Rend. Sem. Mat. Univ. Pol. Torino
\ol. 58, 3 (2000)
Partial Diff. Operators

M. Reissig — K. Yagdjian

ABOUT THE INFLUENCE OF OSCILLATIONS ON
STRICHARTZ-TYPE DECAY ESTIMATES

Abstract. Starting with the well-known Strichartz decay estimate tlee wave
equation we are interested in a similar estimate for wavetions with a time
dependent coefficient. The model under consideration istitietly hyperbolic
equatiorutt —a(t) Au = 0. By the aid of an example we illustrate the deteriorating
influence of oscillations im = a(t) on decay estimates. Moreover we prove, that
in the case of slow oscillations one gets Strichartz-typeageestimates with a
decay rate similar to the classical one.

1. Introduction

To prove global existence results (in time) of small dataisohs for the Cauchy problem for
nonlinear wave equations Strichartz decay estimate [9]spsn important role. That is the
following estimate: there exist constafisandL depending orp andn such that

,n;l(;,;)
@ lut(t. g + 19xUt g < CA+D T 7 P8y
where 1< p < 2,1/p+ 1/q = 1 andu = u(t, x) is the solution to
ut —Au=0, u@0,x)=0, ut0,x =y (x €C§ R").

If one is interested in such estimates gy — a(t) A u = 0, then one has to explain properties
of a = a(t) which take influence on Strichartz-type decay estimates.

In [5] the weakly hyperbolic Cauchy problem
ut—t? Au=0, uX.0=¢(0). utx.0=yx).

was studied and the decay estimates are derived there implypothesis thahcreasing parts
in a = a(t) have an improving influence on decay estimates

To feel the influence of oscillating parts &= a(t) let us consider
2 Ut — (L+esint)?Au=0, ux 0 =eX, U0 =y(X),

with a sufficiently smalle. Although the coefficient is near to 1 in usual topologies;age
estimates are in general not valid. Is this a surprise or h@@pendent of the point of view we
feel, thatoscillating parts in a= a(t) have a deteriorating influence on decay estimates

For (2) this follows from Theorem 1 will be proved in Section2 this regard, we have found it
necessary from the results of [10] to resort to some speeihliepresentation of the coefficient
a = a(t) relating to increasing or oscillating part:

@3) uit — 2(0)%b®2Au=0,

where
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e L = A(t) describes the increasing part,

e b = Db(t) describes the oscillating part.

In Section 3 we give the definition of slow oscillations whidbscribes a special interplay be-
tween both parts. For the case of slow oscillations Strizhigpe decay estimates will be proved.
The main result (Theorem 2) can be applied to (3), where plessiandb are given in the next
examples.

EXAMPLE 1 (LOGARITHMIC GROWTH). A(t) = In(e+t), b(t) = 2+sin((|n(e+t))ﬂ+1),
B €]0,1).

EXAMPLE 2 (POTENTIAL GROWTH). A(t) = (1 +t)%, @ > 0, b(t) as in Example 1.

EXAMPLE 3 (EXPONENTIAL GROWTH). A(t) = exp(t*), « > 1/2, b = b(t) is periodic,
positive, non-constant and smooth.

EXAMPLE 4 (SUPEREXPONENTIAL GROWTH. A(t) = exp(exp(t?)), @ > 0,b = b(t) as
in Example 3.

2. Wave equations with a periodic coefficient

The bad influence of oscillations in the coefficiant a(t) on decay estimates will be clear by
employing Theorem 1. We claim:

THEOREM1. Consider the Cauchy problem
@) Uit —b®ZAu=0, u©0x) =¢x, Uu©x =yX,
where b= b(t) defined orR, is a 1-periodic, hon-constant, smooth, and positive fonctThen

there are no constants, @, C, L and a nonnegative function f defined Nrsuch that for every
initial data ¢, ¥ € C3°(R) the estimate

) Ut (m. g + IVxu(m, 9l < € Fm) (llpllygy + wnwb)
is fulfilled for all m € N, while f(m) — oo, In f(m) = o(m) as m— oo.

REMARK 1. The conditions forf = f(m) are very near to optimal ones. Indeed it is
well-known, that due to Gronwall’s inequality one can prolve energy estimate

Jut(t,)llL, + 1Vxu(t. )i, < C expCob) (llelhyg + 1WlIL,) - t€0.00).

for the solution of (4). Choosing=m,me N, p=qg = 2,L = 1, we obtain an inequality like
(5) with In f (m) = O(m) asm — oo.

REMARK 2. We will construct a special sequengem, ¥m)}men Of data for which (5)
is violated at least for larg®. An interesting question is that for a classification of datata
which allow, don't allow respectively, a decay estimatetfa solution of (4).

Proof. The proof is divided into several steps.
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1. One lemma for ordinary differential equations with a pelic coefficient
Consider the ordinary differential equation with a per@cefficient

(6) wtt + A b(t)zw =0.

Let the matrix-valued functiorX = X(t, tg) depending ork be the solution of the Cauchy
problem

(0 —ab(t)? (10
(7) X = ( 1 0 X, X(tp, tg) = 0 .
Thus, X = X(t, tg) gives a fundamental solution to (6). The matkxt + 1, t) is independent

oft e N. Set
bi1 by )
X(1,0) =: .
€0 ( b1 b

The following lemma follows from the considerations in [Xjdaprovides an important tool for
our proof.

LEMMA 1 ([10]). If b = b(t) is a non-constant, positive, smooth function®mvhich is
1-periodic, then there exists a positivg such that the corresponding matrix(%§ + 1, tg) of (7)
has eigenvaluegg and Mal with |ug| > 1.

2. Lower bound for the energy

We use the periodicity db and the eigenvalugg of X (1, 0) to construct solutions of (6) with
prescribed values on a discrete set. Thus we get lower bdontise energy of the solution on
this set.

LEMMA 2. Letw = w(t) be the solution of (6) with = Ag and initial dataw(0) = 1,
wt (0) = byo/(ng — b11). Then for every positive integer number &N the solution satisfies
w(M) = Ky -

Proof. For the solutiorw = w(t) we have

dew(M) ) _ M ( dew(0)
(Su ) = oxaop ((HuO ).

b1 1
. pno—b11
B:= 1 b21
1

is a diagonalizer foX (1, 0), that is,

0
X(l,O)B:B(’uO ,1>.
0w

The matrix

Hence,

dew(M) by
() () et
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3. Construction of unstable solutions

Let us construct a family of solutior{siy} of (4) with data{(¢nm, ¥m)}. These functions will
violate (5) for sufficiently largeM. They will be calledunstable solutions With a cut-off
function x € CSO(R“), x(X) = Lwhen|x] < 1, x(X) = 0when|x| > 2, let us choose the
initial data

Cixy (X _dxy, (X \_ b2
(8) oM (X) = X(M2>’ Ym(X) = X(M2> wo — by’

Herey is chosen such thaL§/|2 = Ag. Using the theory of the Cauchy problem for strictly
hyperbolic equations there exists a unique solutigh = up (t, x) to (4), (8), whereup (1, -)
has compact support for every giver [0, co). Let B1(0) c R" be the ball of radius 1 centered
at the origin. Assuming (5) we have

13tum (M, ) llLq(B10) + IVxUM (M, ) llLq(By(0)) = I1BtUM, )Ly + [IVXUM, Il

i X
s (5|
M W'p-

<CL f(M)yM2&/pP,

©) <C f(m)

4. The role of the cone of dependence
If we take into account the cone of dependence for the Caunbtylgm (4), then the solution
Upm is representable iB41(0) at timet = M as

(10) UMM, %) =e*Yu(M),  d um(M,x) = e*Yur (M),

wherew is taken from Lemma 2. Indeed, for the $&t, t); |x] < 1, t = M} let us calculate
the lower base dt = 0 of the truncated cone with the slope magy, 1) b(t) and heightM. For
sufficiently largeM this lower base is contained in the ball

B = R" : |x| <2M max b(t
dependM {X € [X] < te[O,):I(.] ( )}

X_

ont = 0. If X € Bgependm, then 2

Bdependm for largeM.

The functione*Yw(t) solves (4) and takes at= 0 the data (8) ifix| < M2. The cone of
dependence property yields (10).

< 1 for large M. Consequentlyx (ﬁ) =1lon

5. Completion of the proof
We obtained

lotum (M, ) llLq(B10) + IVxUM (M, ) liLg(By(0))
1/2
= (lwe (M) + 35 2w (M)]) (measBy (0)*/9.
In view of (9) we have
lw(M)| + [wt(M)| < CL f(M)M2V/P
for all large M. But this is a contradiction to the statement of Lemma 2. THieorem 1 is
completely proved. |
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3. Wave equations with slow oscillations in the time-depereht coefficient

3.1. Classification of oscillations

DEFINITION 1. Let us suppose that there exists a r@ak [0, 1] such that the following
condition is satisfied:

(11) |dtb(t)|<cﬁ(|nA(t))ﬂ for large t,

where A(t) = fé A(s)ds. Ifg € [0,1), B = 1, respectively, we call the oscillatiorstow
oscillations, fast oscillationgespectively. If (11) is not satisfied fgr = 1, then we call the
oscillationsvery fast oscillations

REMARK 3. Very fast oscillations may destray, — L ¢ decay estimates. These oscillations
give us an exact description of a fairly wide class of equeti;n which the oscillating part
dominates the increasing one. In [6] it is shown that one camepin this case a statement
similar to Theorem 1.

REMARK 4. The case of fast oscillations is studied in [7]. We couldwel , — Lq decay
estimates only for large dimensian Moreover, the behaviour df and A and its first two
derivatives has an influence on the decay rate.

The goal of the following considerations is to show that fomsoscillations § € [0, 1) in
(11)) we havel , — Lq decay estimates similar to Strichartz decay estimate (1)

e for any dimensiom > 2,

e with a decay rate which coincides with the classical dects; ra
e with the decay function ¥ A(t),

e without an essential influence of the oscillating part.

3.2. Main result and philosophy of our approach
Let us study
12) ue — A0ZM? Au=0, u@0,x) =¢x, u0x =yX,
under the following assumptions for the positive coeffitieft)2b(t)2:
e it holds
(23) A(t) > 00 as t— oo;
o there exist positive constantg, c; andc such that

MO MO _ MO

(14) =2 < <c—= <
A~ A0 — TA@®

<c(nA)¢ forlarge t;

o there exist positive constantg such that for alk = 2, 3, ... it holds

®

(15) ‘dtkk(t)‘ <o (A(t)

) A(t) forlarge t;
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e with two positive constantdy andd; we have

(16) do <b2(t) <dg  for tel0,o0);
o there exist positive constardg such that foralk = 2, 3, ... it holds
k
an ‘dtkb(t)’ < dy (%(In A(t))ﬁ> for large t.

THEOREM2 (MAIN RESULT). Assume that the conditions (13) to (17) are satisfied with
B €0, 1). Then for everg > 0 there exists a constant.Guch that the decay estimate

n—l(l 1

Ut g + IO VU, )il < Ce@+ Ay ™2

-3) (Il en + 1wy )

holds for the solution u= u(t, x) to (12). Here L= [n (% - %)] +1,1<p<2 % +% =1

Let us explain the philosophy of our approach. ByF ~1 we denote the Fourier transform,
inverse Fourier transform with respectxtprespectively. Applying= to (12) we get withv =
F (u) the Cauchy problem

(18) vt + 20?0257 =0, v(0.6) =F(p). 0.8 =F).
SettingV = (Vq, V2)T = (A(1)|&|v, Dtv), Dt := d/dt, the differential equation can be trans-

formed to the system of first order

0 AOE] Dir /1 0 B
(19) Dtv_( A(t)b(t)2[€] 0 )V_T( 0 o)v_o'

Our main object is the fundamental solutidn= X(t, 7, §) € C®([r, c0) x R") of (19), that
is the solution of

0 A Dix /1 O
(20) DeX — ( (Db 0 ) X==- ( 00 ) X
(21) X(,t,6) = 1,

0,

with T > 0. We prove thaX = X(t, 0, &) can be represented in the form

t
X(t,0,¢) = X+(t,0,§)exp<i/ A(s)b(s)ds|§|)
22) 0

t
+X‘(t,0,§)exp(—i/ k(s)b(s)ds|§|>,
0

whereXT and X~ have connections to symbol classes. Using this repregemise obtain the
solution of (12) in the form

_1 (»0) 1
23 t, = F 1<—x t,0,&)F = Xqo(t,0, &)F )
(23) uct, x) Y0 11(t,0,8) (¢)+A(t)|:§| 12(t,0, &) F(¥)
(24) Duut,x) = F_l(k(0)|§|X21(t, 0,&)F(p) + X22(t, 0, §)F (v)),

where Xk are the elements oX. For these Fourier multipliers ;, — Lq decay estimates are
derived in Section 3.5.

We intend to obtain the representation (22) it &) € [0, c0) x R" \ {0}} by splitting this set
into two zones
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DEFINITION 2. We define theseudodifferential zonZ p4(8, N) by

Zpd(B, N) = {(t, £) € 0,00) x (R"\ {0}) : (€* + A®)I&] < N(In (e* + A(t)))ﬁ} ,
thehyperbolic zon&Znyp(8, N) by

Znyp(B, N) 1= {(t, £) €[0,00) x (R"\ {0}) : (€% + A®)I&] > N(In(e* + A(t)))ﬁ} .

The positive constaritl will be chosen later.
For |&] € (O, pol, Po = 4ﬂN/e4, we define the functiots = t(|£|) as the solution of

(€ + Alts))IE] = N(In (6* + A(t)))P.
LEmMMA 3. The derivative@lkglts can be estimated in the following way:

(e* + Ate))

k -k
’3|S|t|§|’ < Cylé| ")

forall & eR", || € (0, po] .

3.3. The fundamental solution inZp4(8, N)

o 0 A)E] Dix /1 O
At 15D = ( Abb®)2E] 0 >+ T( 0 0 )

the fundamental solutioK (t, 0, &) can be written explicitly in the form

Denoting

o ot te—1
(25) X(t,0, €)= | + Z/O Adty, |s|>--~/0 Alti. 16D dt - dty
k=1

for || € (0, pg]. For a given positive numbéF let us distinguish two cases.

a) tg < T: in this case we have
t
/ IA(s, EDIds < C(T) forall t<tg;
0

b) T <te:inthis case we have

t t t)\'/(s)
/0 A, DI ds < C(T)+Cb/T )»(S)ISIdS+/ ds

T A(S)
At)
<C(M)+CpAM)E| +In Gl
4 B At)
<C(M+CpN (In (e + A(t))) +1In e
At
A(T)

<C(T)+Cp N (ln <e4 + A(T)))ﬁil In <e4 + A(t)) +1In

forallt < te. Consequently,

CbN
t -8
exp( / IAG. IED]] ds) < CMam (e + Ay) (M)
0

This gives the next statement:
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LEMMA 4. To each small positive there exists a constant.CN) such that for all(t, &) €
Zpd(B, N) it holds

IX(t. 0. )] < Ce(N)A()(* + AD)* . IX(t,0,6)]l < Ce(N)AD)IEI™?,

respectively.

To continue the solution fronZ pg(B, N) to Zhyp(B, N) for [£] € (0, po] and to study its

properties inZpyp(B, N) we need the behaviour @fagxa, 0,&), too. Itis obtained among
other things from (25) and (14).

THEOREM3. To each small positive and each k and: there exists a constant,G , (N)
such that

Hakaax O S
Ko (t,O,é)HSCs,k,a(N)MU OB a ) F

forall (t,&) € Zpg(B, N).

3.4. The fundamental solution inZpyp(8, N)

The hyperbolic zon&nyp(8, N) can be represented as the union of the two @@@) L €
(©. pol : (e*+ AM®)IE] = N(n(e+ A1)} and{(t. &) € [0, 00) x {|&] > po}}. We restrict
ourselves to the first set and sketch at the end of this settt@oapproach in the second set.
In Zpyp(B, N) we apply a diagonalization procedure to the first order sygt9). To carry out
this procedure we need the following classes of symbols.

DEFINITION 3. For given real numbers mmy, m3, 8 € [0, 1) and for positive N we
denote by g n{mz, mp, mg} the set of all symbols & a(t, £) < Cm(Zhyp(ﬁ, N) : €] €
(0, pg]) satisfying there

At

" g\
m(ln (e*+AM)) ) :

\8tka§‘a(t, s>\ < Ciale|™M M2 (

These classes of symbols are related to the Definitions 1 antb2understand that the
diagonalization procedure improves properties of the nedea (as usually) one takes into con-
sideration the following rules of the symbolic calculus:

. Sg,NimM1, M2, M3} C Sg n{my +K, m2+k m3—k}, k=>0;
° ae Sgn{mg, mp,mg}, be Sgni{ng, Ny, n3}, then
ab e Sg N{my + Ny, My + Ny, Mg + N3}
° ae Sgn{mg, mp, mg}, thendta e Sgn{mg, mp, M3+ 1};
. ae Sg n{mg, mp, mg}, then aga € Sg.n{my — af, mp, m3}.

Let us define the matrices

—Loy . 1 1 1 __} & bt) -1
M= J—x<t>b<t>(—b<t> b(t))’ MO =3y b(t)(b(t) 1 )
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SubstitutingX = M~1Y some calculations transform (20) into the first order system

(26) DiY-DY+BY=0,
where
_ [ 1, %) 0 _ Dbty (0 1
e '_< 0 nté ) Bt 8=~ 20(Hb(t) ( 1 o>’
DtA(t) Dt A(t)

n(t, &) = —AMbM®)E] +

) t, &) == At)b(t

0 2(t, §) ObM)IEI+ 0
Without difficulties one can prov® e Sg N{1,1,0}, B € Sgn{0,0,1}. To provelp — Lq
decay estimates for the solution of (12) we need furtheisstéthe diagonalization of (26). This
is carried out in the next lemma.

LEMMA 5. For a given nonnegative integer M there exist matrix-val@gtttions Ny =
Nm(t, ) € S n1{0,0,0}, Fy = Fm(t,§) € S n{-1—-1,20 and Ry = Ru(t.§) €
Sg,N{—M, =M, M + 1} such that the following operator-valued identity holds:

(Dt =D+B)Nm =Nm (Dt =D+ Fm — Rm),

where Ry is diagonal while N, is invertible and its inverse ﬁl belongs as My to § N
{0, 0, O}.

REMARK 5. The invertibility of the diagonalizeNy; = N (t, §) (mod Sg N{—M, —M,
M + 1}) is essential. This property follows by a special choiceheaf positive constani in
Definition 2. We need only a finite number of steps of diagaeion (cf. proof of Theorem 2),
thusN can be fixed after carrying out these steps.

Now let us devote to the system
27) (bt —D+Fu—-—Rm)Z=0, Z=127(,r,§),

wherete <r <t.LetEp = Ex(t,r,4);t,r > t¢, is defined by

et ) MO exp(—i P aebs) dsig| —i [} F,{,Il’l)(s,g)ds) 0
Y (S 0 exp(i JPas)b(s) dsig| —i [} F,(,,2’2>(s,g)ds)

be the solution of the Cauchy problgidt — D + Fp)Z =0, Z(r,r, §) = |. Let us denote
Pm(t,r, &) == Ex(r, t, &)Rm (L, ) Ea(t, 1, &) .
By the aid of Py we define the matrix-valued function
S " t t1
Qut.r.&) =3 i [ Putsrd) [ Putzr s

(28) k=t '

tk-1

/ Py (tk, r, &) dty ... dtg .

r

The functionQp = Qpm (t, 1, &) solves the Cauchy problem

DiQ-PuQ—-Pu=0, Q(r.r&=0 for tr=>t.

Using these auxiliary functions it is easy to prove the negtit.
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LEMMA 6. The matrix-valued function @, r, &) = Ex(t,r, £)(1 + Qpm (L, 1, £)) solves the
Cauchy problem (27) for,t > te.

Now we can go back to (20), (21) and obtain as its solution

X(t,0,6) =M LONm (t, ©)E2 (t, t, &) (I + Qm (t, te, £)) -

(29) .
Ny~ (te. §) M (te) X (t. 0.8) .

We write exp| —i fé A(S)b(s) ds) = exp(—i fé A(S)b(s) ds—i ftg A(S)b(s) ds) in correspon-
dence with our goal (22) and include the second factor in thplitudes. The matrices! and
M~1 are given in an explicit form. The properties f; and N,\’,l1 are described by Lemma 5
using Definition 3. To estimatX(te, 0, £) we use Theorem 3. Consequently, it remains to
estimateE, (0, tg, £) andQ (t, te, £).

LEMMA 7. For every positive smalt and everyx the following estimate in gy(8, N)

holds:
t
ag exp(i / A(s)b(s)ds)
te

where G ¢ = C¢ o (B, N).

< Cpole|7lol=e,

LEMMA 8. For every positive smalt and everyx the following estimate in (8, N)
holds, || € (0. p]:

t
35‘ exp(—i/t F,Sl(’k)(s,s)ds>
£

where G o = C¢ o (B, N).

<Ceolel™l®=2, k=12,

Proof. The statement foj| = O follows from

t t
/t Fkb (s, £)ds /t F9 s 6)|ds
3

3
c /t Ao (In (e + A9))?
t 5+ A)?
/t Ao (In (€ + A(s)) % v - (In(e* + A (t) )%
te (e + A9)? N e+ A ()

t 28 ae(n(E+A)%
TNt A 2

t N +A©) (A4 A09)

IA

ds,

Definition 2 and

(In(e* +NA (t))” _ (In(e" + A(ts)))N(m(eml(tg)))“’

By induction we prove the statement ferf > 0 by usingFy € Sg n{—1, —1, 2} and Lemma 3.
O
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More problems appear if we derive an estimateQ@qji. Here we refer the reader to [8].

LEMMA 9. The matrix-valued function p = Py (1, t¢, &) satisfies for every | and in
Znyp(B, N) N {|£] € (O, pol} the estimates
RO
et + A(t)
M
In (% + A(t)))”
(In(e*+ Am))P (In(e"+ A®))"
(In€ ®) ( (e*+AM)E|

[og Pu (b t.8)| = CmiaGIED (€8 + A) "

LEMMA 10. For every positive smalt and every, || < M — 1, it holds the following
estimate in Zyp(8, N), [£] € (O, pol:

|2 Qm (t 1. €)| = Coaa+ A 117,
where G o = C¢ o (B, N).

Proof. We use the representation (28) witk= tg and form the derivative&‘g Qm(t, ts, &). For

|| = 0 the statement from Lemma 9 and similar calculations as énptioof of Lemma 8
imply the estimate for|Qp (t, tg, £)||. If we differentiate forla| = 1 inside of the inte-
grals, then the estimate follows immediately. If we diffeifate the lower integral bound in

fttgkfl Pm (t. tz, &) dty, then there appears a term of the form

ote t k-2
Pm (tg,tg,%') 3_“§|/t Pm (tl,ts,é)-n/t‘ Pm (tkfl,tg,g) dty_q...dtg.
3 &

Using Lemma 9 and Lemma 3 gives the desired estimate in this t@o. But we can only get
estimates fofa| < M — 1. In this case we can have an integrand of the form

At

e aopa MO

The term(In (e4 + A(t)))ﬂwI can be estimated b@(1 + A(t))¢, the other factor is integrable

and can be estimated I6y. An induction procedure yields the statementitof < M — 1 (see

(8]). O
Now we have all tools to get an estimate for (29).

THEOREM4. The fundamental solution X% X(t, 0, &) can be represented inpgp(8, N)
N {l&] € (0, pol} as follows:

t t
X(t,0,&) = X" (t,0, g)exp(i / )»(S)b(S)dSEI) +X7 (1,0, g)exp(—i / )»(S)b(S)dSISI) ;
0 0

where the matrix-valued amplitudes XX ™ satisfy for allja| < M — 1 and all positive small
¢ the estimates

(30) o2 Xt t,0.6)] < Cueyfan (te) 6171~
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REMARK 6. There are no new difficulties to derive a correspondingmnadé to (30) in
{(t, &) € [0,00) x {|&] > po}} which belongs taZpyn(8, N) completely. We obtain for all
le| < M — 1the estimates

(1)

9EX5(1,0,6)| < Cuvamls T

3.5. Fourier multipliers

The statements of Theorems 3, 4 and Remark 6 imply togethie(28), (24) representations of
the solution of (12) and its derivatives by the aid of Founitipliers. To estimaté = A(tg) in
(30) we use assumption (14), especia%l% < c(In A(t))® for larget. This corresponds to the
Examples 3 and 4. To study Examples 1 and 2 we can follow oatiegfies in the same way. To
getL p — Lq decay estimates we divide our consideration into two stepscordance with two
completely different ideas:

Hardy-Littlewood inequality2] andLittman’s lemm43].
Instead ofZpq(8, N) from Definition 2 we use now

ZM@LN)={ag)euxmnx(R“\wD:@4+Aa»g|§4Nun@4+Aa»f}.

It is clear that the statement of Theorem 3 remains unchanged
Let us choose a functiofr € C*°(R) satisfyingy (s) = 0 for |s| < 1/2,vy(s) = 1 for|s| > 1
and 0< vy (¢) < 1. Moreover, we define

2N(In (e + A)))”
e+ A(t) '

K1) =

Following the approach of [8] which generalizes that one4}fdne can prove the next two
results.

a) Fourier multipliers with amplitudes supported in the pseudodifferential zone

THEOREMS5 (APPLICATION OFHARDY — LITTLEWOOD INEQUALITY). Let us consider
Fourier multipliers depending on the parametes {0, co) which are defined by

Il — F—l <ei jé A(s)b(s) ds|&| (1_ w <%>> |4‘;:|_2ra(t, f)F(UO)(§)> , Upe Cgo (Rn) )

Suppose thaa(t, £)| < Ce A(1)[§]7% in Zpg(B, N). Then we have

r+e—n(i-1
Ml < Crner O+ A) <p q)I\Uol\l_p

providedthatl < p<2,1/p+1/9g=1,2r +¢ < n(% - %)

b) Fourier multipliers with amplitudes supported in the hyper bolic zone

THEOREMG6 (APPLICATION OFLITTMAN’SLEMMA). Let us consider

lp = F~ (e‘ Jo H&b(s) dsiély, (%) €17 ac, s)F(uo)@)> . Up € CE (R").
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Suppose thalraga(t, 6] < C«/A(t)|§|’%’|°‘"€ for Ja| < nin Zpyp(B. N) from Definition 2.
Then we have
2r+iyen(di-1
2l < CrnneVA®(E +Am)" 2 <p q)HUOHLp

. _ +1 (1 1
provided thatl < p < 2,1/p+1/q =1, 4= (ﬁ - 5) <2r.

Proof of Theorem 2.Theorem 6 tells us that we have to carry Blit= n+ 1 steps of the perfect

diagonalization. Here we use 2= 141 (% - %) In Theorem 5 we use2= [n (% - %)]Jrl.

But from (24) we know that this is the supposed regularity ¥ar, v, respectively. Conse-
quently, the regularity forp and ¢ from Theorem 2 can be understood. The decay function
1+ A(t) with the rate L+ e — 051 % - %) follows immediately from the statements of The-
orems 5 and 6. Due to (23) the estimateXar) Vu coincides with that foDtu. O
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