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BOUNDED SOLUTIONS OF SECOND ORDER
SEMICOERCIVE EVOLUTION EQUATIONS IN A HILBERT
SPACE AND OF NONLINEAR TELEGRAPH EQUATIONS

Abstract. Motivated by the problem of the existence of a solution ofrtbelinear
telegraph equation

Utt + Cuf — Uxx +h(u) = f(t,x),

such thau(t, -) satisfies suitable boundary conditions ow@rz) and|u(t, -)| is
bounded oveR for some function space norin: ||, we prove the dissipativeness
and the existence of bounded solutions dkeaf semilinear evolution equations in
a Hilbert space of the form

U+cu+ Au+gt,u) =0,

wherec > 0, A: D(A) ¢ H — H is self-adjoint, semi-positive definite, has
compact resolvant argl: R x H — H, bounded and sufficiently regular, satisfies
some semicoercivity condition.

1. Introduction

The problem of the existence of a solutio(t, -) of the nonlinear telegraph equation
@ Utt + CUp — Uxx + h(u) = f(t, %),

such thau(t, -) satisfies suitable boundary conditions over a compachatef R and|ju(t, -)||
is bounded oveR for a suitable function space norin ||, leads to the study of the bounded
solutions of evolution equations of the form

) U+cu+ Au+g(t,u) =0,

whereu takes values in a Hilbert spa¢¢. Here,c > 0, A: D(A) ¢ H — H is self-adjoint,
semi-positive definite, has compact resolvant gndR x H — H is bounded and satisfies
suitable regularity conditions. The linear case

3) ti+cu+Au= f(t),

whenc > 0 andA is a positive definite isomorphism, has been considered hgagha and
Temam [6] (see also [14]). They proved the existence of atisolof (3) bounded oveR

in a suitable norm. The positive definiteness/ffs satisfied for the special case (1) when
u(t, -) satisfies the Dirichlet boundary conditions. The case ofrhiun or periodic boundary
conditions leads to a semi-positive definAeand is more delicate. This is the one considered in
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362 J. Mawhin

this paper, which essentially summarizes [1], and intredlt1], where complete proofs can be
found.

In Theorem 1, we prove that, P denotes the projector onto kAr then equation (2) is
dissipative, when the condition eémi-coercivity

(gt,uw),u) > a|Pul = B|(I — P)ul -y,

holds for all(t,u) € R x H and some positive, 8, y. Notice that this assumption is a con-
sequence of the previous onesHf = 0. In Theorem 2, we show that the dissipativeness of
equation (2) implies the existence of a solutiosuch thatu and u are bounded oveR in a
suitable norm. Theorems 1 and 2 are used to prove, in Theorem@&cessary and sufficient
condition for the existence of a bounded solution of (3) wiAea semi-positive definite.

The proofs of Theorems 1 and 2 require a preliminary studh@fQauchy problem for (2)
and (3), which is done in Section 3.

For the nonlinear telegraph equation (1) with Neumann bagndonditions irx, with
T
sup f2(t,x)dx<+oo,
teRJO

andh such that
h(—oc0) ;== lim h(z), h(+o0) ;== lim h(2),
Z—>—00 Z—+00

exist, the existence of a solutiarit, X) such that

T
sup [u(t, x)2 + ux(t, x)2 + ut(t, x)z] dx < +o0
teRJO

is proved in Theorem 4, wheh satisfies d andesman-Lazer typondition of the form

1 (7 1 (7
h(—o0) < AL (;/0 f(t,x)dx) <Ay (;/c; f(t,x)dx) < h(4+00),

where AL and Ay respectively denote some lower and upper mean values of redbducon-
tinuous function introduced by Tineo [15]. Such a conditeas introduced for a second order
ordinary differential equations in [12, 13]. We end the papé&h some applications to other
partial differential equations or boundary conditions soyne remarks about situations where

h(—o0) = h(4+00).

2. Fundamental assumptions and concept of solution

Let A be alinear self-adjoint unbounded operator in a Hilbertspé, such that, for each < 0,
(A=x1)~1: H - H exists and is compact. We consider the class of evolutioaténs in the
spaceH of the type (2), where > 0 andg : R x H — H is continuous, Lipschitz continuous
with respect to the variablg, i.e.,

(4) lgt,x) —gt, )| < LIx—yl,
forsomelL > Oand allx,y € H,t € R, and bounded, i.e.,

sup  |g(t,u)| < 4o0.
(t,u)eRxH
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Here| - | denotes the norm associated to the scalar pro@dugton H.

If {A\n} denotes the sequence of eigenvalueé afith corresponding eigenvectofgn}, so
that

O<ip=i2=<--=An=--, nlmwkn=+oo,
we consider the subspace ldf
Vii={ueH: Z)m(u,(pn)2 <400y,
n=1
endowed with the product
o
U v1:= Y An(U,gn)(®,¢n), (U veEVY,
n=1
and the associated pseudonorm
1/2
1= uw?.  ueVy.

If P denotes the spectral projection froh onto kerA, V1 is a Hilbert space for the scalar
product

5) (U, v)1+ (Pu, Pv).
We will use the fact that there exists a constBnt 0 such that
®) ul? < R®[ju? + Pui?],

forallu e Vj.
We denote byBC(R, H) the set of all continuous functionfs: R — H such that

sup| f(t)] < +oo0,
teR

and byBC(R, V1 x H) the set of all continuous functiorg, v) : R — V; x H such that

sup[|u() 2 + |Pu®) 2 + o(®)?] < +oo.
teR

We say that a functioh € BC(R, H) has abounded primitivef

t
/ h(s)ds
0

and denote b P(R, H) the set of those functions. The special cdBEXR, R) andB P(R, R)
will be used as well.

This functional setting allows us to make precise the coneépolution of Eq. (2) we are
using in this paper.

sup
teR

< +00
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DEFINITION 1. We say that ) is a solution of Eq. (2) if
ueCR, V1) NCYR, H)

and for eachw € Vq one has
7 ¢ t d t t t, u(t =0
(1) W(u( ): w) + C (UD), w) + (UM, w1 + (9L, u(t), w) =

in the sense of distributions, or, equivalently

d? d 12 12
W(u(t),w)—i—ca(u(t),w)—l—(A u), A w)—l—(g(t,u(t)),w):O.

DEFINITION 2. We say that a solutiont) of Eq. (2) isboundedor bounded on the whole
line) if (u, ) € BC(R, V1 x H). We say that a solution(t) of Eq. (2) isbounded in the future
if, for each p € R, one has

sup|u®) + [Pu®) 2 + Ju(t) 2] < +oo.
t>tg

A case in which all the solution of Eq. (2) are bounded in ther is when the equation
is dissipative. Among the various notions of dissipatiwnehich exist for evolution equations
(see[3,7, 8,9, 16]), we use the following one.

DEFINITION 3. The equation (2) is calledissipativef there exists a constant > 0 and a
map T: Rt — R* such that, for each M- 0, each § € R, and each solution @) of (2) with

lu(to)[? + |Puttp)|? + |u(te)|> < M,

one has
u®)12 + [PU®)? + )12 < p,

forallt > T(M) + tg.

3. The Cauchy problem

Under the assumptions of Section 2, let us consider thalniiue problem
(8) U+cu+ Au= f(t), (teld), u(tp) =ug, U(tg) = vp,

where J is a bounded interval iR, f € L2(J, H), tg € J, Up € V4 andvg € H. Itis well
known that the problem (8) has a unique solution (see [14Prd®f can be based on Galerkin’s
method, from which, using the classical theory of ordinaffecential equations and Gronwall’s
Lemma, one can deduce not only the existence of a uniquea®olut, i) € C(J, Vy x H) of
Eqg. (8) and its continuous dependenceugn vg and f in the strong topologies d¥, H and
L2(J, H), but also its continuous dependence in the weak topologies.

LEMMA 1. Let u(t) be the solution of Eg. (8) and leht) be the solution of

+cu+ Au= fn(t), (ted, u(tg) = Uon » U(to) = von »
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where f, € L2(J, H). Assume that
Uon — Ug weakin\{, won — vp weakinH, fn— f weakin2(J, H).
Then, foreach &€ J,
un(t) = u(t) weakin{, uUp(t) —u() weakinH.

The following lemma is useful to construct Lyapunov funngolt follows from the similar
result for the Galerkin approximations, and a limit process

LEMMA 2. Let u(t) be a solution of Eq. (3) and define
n(t) = lu®)|? + 2 (u(t), Ut)) + 2]at)12 + 2u®)|2.

Theny € Wh1(J; R) and

2
n(t) = —2¢ [|U(t)|2 +lu? - <f<t>, Suc) + u(t))}
in the sense of distributions on J.

Remark that the derivativi(t) can be understood in the classical sense (ﬁEd:l(J)) as
soon asf (t) is continuous.

Let us consider the initial value problem
©) U+cu+ Au+g(t,u) =0, (teld), u(tg) =ug, U(tg) = vp,
whereJ is a bounded interval i, tg € J, ug € V1 andvg € H. Let us assume thak and
g(t, u) satisfy the hypotheses in Section 2. Under these condijttbesproblem (9) possesses
a unique solution which is defined ih (see e.g. [14]). The following proposition shows its
continuous dependence in the weak topology.

LEMMA 3. Let u(t) be the solution of Eq. (9) andywbe the solution of the same equation
with initial conditions w (tg) = ugp, Un(tg) = vgn. Assume that

Ugn — Up weakinVf, von — vg weakin H,
Then, foreach € J,

un(t) = u(t) weakin\f, Un(t) = u(t) weakin H.

4. Dissipativeness

Let us consider the evolution equation (2) and assume thtteahypotheses stated in Section
2 on the operatoA and the functiong hold. The dissipativeness of (2) will follow from a
semi-coercivity condition upog.
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THEOREM1. Assume that there exists 8, y > 0 such that
(10) (gt,u),u) > a|Pul - B|(I = P)ul -y,

forall (t,u) e R x H. Then Eq. (2) is dissipative. Moreover, there exjsts 0 such that if ut)
is a solution of Eq. (2) and

u(to)2 + |Pu(tp)|2 + [u(tg) |2 < p?

for some ¢ € R, then
U2 + Pu®)? + Ju)? < p?
forallt > tg.

Proof. The expression

1/2
I, )l = (U + 260U, v) + 2vf2 + 2Julf)

defines a norm i1 x H equivalent to the usual one, and can be used in Definition & Th
function
n() = llu), )l

is differentiable (see Lemma 2) and
2
H(t) = —2¢ [|u(t)|2 +u®? + - (gt, u()), Uct)) + (g(t, uct)), u(t))} )

From the boundedness gfand from inequality (6), we obtain that

2M
(11) nt) < -2c [Illl(t)l2 + IU(t)If s [a) |+ a|Put)| — BRIUt)|1 — )’] .

Using the fact that
: > o 2M
lim X“+y"— —IX| +alzl = BRIy —y | = +o0,
[X]+1yl+]z]—>00 c
it follows that there exisp, § > 0 such that
12) M =p> = M <-s.
We deduce from (12) that there exists- tg such that

T <ty+ max{o, 51 (n(to) — ,02)} ,
and
lu(),u@Nl < p.
Now, we assert that
l(u®), at)Hll < o,
for allt > 7. Otherwise there must exist > t such that
. 2
[ (uct®), ac")) = = p?
and
luct), a2 < p2,
forallt € [r,t*). In consequencej(t*) > 0, a contradiction with (12). |
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5. Bounded solutions

We use the results obtained in Section 4 to prove the existehea solution of Eq. (2) that is
bounded on the whole line.

THEOREM2. If Eq. (2) is dissipative, it has a solutionty such that
(13) (u,u) € BC(R, V4 x H).
Proof. Letun(t) be the solution of Eq. (2) with initial conditions
un(—=n) =0, Upn(—n)=0.
By definition, there exist3, p > 0 such that
(14) un®IF + [Pun (1 + lin ()% < p,

forallt > T —n. We can assume, without loss of generality, that there £uigte V; and
vo € H such that

un(0) — ug weakinVy, Un(0) — vg weakinH.
Let u(t) be the solution of (2) with initial conditions
u0) =ug, U =vg.
Lemma 3 applies and we obtain for each R
Un(t) — u(t) weakinVq, Un(t) — u(t) weakinH.
Moreover it follows from (14) that
UM + IPU®I? + a1 < p,
for all't € R, and therefore (13) holds. |

We make a first use of Theorem 2 to prove the existence of a leolswlution of the linear
equation (3) wherd € BC(R, H), a problem studied in [6, 14] whery > 0. In the resonant
caseir; = 0, an additional hypothesis is required. We treat both castse following Theo-
rem 3, whose proof requires a result of Ortega [12] on secodeérdinear ordinary differential
equations, that we include here for completeness.

LEMMA 4. Let p: R — R be continuous and ¢ 0. Then the equation
(15) y'(O) +cy' (1) = p(t)
has a bounded solution if and only ife B P(R, R).

Proof. Necessity. Lety be a bounded solution of Eq. (15) (iyandy’ are bounded o), and
set

t
(16) P(t)=/ p(s)ds.
0
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Then
Y =y 0 +cly®) - y©] = P),
and soP is bounded.
Sufficiency. Letp € B P(R, R) and consider the equation

a7 u'(t) +cut) = P(t),

whereP is defined in (16). By a classical result (see e.g. [4]), dqudil7) has a unique bounded
solutionU. From the equation, we see immediately thtis also bounded. A® e C1,
U e C1, and satisfies the differential equation (15). |

THEOREM3. If A1 > 0, all solutions of Eq. (3) are bounded in the future and Eq.h@ a
solution ut) which satisfiegu, i) € BC(R, V1 x H). If A1 = 0, the same statement is valid if
and only if

(18) Pf e BP(R, kerA).
Proof. If A1 > 0, condition (10) withP = 0 holds forg(t,u) = —f(t) takinge = 1, 8 =
supcr | f(1)], y = 1. Consequently, Theorems 1 and 2 apply.

If .1 =0, andm = dimkerA, let H:= spafiYmi1, ¥m+-2, - - - } be the orthogonal comple-

ment of kerA. The restrictionA of the operatorA to H N D(A) is positive definite and we can
apply the first assertion to deduce that the equation

ti+cu+ Au=( —P)f@t)
has a bounded solutidi(t) which satisfies
(U, U) e BC(R, Vq x H)
whereV; = V; N H is endowed with the norm - |1. On the other hand, by Lemma 4, the
equation
19) i+cu=Pf()

in the finite dimensional space kArhas a bounded solution, denoted up(t), if and only if
Pf € BP(R, kerA). Now, the functionu(t) = ug(t) + G(t) is a solution of Eq. (3) which
satisfies (13). In addition, all the solutions of the autonamequation

i+cu+ Au=0

are bounded in the future and this implies that all the sohgtiof Eq. (3) are also bounded in the
future. Conversely, if Eq. (3) has a bounded solutigt), thenPu(t) is a bounded solution of
Eqg. (19). Because condition (18) is both necessary and igunfifor the existence of a bounded
solutions of Eq. (19), we deduce that (18) holds. |

6. Nonlinear telegraph equation

We use the previous results to study the boundedness ofltiteoss of the nonlinear telegraph
equation with Neumann boundary conditions

(20) Utt + CUt — Uxx + hu) = f(t,x), teR, xe (),
(22) Ux(t,0) = ux(t,7) =0, (teR),
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wherec is a real positive constartt,: R — R is Lipschitz continuous and : R x (0, 7) - R
is a function in the spacBC(R, L2(0, 7)). We also assume thhtis bounded and that the limits

(22) h(—o0) := zjnjoo h(2), h(+o00) 1= ijoo h(z2)

exist. The abstract framework in Section 2 applies in theedakingH = L2(0, 7) and the
operatorAu = —uxy defined in

D(A) = {u € H2(0, ) : Ux(0) = Ux () = o} .

The operatoAl/2 is given byAY/2u = uy and its domain is the spasg = H1(0, 7). Thus, a
solutionof Eq. (20)-(21) is a functiom(t, x) which satisfies

ueC (R, H1(, n)) nct (R, L2(0, 71)) ,

such that, for each € Hl(O, ), one has
d2 T d b4 T
—/ u(t,x)w(x)dx+c—/ u(t,x)w(x)dx+/ Uy (t, X)wyx (X) dx
dt2 Jo dt Jo 0

+ /n hu(t, x)w(x) dx = /n ft, X)w(x)dx.
0 0

The space keA is the space of constant functions @ ), and the spectral projection from
L2(0, ) onto kerA is given by the mean value

1 T
Pu= —/ ux)dx, (u € L2(0,7r)>.
7 Jo
When the functionf (t, x) is 2z-periodic int andx, it is proved in [10, 5] that Eq. (20) has

at least one solutiomi(t, X) 2r-periodic int and x provided the following condition of the
Landesman-Lazer typs fulfilled

27 27
(23) h(—o0) < (zn)*Z/ / f (t, x) dxdt < h(+00) .
0 0
To find a condition similar to (23), that guarantees the exis¢ of a bounded solution of problem
(20)-(21) whenf (t, x) is bounded but not necessarily periodic, we introducéawerandupper
mean valuesf a given functiore € BP(R, R) + BC(R, R) as in [15],

1 t
lim inff —— [ e(r)dr,

AL(e =
L(® r—-+4oot—s>rt—sJg
1 t
Aye) = lim sup — [ e(r)dr,
u (€ H+o<>tfszpr _S/S (r)dz

which both coincide with the mean value if the functieft) is periodic. Elementary consid-
erations show that i€ = e* + e** is any decomposition of ¢ BP(R, R) + BC(R, R) with
e* € BP(R, R) ande** € BC(R, R), then one has

(24) infe** < AL (6) = AL(e) < Ay(e) = Ay (¢") < supe™.

The following result is due to Ortega and Tineo [13]. We imguits proof for the reader’s
convenience.
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LEMMA 5. Letee BP[R, R) + BC(R, R) be a given function and < g real numbers.
Then the following statements are equivalent:

() « <AL(e) < Ay(e) < B.
(ii) There exists a decomposition=ee* + €** with € ¢ BP(R, R), €"* ¢ BC(R, R) and

(25) a < infe™ < supe™ < 8.

Proof. If (ii) holds, then, using (24), we immediately obtain (i).o@ersely, assume that (i)
holds, writee = ¢; + &, withe; € BP(R, R) ande; € BC(R, R), and let

t

Ei () Z/o gWdu, (=12, E@U®=E®+Ext).

If t1,to € R, the Lagrange mean value theorem applie&te E; implies that
(26) |E(t1) — E(t2)| <b+alty —tal,
whereb = 2|E1|_~ anda = |Es| «~. Lete > 0 be such that

a<AL(e) —2 < Ay(e) +2 < 8,
andT > 0 such that

. 1t
tlrs];rm/; e(u)du> AL(e)—G >a+€,

1 t
sup —/ ewdu< Ay®© +¢€ <pB—c¢,
t—s>r t =S Js
whenever > T. Hence we have, for alle R,
1 t+T
27) a+e<?/ ewdu<pB —e.
t
Defining
1 t+T
e (t) = T / e(u)du, e*(t) = et) — e (1),
t

we see thae™ € BC(R, R) and (25) holds. To prove that € BP(R, R), let

1 [T
E*t) = E(t) — ?/t E(u)du.

Then,

’ 1
(E*) ® et) - ?[E(t +T)—EW®]

t+T
et) — % /t e(u) du = e(t) — e (t) = e*(t),

so thatE* is a primitive ofe*. Now
E*(t) = E(t) — E(1)
for somer €]t,t + T[, and hence, using (26), we get
[E*(t)| <b+alt—1|<b+aT,
for all t € R, which shows tha¢* € BP(R, R). O
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THEOREM4. If

1 (7 1 (7

(28) h(—oc0) < AL (—/ f(t,x)dx) < Ay (—/ f(t,x)dx) < h(+00),
7 Jo 7 Jo

then Eq. (20)-(21) is dissipative and has a solutigh, ) such that

g
(29) sup [u(t,x)z+ux(t,x)2+ut(t,x)2]dx < +00.
teR /0

Proof. Since kerA is a one dimensional space, we can use Lemma 5 to deducP thedmits
a decomposition of the for® f = f* + f** with f*, f** ¢ BC(R, ker A) such that

f* € BP(R, ker A)
and

(30) h(—oc0) < inf £**(t) < sup f**(t) < h(+00)
teR teR

for allt € R. Thus we can write
f=f*+f"4+10-P)f,
and by the second assertion in Theorem 3, there exists a bdwwadlutiony(t) of
4+cu+Au=f*O)+U =P)f().

Now, the change of variables= z + ¢(t) reduces the abstract form of problem (20)-(21) to the
equation

(31 24 cz4+ Az+h(z+ @) = F5(1).

On the other hand, it follows from (22) and (30) that theresextwo positive real constangs
andb such that
z(h(2) — f**(t)) > alzl — b

for all z e R. From this, it is not too difficult to show that we have, forale L2(0, ),
(U h@) = %1) 200 ) = aVTIPUI 20 ) — &V/T (I = P)Ul 2(g ) — 7b.

Since we are assuming thath and f ** are bounded, it follows that condition (10) holds. We
deduce, by Theorem 1, that Eq. (31) is dissipative and, bpiEme 2, that Eq. (31) has a solution
z(t) which is bounded in the whole line. Now it is clear thet) = ¢(t) + z(t) is a solution of
Eq. (20) that is bounded in the whole line. |

REMARK 1. The condition (28) is alsnecessaryor the existence of a bounded solution
whenh is such that
h(—o0) < h(2) < h(+0c0)

for all z € R, and hence is a characterization of the dissipativenesg.dB)-(21) for this class
of nonlinearities.
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ExAamMPLE 1. The equation
Ut + CUt — Uxx + arctanu = (u arctart + sintz) (1+7cos &)

with Neumann boundary condition (21) is dissipative andspeses a bounded solution if and
only if

(32) lul < 1.

To prove this fact, note that a primitive of difiis a Fresnel type function and it remains
bounded on the whole line; in consequence, the upper and lowan values of sitf are both
0. On the other hand, the lower and upper mean values of dretan-7 and % respectively.
Thus, the condition (28) becomes condition (32) and Theatemd Remark 1 apply.

The monotone character of the functibnis by no means necessary for the sufficiency
condition, as shown by the following example, whose nomlirterm has, besides @ negative
and m positive zeros, but is chosen to have the same limité@t as the nonlinear term in
Example 1.

EXAMPLE 2. The equation
Utt + CUt — Uxx + % sin[(4m + 1) arctaru] = (M arctart + sintz) (14 7cos k)

with Neumann boundary conditions (21) amd> 0 an integer, is dissipative and possesses a
bounded solution if condition (32) holds.

REMARK 2. Similar results can be obtained for the telegraph equdf6) with theperi-
odic boundary conditions x on [0, 2r]

(33) ut,0) = u(, 2r), Ux(t, 0) = ux(t, 27), (telR),
or for thedamped beam equation

(34) Ut + CUt + Uxxxx+ h(x) = f(t,x),

with the periodic boundary condition& x on [0, 2]

u(t,0) = u(, 2r), Ux(t, 0) = ux(t, 27)
Uxx(t, 0) = uxx(t, 27), Uxxx(t, 0) = uxxx(t,27), ({teR).

REMARK 3. The assumptions of Theorem 4 require thaétoco) < h(+o0) and one can
raise the question of obtaining existence theorems intfgwhereh(—oo) = h(4o00) (for
exampleh(u) = #). The recent paper [11] proposes in particulanethod of weak upper

and lower solutiongor the bounded solutions € L°°(R x T), of equation
Uit + Cur — Uxx = F(t, x, u),
satisfying periodic boundary conditionsxron [0, 2], when

F(t, x,u) — F(t, X, c2
( ) ( v) > —— whenever u>v.
u—v 4
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This approach allows to prove the following existence resul
If h is Lipschitzian with constant

2
C
35 L<—
(35) =7
and if there exists R 0 such that
(36) h(wu >0 whenever |u| > R,

then the problem (20)-(33) has at least one solutian L>° (R x T) for each fe BC(Rx T, R)
such that

1 2
Z/o f(t,x)dx € BP(R, R).

The proof consists in making the change of variable ¢ + v, wherey is the unique bounded
solution of the problem
Ut 4+ Cup — uxx = f(t, x)

which is 2r-periodic inx, (it exists by the second assertion in Theorem 3 and belamgs t
L% (R, T) by Sobolev’s imbedding theorem), and showing that, becafisendition (36), the
equivalent equation

vt + Cvg — vxx + h(e(t, x) +v) =0
admits, if R* > 0 is sufficiently large— R* as a lower solution an&* as an upper solution. It
is an open problem to know if condition (35) can be dropped.
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