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LP ESTIMATES FOR UNIFORMLY HYPOELLIPTIC
OPERATORS WITH DISCONTINUOUS COEFFICIENTS ON
HOMOGENEOUS GROUPS

Abstract. Let G be a homogeneous group and g, Xy1,..., Xq be left in-
variant real vector fields ofs, satisfying Hormander’s condition. Assume that
X1,..., Xq be homogeneous of degree one afglbe homogeneous of degree
two. We study operators of the kind:

q
L= Z ajj (X Xj Xj + ap(x) Xo
ij=1

whereg;j (x) andag(x) are real valued, bounded measurable functions belong-
ing to the space “Vanishing Mean Oscillation”, defined wigispect to the qua-
sidistance naturally induced by the structure of homoges@youp. Moreover,
the matrix{ajj (x)} is uniformly elliptic andag(x) is bounded away from zero.
Under these assumptions we prove local estimates in thel@obpaoesz’p
(1 < p < o) defined by the vector fields;, for solutions to the equatiofiu = f
with f e £P. From this fact we also deduce the local Holder continuitysfolu-
tionstoLu = f, whenf e £P with p large enough. Further (local) regularity
results, in terms of Sobolev or Holder spaces, are provéduld when the coef-
ficients and data are more regular. Finally, lower order sefim the sense of the
degree of homogeneity) can be added to the operator margahme same results.

1. Introduction

A classical result of Agmon-Douglis-Nirenberg [1] statéstt for a given uniformly elliptic
operator in nondivergence form with continuous coeffigent

Lu= Zalj (x) Ux; X;
i
one has the followingd. P-estimates for everp e (1, o), on a bounded smooth domagh of
R":

<c{lLullLee) + llullLp)} -

UXin Lp(Q) —

While the above estimate is false in general if the coeffisiane merely *°, a remarkable
extension of the above result, due to Chiarenza-Frascad 81,[7], replaces the continuity
assumption with the weaker conditiey € VMO, whereV MO is the Sarason’s space of
vanishing mean oscillation functions, a sort of uniform thauty in integral sense.
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Roughly speaking, this extension relies on the classieairthof Calderon-Zygmu-nd op-
erators, a theorem of Coifman-Rochberg-Weiss [8] (whichwilerecall later in detail) about
the commutator of an operator of this type witB& O function, and the knowledge of the fun-
damental solution for constant coefficients elliptic operslonR". All these ideas admit broad
generalizations: the Calderon-Zygmund theory and thencotator theorem can be settled in the
general framework of spaces of homogeneous type, in the séi@oifman-Weiss (see [9], [20]
and [4]); however the knowledge of the fundamental solutioa more subtle problem. Apart
from the elliptic case, an explicit fundamental solutioraiso known for constant coefficients
parabolic operators. This kernel is homogeneous with rdpethe “parabolic dilations”, so
that the abstract Calderén-Zygmund theory can be appi¢hiis situation to get P-estimates
of the above kind for parabolic operators withVl O coefficients (see Bramanti-Cerultti [3]).

In recent years it has been noticed by Lanconelli-Polid@®) that an interesting class
of ultraparabolic operators of Kolmogorov-Fokker-Plarigke, despite of its strong degener-
acy, admits an explicit fundamental solution which turns toube homogeneous with respect
to suitable nonisotropic dilations, and invariant withpest to a group of (noncommutative)
translations. These operators can be written as:

q n

(1) Lu= ) ajuxx + Y Xibjux, — ut
ij=1 ij=1

where(x, t) € RM1, {bij } is a constant real matrix with a suitable upper triangularcstire,
while {ajj } is aq x q uniformly elliptic matrix, withg < n. The structure of space of homo-
geneous type underlying the operator and the knowledge wigaimental solution well shaped
on this structure, suggest that an analdytheory could be settled for operators of kind (1) with
gj in VMO. This has been actually done by Bramanti-Cerutti-Manfiefhi] . (In this case,
only local estimates are proved).

The class of operators (1) contains prototypes of Fokkané¢X operators describing brow-
nian motions of a particle in a fluid, as well as Kolmogorov mgpers describing systems witin 2
degrees of freedom (see [23] ), and is still extensivelyistli¢see for instance [22], [24], [25],
[27] and references therein).

Whenajj = §jj, (1) exhibits an interesting example of “Hormander’s aper”, of the kind

q
Lu= )" X2u+ Xou
i=1
whereXg = Zﬂjzl X bjj 9x; — dt, andXj = dy fori =1,2,,...q. This introduces us to the
point of view of hypoelliptic operators. Recall that a diffetial operatoP with C*° coefficients
is said to be hypoelliptic in some open setc RN if, whenever the equatioRu = f is satisfied
in U by two distributionsu, f, then the following condition holds: ¥ is an open subset &f
such thatf)y € C*(V), thenu)y € C*°(V). We recall the well-known

THEOREM1 (HORMANDER, [16]). Let Xy, Xj,..., Xq be real vector fields with coeffi-
cients °(RN). The operator

q
@) P=3 X2+ Xo
i=1

is hypoelliptic inRN if the Lie algebra generated at every point by the fields X.. .., Xq is
RN. We will call this property “Hormander’s condition”.
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The operator (1) with constaat; 's satisfies Hormander’s condition, by the structure as-
sumption on the matrikbjj }, and is therefore hypoelliptic.

In '75, Folland [11] proved that any Hormander's operatke I(2) which is left invariant
with respect to a group of translations, and homogeneouegried 2 with respect to a family
of (nonisotropic) dilations, which are group automorphisinas a homogeneous left invariant
fundamental solution. This allows to apply the abstracbithef singular integrals in spaces of
homogeneous type, to get lodaP estimates of the kind

3) |Xi Xj ull 2oy = c{liLullzre) + lulcrey}  G.j=1.....0)

foranyp e (1,0), Q' cc Q.

Motivated by the results obtained by [3], [5], the aim of thaper is to extend the above
techniques and results to the homogeneous setting coadidgi~olland, where good properties
of the fundamental solution allow to obtain in a natural waglt P estimates, using the available
real variable machinery.

More precisely, we study operators of the kind:

q
L= )" a;(0XiXj +ag(x)Xo
ij=1

whereXp, X1,. .., Xq form a system o€ real vector fields defined RN (N > g+ 1), satis-
fying Hormander's condition. We also assume tKgt X1.. .., Xq are left invariant with respect
to a “translation” which make&N a Lie group, and homogeneous with respect to a family of
“dilations” which are group automorphisms. More precisely,..., Xq are homogeneous of
degree one andg is homogeneous of degree two. The coefficiggtex), ag(x) are real valued
bounded measurable functions, satisfying very weak reigyleonditions (they belong to the
classV MO, “Vanishing Mean Oscillation”, defined with respect to thentogeneous distance;
in particular, they can be discontinuous); moreover, theimga;j (x)} is uniformly elliptic and
not necessarily symmetric; the functiag(x) is bounded away from zero.

Under these assumptions (see 82 for precise statementspvesthat the local P estimates
(3) hold for p € (1, 00), every bounded domai2, anyQ’ cc Q, and anyu for which the right
hand side of (3) makes sense (see Theorem 3 for a precismstdaje From this fact we also
deduce the local Blder continuity for solutions to the equatidlu = f, whenf e LP(Q) with
p large enough (see Theorem 4).

To get (3) we will first prove the following estimate:
(4) [XiXjul, =cltulp (.j=1....9,1<p<0c0),

for every test functioru supported in a ball with sufficiently small radius (see Tleeor2). It is
in this estimate that th& M O regularity of the coefficients plays a crucial role.

Further (local) regularity results for solutions to the atjon Lu = f, in terms of Sobolev or
Holder spaces, are proved to hold when the coefficients atedadte more regular (see Theorems
5, 6). Finally, lower order terms (in a suitable sense) caadied to the operator maintaining
the same results (see Theorem 7).

Since the operatof has, in general, nonsmooth coefficients, the above defirifiblypoel-
lipticity makes no sense fat. However we will show (Theorem 8) that if the coefficieats(x)
are smooth, ther is actually hypoelliptic. Moreover, for every fixed) € RN, the frozen
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operator

q
() Lo= Y aj(x0)XXj +a(X0)Xo
ij=1

is always hypoelliptic and, by the results of Folland [1 €S heorem 9 below), has a homoge-
neous fundamental solution, which we will prove to satisfyne uniform bounds, with respect
to xg (Theorem 12). This perhaps justifies the (improper) nameiniférmly hypoelliptic oper-
ators” for £, which appears in the title.

We point out that the results in this paper contain as pdatictases the local estimates
proved in [6], [3] and [5]. On the other side, glodaP estimates on a domain are not available
for hypoelliptic operators, even in simple model cases.

A natural issue is to discuss the necessity of our homogeasgumptions. In a famous
paper, Rothschild-Stein [28] introduced a powerful teqbei of “lifting and approximation”,
which allows to study a general Hormander’s operator byma@d operators of the kind studied
by Folland. As a consequence, they obtained estimates3jka this more general setting.

In a forthcoming paper [2], we shall use their techniquesnltioed with our results, to
attack the general case where the homogeneous structueelying the Hérmander’s vector
fields is lacking.

Outline of the paper. §82.1, 2.2, 2.5 contain basic definitions and known resut$2.3
we state our main results (Theorems 2 to 7 ). In §2.4 we ibistthe relations between our
class of operators and the operators of Hormander typepaony our results with those of
Rothschild-Stein [28].

In 83 we prove Theorem 2 (that is (4)). The basic tool is thelfumental solution of the
frozen operator (5), whose existence is assured by [11]§3€e The line of the proof consists
of three steps:

(i) we write a representation formula for the second ordevdtvies of a test function in
terms of singular integrals and commutators of singulaggrdls involving derivatives of the
fundamental solution (see §3.2);

(ii ) we expand the singular kernel in series of spherical haitspto get singular integrals
of convolution-type, with respect to our group structuree(§3.3); this step is necessary due to
the presence of the variable coefficieats(x) in the differential operator;

(iii ) we get£ P-bounds for the singular integrals of convolution-type tvelr commutators,
applying general results for singular integrals on spat@é®mogeneous type (see §3.4).

This line is the same followed in [5], which in turn was ingarby [6], [7]. While the com-
mutator estimate needed in [6], [7] to achieve paiiit)(is that proved by Coifman-Rochberg-
Weiss in [8], the suitable extension of this theorem to spaifehomogeneous type has been
proved by Bramanti-Cerutti in [4].

The basic difficulty to overcome in the present situatiore thuthe class of differential op-
erators we are considering, is that an explicit form for thedamental solution of the frozen
operatorLg in (5) is in general unknown. Therefore we have to prove inraliréct way uni-
form bounds with respect tey for the derivatives of the fundamental solutions corresirun
to Lo (Theorem 12). This will be a key point, in order to reduce thaop of (3) to that ofLP
boundedness for singular integrals of convolution type.Wih to stress that, although several
deep results have been proved about sharp bounds for thenfiemdal solution of a hypoelliptic
operator (see [26], [29], [19]), these bounds are proved fixed operator, and the dependence
of the constants on the vector fields is not apparent: thexefioese results cannot be applied in
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order to get uniform bounds for families of operators. Ondtieer side, a useful point of view
on this problem has been developed by Rothschild-Stein §&] we will adapt this approach to
our situation. To make more readable the exposition, thefgbthis uniform bound (Theorem
12) is postponed to &4.

To prove local estimates for solutions to the equation= f, starting from our basic es-
timate (4), we need some properties of the Sobolev spacesajed by the vector fieldX;,
which we investigate in 8§5: interpolation inequalitiespegximation results, embedding theo-
rems. Some of these results appear to be new and can be oéirdiey interest, because they
regard spaces of functions not necessarily vanishing ddbadary, whereas in [11] or [28], for
instance, only Sobolev spaces of functions defined on théengpace are considered.

In 86 we apply all the previous theory to local estimates foutons toLu = f. First
we prove (3) and the local Holder continuity of solutionegsTheorems 4, 5). Then we prove
some regularity results, in the sense of Sobolev or Holgaces (see Theorems 5, 6), when
the coefficients are more regular, as well as the generalizaf all the previous estimates to
the operator with lower order terms (Theorem 7). Observe Hiace the vector fields do not
commute, estimates on higher order derivatives are notaggbtforward consequence of the
basic estimate (3). Instead, we shall prove suitable reptaon formulas for higher order
derivatives and then apply again the machinery of §3.

2. Definitions, assumptions and main results

2.1. Homogeneous groups and Lie algebras

Following Stein (see [31], pp. 618-622) we call homogenegnaaip the spac&N equipped
with a Lie group structure, together with a family of dilat®that are group automorphisms.
Explicitly, assume that we are given a pair of mappings:

[(X,y) — XoVy] : RN xRN = RN and [x»—>x’1]: RN — RN

that are smooth and so th&f¥, together with these mappings, forms a group, for which the
identity is the origin. Next, suppose that we are giveriNatuple of strictly positive exponents
w1 < w2 < ... < wp, So that the dilations

(6) D) (Xg,....XN) = (A“IXq,..., A”Nxy)

are group automorphisms, for all> 0. We will denote byG the spac&kN with this structure
of homogeneous group, and we will writgG) for a constant depending on the numbats
w1,...,wyN and the group law.

We can define ilRN a homogeneous north| as follows. For ank € RN, x # 0, set

1
IXIl=p < ‘D(;)X=1,

where|-| denotes the Euclidean norm; also,||6ff = 0. Then:
(i) IDG)X] = A |1x| for everyx € RN, % > 0;
(ii) the set{x € RN: ||x|| = 1} coincides with the Euclidean unit sphexéy;
(iii) the functionx — ||x]| is smooth outside the origin;
(iv) there existe(G) > 1 such that for every, y € RN

) Ixoyll =< cxll+Iyl) and x| <clx|;
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1 i .
®) E|y|s||ynsc|y|1/w if Iyl <1, withw =max(w, ..., oN).

The above definition of norm is taken from [12]. This norm isligglent to that defined in
[31], but in addition satisfies (ii), a property we shall us&sB.3. The properties (i),(ii) and (iii)
are immediate while (7) is proved in [31], p. 620 and (8) is lneal.3 of [11].

In view of the above properties, it is natural to define thed&jdistancetl:

d(x,y) = Hy_l o XH .

Ford the following hold:

(9) d(x,y) >0 andd(x,y) = 0ifand only ifx = y;
1

(10) < d(y,x) <d(x,y) <cd(yx);

(12) dex.y) < c(dx. 2 +d@ )

for everyx, y, z € RN and some positive constaotG) > 1. We also define the balls with
respect to d as

B(x,r)=Br(x) = {yeRN: d(x,y) <r}.

Note thatB(0,r) = D(r)B(0, 1). It can be proved (see [31], p. 619) that the Lebesgue measure
in RN is the Haar measure &. Therefore

(12) IB(x,r)| =B, 1|r,

for everyx € RN andr > 0, whereQ = w1 + ... + wy , With »; as in (6). We will callQ the
homogeneous dimension BN, By (12) the Lebesgue measut& is a doubling measure with
respect tal, that is

[B(x,2r)] <c-|B(x,r)| foreveryx e RN andr > 0

and thereforeRN dx, d) is a space of homogenous type in the sense of Coifman-Weaiss (s
[9]). To be more precise, the definition of space of homogertgpe in [9] requiresd to be
symmetric, and not only to satisfy (10). However, the resatiout spaces of homogeneous type
that we will use still hold under these more general assungti(See Theorem 16).

We say that a differential operat¥ron RN is homogeneous of degrge> 0 if
Y (f ((D(A)X)) =2 (Y H(D()X)

for every test functionf, » > 0, X € RN. Also, we say that a functiori is homogeneous of
degreex € R if

f ((D(A)x)) =A% f (x) foreveryr > 0,x € RN,
Clearly, ifY is a differential operator homogeneous of degtemd f is a homogeneous function
of degreex, thenY f is homogeneous of degree— 8.

Let us consider now the Lie algebtassociated to the group (that is, the Lie algebra of
left-invariant vector fields). We can fix a basfg,. .., Xy in € choosingX; as the left invariant
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vector field which agrees Wltﬁa— at the origin. It turns out thak; is homogeneous of degree
wj (see [11], p. 164). Then, we can extend the dilatibria) to £ setting

D(A) Xj = A% Xj.
D()) turns out to be a Lie algebra automorphism, i.e.,
DMV[X, Y]I=[DXX,DWY].

In this sense( is said to be a homogeneous Lie algebra; as a consequeicrilpotent (see
[31], p. 621-2).
Recall that a Lie algebrais said to be graded if it admits a vector space decomposison

r
e=@PVi with [Vi,Vj] S Viyj fori +j <r, [Vi,Vj] = {0} otherwise.
i=1

In this paper¢ will always be graded and it will be possible to chod4es the set of vector
fields homogeneous of degriee

Also, a homogeneous Lie algebra is called stratified if tleists vector spacegl, . Vs
such that
S
@ with [V, Vi] = Vi1 forl <i < sand[Vy, Vs] = {0}
i=1

This implies that the Lie algebra generated\?gyis the wholef. Clearly, if £ is stratified
thent is also graded.

Throughout this paper, we will deal with two different sitioas:

Case A.There existy vector fields ¢ < N) Xj,..., Xq, homogeneous of degree 1 such that
the Lie algebra generated by them is the Whtblé’hereforee is stratified and/l is spanned by
X1,..., Xg. In this case the “natural” operator to be considered is

q
(13) L£L=Y X2
i=1
which is hypoelliptic, left invariant and homogeneous ofic two.

ExamMPLE 1. The simplest (nonabelian) example of Case A is the Kolpldcian on the
Heisenberg grou = (R3, o, D(A)) where:

(X1, Y1, t1) o (X2, Y2, t2) =

= (Xy + X2, Y1+ Y2, t1 + to + 2(X2y1 — X1¥2))
and
DM X, y, 1) = (Ax, Ay, Azt) )

X=— 0 +2yi; Y—i—Zxa; [X, Y] =— 9
ax at ay at

£=V1®& Vo with V1 =(X,Y).

1

ot
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The fieldsX, Y are homogeneous of degree 1, and the operator
L£L=Xx24+Y?

is hypoelliptic and homogeneous of degree two. Here the lgemeous dimension db is

Q=4

Case B.There existq + 1 vector fields § + 1 < N) Xp, Xg,..., Xg, such that the Lie al-
gebra generated by them is the whéleXy,..., Xq are homogeneous of degree 1 axgl is
homogeneous of degree 2. In this case the “natural” opetatme considered is

q
(14) L= X?+ Xo.
i=1
Under these assumptioisnay or may not be stratified (see examples below).

ExamMPLE 2. (Kolmogorov-type operators, studied in [23]).
ConsiderG = (R3, o, D(A)) with:

(X1, Y1, t1) o (X2, Y2, 1) = (X1 + X2, Y1 + Y2 — X1t2, 1 +12)

and
DY (%, ¥, 1) = (1%, 33y, 2%).
3 3 3
X1=—; Xo= = —x—; [Xo. X1] = —;
X at ay oy
~ ~ ) ~ ~ 9
(15) t=Vi@V, with V= (X, XO)'V2=<B_y)

thereforel is stratified; the fields<q, Xg are homogeneous of degree 1 and 2, respectively, and
the operator
L£=X24+Xg

is hypoelliptic and homogeneous of degree two. Note thdtigydase the stratification (15) of
is different from the natural decomposition s a graded algebra:

9
ay
This is the simplest (nonabelian) example of Case B; noteGha= 6. If, keeping the same
group lawo, we changed the definition @ (1) setting

€=V1€BV269V3 Wlth Vlz(X]_>1V2=(XO>1V3=( >

DG (%, ¥, 1) = (3x, 4%y, 3t)
then the fieldXg, X1 would be homogeneous of degree one, and we should consiapéinator
2, w2
L= X7+ Xp

as in Case A.
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ExamPLE 3. This is an example of the non-stratified case.
ConsiderG = (R5, o, D(A)) with:
(X1, Y1, 21, wat1) o (X2, Y2, Z2, w2, ) =
= (X1 + X2, Y1+ ¥2. 21 + Z2, w1 + w2 + X1 Y2,

1
t1 +t2 — XaXoy1 — X1X2y2 — > X% Y1+ Xqw2 + X122)

and
DY) (X, Y, 2 w,t) = (kx, ay, 222, 32w, k3t) .

The natural base faf consists of:

0 Xa.Y_a+Xa_Z_a+Xa_
“ax Ve Ty Tow' T ez Tat’
w—aera'T—3
T oaw at’ ot

We can see thatis graded setting
E=Vi®Vo® Vs with Vq = (X,Y), Vo= (Z, W), V= (T).
The nontrivial commutation relations are:
[X,Y]=W,; [X,Z]=T; [X,W]=T.
'Lherefoie, Ewe se\71 = (X, Y,NZ), We§ee~that the Lie algebra generated7§;ys £; moreover
Vo = [V1, V1] = (W, T) andV3z = [V, V] = (T), so that¢ is not stratified. Noting that
X, Y, Z are homogeneous of degreed 12 respectively, we have that the operator
L=X2+Y?17Z

is hypoelliptic and homogeneous of degree two.

2.2. Function spaces

Before going on, we need to introduce some notation and ifumspaces. First of all, iXg,
X1...., Xq are the vector fields appearing in (13)-(14), define,dar [1, oc]

q
IDUlp =Y IXiullp ;
i=1

q
H Dzqu = > [ XiXjul, + I Xoullp.-
=1

More in general, set
HDkqu =3 X, Xjul

where the sum is taken over all monomidlg, . .. Xj, homogeneous of degrée (Note thatXg
has weight two while the remaining fields have weight one. i@isly, in Case A the fielKg
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does not appear in the definition of the above norms)<tbe a domain iRN, p € [1, oo] and
k be a nonnegative integer. The spéi‘eo () consists of allCP () functions such that

k
h
lulsergy = Y [D"u]
h=0 £P)

is finite. We shall also denote t% P () the closure oCSO(Q) in Skp (Q).
Since we will often consider the cake= 2, we will briefly write SP () for 2P () and
(@) for P ().

Note that the fieldsX;, and therefore the definition of the above norms, are corlplet
determined by the structure 6.

We define the Holder spaceéw(sz), fora € (0, 1), k nonnegative integer, setting

JuG) — u(y)|
Ul A = Sup ————
lace) = 30 =4 yye
X,yeQ2

and

k—1
K .
Ull pke oy = |D"u H D! u” )
” ”Ak' () ‘ A% (Q) + J;) L°(R)
In 84, we will also use the fractional (but isotropic) Soh;(M)acesl-ﬂ’2 (RN), defined in the
usual way, setting, far € R,

t
nwa2=4Nm@F@+mﬁda

whereli(¢) denotes the Fourier transform of

The structure of space of homogenous type allows us to définsgace of Bounded Mean
Oscillation functions BM O, see [18]) and the space of Vanishing Mean Oscillation fonst
(V MO, see [30]). Iff is a locally integrable function, set

1
(16) ng (r) = sup—/ ‘f(x) — fg ‘ dx foreveryr > 0,
p<t |By| By ’
whereB,, is any ball of radiup and fg, is the average of overB,.
We say thatf € BMOIif || f|l,, = sup n¢ (r) < oo.
We say thatf ¢ VMOIif f e BMOandns (r) — Oforr — 0.

We can also define the spad@#1 O(2) andV M O (2) for a domain®2 C RN, just replac-
ing B, with B, N Qin (16).

2.3. Assumptions and main results

We now state precisely our assumptions, keeping all thetinotaf §82.1, 2.2.

Let G be a homogeneous group of homogeneous dimer@ien3 and¢ its Lie algebra; let
{Xi}( =1,2,...,N)bethe basis of constructed as in §2.1, and assume that the conditions of
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Case A or Case B hold. Accordingly, we will study the follogiolasses of operators, modeled
on the translation invariant prototypes (13), (14):

q
L= )" aj (XX
i,j=1
or
q
n L= ) aj(0XiXj +2()Xo
ij=1

whereajj andag are real valued bounded measurable functions and the matrix
{aij (0} satisfies a uniform ellipticity condition:

q
(18) plg? < Y aj00 &g <utIE? foreverys e RY, aex,
i,j=1
for some positive constamt. Analogously,

(19) n<ag(x) <p L

Moreover, we will assume
ao, gjj € V MO.

Then:

THEOREMZ2. Under the above assumptions, for everg 1, co) there exist c= ¢(p, u, G)
andr = r(p, u, n, G) such that if ue Cg° (RN) and sprtuC By (B; any ball of radius r)
then

H DZUH S =cleuly

wheren denotes dependence on the “V MO moduli” of the coefficiegtsig.

THEOREM3 (LOCAL ESTIMATES FOR SOLUTIONS TO THE EQUATION
Lu= f INADOMAIN). Under the above assumptions, fetoe a bounded domain &N and
Q' cc Q. Ifue SP(Q), then

lullseery < c{lILullzog) + Ul 2oy}
where c= c(p, G, . 1, 2, Q).
THEOREM4 (LOCAL HOLDER CONTINUITY FOR SOLUTIONS TO THE

EQUATION LU = f IN A DOMAIN). Under the assumptions of Theorem 3, iEuSP () for
some pe (1, oo) andLu € LS5(Q) for some s> Q/2, then

Ul ae ey < € {IILUllzr (@) + Ul 2o}

forr =max(p,s), e =(Q, p,s) € (0,1),c=c(G, u, p,s, 2, Q).
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THEOREM5 (REGULARITY OF THE SOLUTION IN TERMS OFSOBOLEV SPACEY. Under
the assumptions of Theorem 3, i @j € S¢>°(Q), u € SP(2) and Lu € SXP () for some
positive integer k (k even, in Case B)< p < oo, then

lullgeiz pry < o1 {I12ullgencg) + C2 Iull oo |
where g = ¢1(p, G, 17,2, Q') and @ depends on thek$® (Q) norms of the coefficients.

THEOREM6 (REGULARITY OF THE SOLUTION IN TERMS OFHOLDER
SPACES. Under the assumption of Theorem 3, {f @& € Sk*OO(Q), ue SP(Q) andLu e

ks (Q) for some positive integer k (k even, in CaseBY, p < oo, s > Q/2, then
Ul pka ey = €1 { 12Ul r g + 2 Ul 2o

where r =maxp, s), « = «(Q, p,s) € (0, 1), ¢; = c1(p, s, k, G, u,n,2, Q') and ¢ depends
on the §’°°(Q) norms of the coefficients.

THEOREM 7 (OPERATORS WITH LOWER ORDER TERME Consider an operator with
“lower order terms” (in the sense of the degree of homogefeif the following kind:

q q
L= ( > & 00X Xj +ao(X)Xo> + ( D G 0Xi +Co(X)> =
ij=1 i=1
=Lo+ L.

i)Ifci e L2 () fori =0,1,...,q,then:
if the assumptions of Theorem 3 hold &, then the conclusions of Theorem 3 hold for
if the assumptions of Theorem 4 hold &, then the conclusions of Theorem 4 hold for

ii) If c; € SK2°() for some positive integer k4 0, 1, .. ., q, then:
if the assumptions of Theorem 5 hold &, then the conclusions of Theorem 5 hold fyr
if the assumptions of Theorem 6 hold 5, then the conclusions of Theorem 6 hold for

REMARK 1. Since all our results are local, it is unnatural to assumatthe coefficientag,
gjj be defined on the wholgN. Actually, it can be proved that any functidh € V M O(<2),
with € bounded Lipschitz domain, can be extended to a funcliatefined inRN with V MO
modulus controlled by that of. (For more details see [3]). Therefore, all the results afdrems
2, 7 still hold if the coefficients belong t¥ M O(£2), but it is enough to prove them fap,
gj e VMO.

2.4. Relations with operators of Hbirmander type

Here we want to point out the relationship between our cldssperators and operators of
Hormander type (2).

THEOREMS8. Under the assumptions of §2.3:

(i) if the coefficients @ (x) are Lipschitz continuous (in the usual sense), then theatper
L can be rewritten in the form

£=YY?+ Y

-

i=1
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where the vector fields; i = 1, ..., q) have Lipschitz coefficients ang fas bounded mea-
surable coefficients;

(ii) if the coefficientsq(x) are smooth (C°), then. is hypoelliptic;
(iii) if the coefficients j are constant, thei is left invariant and homogeneous of degree
two; moreover, the transpos@' of £ is hypoelliptic, too.

Proof. Let us split the matrixj (x) in its symmetric and skew-symmetric parts:
1 1 ~
aij 00 = 3 (& 00 +aji () + 5 (& 00 = aji () = bij ) + by (0.

If the matrix A = {aj (x)} satisfies condition (18), the same holds B= {bjj (x)}. Therefore

we can writeB = MM T whereM = {mjj ()} is an invertible, triangular matrix, whose entries
areC® functions of the entries dB.

To see this, we can use the “method of completion of squase®e(g. [17], p. 180),
writing

q q
Y bij &g =ni+ Y binin;

ij=1 ij=2

(x/qlerZW ); i =§& fori =2

with

2

be; o S
bﬁ:bii_b_]]__ll; bﬁ:bij fori,j=2,...,q,i #].

Since(nl, ..., nq) are a linear invertible function ¢, ..., &), and the guadratic form

ZI j=1 1 bij & &j is positive (onRY), also the quadratic fornZI J_2 u ninj is positive (on
R9-1) and we can iterate the same procedure. Noterthat Zk: myk&k with mq, smooth

functions of they;j 's; moreoverbi*} are smooth functions of th®; 's. Therefore iteration of this

procedure allows us to write

q q
Z bij &i&j = ZAE with:
ij=1 k=1
q
M= Y Mghéh and my are smooth functions of tha; s
h=k

This means thab;; = Zkzi,j Mg; Mgj with mgy smooth functions of thi;j; 's
Therefore we can write:

q q
L= > mr0mixO)Xi Xj + Y bij 00 [Xi.Xj] + 8000 Xo
i,j=1 k=1 i<j
where the functionsnik (x) have the same regularity of tlag (x)'s. (To simplify the notation,
from now on we forget the fact thatijx = 0 if k < i). If the &j (x)'s are Lipschitz continuous,
the above equation can be rewritten as

q
(20) L=Y"Y2+ Yo
k=1
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with
q
Yk = Z mik (X)X; and
i=1

q q
Yo=Y bij 00 [Xi,Xj]+a000Xo = > > mik(x) - (Xi mjk (X)) Xj,
i<j i,j=lk=1
which proves (i). If the coefficientsjj (x) areC®, theYj’s are C* vector fields and satisfy
Hodrmander’s condition, because every linear combinatibtihe X; (i = 0, 1,...,q) can be
rewritten as a linear combination of th¢ and their commutators of length 2. Therefore, by
Theorem 1L is hypoelliptic, that is (ii). Finally, if the coefficients;; are constant, then (20)
holds with

q
Yk = Zmik X; and Yg = Zbij [Xi ,Xj] + ag Xo,
i=1 i<j
which means thaf is left invariant and homogeneous of degree two. Moreoweceshe fields
X are translation invariant, the transpo)sg of X; equals—X; and as a consequendd is
hypoelliptic as well. This provegii).
|

REMARK 2. By the above Theorem,&; € C, our class of operators is contained in that
studied by Rothschild-Stein [28], so in this case our redallow from [28], without assuming
the existence of a structure of homogeneous group. If thiéicieats are less regular, but at least
Lipschitz continuous, our operators can be written as “ajpes of Hormander type”; however,
in this case we cannot check Hérmander’s condition for #lesiy; and therefore our estimates
do not follow from known results about hypoelliptic operato Finally, if the coefficients are
merelyV M O, we cannot even writ€ in the form (20).

2.5. More properties of homogeneous groups

We recall some known results which will be useful later. Faofsall, we define the convolution
of two functions inG as

(f*g>(><)=/ f(Xoy‘l>g(y>dy=/ gy tox) f(y)dy,
RN RN

for every couple of functions for which the above integrakkmsense. From this definition we
read that ifP is any left invariant differential operator,

P(fxg)=f xPg
(provided the integrals converge). Note thaGifs not abelian, we cannot writtxPg = P fxg.

Instead, ifX and X R are, respectively, a left invariant and right invariantteedield which agree
at the origin, the following hold (see [31], p. 607)

1) (Xf)*ng*<XRg>; XR(f*g)z(XRf>*g.

In view of the above identities, we will sometimes use thatigvariant vector fieldé(iR which
agree withd/dx; (and therefore witlX;) at the origin { = 1, ..., N), and we need some prop-
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erties linking X to XiR. It can be proved that

9 N 9
Xi==—+ Y g —
™S 9k

9 N o @
XF=omt D0 G0 -
X W Xk
whereqik(x), ’qik(x) are polynomials, homogeneous of degige-w; (thew;’s are the exponents
appearing in (6)). From the above equations we find that

N
X; = Z koo xR
k=i

Wherecf‘(x) are polynomials, homogeneous of degige-wj . In particular, sincex —wj < w,
c!‘(x) does not depend axy, for h > k and therefore commutes WiDK]KR, that is

N
(22) Xiu= 3" XR (c}‘(x)u) (i=1....N)
k=i

for every test functiomu. This representation of; in terms oinR will be useful in §6.

THEOREM 9. (See Theorem 2.1 and Corollary 2.8 [ihl]). Let £ be a left invariant
differential operator homogeneous of degree two on G, suahtand £ are both hypoelliptic.
Moreover, assume @ 3. Then there is a unique fundamental solutiosuch that:

@71 ec® (RN \(0});

(b) T is homogeneous of degré2— Q);

(c) for every distributionr,

Lx)=CLr)*xI'=r1.

THEOREM 10. (See Proposition 8.5 iftL3]), Proposition 1.8 inf11])). Let Ky, be a kernel
which is
C®® (RN \{O}) and homogeneous of degréde— Q), for some integer h with < h < Q; let
Th be the operator

Thf = f % Kp

and let P be a left invariant differential operator homogeneous ajrée h.

Then:

phT, f = P.v.(f X PhKh) +af

for some constart depending on P and Kn;
the function FhKh is C*® (RN \ {0}), homogeneous of degreeQ and satisfies the van-
ishing property:

PhKh X)dx=0 forO<r < R < o0;
r<|x||<R
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the singular integral operator
f s P.v.(f « PN Kh)

is continuous orCP for 1 < p < co.

To handle the convolution of several kernels, we will need &he following

LEmmA 1. Let Ky (-, -), Ka(+, -) be two kernels satisfying the following:
(i) for every xe RN K (x, ) e C®@®RN\ {0}) (i = 1, 2);
(ii) for every xe RN K; (x, -) is homogeneous of degreg, with—Q < o < 0, a1 +ap <

-Q;
(i) for every multiinde)g,
9 \B
Then, for every test function f and any, ¥g € RN,
(f x Ky(X0, ) * Ka(Yo, ) = fx (K1(Xp,-) * Ka(yo, ).

Moreover, setting Kxg, Yo,) = K1(Xg, ) * Ka(Yp, -), we have the following:
(iv) for every(xo, Yo) € R?N, K (xo, yo,-) € C® (RN \ {0D);
(v) for every(xg, Yo) € R2N, K (xo, yo.-) is homogeneous of degreg + a» + Q;

(vi) for every multiinde)s,
a\?
(E) K(X,y,2)

The above Lemma has been essentially proved by Folland fepedttion 1.13 in [11]),
apart from the uniform bound oK, which follows reading carefully the proof.

sup sup

< Cﬁ.
xeRN [lyl=1

(23) sup sup

< Cﬂ.
(x,y)eR2N  iz|l=1

3. Proof of Theorem 2

All the proofs in this section will be written for the Case Bhdresults in Case A (which is
easier) simply follow dropping the terixg.

3.1. Fundamental solutions

For anyxg € RN, let us “freeze” aixg the coefficientssj (x), ag(x) of the operator (17), and
consider

q
(24) Lo= ) aj (X)X Xj + ag(xo)Xo.
ij=1

By Theorem 8, the operatdly satisfies the assumptions of Theorem 9; therefore, it hasdafu
mental solution with pole at the origin which is homogeneofidegree(2 — Q). Let us denote
it by T (xg; -), to indicate its dependence on the frozen coefficientgxg), ap (xo). Also, set
fori,j=1,..., d,

Tij (X0;Y) = Xi Xj [T (xg; )] (¥).
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Next theorem summarizes the propertiesi'ofxp; -) and I'jj (Xg;-) that we will need in the
following. All of them follow from Theorem 9 and Lemma 1.

THEOREM11. For every x € RN:

@ T (x0.) € € (RN \ (0);
(b) T (xp,-) is homogeneous of degréz— Q);
(c) for every test function u and everyex]R{N,

u) = (Cou + T 00i) 00 = [ T (x0iy o x) Loutydy;
RN

moreover, for every,ij =1, ..., g, there exist constantg; (xg) such that

(25) Xi Xjux) = P.V./]RN [jj (Xo;y_loX> Lou(y)dy + aijj (Xo) - Lou(X);

(@ Ij (x03) € C= (RN \ (0});
(e) Tjj (Xo;-) is homogeneous of degreeQ);
(f) forevery R>r > 0,

/ Tij (xo; y) dy= Tij (Xo; y) do (y) =0.
r<lyl<R lyll=1

The above properties hold for any fixag. We also need some uniform bound forwith
respect tokg. Next theorem contains this kind of result.

THEOREM12. For every multi-index8, there exists a constant
c1 = ¢1(B,G, u) such that

9 \?
(26) sup (a_) Tjj (% y)| < ¢,
xeRN y
yl=1
foranyi, j =1,...,q. Moreover, for thexj; 's appearing in(25), a uniform bound holds:
@7 sup ajj (0] < ¢,
xeRN

for some constantc= cp (G, p).

We postpone the proof of the above Theorem to §84. The proofiebfiem 2 from Theorems
11, 12 proceeds in three steps, which are explained in §8323.4.
3.2. Representation formula and singular integrals

Let us consider (25). Writingg = £ + (Lo — £) and then letting« be equal tokg, we get the
following representation formula:
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THEOREM13. Letue C§° (RN). Then, fori j =1,...,q and every xc RN

q
XiXju(x) = P.V. / Tij (% y*lox)< > [ank®) — ank(y)] XnXku(y) +
k=

h,k=1

(28) + [a0(%) — ag(y) ]| Xou(y) + Eu(W)dy + aij (X) - LU(X).

In order to rewrite the above formula in a more compact foetys introduce the following
singular integral operators:

(29) Kij f(x) = P.V./ Tjj oy Lox) f(y)dy.

Moreover, for an operatdk and a functiora € £*° (RN), define the commutator
C[K,a](f) = K(af) —a- K(f).

Then (28) becomes

q
Xi Xj u = Kjj (Lu) — Z C[Kij »ank] (Xn Xk u) +
h,k=1
(30) +C [Kij ,ao] (Xou) + aijj -Lu

fori,j=1,...,q.
Now the desiredCP-estimate onX; Xj u depends on suitable singular integral estimates.
Namely, we will prove the following:

THEOREM 14. For every [E (1, co) there exists a positive constant=¢ c¢(p, u, G) such
that for every ac BMO, f € LP (RN), iLji=1....q:

(31) ” Kij (f )||£p(RN) <c|f ”LD(RN)
(32) Ic[Kij. a] (f)||£p(RN) =clall« I fllzp®ny -

The estimate (32) can be localized in the following way (&efdr the technique of the
proof):

THEOREM15. If the function a belongs to V MO, then for every 0 there exists r> 0,
depending o and the V MO modulus of a, such that for every £P, with sprt f € By

(33) IC[Kij .a] (D 2o, = c(P.1t.G) - el Tlicp(y) -

Finally, using the bounds (27), (31), (33) in the repreg@mdormula (30), we get Theorem
2. Note that the ternXgu can be estimated either by the same method used;fot;j u for
i,j=1,..., q, or by difference.

So the proof of Theorem 2 relies on Theorem 14 (which willdellfrom 883.3, 3.4), and
Theorem 12 (which will follow from §4).
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3.3. Expansion in series of spherical harmonics and reduah of singular integrals “with
variable kernel” to singular integrals of convolution type

To prove Theorem 14, we have to handle singular integralsnaf {29), which are not of con-
volution type because of the presence of the first variahile the kernel, which comes from
the variable coefficients;j (x) of the differential operatoC. To bypass this difficulty, we can
apply the standard technique of expanding the kernel iesefispherical harmonics. This idea
dates back to Calderdon-Zygmund [10], in the case of “stadidangular integrals, and has been
adapted to kernels with mixed homogeneities by FabessRiil2]. We briefly describe this
technique. (See [10] for details). Let

{Ykmim=0,1,2,...
k=1,..., Om

be an orthonormal system of spherical harmonic& ™ complete inC2(=y) (mis the degree
of the polynomial gnm is the dimension of the space of spherical harmonics of éegrie RN).
For any fixedx € RN, y € Sy, we can expand:

00 Im

(34) ICSERY Zcf‘jm ) Yim(y) fori,j=1,...,.
m=1 k=1

We explicitly note that fom = 0 the coefficients in the above expansion are zero, because of
the vanishing propertyf() of Theorem 11. Also, note that the integralXfy, (y) over Zy, for

m > 1, is zero. Ify € RN, lety = D (|\y||_1) y: recall that, by (i) at page 393/ € =y. By

(34) and homogeneity dfjj (x; -) we have

o0 Om Y, /
Tj G y) = Yy Zcﬁm(x)L%) fori,j=1,...,q.
— = Iyl
Then
0 Om
(35) Kij (H00=Y" > k™00 Temf (x)
m=1 k=1
with
(36) Tumf (x) = P.V. / Ham(y o) f(y)dy
and
Yiemn (X
(37) Him (X) = km(Q)
[l

We will use the following bounds about spherical harmonics:

(38) gm < c(N) - mN=2 foreverym=1,2, ...

<Ny . m(¥+\ﬂl)

a\?
@9) (35) Ym0
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forxe TN, k=1,....,gm,m=12,....
Moreover, if f € C®(Xy) and if f(x) ~ Zk’m bkm Ykm(X) is the Fourier expansion of

f (x) with respect to{ Ykm}, that is

bkm=/ f(X) Ykm(x) do (x)
ZN

then, for every positive integerthere existgy such that
a\b
(7¢) T

In view of Theorem 12, we get from (40) the following bound bIet:oefﬁcients:ikjm (X) ap-
pearing in the expansion (34): for every positive integtrere exists a constaot= c(r, G, n)
such that

(40) lbkml < & -m~2" sup
XEXLN
Bl=2r

(41) sup k™ (X)] <cr, G, -m?
xeRN

foreverym=1,2,..;k=1,....,gm;i,j=1,...,Q.

3.4. Estimates on singular integrals of convolution type ath their commutators, and con-
vergence of the series

We now focus our attention on the singular integrals of ctutian type defined by (36), (37)
and their commutators. Our goal is to prove, for these opesabounds of the kind (31), (32);
moreover, we need to know explicitly the dependence of thestamts on the indexds m,
appearing in the series (35). To this aim, we apply some atistesults about singular integrals
in spaces of homogeneous type, proved by Bramanti-Cerufd]i To state precisely these
results, we recall the following:

DEFINITION 1. Let X be asetand dX x X — [0, co). We say that d is a quasidistance
if it satisfies properties (9), (10), (11). The balls defingdiinduce a topology in X; we assume
that the balls are open sets, in this topology. Moreover, sgime there exists a regular Borel
measureu on X, such that the “doubling condition” is satisfied:

u(Byr (X)) < - (Br(x)

for every r> 0, x € X, some constant c. Then we say thdtd, u) is a space of homogenous
type.
Let(X, d, u) be an unbounded space of homogenous type. For ever)Xxdefine

ry = sup{r >0: Br(x) = {x}}

(here su@ = 0). We say that X, d, 1) satisfies a reverse doubling condition if there exist
¢ > 1, M > 1such that for every xc X,r > ry

1w(Bmr () = € - 1(Br(x)).
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THEOREM 16. (See [4]).Let (X, d, u) be a space of homogenous type and, if X is un-
bounded, assume that the reverse doubling condition haktk: X x X\ {x =y} - Rbe a
kernel satisfying:

i) the growth condition:

C1

(42) kX, Y = —————
u (B Oxdox y)

for every x y € X, some constantc

i) the “Hormander inequality”: there exist constants e 0, 8 > 0, M > 1 such that for
every y € X,r >0, x € Br(Xg), Y ¢ Bmr(Xo),

[k(x0,y) — k(x, Y| + [K(y, X0) — k(y, ¥)| =

C2 d(xg,%)?
(43) < . ;
i (B 00, dxg, y)) IO

iii ) the cancellation property: there existg & 0 such that for every,lR,0 <r < R < oo,
a.e. x

(44)

/ K(x. Y)dM(Y)’wL / kz %) du(@)| < ca.
r<d(x,y)<R r<dx,z2 <R

iv) the following condition: for a.e. x X there exists

(45) lim / k(x, y)du(y).
e<d(x,y)<1

e—0

For f € LP, p e (1, o0), set
Ke () = / k(% y) £ ) dpa(y).
e<d(x,y)<1l/e

Then K f converges (strongly) i P for ¢ — 0to an operator K f satisfying
(46) IKfllp<clifll, forevery fe LP,

where the constant ¢ depends onpXand all the constants involved in the assumptions.
Finally, for the operator K the commutator estimate holds:

(47) ICIK,a] fllp < cllalllflp
for every fe £P,a e BMO, and c the same constant ag46).
REMARK 3. The constant in (46), (47) has the following form:
c(p, X, B, M) - (c1 + €2 + C3).

Proof. To see this, note that K satisfies (42), (43), (44) with constants, ¢, c3, thenk’ =
k/(c1 + ¢ + cg) satisfies (42), (43), (44) with constants 1, 1, 1, so thatHerkernelk’ c =
c(p, X, B, M).

|
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Let us apply Theorem 16 to our case. By (12), our space satife the reverse doubling
condition. Consider the kernels:

_ . Ykm (X/)
k(x,y) = H 1 th H =
(.3) = Hhan (¥~ 0 ) with Hian 00 = =% o

By homogeneityk satisfies (42) with

(48) c1 =¢(G) - sup [Yim (X¥)I.
XeXN

To check condition (43) we need the following:

PROPOSITIONL. Let f € C1 (]RN \{O}) be homogeneous of degree< 1. There exist
c=c(G, f) >0, M = M(G) > 1such that
(49) [f(xoy) = FOOl+1f(yox) — F00l < cllyll x|t

for every x y such that|x|| > M |ly||. Moreover

c= ¢c(G)- sup |VT(2)].

Ze¥TN

Proof. This proposition is essentially proved in [11], apart frdm &xplicit form of the constant
C.

ChooseM > 1 such that ifix|| = 1 and]||y|| < 1/M then||x o y|| > 1/2. Set:
FiX,y) = f(Xxoy), L(X,y) =Xoy

and
K ={ocy tixi = 1and ) < 1/m).

By homogeneity, it is enough to prove (49) for, y) € K. Sincef (z) is smooth for|z| > 1/2
andL is smooth (everywhere), by the mean value theorem

1f(xoy) — F] = F (X, y) = F(x, 0 < Iyl - |VF (x, y*)]

with (x, y*) € K. But:

aL; of
— — @

<
9z

(X’ Y)‘ - Sup

1
lzll=3

OF N
sup ‘—(X, W’S sup
x.y)ek | 9% Jzzjl x.y)eK | 9%

<c(G)- sup |Vf (2],

ZeXN

and the same holds for SHPy) ek ‘g—; (X, y)‘.

Recalling thatly| < ¢(G) |lyll when|ly|] < 1 (see (8)), and repeating the argument for
[f(yox)— f(x)|, we get the result.
O
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By Proposition 1k satisfies (43), wittB = 1, M = M(G), and

(50) C2 =¢(G) - sup |VYim I

XEXN

As to (44), the left hand side equals:

/ Him(y) dy‘ T
r<llyll<R

The first term is a multiple of

/ Hem(y) dy
r<\|y*1\|<R

/ Hem(y) do (y>’
=N

and therefore vanishes; the second term, by (42), (48) adcéin be seen to be bounded by
c(G) - c1 (see for instance Remark 4.6 in [4]). Hermgehas the same form @f;. Moreover, (45)
is trivially satisfied, by the vanishing property Bl .

Finally, combining (39) with (48), (50) we get, by Theoremak&l Remark 3, the following:

THEOREM17. For every fE (1,00) there exists a constant ¢ such that for every 8 MO,
f e£p<RN),m=l,2,...;k=l,...,gm

Mem(E)ll 2Ny = Sl fll 2Ny

IC [Tkm. al (D] zprny =< cllalle Il il zogn) -

Explicitly, c= c(p, G) - mN/2,

We now turn to the expansion (35). Combining Theorem 17 whighuniform bound (41)
on the coefficients in the expansion (which crucially degeod Theorem 12), and using (38),
we get Theorem 14, where the constant in (31), (32) 5 G, u).

4. Uniform bounds for the derivatives of fundamental solutbns of families of operators

In this section we prove Theorem 12; this will complete theobrof Theorem 2. The proof of
Theorem 12 is carried out repeating an argument by Rotlis&tédin (contained in 86 of [28]);
this, in turn, is based on several results proved by Kohn 1. [RVe will not repeat the whole
proof, but will state its steps, pointing out the necess#&gnges to adapt the argument to our
case. As in the previous section, it will be enough to writephoof for Case B.

Let A, be the set off x g constant matrices =({ajj }, satisfying:

q
WP1E2 < Y & &g < p2 g7 foreverys € RY,
ij=1

wherepu is the same as in (18), (19). Throughout this section we wilisider the operator

q
La= ) ajXiXj + Xo
ij=1
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where A ={ajj }€ A, and the fieldsX; satisfy the assumptions stated in §2.1. Cét be the
fundamental solution fo£ o, homogeneous of degré2 — Q) (see §3.1), and let:

Ta: f — fxTA.

By Theorem 9TaL a = LaTa =identity. We will prove that:

3\ A
(a_x) =)
Note that, ifCq is the frozen operator defined in (24)g = ag(Xg)-L£ a With
A = {aij (x0)/a0 (XO)}iqul e Ay, andT (xg, -) = ag (Xo) - I'A. This shows that (26) follows
from (51).

The operatoiTa can be regarded as a fractional integral operator, for wthietfollowing
estimates hold:

(51) sup
IxlI=1

<c(B, G, w).

THEOREM18. a)If 1 < p < % and 1 = % - % . then

ITaflls =clifllp

with
c=c(p,G)- sup’FA’ .
N

b) If % <p<Qandg=2- % (henceg € (0, 1)), then for every fe C3° and every

X1, Xo € RN
[(TAT)(xp) — (TAH) (x| < c | fllp d(xq. X2)P
with
c=c(p,G)- sup‘l‘A‘ + sup‘VFA‘ .
N N
olfp> % and sprtfC By (xg) for somer> 0, xg € RN
ITafllzoogy < Cliflizee,)

with

c=c(p,G,) ~sup‘FA‘.
%N

Note: partsh-c of Theorem 18 will be used only in 86(proof of Theorem 4).
Proof. Parta) follows from Proposition 1.11 in [11], or also from resu#tbout fractional inte-
grals on general spaces of homogeneous type, see [15]. ftheofdhe constant depends on

the bound:

(52) ‘I‘A(x)’ 5521Lp‘I‘A’.”X”%.

Partb) could also be proved as a consequence of results in [15]f isueasier to prove it
directly. LetM be the same number as in Proposition 1; let us write:

(Tan00) ~ Tahoal < [ [[PAytex —rAyoxp] fo| dy <
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= ‘/|‘}yloX1|ZM‘leox1H e dyF '/|‘}yloxl|SM‘leoxl‘ cody=1+11.
By Proposition 1,
Al f )l
I <c(p,G)- SELLp‘VF ’ sz o Xl” /Hy10X1|ZMHXZlox1‘ W dy.

Let p, p’ be conjugate exponents; by Holder’s inequality and a charigariables

1 1/p’
I < cHx2—1 oXlH Ifllp (~/|Y|ZMHX21°X1‘ Iy @-DF dy) <

computing the integral, under the assumptpr Q,
_ B
=g tox| Ity

wherep = 1— & [(Q—l)(q—l)—l]:Z—%e(O,l).

By (52),
I < sup‘FA’-
N

/ £y { r 1 } dy=

Jy~toxe | <M xz ox lyLox |22 |yLoxy 22
=11"+11".

By Holder’s inequality and reasoning as above, we gqt, # Q/2,

_ B
||’5c”x210x1H 1l

Astoll”, if H ylox H <M H x5 tox H then”y_l o X2H <c H x;tox H and thereford 1"
can be handled ad ’.

As to ¢), noting thatx, y € By (xg) = y*l o X € Bkr (0) for someK = K(G), we can
write, by Holder's inequality (lep’ be the conjugate exponent pf:

rA 2
v 0y = ©V(52)

”TAf ”»COO(Br(Xo)) < || f ||£p(Br o)) H
= IfllzeB xp)) - €(P, G) -sup’FA‘ .12-Q/p,
N
which proves the result, assumipg> Q/2.

Now, let
sﬁ\f = X Xj Taf.

By (c) of Theorem 11, settinﬁi'j“ = Xi X;T'A, we can write
(53) S =PV (r{j* % f) +aij (A) - .

Let us apply Theorem 16 and Remark 3 to the kel?@l. By the propertiesd), (e), (f) listed
in Theorem 11 and Proposition 1, we get:
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THEOREM19. For every pe (1, 00), f € C§° (RN),

HP.V.(Fi’?‘ * f)Hp < clflp

with

c=c(p,G)- {sup‘l‘A’ + sup’VFA‘} .
=N =N

LEMMA 2. For every pe (1, c0) and for every 4 € A, there existg > 0 such that if
|A— Ag| < ¢, then

1
IEAflp = 51l

where|A| denotes the Euclidean norm of the matrix A and
Ea= (LA, — LA) Ta-
This Lemma is proved in [28] (Lemma 6.5), for a different cla$ operators.

Proof. Let us write
q

Lag—La= Y (a) —ay) XiX;.
ij=1

Then
q

(0] . e
Eaf =) (8 —a.,) Xi X Ta, f.
ij=1
By (53) and Theorem 19 we get the result.
O

LEMMA 3. Let pe (1, Q/2) and letl =

- % There exists e= ¢(G, 1, p) such that
for every Ac A,

1
p
(54) ITaflls <cliflp.

This Lemma is an adjustment of Lemma 6.7 proved in [28], whimhtains a minor mistake
(it implicitly assumesQ > 4).

Proof. Let Ag € A, and letE ande be as in the previous lemma. For eveiye LP, if
|A — Agl| < ¢, then for everyp € (1, 00), ||[Ea f lp < % | f lp,so that we can write

e¢]

(55) Y (ER) f=(-Eptf=g
n=0
Therefore
f=0-EAg=0—LATaA 9+ LATA, 9= LATA,0,
that is

TAf = TA09~
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Again from (55) we have

o
lgllp < > NEAI™ I fllp =21 fllp .
n=0

hence by Theorem 18, if p, s are as in the statement of the theorem,

ITaflls = | Tao8]s < c(G. p. Ag) llgllp < 21 .

Since this is true for every fixedg € .4, and any matrixA such thai A — Ag| < ¢, by the
compactness a#l, in R we can choose a constant= ¢(G, p,u) such that (54) holds for
everyAe Ay.

|

THEOREM 20. Let g, ¢ € C° (RN) with ¢1 = 1 on sprtp. There existg = ¢ (G)
and, for every te R, there exists c= c(t, 1,G, ¢, 1) such that for every A A, and every
N
uecg (RN)
lpullyese2 < ¢ {llprLaullyee + llprull c2} -

(Recall that the norm of H2 (RN) has been defined is §2.3).

This Theorem is proved in [21] for a different class of operatand without taking into
account the exact dependence of the constant on the param@&epoint out the slight modi-
fications which are necessary to adapt the proof to our casevillvstate the main steps of the
proof of Theorem 20. Before doing this, however, we show hawnfLemma 3 and Theorem
20, the uniform bound (26) follows. This, again, is an argotreontained in [28], which we
include, for convenience of the reader, to make more readbblexposition. Moreover, a minor
correction is needed here to the proof of [28].

Proof of (26) from Lemma 3 and Theorem 2@hroughout the proofB; will be a ball centered
at the origin. Letg € C3° (B2 \ By) such that|gll, < 1, and letp, 1 € C3° (RN) such that:
@ =1inBy4, sprip € Byjz, 91 = 1in Byp, spripy € By. Let f = Tag. SinceLaf =g=0
in B and L a is hypoelliptic, f € C* (By).

2 1 2

Pick a positive numbep such that max 3. C) < § < min (% +5. 1) and lets be as in

Lemma 3. Note that k p < Q/2 andp < 2 < s. Then, by Lemma 3:
ler fllz < clen) I flls < cle1,G. w, P)IIGIlp = Cle1,G, w) I9ll2 < c(¢1,G, ).
Applying Theorem 20 t@, ¢1, f, sinceLaf = 0 on sprpq, we get:
lofllgtre2 < C llopfllo < cltp,p1,G, 1)
for everyt € R. Therefore, by the standard Sobolev embedding Theoremsawé&ound any
(isotropic) Holder normCh-@ of f on B1/4 with a constant(h, G, p); in particular, for every

differential operatoiP:

(56) IPFO)| = c(P, G, w).
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Now, recall thatf = g« ', If P is any left invariant differential operator,

(57) PfO = [ PrAy gy dy.

Since (56) holds for evergy Cgo (B2 \ Byp) such that|gll» < 1, from (57) we get
A/ ,~1

(58) PTG gy, = PG 10

Now, writing any differential operato(%) in terms of left invariant vector fields, (58) gives

us a bound on everid k.2_norm of ' on B> \ B1, and therefore, reasoning as above, on every
Holder normC"-¢ of I'A on a smaller spherical shell = B7/4 \ Bs,a4. In particular, we get

3\ A
(&)

from which (51) follows, by homogeneity &fA.

sup
xeC

<c(8, G, ),

a

Now we come to Theorem 20, which is proved by Kohn in [21] foioperator of the kind

q
Pu= " X2u+ Xou+ cu,

i=1
where the fieldsX; (i = 0,1, ..., q) satisfy Hormander’s condition. Reading carefully the
paper [21], one can check that the whole proof can be repeaptacing the operatoP with
L a; moreover, the constants depend on the matrignly through the numbegr. Actually,
the matrix A is involved in the proof only through the boundedness of d@sficients and the
following elementary inequality:

q
[(Lau, u)| > “Z IX;ul?, for everyu e C3° (RN) )
i=1
We can rephrase as follows the steps of the proof of Theoregived in [21]:
(i) There exist = ¢(G), ¢ = ¢(G, ) such that for every e CSO (RN) andeveryA e A,
lullge2 < c{li£aull2 + llull2} .
(i) For everyt € R, M > 0, there existc = c(t, M, u, G) such that for every €
cee (RN) and everyA € A,
Iullyeee2 < c{llLAUl 2 + IUlly-m2},

wheres is the same of (i).
(iii) (Localization of the above estimate).

loullgere2 < c{llorLaullye2 + llo1ully-m2},

wheregp, ¢1 € Cgo (]RN) with ¢1 = 1 on sprip, ¢ = c(p,¢1.t, M, 1, G).
Sincel|-[ y-m2 < [I-l2 , from point (iii) we get Theorem 20.
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REMARK 4 (AN ALGEBRA OF PSEUDODIFFERENTIAL OPERATORS
ADAPTED TO THE FIELDSXj).
For the reader who is interested in reviewing the proof of|,[2le point out that, under our
assumptions, many of the arguments of [21] can be simplifieihaade more self-contained by
the following remark. We can precisely define an algebra etigedifferential operators, acting
on the Schwarz’ spacg of smooth functions with fast decay at infinity. Consider fibkowing
kinds of operators:

(a) multiplication by a polynomial;
b Xi (i=01,...,09);

(© fort & R, Al defined by(Alu) (6) = (1+ |§|2)t/2 ).

By general properties of homogeneous groups (see [31], b), @2 vector fieldsX; are
linear combinations of/dx; with polynomial coefficients (and, by Hormander's corwlitj the
d/0x;'s are linear combinations of th¢ 's and their commutators, with polynomial coefficients).
ThereforeX; mapssS into itself, while the same is true for the operators (a) apdThe transpose
of an operator of kind (a), (c) is the operator itself, whis@mce the fieldsX; are translation
invariant, the transpose of; is —X;. (This fact also simplifies many of the arguments in [21];
in particular, note thatXqu, u) = 0). LetP be the algebra generated by operators (a), (b), (c)
under sums, composition and transpose. This algebra isuiteble context where the whole
proof can be carried out. On the contrary, in [21] some tezdinproblems arise, since; are

defined only orCS° (RN).

To complete the proof of Theorem 12 we have now to prove egirf®2r). We actually
prove a more general result which will be useful in §6.

Let {ky} A be a family of kernels such thky is homogeneous of degree- Q for some
ye

h > 0 andk, € C§° (IR{N \ {0}). Let T, be the distribution associated ko and letP" be a
left invariant differential operator homogeneous of dedreThen, Theorem 9 states that

(59) P'T, = PV.(PMiy ) +ay 8.
(Observe that (25) is a particular case of (59)). With thesations, we can prove the following:

LEMMA 4. Ifk, satisfies a uniform bound like (26), that is, for every modtéxs

9 \B
(@) ky (W) < c(B),

sup sup
veA|yl=1

then
sup|ay | <c.
yeA

Proof. Letu be a test function witku(0) # 0, sprtu € B4 (0). By (59)

@y U = ((PM)Tu, Ty) = (u, P.V.(Piy ) =

e—0

=/(Ph)Tu(x) ky (X) dx — Iim/ Pk, (x) u(x) dx
Ix||>&
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(here T denotes transposition). Sinke is locally integrable, the first integral is bounded,

uniformly in y by (59). As to the second term, by the vanishing property eﬂeterneIPhky
(see Lemma 1), homogeneity and (59) we can write

’/ PPk, (x) u(x) dx / PPk, () [u() —u@] dx | <
Ix||>& e<lxl<1

< sup IVU(y)I/ < _. x| dx < c.
lyl<1 e<lxll<1 Ix]1Q

(The convergence of the last integral follows from (8)).

5. Some properties of the Sobolev spacé’ P
We start pointing out the following interpolation inequglfor Sobolev norms:

PrROPOSITION2. Let X be aleftinvariant vector field, homogeneous of degree0. Then
for everye > 0, u € SP (RN), p e [1, 00)

(60) iXulp < e [x2u] -+ 2 julp.

Proof. The following argument is taken from the proof of Theoremifi.fiL3]. Lety (t) be the
integral curve ofX with y(0) = 0. Then, applying Taylor’s theorem to the functiéift) =
u(xoy (b)),

1
U(X oy (1) = UK + XUK) +/ (1—t) X2u(x oy (t)dt.
0
Using the translation invariance | p and Minkowski’s inequality, we get
2
IXullp < [X2u] |+ 2lulp.

SinceX is homogeneous, by a dilation argument we get the result.
O

We will need a version of (60) for functions defined on a badit(necessarily vanishing at
the boundary). For standard Sobolev norms, this resutiiaifrom the analog of (60) using an
extension theorem (see for instance [14], pp. 169-173). ddew it seems not easy to construct
a continuous extension operatér SP (B;) — S‘é’ (Bor). We are going to show how to bypass
this difficulty.

First we construct a suitable family of cutoff functions. vé two ballsBy,, Br, and a
functiony € C§° (RN), let us writeBr, < ¢ < Br,tosaythat®& ¢ <1,¢ = 1onB, and
sprip C By,.

LEMMA 5 (RADIAL CUTOFF FUNCTIONS). Foranyo € (0, 1), r > 0O, k positive integer,
there existg € Cgo (RN> with the following properties:

Bal’<(/)<BU’I’ Wlth0/=(l+0)/21
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[Piy| < __«Gp
ol=1@—o)lri
where P is any left invariant differential monomial homogeneousiedree j.

forl<j <k,

Proof. For simplicity, we prove the assertion far= 2. The general case is similar. Pick a
function f : [0,r) — [0, 1] such that:
f=1in[0,or), f =0in[o’r,r), f €C®(O,r),
7] = 4=
~(l-o)r
Setting ¢(x) = f (]x]|), we can compute:

C
(1—0)2r2°

7 <

Xip0) = f'UxIDXi (IxID 3

Xi Xje () = " (UxIDXi (xID X AxID + £ AxID X Xj Ax) -

SinceX; (lIx|l) is homogeneous of degree zeroffes 1, ..., q, Xj Xj(lIx[)
(fori, j =1,...,q) andXg (] X|)) are homogeneous of degred and f'(||x||) # O for || x| >
or, we get the result.

|

Another tool we need in this context is an approximation ltdsusuitable mollifiers. For a
fixed cutoff functiongp, B1 (0) < ¢ < B> (0), set, for everyg > 0,

e (X) = 0'87Q</) (D (;) X)
with ¢ = (/pn @(X) dx)fl. Then

LEMMA 6. Foru e SKP (RN) (k nonnegative integer,4 p < oo) and ¢, as above,
define y = ¢ xu. Theny €e C*® and . — u in P for e — 0.

Proof. The proof follows the same line as in the Euclidean case. Wejpint out the following
facts:

(i) convergence irCP is established first fou € A#(G,RN), u with bounded support.
The density of this space iiP can be proved in a general space of homogeneous type (see for
instance [4]);

(i) sinceX; is right invariant,X; (ug) = (Xi u) : from this remark and convergencedr®
&€
we get convergence gk P
(iii) to see thatu, € C°°, one has to consider right invariant vector fiem§, write
XiR (pe xU) = (XiR(pg) xU, and iterate. The possibility of representing any Euclidéerivative

in terms of right invariant vector fields (see §2.5) provities conclusion.
O

The above Lemma is useful for us mainly in view of the follog/in

COROLLARY 1. Ifu € S4P(@) (1 < p < 0o, k > ) andy € C (), then w €

$P@.
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Proof. The functionug is compactly supported if2 and, extended to zero outsitk belongs to
skp (RN). Then(ug), converges taip in SK-P. Since, fore small enough(ug), is compactly
supported i, (up), € Cgo () andug €€ §l§’p ().

O

THEOREMZ21 (INTERPOLATION INEQUALITY IN CASEA). Assume we are in Case A. For
any ue sH.P(By), pe[l, o0), H>2r > 0, define the following quantities:

= sup <(1—a)krkHDkuH )fork:O,l,Z,...,H.
leo<1 LP(Bro)
2

Then for every integer j1 < j < H — 1, there exist positive constants & depending on
G, ], H such that for every € (0, §g) we have

(o
(61) (DJ §8¢H+(§j/(Tj)®0'

Proof. We proceed by induction oH. LetH = 2.
Letu € SP(By) andg a cutoff function as in Lemma 5. By Corollary iy € S(’))(Br),

hence by density we can apply Proposition 2, writing
2
1Xi o)l = & {llg Xi Xiullp + 125U Xi@llp + Iu X Xigllp} + = lleulp

for anye > 0. Hence

c(G)

Du < {H DZUH —  ||Du
I ”Lp(B‘”) =¢ LP(B,r) * A—o)r I ”EP(BM) +

c(G) 2
+m HUHLP(BM)} + z HUHLp(Ba,r) .

Multiplying both sides for(l — o) r and choosing = do (1 — o) r we find

2.2 2
(1= o)1 DUl 2o,y < b0 (L—0)2r? D UHLp(BU/r)-I—

1
+C(G)do (L —o)r IDullzpep ) + S(G) (5 + g) lullzees,,) =<
(noting that (1- ') = (1 — 0)/2)
< 4505 + C(G)8d1 + c(G) (5 + %) ®o.

Therefore

45 o) (5+3)
oG 2T 16

which, ford small enough, is equivalent to

®q < 1 $g

Cc

Assume now that (61) holds fad — 1. An argument similar to that used to obtain (62) applied
to DH 2y yields

C
Py <3Py + 3 PH_2
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while, by induction,
[
PH_2 <nPH_1+ A2 Po.

Therefore
c c
PH-1 =8PH + 3 (ﬂ‘bel + A2 <1>0>

and, choosing = £ we get
c
(63) dy_1 < 25Dy +8H—_1®0.
If j = H — 1, this is exactly what we have to prove;jif< H — 1, by induction

Q) <edy_1+ by (63)

C
— P <
el/(H-1—]) 0=

< 25® ¢ [} ¢ [}
<e¢ H+5H71 0 +gj/(H_1—j) 0-

Choosing @ = »¥/(H=1) ande = 1~/ (H=1) we get the result.
|

REMARK 5. Note that the second part of the above proof does not hdlihée B since in
that caseDXu cannot be obtained a3 ( D¥—1u). However, the proof foH = 2 holds also in

Case B, since the fieldg does not play any role in the definition Bfu. We are going to prove
an analogous interpolation inequality, in Case B, which ald for H even. This proof will be
achieved in several steps.

Let
q
L= X?+ Xo,
i=1
and letl" be the fundamental solution &fhomogeneous of degree two; recall that the transpose
of L is just

q
LT =) X2 - Xo.
i=1

LEMMA 7. Let Q > 4. For every integer k= 2 and any couple of left invariant differential
monomials B! and P?~2, homogeneous of degrek — 1 and 2k — 2, respectively, we
can determine two kernels ®, K@ (depending only on these monomials) which are smooth
outside the origin and homogeneous of degrées Q), (2 — Q), respectively, such that for
any test function u

PE-lyx) = ((LL ... Lu) x K(1)> (x);
k times

(64) P22 (x) = ((LL ~Luyx K(2)> ).
k times

Proof. By induction onk. Letk = 2. By Lemma 1, we can write

U=LuxI'=(LLuxT)*xI'=LLux K,
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whereK =T x I" is homogeneous of degré¢¢— Q). Hence
Plu=LLuxP3K =LLuxK®; P2u=LLuxP?K =LLuxK®,

with KD, K@ homogeneous of degrég — Q), (2 — Q), respectively.
Now, assume (64) holds fér— 1, that is

PZ=3y(x) = ((LL...Lu) * K(1>) (x);

(k—1) times

PZE=4ux) = [ (LL...Lu)* K@ | (x).
(k—1) times

Any differential monomialP2~2 can be written either a¥; P23 (for somei =1, ..., q) or
asXg PZ~4_ In the first case, we can write

PE=2y) =X [(LL...Lu) KD ) x) =
(k—1) times

= Xi ((LL...Lu) o (T K(1>)> x) =

k times

- ((LL...Lu) % X (r* K(l)))(x) -

k times

((LL... Lu) K@) (X),

k times

with K@ homogeneous of degré€2 — Q) + (1— Q) + Q) — 1 = 2 — Q (we have applied
Lemma 1). In the second case,

PE-2y) = Xo [ (LL...Lu) s K@ | (x) =
(k—1) times

- ((LL...Lu) *x0<r* K(2>)> xX) =

k times
=(2)
(LL...Luw*x K (%),
k times

with, again,l?(z) homogeneous of degree {2Q).
Similarly, any differential monomiaP?<~1 can be written either aB2 P2*=3 (with P2 =
Xg or P2 = X;jX; for somei, j = 1,...,q) or asP® P?~4 (with P3 = X; Xq for some
i =1,...,q). Reasoning as above we get the result for this case, too.
|

LEMMA 8. For every integer k> 2 there exists a constant@, k) such that for every > 0
and every test function u,

c(G, k)
o2k—]

H DZkfjuHp <e HDzkqu+ lullp forj=12k=>2
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Proof. Let KM, K@ pe as in Lemma 7. We split the kerr€(D as
K® =gk ® 41— ) KD =Kg" + KT,

whereg is a cutoff function,B1(0) < ¢ < Bx(0). ThereforeK(()l) is homogeneous of degree

(1 - Q) near the origin and has compact support, hence it is integratile Ké%) is homoge-
neous of degreél — Q) near infinity and vanishes near the origin. Writigq) = f (x~1), we
can compute

/Kg) (y_lox)LL...Lu(y)dyzflzé%) (x_loy)LL...Lu(y)dyz

=/LTKQ)(X’loy)(II(_L...L)u(y)dy:...

—1times

- / (LT LT ... LT)KS,Q (x*1 ° y) u(y)dy =

k times

— U x ((LTLT ...LT)IZé%)) x) = (u % K{l)) (X).
k times

Therefore

P 1y(x) = ((Lkl_ﬁ.n.]ésl_)u « [Ke? + k&) 0o =

= (LL...Lw) *K§” +u =KD,
where Kil) is homogeneous of degrég — Q — 2k) near infinity and vanishes near the origin,
hence it is integrable. Integrability dﬁél), Kil) gives

| RN RTINS
p p P
The same reasoning appliedeZ) gives
| D22y §C(G,k){HD2kuH +||u||p}.
p p

The conclusions follows from the last two inequalities ardilation argument.
O

THEOREM22. [Interpolation inequality in Case B] For any function
ue SKPB)(k>1 pell oo),r >0),letdy (h=0,1,...,2k) be the seminorms defined
in Theorem 21. Then
D) < edyi + (e, K)Pg

for every integer j withl < j < 2k — 1 and everyg > 0.

Proof. Let ¢ be a cutoff function as in Lemma 5. By Corollaryup € %k’p(Br), hence, by
density, we can apply Lemma 8 trp. By standard arguments (see the first part of the proof of
Theorem 21) we get, for evedy> 0,

2k
Cc .
‘DZk—j <34 Z®h+m CDO (] =1,2)
h=0
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The previous inequality clearly holdslifis replaced by any integérwith 2 < i < k. Adding

up these inequalitiesfor2 i <k, j =1, 2, we get
k 2k—1 k 2i
(Pa—1+Po2)= Y ® <25 | > ®h|+c@.k- o<
i=2 i=2 i=2 \h=0
2k
<25k ) ®p + (8. k) - Po.
h=0

Adding also (62) (which holds in Case B, too, as noted in R&rBar

Cc
®1§5®2+g®0

we can write
2k—1 2k
> op <25k Y dp -+, k) - Do
h=0 h=0
and, finally, for every > 0,
2k—1
> op <& Dyt e, k) - P
h=0
which proves the result.
|
Next, we need the following Sobolev-type embedding theorem
THEOREM23. Letue Sé’(Br) for some r> 0. Then:
i Q 1 _1_2
aifl<p< S and =70 , then
Iullp- < c(p.® | D%l ;
b) if % <p<Q andﬂ:Z—%,then
0%
”U”Aﬂ(Br) <c(p r) u £P(By)
Proof. Let L, I" be as in the proof of Lemma 7. Then for amy C8°(Br) we can write
u=LuxT.
Theorem 18 then gives the assertion.
|

The results contained in Theorem 23 have been proved byrfoifa[11], where a more
complete theory of Sobolev and Holder spaces defined byat®wrfieldsX; is developed (see
884, 5in[11], in particular Theorems 4.17 and 5.15). Howglvelland’s theory relies on a deep
analysis of the sub-Laplacian on stratified groups, ancetbes does not cover completely the
cases we are considering here: remember that under our ptésnsy the groufss is graded but
not necessarily stratified.
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6. Local estimates for solutions to the equatiorCu = f in a domain

In this section we will prove Theorems 3 to 7, as a consequehttee basic estimate contained
in Theorem 2 and the properties of Sobolev spaces expoumnd88. i For convenience of the
reader, we recall the statement of each Theorem beforeaits. pr

THEOREM 3 (LOCAL LP-ESTIMATES FOR SOLUTIONS TO THE EQUATIONZU = f IN
A DOMAIN). Under the assumptions stated in §2.3, f&tbe a bounded domain &N and
Q' cc Q. Ifue SP(Q), then

lullspeery < c{lLull zpeq) + lull 2o |

where c=c(p, G, u, n, 2, Q).

Proof of Theorem 3Letu € SP(R), By C R, and fixrg = rg(p, G, 1, ) in such a way
that forr < rg Theorem 2 holds. Lep be a cutoff function as in Lemma 5. By Corollary 1,
Up € S(')J(Br); then, by density, we can apply Theorem 2ita

[XiXj )|, = clLue)lp-

From the above inequality we get:

c(G)
; IDulizecs,, )+

I1Xi X ul 2o,y < C{HEUHLP(Bo/r) t Ao

o (1_0_)2r2 LP(B,) [

Multiplying both sides for1 — a)zrz, adding to both side€l — o) r [|Dullzp(g,,), reasoning
like in the first part of the proof of Theorem 21 and applying)(6/e get

¢2+¢1§C{r2”£U”£P(Br)+||U||£P(Br)}~
Hence
2| o2 +1 DUl 2, ) = C{r2 LUl cocey) + IUllzae, |
L£P(By2) LP(Br2) = r r

that is
lullse(B, 5) = c{llLullgecg,) + Ul zoeg,)}

with ¢ = c(p, G, i, n,1),r < ro(p, G, u, n). The last estimate and a covering argument give
the result.
O

THEOREM4 (LOCAL HOLDER CONTINUITY FOR SOLUTIONS TO THE EQUATIONZU =
f IN A DOMAIN ). Under the assumptions of Theorem 3, i 8P (2) for some pe (1, oo) and
Lu € £3(RQ) for some s> Q/2, then

Iullawc@y = ¢ {1l zr@ + lull o |

forr = max(p,s), e =(Q, p,s) € (0,1),c=c(G, u, p,s, 2, Q).
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Proof of Theorem 4Letu e SP (BoR) (for somep e (1, 0o)) be a solution taCu = f in a ball
Bog, with f € £5(ByR) for somes > Q/2. We can always assunges < Q.

Let be a cutoff functionBr/2 < ¢ < Br. By Corollary 1,up € S(BR). If p > Q/2,
then by (b) of Theorem 23 € A%(BRr/2). If p < Q/2 (we can assump < Q/2), then by (a)
of Theorem 23yp € £P"(Bg), andu € LP"(Bg/2).

Assumep* < s. Then by Theorem 3|Ju||Sp*(BR/4) is bounded. Hence, we can fiq

with Br/g < @1 < Brya and repeat the argument finding thate SP™ (Bg1¢6), and so on.
After a numbelk of iterations depending only op, Q, we find thatu € SP (BR/4k) for some

p > Q/2: more preciselyk must be the integer belonging to the interéaz% -1, 2%) This
k exists providedQ/2p is not an integer, what we can always assume, replagjiighecessary,
with a slightly smallerp;. Therefore, by lf) of Theorem 23u < Aa(BR/22k+1) for some
a € (0,1).

Ifue Ep*(BR/Z) with p* > s, Theorem 3 implies that € S° (Bg/4) and sinces > Q/2,
ue A% (Bryg) for somex € (0, 1).

In any case, the following estimate holds:
Iull xe () = LI Fllzs(er) + IUllsP(BRY} <

by Theorem 3
<c{lfligsr) + I fllrB + IUllzp(BoR) ) -

By a covering argument, we get the result for a bounded dofain
O

THEOREMS5 (REGULARITY OF THE SOLUTION IN TERMS OFSOBOLEV SPACES. Under
the assumptions of Theorem 3, § @j € S¢>°(Q), u e SP(2) and Lu € SXP () for some
positive integer k (k even in Case B)< p < oo, then

lullgesz.pry < o1 {1 2ullsenc) + C2 Iull oo |
where g = ¢c1(p, G, u, 1, 2, Q') and @ depends on thek$® (Q) norms of the coefficients.

REMARK 6. Similarly to the proof of the interpolation inequalityrgained in Theorems
21 and 22, also the proof of Theorem 5 is more difficult in Caske® in Case A. The reason of
this appears clear if one tries to adapt our proof of Case étal€ase B. In doing so, the main
difficulty is the presence of the fieldy, which has weight two but cannot be seen as composition
of two fields of weight one. This is also why the definition oét!;pacesk’p in Case B is not
optimal wherk is odd, as already noted in [28]. Therefore our proof of Theob in Case B will
follow a different line and will require the restrictidneven. This also (but not only) depends
on the restrictiork even that appears in Theorem 22. We also note that in the ctativeucase
(that is£ uniformly elliptic, in Case A, or uniformly parabolic, in Ga B) this Theorem follows
immediately from Theorem 3 (just differentiating the edoatCu = f).

Proof of Theorem 5 in Case AThe proof is divided into two parts: first we prove an estimate
for the derivatives of ordedt + 2 of a test functioru supported in a small ball, in terms 61 (as

in Theorem 2); then we derive from this result a local estarfat any function ingk+2.p (R)

(as in the proof of Theorem 3).
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Part L The idea of this proof, in the case of the Kohn-laplacian lua Heisenberg group, is
contained in [31]. Recall thal(iR i=1,..., N) are the right invariant vector fields which

agree withX; (and therefore wittd/ox;) at the origin. Here we will use the propertiesxaf
stated in §2.5. Moreover, sinoef,. . .,X('? generate the Lie algebra of right invariant vector
fields, for everyk > g we can write

R . RyR R
(65) XE= D Dindg X Xy - Xin
1<ij=q

for suitable constantsil._.iwk depending only ort.
Let us consider a test functian We are going to establish a representation formulaar
in terms of D (Lu). For a fixed pointg € RN, let us write

_ -1
u(x) _/RN F(xo,y oX) Lou(y)dy.
Then, foreveryy =1,...,Q:

xiuo0 = [ XiT (xiy " ox) Louyidy = by (22
R (o
_ R (k.. . -1 _
-/, > X () r o) (¥ ex) Louy dy= by (65)

= /RN > XQ (C:( Gr (Xo;-)) (y‘l o x) Lou(y)dy +

k=i

N
+/ X ek, XXE xR (O T 00m) (yThox) Louty) dy =
B k=qt+11<ij=q

by (21)
q
k . _
B /RN g <Ci Or (X0,~)) (y 1o X) Xk Lou(y) dy +

N
+/RN >y 19ik1...iwk xiF;...xifjk (cik(-)r‘(xo;-)) (y—lox) Xi, Lou(y) dy =
k=g+11<ij<q

q A
=/RN DT (x05y7 o x) Xk Louy) dy,
k=1

where the kernel§ k-1 (xg ; -) satisfy properties analogous to those afkg ; -):

o TKi (Xo; ) is homogeneous of degré2 — Q), sincecik(~) is homogeneous of degree
wk — wj andw; = 1fori <q;

o T Ki (xg;-) is smooth outside the origin;

o the derivatives of any order otk (Xg; -) satisfy the uniform bound expressed by Theo-
rem 12, because the functioc*&(-) are smooth and do not dependxn
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The whole previous reasoning can be iterated, getting,eryepositive integek and any
left invariant differential monomial homogeneous of degke

q S
(66) Pku(x)szN 3 Fluizeik (xo;y—lox) Xi, Xis - .. Xiy Lou(y) dy,

i1)i2,.... k=1

where the kernelf 11i2:-ik (xq ; -) satisfy the same properties B (xg; -).

Differentiating twice the representation formula (66)pljing Theorem 9, writinglg =
(Lo— L)+ Land letting finallyx = xg we get

q L
X XhPlu = 3 (P.v./xjxh'f'l"%-"k (xsy™tox)-

i1,i2,..,ik=1
q
Xiy Xiy « . X LUY) + Xiy Xi, ... Xj, Z [ars(X) — ars(Y)] Xr Xs U (Y) dy
rs=1
+o il’i2""’ik(x) Xig Xig oo Xikﬁu(X)>

for j,h e {1,...,q}, where the functioneil'i%"-’ik(x) are uniformly bounded, by Lemma 4.
Reasoning like in the proof of Theorem 2 and setting

[P, = max|o"as |
00 r.s 00

we conclude that

k
[o 2], = o[t ]+ X o] [ola] y <
p Po p 00

(67) <c { [okccw| o+ el ||u||sk+1,p}

with ¢ = ¢(p, G, u, n, k). By density, (67) holds for eveny € %Jrz’ P (Br).
Part1l. Now, letu € SKt2P(Q), By ¢ Q with r small enough so that (67) holds for every
function in %Jrz’p (Br). For anyo € (% 1), pick a cutoff functionp € Cgo (RN) like in

Lemma 5,B5r < ¢ < By (0/ =(1+ 0)/2). Applying (67) toup and using Lemma 5 we get,
with some computation:

(1 — o)kF2 kt2 H Dk+2uH
LP(B

=
or)

k+1
2.2 Z h h{ph
SC{(LG) Ielser, ) +18lsx ) - 2, (o) |o ””mea,r)}'

Therefore:

k+2 k+1
Y on <cir?lLulsg,) + lallgeogg,) - D Ph
h=0 h=0
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withc = c(p, G, u, n,K),r <ro(p, G, u, n). By Theorem 21, we get

k+2
> on <1 {r21Lullgens,) + o2 Po )
h=0

with ¢; = ¢1(p, G, u,n,K), ¢ = ¢ (”a”Sk'm(Br) ) and finally

Iull sz, ) < C1{r2 ILUllgen g, +C2 Il o) |

which implies the desired result, by a covering argument.
O

Proof of Theorem 5 in Case BAgain, the proof is divided in two parts. First we prove inaju
ity (67) for any even integek, in Case B. Then the Theorem follows by the same argument of
the proof in Case A, Part 1, applying the suitable intergiolainequality (Theorem 22).

In proving (67), we will consider in detail the cake= 2, and then we will briefly show
how to iterate the argument.

Let u be a test function, fix two pointgg, yg € RN and write Lx,, Ly, to indicate the
operators “frozen” akg, Yo, respectively (see §83.1, 3.2). Let us write:

ux) = (Lxou * T'(X0, ) (X) = ([Lyo(LxoW) * T (Yo, )] * T'(Xo, ) (¥) =

= (Lyp (Lxol) * K(X0. Y0,)) (X),

whereK (Xg, ¥0,2) = (F(yo, ) * T'(Xg, -)) (2) and we have applied Lemma 1 with = ap =
2— Q. Note that conditionx1 + a2 < —Q in Lemma 1 gives, in our cas® > 4. This condition
certainly holds since the homogeneous group correspomditing simplest noncommutative Lie
algebra satisfying the assumptions of Case Bis 6 (see Example 2).

Now, let P# be any left invariant differential operator homogeneoudagfree 4. By Lemma
1 and Theorem 9P*K (Xg, Yo.-) is a singular kernel satisfying conditiors)((e), ( f) of Theo-
rem 11 and a uniform bound (23); reasoning like in §83.1, 3Zan write

P4u(x) = P.V. /R ) P4K (xo, vo.z 1o x) Lyo(Lxou)(2)dz+

+a(Xo, Yo) - Lyo(LXou)(X) =
(writing Lx, = (Lx, — £) + £ and setting finallyg = x)
q

- P.v./]RN P4K (x, Yo, z—lox) Lyo( > [ank®) — ank(@)] Xn Xk u(@) +
h k=1

+ [a0() — ag(2)] Xou(2) + £u(z)> dz+ a(X, Yo) - Ly (LW)(X),

whereq is a bounded function by Lemma 4. Now, if the supportiag$ contained in a ball with
radiusr small enough,

[Pl =e{iewen, 0%l o]+ 1oats [o%] |+ 3[0%]
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Therefore
| D4qu < c{HDZwu)Hp + llall 2o ||u||53,p}

which is exactly (67), fok = 2. From now on Part Il of the proof of Theorem 5 in Case A can
be repeated, to get

Ullst(z, ) = 1 {r2 ILUlszoe,) +C2 Ul cos,) | -

We now briefly discuss how to iterate the above proof for amgnewntegerk. Assume, for
instance that we want to bound tl&-norm of P8u. If we tried to write

W00 = (LyoLyoLxot * T(Yo.) * (Yo, ) * T040,) (X)

the problem would be to assure the existence of the conealati three fundamental solutions
(this would lead to the restrictio® > 6, by Lemma 1). Instead, we must perform part of the
differentiationP® before doing the third convolution. First of all, let us R as a composition
of the kind P4 P2 or P3P3 (note that the possible presenceXgf, which has weight two, implies
that one of these cases occurs)Pﬁ‘ = P4P2 we proceed as follows:

U0 = (Lyo(Lxot) * K (0, Y0:) (),
with K as above;
P20 = (Lyo(LxoW) * PPK (40, Y0,)) (¥),

whereP2K is homogeneous of degré2 — Q);
P2U00 = (LyoLypLxol * [T (Yo, ) * PPK (40, Y0, ) (0 =

= (LyoLypLxou * K (X0, ¥o:1)) (%),
whereK is homogeneous of degréé — Q); now applyingP# to both sides of the last equality
we can repeat the proof of the case- 2. A similar reasoning applies to the cag8 = P3p3.
This completes the proof of Theorem 5.
O

THEOREM 6 (REGULARITY OF THE SOLUTION IN TERMS OFHOLDER SPACES. Under
the assumption of Theorem 3, §,&j € sk’OO(Q), ue SP(©@ andLu e sk’s(sz) for some
positive integer k (k even in Case B)< p < 0o, s> Q/2, then

Ul gk gy = €a{ 1£UNger ) + 2 Ul 2o |

wherer=max(p, s),a =a(Q, p,s) € (0, 1), ¢c; = c1(p, s, k, G, u, n, 2, Q') and ¢ depends
on the §’°°(Q) norms of the coefficients.

Proof of Theorem 6.Let us note thatl) of Theorem 23 implies the following embedding esti-
mate:

letu e %"”Z’p (By) for somer > 0. Then if % <p<Qandg=2- % ,
Iull pk6 (G, By) = C(Ps k.G, u,r) |\U|\5k+2,p(|3r) .

(It's enough to apply Theorem 23 Ibku). Then, Theorem 6 follows from Theorem 5 as The-
orem 4 follows from Theorem 3, wittb] of Theorem 23 replaced by the above inequality. We
omit the details.

|
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Finally, let us come to the proof of:

THEOREM 7 (OPERATORS WITH LOWER ORDER TERME Consider an operator with
lower order terms, of the following kind:

q q
L= ( Z gjj ()X X +a0(x)Xo) + ( Zci X)X +c0(x)) =Lo+ L.

ij=1 i=1

i) Ifci e £ () fori =0,1,...,q,then:
if the assumptions of Theorem 3 hold &y, then the conclusions of Theorem 3 hold for
L,
if the assumptions of Theorem 4 hold 5, then the conclusions of Theorem 4 hold for
L.

i) Ifcj e Sk’OO(Q) for some positive integerk,#= 0, 1, ..., g, then:
if the assumptions of Theorem 5 hold o, then the conclusions of Theorem 5 hold for
L;
if the assumptions of Theorem 6 hold &y, then the conclusions of Theorem 6 hold for
L.

Proof. Under the assumptions of Theorem 2, we can write, for eueefygg) (Br), withr small
enough,

IXiX; ull, < c{iculp+i£aulp)
If ¢ e L (Q)fori =0,1,...,q,then

[£qullp < cllullgrp < by Proposition 2

2 c
geHD uH + = lullp.
p ¢

Therefore
[XiX;jul, <cficulp+lullp} -

Using the last inequality instead of Theorem 2, we can refieaproof of Theorem 3 for the
complete operatof. The same is true for Theorem 5, assuming skoo(Q). Finally, Theo-
rems 4, 6 follow from Theorems 3, 5, respectively, witholkirg into account the form of the
operatorL. We omit the details.

|
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