E — 7 F,
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for my : T*M\ 0 — M, ando; (A), the homogeneous principal boundary symbol of oyder
a bundle homomorphism

E/®S(R+) F/®S(E+)
(87) oy(A) @ 7 @ — 7 =)
J- J+
for my : T*(@M) \ 0 - 9M. Alternatively,o3(A) may be regarded as a homomorphism
E'® HS(Ry) F'® HST(Ry)
(88) oy(A) 7y @ — 7} @
J- J*

foralls > d — 3, cf. Remark 16. Setting symt®“9(M; v) = {0 (4) : A € B~94(M; v)} there
is a map
op: symbB“’d(M; v) —s BHA(M; v)

with o o op = id on the symbol space. We havgA) = 0= A € B“*Ld(M; v); if M is
compact, the operator (85) is compact when its symbol vasish

THEOREM10. Let M be compact; thept € B494(M; v), v = (Eo. F; Jo, JT), andB €
BY€(M;w),w = (E, Eg; 37, Jg), impliesAB e B“*”’h(M; vow), forh = max(v+d, e), vo
w = (E, F,J-, J+), and we have (AB) = o (A)o (B) (with componentwise multiplication).
An analogous result holds for general M when we replace theposition by.AMgB for a
compactly supported € C°°(M) whereo (AMyB) = o (AMg)o (B).

An operator4 e B*4(M; v) is called elliptic, if both (86), and (87) are isomorphisrtis(
second condition is equivalent to the bijectivity of (88) &l s > max(u, d) — %).

THEOREM11. Let M be compact. Then the following conditions are equiviale
(i) Ae B“’d(M; v) is elliptic,

(ii) the operator (85) is Fredholm for some=ssy > max(u, d) — %

If A is elliptic, then (85) is a Fredholm operator for all s max(u, d) — % and there is a
parametrixP € B*“’(d*“V(M; vfl) of A in the sense

(89) PA-TeB®4M;v), AP-TeB % M;v)
for df = max(u. d), v = (E. E; 37, 37), & = (d - w*,vr = (F. F: JF.37F).

REMARK 20. Ellipticity of A € B9 (M; v) for non-compacM entails the existence of a
parametrixP e B~ (@-m)* (M; v1), where (89) is to be replaced by

MyPMpA— My e B-UM V), MgAMyP — My € B~% (M;v)

for arbitraryg, ¥ € C3°(M) with ¢ = ¢ (and M, My, being the multiplication operators,
containing evident tensor products with the identity maphe respective vector bundles).
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4.2. Calculus on manifolds with exits to infinity

In this paper a manifold! with boundary and conical exits to infinity is defined to be aeth
manifold with smooth boundary containing a submanifGlthat is diffeomorphic (in the sense
of manifolds with boundary) t¢l — ¢, o) x X with a smooth compact manifold with smooth
boundaryY, whereM \ C is compact. Concerning the local descriptions we procemiasiy

to Section 2.3 above. To simplify the considerations wemgs(without loss of generality) that
there is a smooth manifold\ without boundary (the double &) where 2\ has conical exits
to infinity, cf. Section 2.3, with X being the base of the infinite part of2that is diffeomorphic
to (1—e, 00) x (2X). Here X, the double ofX, is obtained from two copies of, glued together
along the common boundaly by an identification diffeomorphism to a smooth closed corhpa
manifold.

To describe the pseudo-differential calculus of boundatyes problems oM we mainly
concentrate oiC; the calculus on the “bounded” part M has been explained in Section 4.1.
If {Gj }j=1,...,N denotes an open covering olR2of analogous meaning as (11), we have the
subsystem{Uj }j=L+1,...,N of “infinite” neighbourhoods. Without loss of generality vean

choose the numeration in such a way tigtn 4M = ¢ for j =L +1,...,B,U; NdM # ¢
forj=B+1,...,N,foracertainL + 1 < B < N. Similarly to Section 2.3 we have charts

%:0; — V), j=B+1...,N

whereVj = {x e R" : [x| > 1—¢, % € le} for certain open setﬁ?jl c 91 n=dim@2m).
We may (and will) assume that; has the form @ for an infinite neighbourhoodj on M,
Uj NaM # @, that is glued together with its counterpartip = 2U; alongU; N aM, where
Xj " Uj NoM — \7J NR"1 and

. 5. . . ~. _n — . P —
(90) Xj .=XJ‘UJ_.UJ—>VJQR+—.VJ, j=B+1,...,N.

LetU c M be a neighbourhood dl that equaIsUj forsomeB +1 < j < N, and

lety : U - V C Ki be the chart corresponding to (90). We ddlla local admissible
neighbourhood and any € C°(U) a local admissible cut-off function oM if ¢ = x*x
for some local admissible cut-off functionain Ri (that is supported itv), cf. Definition 3.
Moreover, the above-mentioned infinite p@t= (1 — ¢, c0) x X of M allows us to define
global admissible neighbourhoods bh namely sets of the forril — ¢, c0) x Y x [0, B) for
some (small)3 > 0, whereY x [0, 8) denotes a corresponding collar neighbourhood’ af
X. Then agp~ € C°(M) is called a global admissible cut-off function & if 0 < ¢~ < 1,

suppp= C (1—§,00) x Y x [0, B), = = Lform e (L, 00) x Y x [o, g) andg (Am) = ¢ (m)
forallA>1,me (R,o0) x Y x [O, %) for someR > 1.

Given a vector bundl& € Vect(M) we fix anE ¢ Vect(2M) such thate = E|M. In Sec-
tion 2.3 we have defined weighted Sobolev spa¢&€ (2M, E) for s, 0 € R. Let HS;Q(M, E)
denote the subspace of alle HS¢(2M, E) with suppu € M. Similarly, denoting byM_

the negative counterpart ™ in 2M, we haveHg;Q(M,, E_)for E_ = E|M7. Let rt be the
operator of restriction to inl = M \ dM, and set

(o1) HSeM, B) = {rfu:ue HSe (2m, )]
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There is then an isomorphism of (91) to the spat®e (2M, E)/HS;Q(M,, E_) which gives
us a Banach space structure on (91) (in fact, a Hilbert spgagetgre) via the quotient topology.
Similarly to (12) we introduce the Schwartz spaeM, E) of sections irE.

Let L4 (2M; E, F),, for E, F e Vect(2M) denote the subspace of dlle L (2M; E,
E) that have the transmission property with respec@Nb Then, if e" is the operator of exten-
sion by zero fromM to 2M, analogously to (4) we fornirAe™ for arbitrary A e Lf:‘l;‘s(ZM; E,
l?)tr and get continuous operators

rtAet 1 HS¢(M, E) — HS He=3(M, F)

forall s > —% andp € R.

In order to introduce the global space of pseudo-diffee¢ritoundary value problems on
M we first introduce the smoothing elements of type 0. EefF e Vect(M), J—,J1 ¢
Vect(dM). Recall that all bundles are equipped with Hermitian metffomogeneous of order
zero in the axial variable of the conical exits). Moreover,M anddM we have fixed Rieman-
nian metrics such that the metric @M is induced by that orM. There are then associated
measuresm on M and ch on 8M. Now B~%%=(M; v) for v = (E, F; 37, J*) is defined
to be the space of all operators

c c HS:¢(M, E) S(M, F)
c_ ( i Cro ) : o R &
21 22 H&Q(BM’Jf) S(HM,J+)

s, 0 € R such thaCjj are integral operators with kernedg, wherecy1(m, m) e S(M, F)®;
S(M, E*), ci2(m, n') € S(M, F)®zSOM, (37)*), coa(n, m') € S(OM, I)®-S(M, E*),
Co2(n, 1) € §(IM, IT)&®,S(OM, (J7)*) and

(Crawy(m) = /M (cra(m m'),u(m’))g dm’

with (-, -)g denoting the pointwise pairing in the fibers Bf etc. Let Diﬁél;‘s(M; E, E) be the
space of all differential operators of ordgron M (acting on sections of the bundl&s that
belong toLéf‘s(M; E, E) (cf., in particular, formula (40)). Then the spae®®-%:=%°(M; v) of
all smoothing operators of tygk e N is defined to be the set of all

d .
Di o
C=CO+ZCJ( 0 o)

=1

for arbitraryC; e B~°-%=°(M; v) andD! e Diff °(M; E, E).
Next we introduce the space of classical Green operatorMpthat is an analogue of
Bé’g;’s(ﬁi; N_, N+), cf. Definition 6. First, for arbitrarg, m € N there is an evident block-

matrix versiont’fl:l“S (Ei; k, m; N_, N+). Every operatog in this space is continuous in the

sense
HS2 (R, CX) HS-I5e- (R, )
Q: ® — ®
HS:e(RN-1, cN-) HS—#e—8(RN—1 cN+)
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fors>d— % If .« and® are local admissible cut-off functionsﬁi, we have

(92) M QMy € BESP Rk mi NZ N ) |

for every Q € Bé’g;’s(ﬁi; k, m; N_, N+), where M,, is the operator of multiplication by
diag(»x®idgm , *|gn-1®iden, ) and similarlyM . Given bundle€, F € Vect(M), J=, It €
Vect(d M), an operator

HS:¢(M, E) HS—He=5(M, F)
(93) Gg: ® — P
HS:e (9M, J7) HS—e=8 (3Mm, JF)

is said to be supported in a global admissible neighbourled6 if there are global admissible
cut-off functions¢, ¥~ on M such thatG = My_GM.,_. Similarly, we say that & e

Bé”g;’s(ﬁi; k,m; N_, N ) is supported in a local admissible seﬂ_iﬁ if Q satisfies a relation
Q = M, OM, for certain local admissible cut-off functionsand®. If x : U — V is

one of the charts (90), we have an associated ghfartU N dM — V N Rn_l, and there are
corresponding trivializations of the bundl&s F and J—, JT, respectively. x gives rise to a

push-forward of operators

HS;Q(RQ_, (Ck) HS_”';Q_B(R[;_, (Cm)
XxMgpGMy ® — ® ;
HS:e(RN—1, cN-) HS—#e=8(RN—1 CN+)

wherek, mandN_, N are the fibre dimensions of the bundEsF andJ~, J*, respectively,
ande¢, ¢ local admissible cut-off functions supported by
Now Bg’_g;‘s(M; v) forv = (E, F; 37, J1) is defined to be the set of all operat@is=
Go + G1 + C, whereC € B~°:%:=%(M; v) and
(i) Goissupported iug1<j<NUj, cf. (90), where

,d;8 (=N
Xj=Megp;GoMy,; € Bg;cl (R+; k, m; N_, N+)
for arbitrary local admissible cut-off functiorg andy;; on M supported iJj, B+1 <
j <N
(ii) G1is an operator (93) that is supported in a collar neighboadthaf the boundary of the
finite partM, i.e.,a(M \E), and it is a Green operator of orderand typed in Boutet de
Monvel’s algebra orM \ C.

It can be easily proved that this is a correct definition; ict,fahe operators in the space

Bé’g;’s(ﬁi; k, m; N_, N+), supported in an admissible setrlﬁr, are invariant under the tran-

sition maps generated by the charts and correspondingliz&fions of the involved bundles.

DEFINITION 10. The spacd%’c‘l’d;‘s(M;v) forueZ,deN §eRandv=(E F;J,

JT), E, F € Vect(M), 3=, 1 e Vect(dM), is defined to be the set of all operators

+ et
(94) A=<r’ge g)+g

for arbitrary A € Lgl;’s(ZM; E. F), With Elm = E, Flm = F) andg ¢ Bé’gf’s(M; V).
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w,d;8

THEOREM12. Every operatoid € B

ous operators

(M;v),v = (E, F; J, J%), induces continu-

HS:e(M, E) HS—He=8(M, F)
A: &) — @
HS:e (M, J7) HS—#e=d (3M, J7)

forallreals > d — % and allp € R. In particular, A is also continuous in the sense

S(M, E) S(M, F)
A & — @ .
S (M, J37) S (M, JT)

This result is an easy consequence of Theorem 6 and Remark 14.

Similarly to the global principal symbol structure of opera on a closed manifold with
exit to infinity, cf. Section 2.3, we now introduce global mripal symbols for an operator

A e BLSOM;v), v = (E,F; 37, 3%) for E, F e Vect(M), 3=, I+ € Vect(¥M). The

principal interior symbols only depend dhin (94). According to formulas (13), (15), (16), we
have(oy (A), oe(A), oy e(A)) for any A LQ;B(ZM; E, F), where

oy (A) 17, E— ajF, my i T*2M)\ 0 — 2M,

oe (K) B — 7iF, 7e: T*(ZM)|(2X)QO — (2X)%,

op.e(R) 7] E —> nf oF . e (TFRMIN\O) [y — @X0%.
Restricting this tdM (and taking for the projections the same notation) we get
(95) oy (A) =0y (A)|rapno  THE — 73 F Ly i TMAO0— M,

(96) oe(A) =0 (A) [y, 1TeE — mEF . e T*Mixy — X
00

o oy.e(A) =0y e (A) |(T*M\0>\xgo 1) oE —> 7 oF
mye: (T*M\0) |X§o — X4

Concerning the principal boundary symbol components wetage

E'®S[Ry) F'®S([Ry)
(98) 0y(A) 1 ) @ — 7} ®

J- Jt

for 7y : T*(@M) \ 0 — 9M, according to the incIusioBgl’d;‘s(M; v) ¢ BHA(M;v), E =
Elsm, F' = Flym, cf. Section 4.1. Moreover, thé-eand (9, € )-components of (44) (in the
correspondingmx k) block matrix-valued version) have a simple invariant megniith respect

to the transition maps from the local representationd oh the infinite part oM. The system of

the local boundary (eand(d, €)-) symbols in the sense of (44) gives us bundle homomorphisms

E/®S(@+) F/®S(ﬁ+)
(99) o (A) 1 1} @ — 7y ﬂi
J- J
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for me : T*(@M)lyy — Y4, and

E/®S(ﬁ+) F/®S(K+)
(100) 05, (A) Ty o ® — T ®
' J- ’ J+

for 7y ¢ : (T*(@M) \ O)lys, — Y&. Note thatS(R4.) may be replaced by Sobolev spaces on
the half-axis fors > d — % cf. analogously Section 4.1. Let

(101) o (A) = (o (A), e(A), oy e(A); 03 (A), o (A), 05 & (A))

for A € Bé‘l’d;‘s(M;v), and set symBé‘l’d;S(M;v) ={o):Ae B’Cﬁ’d;’s(M;v)}. We then
have a direct generalization of Remark 13; the obvious detae left to the reader.
Note that there are natural compatibility properties betwihe components of(A).

THEOREM13. A € B %P (M:v), v = (Eo, F; Jo, 37), and B € BL%2(M; w), w =

(E, Eg; 37, Jo), implies AB e B’c"”’h;‘sw(M; vow) forh = maxv + d,e) andvow =
(E,F; 37, J7), and we have (AB) = o (A) o (B) (with componentwise multiplication).

Theorem 13 is the global version of Theorem 5 and, in factrecticonsequence of this
local composition result.

4.3. Ellipticity, parametrices and Fredholm property

DEFINITION 11. An operatorA € B’C‘I’d;‘s(M; v)forv = (E, F; 3=, JT) is called elliptic
of order (i, 8) if all bundle homomorphisms (95), (96), (97), (98), (99D@Lare isomorphisms.

Similarly to Remark 16, in the conditions for (98), (99), ()Gve may replac& (R4.) by
HS(R4) andHS~#(R..), respectively, fos > max(u, d) — %

DEFINITION 12. Given A ¢ Blc‘l’d;‘s(M;v) forv = (E,F;J~,JF) an operatorP e

Ba“’e; _5(M; vl forv=1 = (F, E; 3%, J7) and some e Niis called a parametrix of4 if

PA—IeB"’O’d“"’O(M;w), AP—IeB"X”d“"X’(M;vr)
forcertaind, dr €N, andv) = (E, E; 37, J7), vy = (F, F; 37, J7F).

Note that the Theorem 13 entait§.4)~1 = o (P) (with componentwise inversion) where
P is a parametrix ofd.

THEOREM14. LetA e B(’:‘I’d;‘s(M; v) be elliptic. Then
HS:e(M, E) HS—1e=3(M, F)
(102) A @ — ®
HS:e (3M, J7) HS—e=8 (3Mm, JF)

is a Fredholm operator for every s max(u, d) — % and evernyp € R, and.A has a parametrix

Pe Bcﬁ“’(d*“)ﬂ"s(M; v~1), where ¢ = max(u, d) and ¢ = (d — w)* (cf. the notation in
Definition 12).
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The proof of this result can be given similarly to Theorem 8tefatively, the methods
of Section 3.6 can also be used to first consteictt)~1 and to formP = Op(a(.A)_l) €
B~1-@=m":=5(M; y=1). Then we geP.A — T € B-1&~1(M; v)) for somee, and we geP
itself by a formal Neumann series argument.

REMARK 21. LetA € Blc‘l’d;’s(M; V) be elliptic. Then we have elliptic regularity of so-
lutions in the following sensedu = f € HS~#e=3(M, F) @ HS~#e=3(3M, J%) for any
s> maxu, d)— 5 ande € Randu € H''~°(M, E)@H":~°(8M, J7),r > max(u, d)— 3,
impliesu € HS¢(M, E) @ HS2(3M, J7).

In fact, we can argue in a standard manner. Compading= f from the left by? we get
PAU = (1+G)u € HSQ(M, E) @ HS2(3M, J7) andGu € S(M, E) ® S(3M, J7) which
yields the assertion.

REMARK 22. From Remark 21 we easily obtain that the kernefia$ a finite-dimensional
subspace of (M, E)®S(dM, J7) (and as such independentsdnde). Moreover, it can easily
be shown that there is a finite-dimensional subspicec S(M, F) & §(3M, J™) such that
imA+N_ = HS"He=8(M, F)@ HS~#e=3(3M, J¥) for all s, where imA means the image
in the sense of (102). Thus indl (the index of (102)) is independent &t~ max(u, d) — % and
ofp eR.

REMARK 23. LetA; € Bg’d?‘*(M; vi), Vi = (E.F; 37, 3%),i = 1,2, be elliptic oper-
ators where4; has the same upper left corner.4s; then there is an analogue of Agranovich-
Dynin formula for the indices indlj, i = 1, 2: There exists an elliptic operatBr e LS;O(aM;

@37, 3 @ J;) such that
indA; —ind Ay =indB.

The idea of the proof is completely analogous to the cormeding result for a compact,
smooth manifold with boundary, cf. Rempel and Schulze [$&ltion 3.2.1.3. The operatBr
can be evaluated explicitely by applying reductions of csadnd weights (cf., also Theorem 22
below) and using a parametrix gf5.

4.4. Construction of global elliptic boundary conditions

An essential point in the analysis of elliptic boundary eahroblems is the question whether an
element

w,d;8

(103) Ac B

(M;E, F)

that is elliptic with respect to the interior symbol tugg, (A), oe(A), oy, e(A)) can be regarded
as the upper left corner of an operator

(104) AeBLEiM:v) for v=(E F;J37,3%)
for a suitable choice of bundles™, J* € Vect(dM) and additional entries of the block matrix,

such thatA is elliptic in the sense of Definition 11. We want to give thengeal answer and
by this extend the well-known Atiyah-Bott condition from][1Atiyah and Bott formulated a
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topological obstruction for the existence of Shapiro-Ltogskij elliptic boundary conditions for
elliptic differential operators on a compact smooth mddifeoncerning the corresponding con-
ditions for pseudo-differential boundary value problerh®outet de Monvel [3]). To formulate
the result in our situation, without loss of generality wesider the casg =d = § = 0. The
general case is then a consequence of a simple reductioderfsptypes and weights, applying
Theorem 22 and Remark 29 below. The constructions for The@above can be generalized

to a given(oy, oe, oy, e)-elliptic operatorA e Bgl’O;O(M; E, F) as follows. Starting point are
the boundary symbols

oy (AN(Y,m) for (y,m) e T*(@M)\ 0,
og(A(Y,m) for (y,n) e T*@M)lyy
g, (M. for (y.m e (T*OM\0) |y, .

as operator families

Ey® L2Ry) — Fy @ LARy),
(in contrast to (98)-(100) we now prefér’(Ry) instead ofS(R.), according to the con-
siderations in Section 3)6 For pointsy € 9dM belonging to the infinite exit to infinity=
(1 —¢,00) x Yoo it makes sense to talk abopyt| > R (this simply means that the associated
axial variable is larger thaR). First there is an obvious analogue of Proposition 4 tharsdo
points(y, n) € T*(@M) fory € (1 — &, 00) X Yoo-

PROPOSITIONG. For everye > Othere exists an R= R > 0 such that
(105) loa (A (y, m) — o9, (A, )| £(EyoL2®,) FjeL2®,)) <
forall |y| > R andn # 0,

(106) HUE)(A)(Y’ n— Ue’(A)(y’ n) H,C(E§,®L2(R+),F{/®L2(R+)) <é
forall |y > R and|n| > R,
(107) ”Ue’(A)(y, 77) - Ua,e’(A)(y, 77)||£(E9®L2(R+),F§®L2(R+)) <é
forall |y] € (1 —¢,00) x Yoo and|n| > R.
COROLLARY 3. There is an R= R; > 0such that
loa (AY(Y, 1) — o (A (Y. n) (B 8L2R, ). FyaL2®,) <
forall |y| = || = R.
Fore > 0 we set
Te={(y,meT*@OM):lyl=In=Re}, De=Tex[0,1]
and

zZl = [y eT*@M):yedM\{lyl > Re+j}, Il = Re},
H = [(ymeT*@OM):lyl=Re, Ifl < Re +j}
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for j = 0, 1, co. Moreover, lelL)} = (Zg Ug HJ )UpDe/ ~, with Ug being the disjoint union and
Up the disjoint union combined with the projection to the gantispace that is given by natural
identificationsT, N Z) = T, x {0}, T N Hd = T, x {1}. Write Z, = 79, H, = HO, L, =10.
Furthermore, for O< v < 1 we setD; ; := T¢ x [0, r] and formLg ; := Z¢ Ug He Up D¢ 7,

0 < 7 < 1, whereUy, is the disjoint union combined with the projection from tdemtification
TeNZe = T x {0}, TN He = T x {r}. We now introduce an operator functiérfm), m € L,
as follows:

(108)  F(y,m a3 (A)Y, n) for m=(y,n € Z,
(109)  F(y,m og (A (Y, 1) for m=(y,n) € He,
(110) F(y, n,9) 8oy (A)(Y, m) + (1= 8)og(A)(y,n) for m=(y.n, ) € De.
We then have an operator family
Fm) : By ® L’ ®Ry) — Fy @ L2Ry)

continuously depending om € L., and F is Fredholm operator-valued, provided> 0 is
sufficiently small. This gives us an index elementjine € K(Lg). For analogous reasons as
above in connection with (70) we form

(111) indg, {09 (A)(Y, n), o (A)(Y, 1)} € K(By),

B, =1L, 0 C T*(@M). The canonical projectiofi*(dM) — M induces a projectiom, :
B, — B¢ where

B :=0M\{ye oM :|y| > Re}.
Given an arbitraryoy, , oe, oy, e)-€lliptic operator (103) we set

(112) Ag = RSP ARC®

for anysy > max(u, d)—%,whereR,s:ofl‘ € BZ’*“’O;O(M; F, F) andREso € BasO’O;O(M; E,
E) are order reducing operators in the sense of Remark 29Safica weight reducing factor
on M of a similar meaning as that in Remark 15. Then we haye Bg’O;O(M; E, F), andAg
is also(ay,, oe, oy, e)-€lliptic. In the sequel the choice of the specific order amipit reducing
factors is unessential.

The following theorem is an analogue of the Atiyah-Bott dtiod, formulated in [1] for
the case of differential operators on a smooth compact midnifith boundary, and established
by Boutet de Monvel [3] for pseudo-differential boundaryueaproblems with the transmission

property.

THEOREM15. Let M be a smooth manifold with boundary and conical exitsnfonity,
E,F e Vect(M), and let Ae B(‘:‘l’d;‘s(M; E. F) be a(oy, oe, oy, e)-€lliptic operator. Then
there exists an elliptic operator (104) having A as the ugp#trcorner if and only if the operator
(112) satisfies the condition

(113) indg, {o3(Ag). o (A} € mFK(Be),

for a (sufficiently smally > 0, 7, : B, — Bg.
If (113) holds, for any choice of the additional bundles, I+ e Vect(dM) in the sense of
(104) we have

(114) indp, {05(A0), 0e (A0} =77 ([I118.] - [I 7 I.])-
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Proof. First note that the criterion of Theorem 15 does not depentherchoice of order re-
ductions. Moreover, such reductions allow us to pass flsgne BS’O;O(M; E,F) and an
associated4dg € (M;v) with Ag as upper left corner to the corresponding operators
A e Bé‘l’d;‘s(M; E,F)andA ¢ Blc‘l’d;‘s(M; v). Thus, without loss of generality we assume
n =d = 3§ = 0 and talk aboutA and.A, respectively. Clearly, the existence of an elliptice
B%%O(M:v), v = (E,F;J7,J7), to agiven (oy, oe, oy,,¢)-) elliptic A € B2%OM; E, F)

el cl
implies

(115) indg, {o9(A), o (A} = {[IT1e,] - [I7 1.1}

because the role of the bundlés, JT in the components ooy (A), o (A), 0y.e(A)) is just
that they fill up the Fredholm familiegry (A), og (A), 0y & (A)) to block matrices of isomor-
phisms; combining this with Corollary 3 we get the desiredexrelation. Conversely assume
that (115) holds. Then the construction of an elliptic oparad in terms of A takes place on
the level of boundary symbols. In other words, the Fredh@mifies have to be first completed
to block matrices of isomorphisms. This can be done when s@iatlude (110) into the con-
struction, in order to deal with continuous Fredholm faesl|iand then drop the “superfluous”
part onD;. Thus the first step to findl is to fill up F(m), m € L, to a family of isomorphisms

0,0;0
Bcl

E/ L2 F/ |_2
Fay = ((F Ky SO e
=L tm om ) d o
Jy Jy

m € L.. Here we employ the fact that the additional finite-dimenalovector spaces corre-
sponding to the entrieg(m);; fori + j > 1 are fibres in some bundleks™ and J* on By,
using the hypothesis oR(m), further local representations with respectytos B, and the
invariance under the transition maps. Similarly to the labaory we findF(m) (locally) in
form of DOO(R; k, k; N—, Nyt)-valued families (herek is the fibre dimension both d& and

F, and N are the fibre dimensiond®, and we employ a corresponding generalization of the
notation of Section 3.1 tok(x k)-matrices in the upper left corners), smoothly dependant o
(y,n) on Zg or He. In this constructiore > 0 is chosen sufficiently small, i.eR = R large
enough. The construction so far givesajg.A)|z, andog (A)|n,. Extendingoy(A)|z, (by
Kk)-homogeneity) for alh # 0 andog (A)|H, (by usual homogeneity) for ally| > R we get
a3(A) andog (A) everywhere. Next we formr o (A) = og(03(A)) = oy(og(A)). Thus
we have an elliptic symbol tuple(A) := (oy (A), oe(A), oy, e(A); 05(A), 0 (A), 05 & (A)),
where the first three components equal the given ones, namgiyd), oe(A), oy e(A)). By

virtue of o (A) € symtBSl’O;o(M; v) we can apply an operator convention

op: symlBS[O;O(M; V) —> BS{O;O(M; %)
to getA itself. |

REMARK 24. As is well-known for compact smooth manifolds with boandthere are in
general elliptic differential operators that violate théy&h-Bott condition. An example is the
Cauchy-Riemann operatéy in a disk in the complex plane. One may ask what happenafor
say, in a half-plandz € C : Imz > 0}. In this case the Atiyah-Bott condition is, of course,
violated, too, but the operatE& is worse. In fact, there is no constang C such that + 97 is
(oy, ge, oy e)-€lliptic, such that also for that reason there are no gleligitic operatorsA in

the half-plane withry, (A) = oy, (02).
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5. Parameter-dependent operators and applications

5.1. Basic observations

As noted in the beginning the theory of pseudo-differerimindary value problems on a man-
ifold with exits is motivated by a number of interesting a@pgtions. In this connection bound-
ary value problems appear as parameter-dependent opfnaiities, where parameteise R
are involved like additional covariables in the symbols! édsential notions and results have
reasonable analogues in the parameter-dependent casgh ttheere are some specific new as-
pects. The parameter-dependent ellipticity that we foateubelow is also of interest for the
(non-parameter-dependent) algebras themselves, inssfare shall see, they provide a tool to
construct order reducing elements within the algebras iaresparent way.

First we have a direct analogue of the symbol classes wittiahemission propertﬁé‘I (Q X

Ry x RQ,JKI )tr' cf. Section 2.2, whergis to be replaced bg, 1). Concerning symbol estimates,
the parameter-dependent case is not a new situation; masti(1) we admitted independent
dimensions ok- andé-variables, anyway. Similarly, we can talk about weightgaiisol classes
SW‘S(RQ X R’S‘K' ), whereg in the estimates (7) is replaced i 1). The material of Section 2.3

on weighted symbols that are classicakiandé has an evident parameter-dependent analogue,
in other words, we have the symbol classes

(RQ « R )

(116) gL ot

C|é<-')t;x

including the {£-dependent) principal symbols
(@) = (oy (@)X, £, 1), 0e(@) (X, £, 1), oy e(@) (X, &, 1))

for all a(x, £, 1) belonging to (116), withry (@)(x, £, ») being given orR" x (R™! \ 0),
ge(@(x, &, 1) on R" \ 0) x R™! andoy e(@)(x, £ 1) on R"\ 0) x (R™!\ 0). We set
LEP RV R = {Op@ () s ax, 6, 1) € sg;‘i.x (R? x R™)}, where O is a bijection be-

tween the parameter-dependent symbol and 6perator spaabif, 5 € R. Then, in particular,
Lfoogfoo(Rn; RI) _ S(Rl, [ —00;—00 (Rn)) i

whereL =% ~%(R") is identified withS(R" x RM).
If M is a manifold with exits to infinity in the sense of Section,2:@ also have the global

spaces of (classical) parameter-dependent operhlgﬁlés(M; E, F; ]R') for E, F € Vect(M).
(Clearly, there is also the non-classical context, but watwaemploy homogeneous principal
symbols; thus we content ourselves with the classical cd$e) parameter-dependent homoge-

neous principal symbols fok Lf:‘l;‘s(M; E, F; ]R') are bundle homomorphisms

117)  oy(A:imlE—7iF, 7y (T*MxR)\0— M,
(118) oe(A) 1 TEE — mgF . me:T*Mixy xR — X4,
(119)  opeA) 7] E— 75 F, wpel (T*M xR\ 0y — Xuo,

here, 0 mean&, A) = 0.
Notice thatA e L’C‘l;‘s(M; E,F: R') implies A(xg) € L’C‘l;‘s(M; E, F) for every fixedig €
R Clearly, the associated principal symbels(A(1g)), oy, e(A(rp)) do not depend oRg. In



Boundary value problems 349

this connection we also call (117), (118) and (119) the patarrdependent principal symbols
of A(A). EveryA(L) € Lf:‘l;‘s(M; E,F: R') gives rise to families of continuous operators

(120) AL HSQ(M, E) —s HS He= 3\ F)
foralls, o € R. Letv > p and set

(A forv >0,

(121) b () = { (MH~V forv <O.

We then have the following result:

THEOREM16. Let A(A) € Lgl;’s(M; E, F: R') be regarded as a family of continuous op-
erators
AL : HS€(M, E) — HS™V:ie—8(M, F)

for everyv > u. Then there is a constant m 0 such that the operator norm fulfils the estimate
(122) ”A()‘)”[,(HS;Q(M,E),HS*WQ*B(M,F)) < mby, ()

forall A eR.

We have no explicit reference for this result, though theopi® not really difficult; so the
details are left to the reader.

An operatorA(L) € Lé‘l;‘s(M; E, F; R') is called parameter-dependent elliptic if (117),
(118) and (119) are isomorphisms.

THEOREM17. Let A(A) € Lf:‘l;‘s(M; E, F;R') be parameter-dependent elliptic. Then
there is a parameter-dependent parametrig Pe La’“_‘s(M; F.E:R'),ie,

PMAM) — 1 € L™ "°(M; E, E;R'), AMPR) —1 € L™%"®(M; F, F;R).

Moreover, there is a C- 0 such that (120) are isomorphisms for gl] > C and alls o € R.

The proof of the first part of the theorem is straightforwdhe, second assertion is a direct
consequence.

Next let M be a smooth manifold with smooth boundary, not necessamitypact. There
is then a direct parameter-dependent analogue of the diasewdo-differential boundary value
problemsBl‘*d(M; v), cf. Definition 9, namely

(123) B~4(M; v; R).

To define (123) we simply have to replace the ingredients4)fl§g the corresponding parameter-
dependent versions A(%)et andg (1), respectively. HereA(x) e L (2M: E, F; R ) With
obvious meaning of notation (recall that “cl” here only mednlassical” in the covariables,
though M may be non-compact) and(r) € Bg’d(M; v; R'), also being defined along the
lines of the class without parameters (all symbols simplgtaim A as extra covariable, i.e.,
(&, ) instead oft in the interior andn, 1) instead ofy near the boundary), and the parameter-
dependent smoothing operators are given by

(124) B4 (M;v;RN) = SR, B~9(M; v)),
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whereB~4(M; v) is equipped with its standard Fréchet topology.
For A € Bl"d(M; v; R') we have parameter-dependent homogeneous principal symbol

namely
(125) GW(A)Z]T?ZE—)JT:ZF, my 1 (T*M le)\0—> M,
(126) 09(A) i i E — 7iF, w1 (T*OM) xR)\0— oM.

Ae B“’d(M; V: R') implies.A(Lg) € B*9(M; v) for every fixedrg € R, and we call (125),
(126) the parameter-dependent principal symbolsiof) if we want to distinguish them from
the usual ones afi(1q) that are independent ag.

An element4 € B~9(M; v; R') is called parameter-dependent elliptic if (125), (126) are
isomorphisms.

THEOREM18. Let A € B*9(M;v; R') be parameter-dependent elliptic. Then there is

a parameter-dependent parametX € B*"O’(d*“V(M; v 1 ]R') in a similar sense as in
Remark 20; here, the remainders are smoothing in the send24y.

The proof is similar to that of Theorem 14 above.

THEOREM19. Let M be a compact smooth manifold with boundary, andilet prd (M;
v; R! ) be parameter-dependent elliptic. Then there is & © such that

HS(M, E) HS=H(M, F)
AR ® — @
HS (9M, 37) HS=# (9M, JF)

are isomorphisms for ali,| > C and all s> max(u, d) — %

Theorem 19 is a direct corollary of Theorem 18.

REMARK 25. In the cases that we discussed so far in the parametendept set-up (i.e.,
“closed” manifolds with exits to infinity or smooth compactanifolds with boundary), where
elliptic operators induce isomorphisms between the Setspaces for largér|, we can eas-
ily conclude that the inverse maps belohgvise to the corresponding algebras in the non-
parameter-dependent sense (as such they are reductiondeo$ i the algebras). It suffices
to observe that when-£ {smoothing operatdiin one of our algebras is invertible, the inverse is
of analogous structure and can be composed with the paiianieliis can even be done in the
parameter-dependent framework for lafe such that, in fact, the inverses for larig¢ are also
in the corresponding parameter-dependent class.

5.2. Boundary value problems for the case with exits to infirty

In the preceding section we extended some “standard” pseifféoential algebras to the pa-
rameter-dependent variant, namely the algebra on a “clasadoth manifoldM with (coni-
cal) exits to infinity and the algebra of boundary value peafid with the transmission prop-
erty on a smooth manifold/ with boundary (compact or non-compact). Now we formulate
the calculus on a smooth manifol with boundary and (conical) exits to infinity. In other
words, we extend the material of Sections 3.2, 3.3, 3.4,36,4.2 and 4.3 to the parameter-
dependent case. This is to a large extent straightforwardyes content ourselves with the
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basic definitions and crucial points. Let us consider thampater-dependent variant of symbol
and operator spaces of Section 2.4 that is an operatorevgleieeralization of the correspond-
ing scalar symbols and operator spaces, respectivelyegsatie studied in Section 2.3. Simi-
larly to the remarks in the beginning of the preceding sedfi® essential constructions for the
operator-valued symbols with parameters are practichflysame as those without parameters.

In particular we have the parameter-dependent spacesrdfcﬂysf‘d) (Rq x RIt E, E) =
St

(cl) (Rq x R9; E, E; R') based on strongly continuous groups of |somorph|sf,|en[9,TE]R+
on E, {kr};er, ON E, and the parameter-dependent spaces of pseudo-diffdreprators
L(cl (RY; E, E; R') or L(cl)(M E, E: R') In the latter operator spacé is, of course, a
“closed” manifold with conical exits to infinity. Let us exame the behaviour of the opera-

tor norm with respect to the parameterin the present situation the corresponding analogues of
estimates (122) refer to global weighted Sobolev spaces

(127) WSe(M, E)

(on a closed manifold1 with conical exits to infinity) that are defined as subspadea/éc(M,
E) locally modelled by(y) @ WSRY, E)|r for g = dim M and suitable open subsdisc RY
that are conical in the large (recall that the global weidisigacedd 3¢ (M) in Section 2.3 have
been introduced by a similar scheme). Recall that for styoogntinuous groups of isomor-
phisms{xs};cr, onE and{k:};cg, ON E there are constant& and K, respectively, such
that

leellee <. lerllg @) <@

1
for all T € Ry and certain constants ¢ > 0; (r) = (1+ rz)i.

THEOREMZ20. Let A(L) € L’(‘cl’)s(M E.E; R') be regarded as a family of continuous op-
erators _
AR : WSE(M, E) — WS™Vie=8 (M, E)

for somev > u. Then there is a constant m 0 such that the operator norm fulfils the estimate

”AO‘)Hﬁ(ws;g(M’E),Ws—v;gfs(M’E)) <mb D +K+K, v+K+K()“)

forall A e R!, cf. (121).

For the case of compadtl (and space3VS(M, E) = wsOMm, E)) a similar theorem is
proved in Behm [2]. This extends to the non-compact caseamitiical exits and weighted spaces
in a similar manner as in the scalar situation; for the c@wading technique, cf. Dorschfeldt,
Grieme, and Schulze [5] and Seiler [32].

Let us now return to the case of a smooth manifsldvith boundary and conical exits to
infinity. First, there is the space

(128) goo.di—oo (M; Vi R') =8 (R' ; goodi—oo v))

for v = (E, F; J—,J+) of parameter-dependent smoothing operators Mn using
B4~ (M: v) in its canonical Frechet topology.
Another simple ingredient of the class

(129) BH:d:é (M; Vi R')
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that will be defined below is the space of all operator farsitieA(1)et, where
(130) A0 e LY? (2|v|; E F R')t .
r

Here, “clI” means classical in covariables and variableshelbcal representations on conical
subsets oM the transmission property including parameters witheesppdM has been de-
fined in Section 5.1; the interpretation of the weigtdt infinity is the same as in Section 2.3.
Furthermore, we have a direct analogueBé‘fd;‘s(Ki; k,m; N_, Ny), cf. them x k block
matrix-version of Definition 6 in the parameter-dependexses namely

Bgl’d;'S (ﬁi; k, m; N_, Ni; Rl) .
An inspection of all ingredients shows that (except randC in equality (38) that we al-
ready defined above) the only new point is to replace the andgifunctiona(y, n) in (38) by
a(y, n, 1) from the spacéz’c‘l’d;‘s(R”—l x R"M1: k. m; N, N4, the parameter-dependent
m x k-block matrix version of the corresponding space in Definits. Finally, we get (129) by
a straightforward generalization of the constructionsdefinition 10. In fact, only the above-
mentioned ingredients are involved, except for evidenaiiance properties (under transition
maps) of corresponding subspaces of parameter-dependegrn Gperators and localization by
admissible cut-off functions (those are the same as fordse without parameters). Summing
up we have introduced all data of the following definition.
DEFINITION 13. The spaceB(’:‘l’d;‘s(M;v; R)forp e Z,d e N, § € Randv =
(E, F; 37, J7) is defined to be the set of all operator families

+Ro0et
(131) AG) = ( ' A(ome g >+Q(A),

A € R, for arbitrary A(A) Lg;S(ZM; E.F:R), with Ely = E,Flm = F) andg(n) €
W, di8 ol
Bg i (M;v; R').

REMARK 26. By definition we havﬁgl’d;'s(M; v;R') ¢ B-9(M; v; R') where the right

hand side is understood in the sense of (123).

Applying the definition of global parameter-dependent sgtui§117), (118), (119) téh on
2M and restricting them tdM (similarly to (95), (96), (97)) we get the parameter-deperid
principal interior symbols

(132)  oy(A:imiE—ajF. 1y (T"'MxR)\0— M,
oe(A) . —> o F, e . [xa X — R
133 A :TlE *F T*Mixy x R X2
(134)  oyeA i) E— . el (TMxR)\0)y, — X4

A direct generalization of (98), (99), (100) to the paramekependent case gives us the param-
eter-dependent principal boundary symbols

E/®S(R+) F/®S(E+)
(135) 03(A) 7y @ — 7} ®

J- Jt
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for my : (T*(OM) x R') \ 0 — M,

E/®S(E+) F/®S(ﬁ+)
(136) og(A) 11 ® — 1y ®
J- J+

for e : T*(@M)lyg x R — Y4 and

E/®S(R+) F/®S(@+)
(137) oy.e(A): rr;"e, ® — rrg‘,e, ®

Jt

formy ¢ 1 ((T*(@M) x R')\ 0)|y» — Y4 Further explanation to the latter bundle homomor-
: oo
phisms is unnecessary, because the only novelty are thiiceddlicovariables. € R

REMARK 27. A € Bé‘l’d;‘s(M; v;R') implies A(rg) € Bé‘l’d(M; v) for every fixedig €
R, and the symbolsy, (A(r0)), oy, e(A(r0)), 05 (A(Rp)), 0y & (A(Lp)) do not depend ohg. If
necessary we point out that (132), (133), (134), (135), \1387) are the parameter-dependent
principal symbols of4A(%).

REMARK 28. There is an obvious analogue of the composition resurthebrem 13 for
the parameter-dependent case, including the symbol rllerenin the present cas€.A) is the
tuple of parameter-dependent principal symbols (132 1dmilarly to (101).

DEFINITION 14. An operatorA € Bé‘l’d;‘s(M; v; R') is called parameter-dependent ellip-
tic if all principal symbol homomorphisms (132)-(137) aselnorphisms. An operat@ (1) €

Ba“’e; -3 (M; v LR ) for some e= N is called a parameter-dependent parametrix if

PARN) —T e B4 (M v;R),  AWPG) —T € B~O% (M v R
for certaind, dr €N, andv) = (E, E; 37, J7), vy = (F, F; 37, J7).

THEOREM21. Let M be a smooth manifold with boundary and (conical) exitifinity,

and A(M) € Bé‘l’d;‘s(M; v;R'), v = (E,F; 7, J%), be parameter-dependent elliptic. Then

_ —)t =
there exists a parameter-dependent paramefir) € Bcl"’(d W B(M; v—l;R'), where
the types in the remainders are ¢ max(u, d), o = (d — w)™. Moreover,

HS:¢(M, E) HS—He=8(M, F)
(138) AR : ® — ®
HS:e (9M, J7) HS—e=8 (3Mm, JF)

is a family of Fredholm operators of ind&or every s> max(u, d) — % and there is a constant
C > 0O such that (138) are isomorphisms for &l > C.

The basic idea of proving results of this type has been briflgussed in Remark 25 above.
Also in the present situation of Theorem 21 we first constayzhrameter-dependent parametrix
‘P (1) by inverting the parameter-dependent principal symboA¢f) and getP (M) A(L) — 7 =
), AMPO) — I = Cr()r), with smoothing operators in Boutet de Monvel's algebra. By
virtue of (128) it is fairly obvious thaf + {smoothing operatdis invertible in the same class,
such that it can be composed wig(}).
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THEOREM22. Let M be a smooth manifold with boundary and (conical) exitmfinity,
and let Ee€ Vect(M), u € Z,§ € R. Then there exists a parameter-dependent elliptic element

R’é;’s(k) € B(’:‘l’O;‘S(M; E, E; R') that induces isomorphisms

(139) R’é;‘s(k) tHSC(M, E) —> HS™He=8 (M E)

foralls,o e Rand allx € R, and we have g‘s()\)—l € Ba“’o;_‘s(M; E, E;R'). Similarly,

for every J € Vect(dM) andv,§ € R there exists a parameter-dependent elliptic element

R”j;‘s(A) € LE;B(BM; J, J; R') that induces isomorphisms

140 RY0) : HSC(M, J) —s HS—v:e=3(3M, J)
J
foralls,o e Rand allA € R, and we have ByleLz(oM; 3, I;R).
cl

REMARK 29. Combining the latter theorem with Remark 27, by insgrény fixedig €
R into (139) and (140) we get order reducing operators in tiezaipr spaceBé‘l’O;’s(M; E, E)
andLY:%(dM; J, J), respectively.

REMARK 30. The concept of algebras of parameter-dependent opeian also be for-
mulated for more general parameter seéts. RY that have the property € A = ¢ € A for
allc > 1. Examples are

A=R\0, A=R\{a<C}

or single raysA in R9. For suchA all our operator classes have corresponding variants, e.g.
L’C‘l;‘s(M; E,F; A), cf. Theorem 16,85’d(M; v; A), cf. formula (123), etc. The behaviour
of operators in these spaces for smiale A remains unspecified; we assume, for instance,
smoothness in. The parameter-dependent symbols now refex to A, and we have evident
generalizations of the corresponding parameter-depémdigicities and parametrices.

Let us explicitly formulate a corresponding extension oédtem 21 in the version with:

THEOREM23. LetA(M) € Bf:‘l’d“s

dent elliptic. Then there exists a parameter-dependerdrpatrixP (1) € Ba
v—1 A), with the above-mentioned typgsahd d of remainders. Furthermore, the operators
(138) are Fredholm and of indéfor all s > max(u, d) — 1, there is a constant G 0 such that

(138) are isomorphisms for ali.| > C, and we havet~1 ¢ Ba“’(df“)ﬂ*‘s(M; v~L Ac) for
Ac={reA:|r]| =C}

(M;v; A),v=(E,F; 3™, J%), be parameter-depen-
M,(d—u)+;—5(M.

i

REMARK 31. The spaceﬁé‘l’d;‘s(M; V;A), v = (E,F;J7,J7), (as well as the other
operator spaces, e.g., from Sections 4.1 or 5.1) can eastjgheralized to the case of Douglis-
Nirenberg orders (DN-orders) with a corresponding eltipgi the results carry over to the vari-
ant with DN-orders.

The Douglis-Nirenberg generalization refers to represénts of the bundles as direct sums
E=@ak ;Em F =@ _FnJ =ef 3, Jt= ®f_,J;". Operators are then repre-
sented as block matrices, composed with diagonal matricesler reductions oM andaM,
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respectively. The constructions are straightforward, s@wnot really discuss the details, but in
some cases below we need notation. This concerns DN-oetefboundary operators, where

A = ROVAMQ

WIthA(A)EBMdS(M Vi A),v=(E, F; @l e ,@C 13 +), and

1 0 1 0
R*) =< 0 diag(R7 ) ) oM =< 0 dag(Q/ () )
with 1 denoting identity operators referring foand E and order reducing operator families
i i:0 - 3- i
QP elg®(am 37 amiA),  i=1...b,
Vi vj:0 R P =
RV (e L] (aM,Jj,Jj,A), i=1...c,

Bi,vj € R. Such a situation is customary in elliptic boundary valuebtems for differential
operators with differential boundary conditions. In thisticular case all bundlek™ are of fibre
dimension 0, while parametrices refer to the case that thelllatanJr are of fibre dimension 0.
The parameter-dependent ellipticity.d{1) is defined to be the parameter-dependent ellipticity
of A(k) and we get a parameter-dependent parametri@f by P(1) = QMWPMRLM)
When’P(A) denotes a parameter-dependent parametmk(aﬁ

In any case the involved orders are known and fixed. Therefiven (81, ..., Bp) and
1, ---. vo), We set

p,dB

(141) (M:V; A) = {R(A)A(A)Q Loy 0 A0 e BE%M; v, A)}.

_ )T —
Parametrices then belong (by notation)ig"’(d W ‘S(M;v—l; A).

5.3. Relations to the edge pseudo-differential calculus

In this section we want to discuss relations between oumbt#oof boundary value problems
on non-compact manifolds with exits and the theory of boupdalue problems in domains
with edges. Particularly simple edge configurations oacumadels of the crack theory. In local
terms the situation can be described (Hig? \R}) x Q, where@ < RY plays the role of a
crack boundary (for crack problemsR? we haveq = 1), R? is the normal plane to the crack
boundary, andR C R? is a coordinate half-axis corresponding to the intersaaticthe crack
with R2. This situation is studied in detail in Kapanadze and Seh{d4]. A special aspect
of this approach is that the crack boundary is regarded asigm &ndR? \ R+ as an infinite
model cone with the origin dR? as the tip of the cone. More precisely, the cone consists of a
configuration, where two copies B, constitute the slit ifR2 with separate elliptic boundary
conditions on thet-sides. The edge symbol calculus for this situation may garded as a
parameter-dependent “infinite” cone theory, consistinthefcalculus on a bounded part of the
cone near the tip and that in the exit sense elsewhere. Tteedalculus treats both sides of the
slit separately, and its contribution can be formulatecimis of parameter-dependent boundary
value problems in the half-space, together with a locatimatWe now formulate a result that is
typical for this theory. Let

A= > apxy)DED

la|+IBl=m
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be a differential operator i x Q > (x, y), U € R" open, containing the origin, ard € RY
open (for simplicity we assumA to be scalar; the considerations for systems are analagous)
with coefficientsa,g € C°(U x Q). For the edge symbol calculus the coefficients are to be
frozen atx = 0. This gives us an operator family

AN, M= Y ap0 y)DEn’ HY(R]) — HS ™ (RY).
loe|+|Bl=m

Set(kyu)(X) = A%U(AX), A € Ry. Then we have

(142) TA(A(Y. An) = AT oA (AN (Y. )i T

forall » € Ry and ally, ».

Let A be elliptic, and lefr = ('By, ..., ' By) be a vector of trace operatorg) = Ulrn-1,
for differential operators

Bj= Y. blyx y)D$D§
loe|+181<mj

with coefficientsbg[ﬁ € C®(U x @) andmj < mforall j. Assume that the boundary value
problem

(143) Au=f in UNR?, Tu=g on UNR"™1

is elliptic in the sense that the trace operators satisfyShapiro-Lopatinskij condition with
respect toA (clearly, N is known by the problem, e.g., ih is even anch + q > 3, we have
N = T). Let us form

oa ()Y, m) = (AT, M), -, oA (TN (Y, M)

i 1 _
whereon (T, 1) = ' Xjai1ipizm; Dl @ VIDEN? = HSRY) — HM~2(RM1),
s> mj + % Then

1 _
(144) on (Tj) (v, am) = AMF 20, (T)) (v, et
forall » € Ry and all(y, n) € Q x (RY \ 0). We have

(145)  on(A)Y, ) = ( Zigﬁig Z; ) e c (o, B]40 (R}; viR9\0))

with the above-mentioned interpretation of the order ssr;rmt(andyj =-m+mj+ % j=
1, ..., N, while the numbergsj disappear in this ca};,ed = maxj(mj +1),v=(1,10,N).

THEOREM24. Let A = ( .'? ) be ellipticin U x €. Then

e (R
(146) aA(A(Y, ) HS (R]) — N
69:_\|:1Hs—mj -3 (Rn—l)

is a family of invertible operators for ally, n) € Q x (R%\ 0) and all s> max(m, d) — 1, and
we have 6:0 /=
on( A2y, m e (2. By™ 0 (R v iR\ 0)),

cf. the notation in Remark 30 and formula (141).
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Proof. By assumptiorA is elliptic inU x €, i.e.,o4 (A)(X,y,&, 1) # 0 forall (x,y) € U x

Q and (&,n7) # 0. Thus thep-dependent familya(y, n) = Z‘anzm 350, y) DgnlS of
differential operators with respectxqsmoothly dependent oy) is parameter-dependent elliptic
with parameterg e R"~1\ 0 with respect tdoy, oe, oy, e), Uniformly on compact subsets with
respect toy). For similar reasons, the Shapiro-Lopatinskij conditafrthe original boundary
value problem (143), i.e., the invertibility of

_ S(R+)
Ua( _IA_\ )(X/»y,é/,n) :S(R+) — CERT

forall (x',y) € (UNR"1) x Q, (¢',n) # 0, gives us parameter-dependent ellipticity with
parameten € R™\ 0 with respect tdoy, o, ay.¢) (uniformly on compact subsets with respect
to y). Applying Theorem 21 we find for every € Q a constan€ > 0 (which can obviously be
chosen uniformly on compact subsetsctf such that (146) is invertible fgr| > C. Because
of thek; -homogeneity ot (A)(y, n) (i.e., relations (142) and (144)) we get the invertibilify o
(146) for allp £ 0. Concerning the asserted nature of the inverse we can @pplyrem 21. O
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