G. De Donno - L. Rodino

GEVREY HYPOELLIPTICITY FOR PARTIAL DIFFERENTIAL EQUATIONS WITH CHARACTERISTICS OF HIGHER MULTIPLICITY

Abstract. We consider a class of partial differential equations with characteristics of constant multiplicity $m \ge 4$. We prove for these equations a result of hypoellipticity and Gevrey hypoellipticity, by using classical Fourier integral operators and $S^m_{\rho,\delta}$ arguments.

1. Introduction and statement of the result

This paper concerns the Gevrey hypoellipticity of linear partial differential operators:

(1)
$$P = \sum_{|\alpha| \le M} c_{\alpha}(x) D^{\alpha}.$$

We use in (1) standard notations, and we assume that the coefficients $c_{\alpha}(x)$ are analytic, defined in a neighborhood Ω of a point $x_0 \in \mathbb{R}^n$. More generally, P could be assumed in the following to be a classical analytic pseudo-differential operator, defined as, for example, in Rodino [15], Trèves [16].

We recall that P is said to be hypoelliptic at (a neighborhood Ω of) the point x_0 when

(2)
$$sing supp Pu = sing supp u for all u \in D'(\Omega)$$

and Gevrey d-hypoelliptic, $1 < d < +\infty$, when

(3)
$$d-sing \, supp \, Pu = d-sing \, supp \, u \quad for \, all \, u \in D'(\Omega).$$

In (3) the d-singular support of a distribution u is defined as the smallest closed set in the complement of which u is a G^d function, $1 < d < +\infty$, i.e.: it satisfies locally estimates of the type

$$|D^{\alpha} f(x)| \leq C^{|\alpha|+1} (\alpha!)^d$$

We want to study the multiple characteristics case. Namely, consider the principal symbol:

$$p_M(x,\xi) = \sum_{|\alpha|=M} c_{\alpha}(x) \xi^{\alpha}.$$

Arguing microlocally, we fix $\xi_0 \neq 0$ and set:

DEFINITION 2. We say that P is an operator with characteristics of constant multiplicity $m \ge 2$ at (x_0, ξ_0) if in a conic neighborhood $\Gamma \subset \Omega \times (\mathbb{R}^n \setminus 0)$ of (x_0, ξ_0) we may write

$$p_M(x,\xi) = e_{M-m}(x,\xi) a_1(x,\xi)^m$$

where $e_{M-m}(x,\xi)$ is an analytic elliptic symbol, homogeneous of order M-m, and the first order analytic symbol $a_1(x,\xi)$ is real-valued and of microlocal principal type, i.e. $d_{x,\xi}$ $a_1(x,\xi)$ never vanishes and it is not parallel to $\sum_{i=1}^n \xi_i dx_i$ on

$$\Sigma = \{(x, \xi) \in \Gamma, \ a_1(x, \xi) = 0\}.$$

Observe that Σ is also characteristic manifold of $p_M(x,\xi)$; we understand $(x_0,\xi_0) \in \Sigma$. For P satisfying such definition, we want to study hypoellipticity or, more precisely, microhypoellipticity at (x_0,ξ_0) , defined by

(4)
$$\Gamma \bigcap WF Pu = \Gamma \bigcap WF u \text{ for all } u \in D'(\Omega)$$

and d-micro-hypoellipticity, defined by

(5)
$$\Gamma \bigcap WF_d Pu = \Gamma \bigcap WF_d u \text{ for all } u \in D'(\Omega),$$

for a sufficiently small neighborhood Γ of (x_0, ξ_0) . See for example Hörmander [4], Rodino [15] for the definition of the wave front set WFu and Gevrey wave front set WF_du of a distribution u. We observe that (4), (5) imply respectively (2), (3), when satisfied in a conic neighborhood Γ of (x_0, ξ_0) for all $\xi_0 \neq 0$.

To express our result we need the so-called subprincipal symbol of P:

$$p'_{M-1}(x,\xi) = \sum_{|\alpha|=M-1} c_{\alpha}(x) \, \xi^{\alpha} - \frac{1}{2i} \sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j} \, \partial \xi_{j}} \, p_{M}(x,\xi).$$

We recall that p'_{M-1} has a geometric invariant meaning at Σ , see for example Hörmander [4]; we shall write in the following

$$J^{0}(x,\xi) = p'_{M-1}(x,\xi)|_{\Sigma}.$$

Let us assume for simplicity in Γ :

(6)
$$p_M(x, \xi)$$
 is real – valued and, when m is even, non – negative

(this is not restrictive, if we are allowed to multiply by an elliptic factor passing to the pseudodifferential frame).

It is then known from Liess-Rodino [6] that in the case $\Im J^0(x_0,\xi_0)\neq 0$ we have microhypoellipticity and d-micro-hypoellipticity at (x_0,ξ_0) for $d\geq \frac{m}{m-1}$. In this paper we shall allow $\Im J^0(x_0,\xi_0)=0$, but assume $\Re J^0(x_0,\xi_0)\neq 0$. To be definite, let us set

(7)
$$\Re J^0(x,\xi) < 0 \quad for \ (x,\xi) \in \Sigma.$$

Fixing attention here on the higher multiplicity case $m \ge 3$, we need to consider some other invariants associated to p'_{M-1} , cf. Liess-Rodino [7], Mascarello-Rodino [8]:

$$J^{r}(x,\xi,X) = \frac{1}{r!} \chi^{r} p'_{M-1}(x,\xi),$$

for $(x, \xi, X) \in N(\Sigma)$, $1 \le r \le m-2$, where $N(\Sigma)$ is the normal bundle to the characteristic manifold Σ and χ is a vector field in Γ such that $\chi(x, \xi)$ at $(x, \xi) \in \Sigma$ is in the equivalence class of $X \in N_{(x,\xi)}(\Sigma)$.

Obviously we have:

(8)
$$J^{r}(x, \xi, -X) = (-1)^{r} J^{r}(x, \xi, X).$$

For uniformity of notation we shall also regard J^0 as a function on $N(\Sigma)$, independent of X at (x, ξ) .

THEOREM 1. Let P be an operator with characteristics of constant multiplicity m, satisfying (6), (7). Assume moreover there exists r^* , $0 < r^* < \frac{(m-1)}{2}$, such that

i)
$$\Im J^{r^*}(x,\xi,X) \neq 0$$
, for all $(x,\xi,X) \in N(\Sigma)$, $X \neq 0$,

ii)
$$\Im J^{r^*}(x,\xi,X)\Im J^r(x,\xi,X) \geq 0$$
, for all $(x,\xi,X) \in N(\Sigma)$, $0 \leq r < r^*$.

Then P is micro-hypoelliptic and d-micro-hypoelliptic for $d \ge \frac{m}{m-1-r^*}$.

Let us compare our result with the existing literature. For the sake of brevity, we limit attention to some models in \mathbb{R}^2 , satisfying (6), (7) at $x_1^0 = 0$, $x_2^0 = 0$, $\xi_1^0 = 0$, $\xi_2^0 > 0$. We list first the following examples, representative of general classes already considered by other authors:

(9)
$$D_{x_1}^m - D_{x_2}^{m-1} \quad (m \ge 2) ,$$

(10)
$$D_{x_1}^m - D_{x_2}^{m-1} + i x_1 D_{x_1} D_{x_2}^{m-2} \quad (m \ge 3) ,$$

(11)
$$D_{x_1}^m - D_{x_2}^{m-1} + i x_1^{2h} D_{x_2}^{m-1} \quad (m \ge 2) ,$$

$$D_{x_1}^m - D_{x_2}^{m-1} + i x_1^{2h} D_{x_2}^{m-1} + i x_1^l D_{x_1} D_{x_2}^{m-2} \ (m \ge 3) \ .$$

The operators (9), (10) are not hypoelliptic; observe also that (10) is not locally solvable, cf. Corli [1]. The operator (11) is hypoelliptic for any $h \ge 1$, despite the fact that $\Im J^0(x_0, \xi_0) = 0$, cf. Menikoff [9], Popivanov [10], Roberts [14]; the operator (12), having the same J^0 as (11), is not hypoelliptic if h is sufficiently large with respect to $l \ge 1$, cf. Popivanov-Popov [12], Popivanov [11].

Theorem 1 gives new conditions on J^r , i.e. on the coefficient of the terms

 $D_{x_1}^r D_{x_2}^{m-r-1}$ for models of the preceding type, to guarantee hypoellipticity and Gevrey hypoellipticity. We have to assumenow $m \ge 4$.

Let us observe that, if r^* is odd, then i), ii) in Theorem 1 and (8) actually imply $\Im J^r \equiv 0$ for even $r < r^*$; as examples of hypoelliptic operators characterized by Theorem 1 consider in this case

(13)
$$D_{x_1}^m - D_{x_2}^{m-1} + i D_{x_1} D_{x_2}^{m-2} \qquad (r^* = 1),$$

(14)
$$D_{x_1}^m - D_{x_2}^{m-1} + i x_1^{2h} D_{x_1} D_{x_2}^{m-2} + i D_{x_1}^3 D_{x_2}^{m-4} \qquad (r^* = 3),$$

having the same J^0 as the non-hypoelliptic operators (9), (10). If r^* is even, then i), ii) and (8) imply $\Im J^r \equiv 0$ for odd $r < r^*$; as corresponding example of hypoelliptic operator consider

(15)
$$D_{x_1}^m - D_{x_2}^{m-1} + i x_1^{2h} D_{x_2}^{m-1} + i D_{x_1}^2 D_{x_2}^{m-3} \qquad (r^* = 2),$$

having the same J^0 as (11), (12). In (13), (14), (15), the order m has to be chosen sufficiently large, to satisfy the assumption $\frac{m-1}{2} > r^*$. Returning to general operators, we may regard Theorem 1 as extension of a result of Liess-Rodino([7],Theorem 6.3), which prove the same order of Gevrey hypoellipticity, requiring i) and $\Im J^r = 0$ for all $r < r^*$, which is stronger than ii); see also Tulovsky [17] for hypoellipticity in the C^∞ -sense. Observe however that Liess-Rodino [7] allow $0 < r^* \le m-2$, whereas we do not know whether our result is valid for $\frac{m-1}{2} \le r^* \le m-2$.

The proof of Theorem 1 will be reduced, after conjugation by classical Fourier integral operators, to a simple $S_{\rho,\delta}^m$ argument (let us refer in particular to the result of Kajitani-Wakabayashi [5] in the Gevrey frame).

2. Gevrey hypoellipticity for a class of differential polynomials.

In this section we begin to study a pseudo-differential model in suitable simplectic co-ordinates. The conclusion of the proof of Theorem 1 will be given in the subsequent Section 3. As before we denote by $x=(x_1,...,x_n)$ the real variables in Ω , open subset of $\mathbb{R}^{\mathbf{n}}$; $\xi=(\xi_1,\xi_2,...,\xi_n)$, $\xi_2>0$, the dual variables of x. We consider the conic neighborhood $\Lambda=\{0<\xi_1^2+|\xi|^2< C\xi_2^2\}$ of the axis $\xi_2>0$, where $\xi=(\xi_3,...,\xi_n)\in\mathbb{R}^{\mathbf{n}-2}$, for a suitable constant C. Moreover we take $q,m,r,s\in\mathbb{N}$ such that $m\geq 2$, $1\leq q< m$, and (r,s) belong to the set $I=\{(r,s)\in\mathbb{N}^2:0< qr+ms< qm\}$.

Let the function in $\Omega \times \Lambda = \Gamma$

(16)
$$p(x,\xi) = \xi_1^m - h_{0,q}(x,\xi)\xi_2^q + \sum_{(r,s)\in I} h_{r,s}(x,\xi)\xi_1^r\xi_2^s,$$

be a differential polynomial, symbol of a (micro) pseudo-differential operator P(x,D), where $h_{(\cdot,\cdot)}:\Gamma\to\mathbb{C}$, $h_{(\cdot,\cdot)}=\Re\,h_{(\cdot,\cdot)}+i\Im\,h_{(\cdot,\cdot)},\Re\,h_{(\cdot,\cdot)}$, $\Im\,h_{(\cdot,\cdot)}:\Gamma\to\mathbb{R},\Re\,h_{(\cdot,\cdot)}$, $\Im\,h_{(\cdot,\cdot)}\in G^1(\Gamma)$, see below.

We define the sets, for $k \in \mathbb{N}$, 0 < k < qm:

$$I_k = \{ (r, s) \in \mathbb{N}^2 : qr + ms = k \}$$

and fix $k=k^*$ such that $q(m-\frac{1}{2})< k^*< qm$. We use the notation k^- for all $k< k^*$ and k^+ for all $k>k^*$. We may split $I=I_-\bigcup I_{k^*}\bigcup I_+$, with $I_-=\bigcup I_{k^-}$, $I_+=\bigcup I_{k^+}$.

LEMMA 1. Let $p(x, \xi)$ be the function (16),where $h_{(\cdot,\cdot)}$ is assumed to be homogeneous of order zero with respect to ξ and analytic, which implies for some constant L > 0

$$|D_x^{\alpha} D_{\xi}^{\beta} h_{(\cdot,\cdot)}| \leq L^{|\alpha|+|\beta|+1} \alpha! \beta! (1+|\xi|)^{-|\beta|}.$$

Assume moreover I_{k^*} consists of one couple (r^*, s^*) , $k^* = qr^* + ms^*$, such that:

(i)
$$\Im h_{r^*,s^*}(x,\xi) \neq 0$$
, for all $(x,\xi) \in \Gamma$,

- (ii) $\Im h_{r^*,s^*}(x,\xi) \Im h_{r,s}(x,\xi) \xi_1^{r^*+r} \xi_2^{s+s^*} \ge 0$, for all $(x,\xi) \in \Gamma$, $k^* < k^+ = qr + ms < qm$,
- $(iii) \,\, \Im \, h_{0,q}(x,\xi) \, \Im \, h_{r^*,s^*}(x,\xi) \, \xi_1^{r^*} \xi_2^{q+s^*} \, \leq \, 0, for \, all \, (x,\xi) \, \in \, \Gamma,$
- (iv) $\Re h_{0,q}(x,\xi) \neq 0$, for all $(x,\xi) \in \Gamma$.

Then for all $\alpha, \beta \in \mathbb{Z}_+^n$, for all $K \subset\subset \Omega$, we have for new positive constants L and B independent of α, β :

(18)
$$\frac{|D_x^{\alpha} D_{\xi}^{\beta} p(x,\xi)| |\xi|^{\rho|\beta|-\delta|\alpha|}}{|p(x,\xi)|} \le L^{|\alpha|+|\beta|+1} \alpha! \beta!, |\xi| > B,$$

where $\rho = \frac{k^* - q \, (m-1)}{m}$, $\delta = \frac{qm - k^*}{m}$. Observe that we have $\delta < \rho$, since we have assumed $k^* > q(m - \frac{1}{2})$

REMARK 1. Hypothesis (ii) implies that $\Im h_{r^*,s^*}(x,\xi)$ and $\Im h_{r,s}(x,\xi)$ are both positive or both negative ($\Im h_{r,s}(x,\xi)$ may vanish, too), and that r is according (both even or both odd) to r^* for all r such that $k^* < k^+$. Otherwise (r is not according to r^*), $\Im h_{r,s}(x,\xi)$ has to vanish in Γ .

Hypothesis (iii) induces $\Im h_{0,q}(x,\xi) \equiv 0$ if r^* is odd.

REMARK 2. By formula (18) and by Kajitani-Wakabayashi([5], Theorem 1.9), we have that the operator P(x,D), associated to the symbol $p(x,\xi)$ in (16), is G^d -microlocally hypoelliptic in Γ for $d \geq \max\left\{\frac{1}{\rho}, \frac{1}{1-\delta}\right\} = \frac{1}{\rho}$.

REMARK 3. When $\rho<1$, and $\delta>0$, one can prove by means of interpolation theory as in Wakabayashi([18], Theorem 2.6) that (18) is valid for any $\alpha,\beta\in\mathbb{Z}^{\mathbf{n}}_+$, if (18) holds for $|\alpha+\beta|=1$. Hence it is sufficient to verify (18) for $|\alpha+\beta|=1$ because $\rho=\frac{k^*-q(m-1)}{m}<\frac{q}{m}<1$, and $\delta=\frac{qm-k^*}{m}>0$.

REMARK 4. For the proof of Theorem 1 it will be sufficient to apply Lemma 1 for q=m-1. The general case $1 \le q < m$ leads to a more involved geometric invariant statement, which we shall detail in a future paper.

Proof of Lemma 1. We first estimate the numerator of (18), then we give some lemmas to estimate the denominator of (18).

If $|\alpha| = 1$, $|\beta| = 0$, we get

$$|D_{x_{j}} p(x,\xi)| |\xi|^{-\delta} = \left| \sum_{(r,s) \in I} D_{x_{j}} h_{r,s}(x,\xi) \xi_{1}^{r} \xi_{2}^{s} - D_{x_{j}} h_{0,q}(x,\xi) \xi_{2}^{q} \right| |\xi|^{-\delta}$$

$$\leq L_{1} \left(\sum_{(r,s) \in I} |\xi_{1}|^{r} \xi_{2}^{s} + \xi_{2}^{q} \right) |\xi|^{-\delta}, \ j = 1, ..., n;$$

for a suitable constant L_1 in view of the assuption (17). If $|\alpha| = 0$, $|\beta| = 1$, then

(19)
$$|D_{\xi_{j}} p(x,\xi)| |\xi|^{\rho} \leq L_{2} \left(\sum_{(r,s) \in I} |\xi_{1}|^{r} \xi_{2}^{s} + \xi_{2}^{q} \right) |\xi|^{\rho} (1 + |\xi|)^{-1},$$

$$i = 3, ..., n;$$

for a suitable constant L_2 , in view of (17). Moreover:

(20)
$$|D_{\xi_1} p(x,\xi)| |\xi|^{\rho} \leq \left(m|\xi_1|^{m-1} + L_3 \sum_{(r,s) \in I} |\xi_1|^{r-1} \xi_2^s \right) |\xi|^{\rho} + L_4 \left(\sum_{(r,s) \in I} |\xi_1|^r \xi_2^s + \xi_2^q \right) |\xi|^{\rho} (1 + |\xi|)^{-1}$$

and

$$(21) \qquad |D_{\xi_{2}} p(x,\xi)| \, |\xi|^{\rho} \leq \left(q L_{0,q} \xi_{2}^{q-1} + L_{5} \sum_{(r,s) \in I} |\xi_{1}|^{r} \xi_{2}^{s-1} \right) |\xi|^{\rho} \\ + L_{6} \left(\sum_{(r,s) \in I} |\xi_{1}|^{r} \xi_{2}^{s} + \xi_{2}^{q} \right) |\xi|^{\rho} (1 + |\xi|)^{-1},$$

for suitable constants L_3 , L_4 , L_5 , L_6 , $L_{0,q}$ in view of (17). On the other hand, we have:

(22)
$$|\xi|^{\rho} (1+|\xi|)^{-1} \le |\xi|^{-\delta}, \text{ for all } \xi \in \Lambda,$$

in fact, by multiplying by $|\xi|^{\delta}(1+|\xi|)$ on both sides of (22), we obtain

$$|\xi| - |\xi|^p + 1 \ge 0$$
, for all $\xi \in \Lambda$,

where $p = \rho + \delta < 1$.

Then in the right-hand side of (19), (20), (21) we may further estimate $|\xi|^{\rho} (1+|\xi|)^{-1}$ by $|\xi|^{-\delta}$. Therefore, to prove (18), it will be sufficient to show the boundedness in Γ , for $|\xi| > B$, of the functions

$$\begin{split} \mathcal{Q}_{1}(\xi) &= \frac{\left(\sum_{(r,s)\in I} |\xi_{1}|^{r} \xi_{2}^{s} + \xi_{2}^{q}\right) |\xi|^{-\delta}}{|p(x,\xi)|}\,,\\ \mathcal{Q}_{2}(\xi) &= \frac{\left(m|\xi_{1}|^{m-1} + L_{3}\sum_{(r,s)\in I} |\xi_{1}|^{r-1} \xi_{2}^{s}\right) |\xi|^{\rho}}{|p(x,\xi)|}\,,\\ \mathcal{Q}_{3}(\xi) &= \frac{\left(qL_{0,q}|\xi_{2}|^{q-1} + L_{5}\sum_{(r,s)\in I} |\xi_{1}|^{r} \xi_{2}^{s-1}\right) |\xi|^{\rho}}{|p(x,\xi)|} \end{split}$$

(we observe that terms of the type Q_2 , Q_3 were already considered in De Donno [2]). First introduce in the cone Λ , three regions:

(23)
$$R_{1}: c \xi_{2}^{q} \leq |\xi_{1}|^{m} \leq C \xi_{2}^{q}, \\ R_{2}: |\xi_{1}|^{m} \geq C \xi_{2}^{q}, \\ R_{3}: |\xi_{1}|^{m} \leq c \xi_{2}^{q};$$

where the constants c,C satisfy $c<<\min\left\{\frac{1}{2}\min_{(x,\xi)\in\Gamma}|\Re\,h_{0,q}(x,\xi)|,1\right\}$, and $C>>\max\left\{2\max_{(x,\xi)\in\Gamma}|\Re\,h_{0,q}(x,\xi)|,1\right\}$. The following inequalities then hold:

(24)
$$|\xi|^{-\delta} \leq \begin{cases} C^{\frac{\delta}{q}} |\xi_{1}|^{-\delta \frac{m}{q}} &, \xi \in \Lambda \cap R_{1} & (I) \\ |\xi_{1}|^{-\delta} &, \xi \in \Lambda \cap R_{2} & (II) \\ \xi_{2}^{-\delta} &, \xi \in \Lambda \cap R_{3}; & (III) \end{cases}$$

note that (II) and (III) hold for all $\xi \in \Lambda$, but for our aim we may limit ourselves to consider them respectively in $\Lambda \cap R_2$ and in $\Lambda \cap R_3$. By abuse of notation, in the following we shall also denote by R_1 , R_2 , R_3 the sets $\Omega \times R_1$, $\Omega \times R_2$, $\Omega \times R_3$; recall that $\Gamma = \Omega \times \Lambda$.

We will show in Lemma 2, Lemma 3 and Lemma 4, that there are positive constants K_1 < $1, K_2 < 1, K_3 < 1, B$, such that:

$$(25) |p(x,\xi)| \ge K_1 \left| \Im h_{r^*,s^*}(x,\xi) \right| \left| \xi_1 \right|^{r^*} \xi_2^{s^*}, \quad in \ \Gamma \bigcap R_1, \ |\xi| > B,$$

(26)
$$|p(x,\xi)| \ge K_2 |\xi_1|^m$$
, in $\Gamma \cap R_2$, $|\xi| > B$,

(27)
$$|p(x,\xi)| \ge K_3 \xi_2^q$$
, in $\Gamma \cap R_3$, $|\xi| > B$.

In (25) we may further estimate $\left|\Im h_{r^*,s^*}(x,\xi)\right| > \lambda$ for $\lambda > 0$, in view of (i) in Lemma 1. We first consider $Q_1(\xi)$ separately in the regions R_1, R_2, R_3 , to prove boundedness. In R_1 by (24),(25), we get easily, writing as before k = qr + ms:

$$Q_1(\xi) \leq const\left(\sum_k \frac{1}{|\xi_1|^{m-\frac{k}{q}}} + 1\right), |\xi| > B,$$

where $m - \frac{k}{q} > 0$ by definition of I and $I_k - sets$. In the regions R_2 , R_3 by using respectively (24),(26) and (24),(27), we have for a constant $\epsilon > 0$ which we may take as small as we want by fixing B sufficiently large:

$$Q_1(\xi) \leq const \left(\sum_k \frac{1}{|\xi_1|^m + q - \frac{k}{q} - \frac{k^*}{m}} + \frac{1}{|\xi_1|^{\delta}} \right) < \epsilon, |\xi| > B,$$

and

$$Q_1(\xi) \leq const \left(\sum_k \frac{1}{|\xi_2|^{2q - \frac{k}{m} - \frac{k^*}{m}}} + \frac{1}{|\xi_2|^{\delta}} \right) < \epsilon, |\xi| > B.$$

We have therefore proved that $Q_1(\xi)$ is bounded. Let us estimate $Q_2(\xi)$, $Q_3(\xi)$. As above in the regions R_1 , R_2 , R_3 , we obtain

$$Q_2(\xi) \leq const \left(1 + \sum_k \frac{1}{|\xi_1|^{m - \frac{k}{q}}}\right),$$

$$Q_3(\xi) \leq const \left(\frac{1}{|\xi_1|^{\frac{m}{q}-1}} + \sum_k \frac{1}{|\xi_1|^{(m+\frac{m}{q}-1)-\frac{k}{q}}} \right) < \epsilon,$$

in R_1 for $|\xi| > B$,

$$Q_2(\xi) \leq const \left(\frac{1}{|\xi_1|^{m-\frac{k^*}{q}}} + \sum_k \frac{1}{|\xi_1|^{2m-\frac{k}{q}-\frac{k^*}{q}}} \right) < \epsilon,$$

$$Q_3(\xi) \leq const \left(\frac{1}{|\xi_1|^{(m+\frac{m}{q}-1)-\frac{k^*}{q}}} + \sum_k \frac{1}{|\xi_1|^{(2m+\frac{m}{q}-1)-(\frac{k}{q}+\frac{k^*}{q})}} \right) < \epsilon,$$

in R_2 for $|\xi| > B$,

$$\begin{split} Q_2(\xi) &\leq const \left(\frac{1}{|\xi_2|^{q-\frac{k^*}{m}}} + \sum_k \frac{1}{|\xi_2|^{2q-\frac{k}{m}-\frac{k^*}{m}}} \right) < \epsilon \,, \\ Q_3(\xi) &\leq const \left(\frac{1}{|\xi_2|^{(1+q-\frac{q}{m})-\frac{k^*}{m}}} + \sum_k \frac{1}{|\xi_2|^{(2q+1-\frac{q}{m})-(\frac{k}{m}-\frac{k^*}{m})}} \right) < \epsilon \,, \end{split}$$

in R_3 for $|\xi| > B$.

Now Lemma 2, Lemma 3 and Lemma 4 complete the proof.

LEMMA 2. Let $p(x, \xi)$ be the function (16), such that (17) and (i), (ii), (iii) in Lemma 1 hold. Then there are positive constants $K_1 < 1$, B, such that:

$$|p(x,\xi)| \geq K_1 \, \left| \Im h_{r^*,s^*}(x,\xi) \right| \, |\xi_1|^{r^*} \xi_2^{s^*}, \ \ \, (x,\xi) \in \Gamma \bigcap R_1, \, |\xi| > B.$$

Proof. We have that

$$(28) |p(x,\xi)|^2 = \left(\xi_1^m - \Re h_{0,q}(x,\xi) \, \xi_2^q + \sum_{(r,s)\in I} \Re h_{r,s}(x,\xi) \, \xi_1^r \xi_2^s\right)^2 + \left(\Im h_{r^*,s^*}(x,\xi) \xi_1^{r^*} \xi_2^{s^*} + \sum_{(r,s)\in I_-} \Im h_{r,s}(x,\xi) \, \xi_1^r \xi_2^s + \sum_{(r,s)\in I_+} \Im h_{r,s}(x,\xi) \, \xi_1^r \xi_2^s - \Im h_{0,q}(x,\xi) \, \xi_2^q\right)^2;$$

by removing the terms rising from the real part of $p(x, \xi)$, we can write

$$|p(x,\xi)|^2 \ge \Im h_{r^*,s^*}(x,\xi)^2 \xi_1^{2r^*} \xi_2^{2s^*} + \sum_{i=1}^4 J_j(x,\xi)$$

where

(29)
$$J_{1}(x,\xi) = \left(\sum_{(r,s)\in I_{-}} \Im h_{r,s}(x,\xi) \xi_{1}^{r} \xi_{2}^{s} + \sum_{(r,s)\in I_{+}} \Im h_{r,s}(x,\xi) \xi_{1}^{r} \xi_{2}^{s} - \Im h_{0,q}(x,\xi) \xi_{2}^{q} \right)^{2},$$

(30)
$$J_2(x,\xi) = 2\Im h_{r^*,s^*}(x,\xi) \sum_{(r,s)\in I_-} \Im h_{r,s}(x,\xi) \xi_1^{r^*+r} \xi_2^{s^*+s},$$

(31)
$$J_3(x,\xi) = 2\Im h_{r^*,s^*}(x,\xi) \sum_{(r,s)\in I_+} \Im h_{r,s}(x,\xi) \, \xi_1^{r^*+r} \xi_2^{s^*+s} \,,$$

(32)
$$J_4(x,\xi) = -2\Im h_{r^*,s^*}(x,\xi) \Im h_{0,q}(x,\xi) \xi_1^{r^*} \xi_2^{s^*+q}.$$

(29) is non-negative for all $(x, \xi) \in \Gamma$, (31) and (32) are also non negative by hypotheses (ii), (iii) for all $(x, \xi) \in \Gamma$.

Let us fix attention on $J_2(x, \xi)$ defined by (30). We have for all $\epsilon > 0$

$$\left(\Im h_{r^*,s^*}(x,\xi)\right)^2 \xi_1^{2r^*} \xi_2^{2s^*} + J_2(x,\xi) \geq (1-\epsilon) \left(\Im h_{r^*,s^*}(x,\xi)\right)^2 \xi_1^{2r^*} \xi_2^{2s^*}\,,$$

in $\Gamma \cap R_1$, $|\xi| > B$. In fact, assuming for simplicity $\xi_1 \ge 0$, by (17), (23) in $\Gamma \cap R_1$ and hypothesis (i), for all $\epsilon > 0$ we get for B sufficiently large

$$\frac{|J_2(x,\xi)|}{\left(\Im h_{r^*,s^*}(x,\xi)\right)^2 \xi_1^{2r^*} \xi_2^{2s^*}} \leq const \sum_{(r,s)\in I_-} \frac{\xi_1^{r^*+r} \xi_2^{s^*+s}}{\xi_1^{2r^*} \xi_2^{2s^*}} \leq$$

$$\leq const \sum_{(r,s)\in I_{-}} \frac{\xi_{1}^{r^{*}+r+(s^{*}+s)\frac{m}{q}}}{\xi_{1}^{2r^{*}+2s^{*}\frac{m}{q}}} < \epsilon, \quad |\xi| > B;$$

we remark that $k^* = qr^* + ms^* > k^- = qr + ms$. Then,

$$|p(x,\xi)| \ge K_1 |\Im h_{r^*,s^*}(x,\xi)| |\xi_1|^{r^*} \xi_2^{s^*}, \quad (x,\xi) \in \Gamma \bigcap R_1, |\xi| > B,$$

for a suitable constant K_1 .

LEMMA 3. Let $p(x, \xi)$ be the function (16), such that (17) holds. Then there are positive constants $K_2 < 1$, B, such that:

$$|p(x,\xi)| \ge K_2 |\xi_1|^m, \quad (x,\xi) \in \Gamma \bigcap R_2, \ |\xi| > B.$$

Proof. We write $|p(x,\xi)|^2$ as in (28); by removing the terms arising from the imaginary part of $p(x,\xi)$, we get

(33)
$$|p(x,\xi)|^2 \ge \left(\xi_1^m - \Re h_{0,q}(x,\xi)\xi_2^q\right)^2 + W_1(x,\xi) + W_2(x,\xi)$$

where

(34)
$$W_1(x,\xi) = \left(\sum_{(r,s)\in I} \Re h_{r,s}(x,\xi) \, \xi_1^r \xi_2^s \right)^2,$$

$$(35) \ \ W_2(x,\xi) \, = \, 2 \sum_{(r,s) \in I} \, \Re \, h_{r,s}(x,\xi) \, \xi_1^{r+m} \xi_2^s \, - \, 2 \Re \, h_{0,q}(x,\xi) \sum_{(r,s) \in I} \, \Re \, h_{r,s}(x,\xi) \, \xi_1^r \xi_2^{s+q} \, .$$

Observe first that for $\lambda > 0$ sufficiently small

$$\left(\xi_1^m \, - \, \Re \, h_{0,q}(x,\xi) \xi_2^q \right)^2 > \, \lambda \, \xi_1^{2m} \, ;$$

in fact

$$\left(\xi_1^m - \Re\,h_{0,q}(x,\xi)\xi_2^q\right)^2 \geq \xi_1^{2m} - 2\Re\,h_{0,q}(x,\xi)\,\xi_1^m\xi_2^q\,,$$

and using (23) in $\Gamma \cap R_2$, we have for $\Re h_{0,q} \xi_1 \ge 0$

$$\xi_1^{2m} \, - \, 2 \Re \, h_{0,q}(x,\xi) \, \xi_1^m \xi_2^q \, \geq \left(1 - \frac{2}{C} \, \Re \, h_{0,q}(x,\xi) \right) \xi_1^{2m} > \lambda \, \xi_1^{2m},$$

since $C>2\max_{(x,\xi)\in\Gamma}|\Re\,h_{0,q}(x,\xi)|.$ (34) is non negative for all $(x,\xi)\in\Gamma$. We denote (35) by $\Upsilon_1(x,\xi)-\Upsilon_2(x,\xi)$, then

$$|p(x,\xi)|^2 \, \geq \, \lambda \xi_1^{2m} \, + \, \Upsilon_1(x,\xi) \, - \, \Upsilon_2(x,\xi) \, .$$

Arguing on Υ_1 , Υ_2 in the same way as we have done in Lemma 2, it is possible to show that for

$$\lambda \xi_1^{2m} \, + \, \Upsilon_1(x,\xi) \, - \, \Upsilon_2(x,\xi) \, \geq \, (\lambda - \epsilon) \xi_1^{2m}, \quad (x,\xi) \, \in \, \Gamma \, \bigcap \, R_2, \, |\xi| > B \, ,$$

then

$$|p(x,\xi)| \ge K_2 |\xi_1|^m$$
, $(x,\xi) \in \Gamma \bigcap R_2$, $|\xi| > B$,

where $K_2 = (\lambda - \epsilon)^{\frac{1}{2}}$.

LEMMA 4. Let $p(x, \xi)$ be the function (16), such that (17) and (iv) in Lemma 1 hold. Then there are positive constants $K_3 < 1$, B, such that:

$$|p(x,\xi)| \ge K_3 \xi_2^q$$
, $(x,\xi) \in \Gamma \bigcap R_3$, $|\xi| > B$.

Proof. We apply again (33), (34), (35) to $|p(x,\xi)|^2$. Observe that in $\Gamma \cap R_3$, arguing as above, since $c<\frac{1}{2}\min_{(x,\xi)\in\Gamma}|\Re\,h_{0,q}(x,\xi)|,$ we obtain for a suitable constant $\mu>0$

$$\left(\xi_1^m - \Re \, h_{0,q}(x,\xi) \xi_2^q \right)^2 > \mu \, \xi_2^{2q} \, .$$

About the terms in (34) and (35), the remarks we have done in Lemma 3 hold by replacing $\lambda \xi_1^{2m}$ with $\mu \, \xi_2^{2q}$, then we have

$$|p(x,\xi)| \ge K_3 \xi_2^q$$
, $(x,\xi) \in \Gamma \cap R_3$, $|\xi| > B$,

where $K_3 = (\mu - \epsilon)^{\frac{1}{2}}$.

3. Fourier integral operators and proof of Theorem 1

We consider in this section an operator mapping a fuction (or distribution, or ultradistribution) u into

$$(2\pi)^{-n} \int a(x,\xi)\widehat{u}(\xi) e^{i\varphi(x,\xi)} d\xi .$$

The phase function $\varphi(x, \xi)$ is assumed to be analytic real-valued, homogenuous of degree 1 with respect to ξ ; (36) is called a Fourier integral operator (F.I.O.). Concerning the symbol $a(x, \xi)$, we suppose it belongs to $S^k(\Omega)$, the space of the classical analytic symbols of order k. The function $\widehat{u}(\xi)$ is the Fourier transform of the function u. The particular case $\varphi(x,\xi) = x \cdot \xi$ corresponds to the usual pseudo-differential operators.

The machinery of the F.I.O.'s (see Hörmander [4], Trèves [16], Rodino [15]) may lead to relevant simplifications in the study of the micro-operator P = P(x, D) in (1). Precisely, let χ be a homogeneous analytic canonical transformation acting from the conic neighborhood Γ of the point $\rho_0 = (x_0, \xi_0)$ to a conic neighborhood Γ' of the point $\chi(\rho_0) = (y_0, \eta_0)$; that χ is canonical means that it preserves the symplectic two-form $\sigma = \sum_{j=1}^{n} dx_j \wedge d\xi_j$. Then we may consider the Fourier integral operator F with phase function φ corresponding to

 χ ; this is a map $F: M^d(\Gamma) \to M^d(\Gamma')$, $1 < d \le \infty$ with inverse $F^{-1}: M^d(\Gamma') \to M^d(\Gamma)$ where $M^d(\Gamma)$ denotes the factor space $D'(\Omega)/\sim$, where $u \sim v$ means that $\Gamma \cap WF_d(u-v) =$ \emptyset , for $u, v \in D'(\Omega)$, with $WF_{\infty}u = WFu$. More details are, for example, in Rodino [14]. We then have:

(37)
$$WF_d(Fu) = \chi(WF_du), WF_d(F^{-1}v) = \chi^{-1}(WF_dv),$$

moreover

$$\tilde{P} = F P F^{-1} : M^{d}(\Gamma') \rightarrow M^{d}(\Gamma')$$

is a micro-pseudo-differential operator, with homogeneous analytic principal symbol $\tilde{p_m}(y,\eta) = p_m \left(\chi^{-1}(y,\eta)\right).$

On the other hand, as it follows from (37)

(38)
$$\tilde{P} \text{ is micro} - \text{hypoelliptic or } d - \text{micro} - \text{hypoelliptic} \\ \text{if and only if } P \text{ is such.}$$

Moreover, if we assume $\rho_0 \in \Sigma$ and denote by $\tilde{\Sigma}$ the characteristic manifold of \tilde{P} , then $\chi(\rho_0) \in \Sigma$ $\tilde{\Sigma}$ and $\tilde{\Sigma} = \chi(\Sigma)$ in Γ' .

In this way, by fixing a suitable canonical transformation χ , we may reduce ourselves to the study of operators \tilde{P} of a truly elementary form. Particular simplification in the expression of \tilde{P} can be obtained by means of the following theorem.

THEOREM 2. Let A be a classical pseudo-differential operator of microlocal principal type of first order, the function a_1 (principal symbol of A) be real and $a_1(x_0, \xi_0) = 0$, $x_0 \in \Omega$, $\xi_0 \neq 0$. Then there exists a F.I.O. F, such that $\tilde{A} = FAF^{-1}$, and \tilde{A} is a pseudo-differential operator of first order, whose symbol is equal to η_k in a conic neighborhood of the point (y_0, η_0) corresponding to (x_0, ξ_0) for some $k, 1 \le k \le n$.

For the proof see, for example in the C^{∞} frame, Egorov-Schulze([3], cap. 6, Theorem 9).

We apply Theorem 2 to the operator P(x, D) with characteristics of constant multiplicity at (x_0, ξ_0) , such that in a conic neighborhood Γ its principal symbol admits a decomposition as in Definition 2:

$$p_M(x,\xi) \; = \; e_{M-m} \left(x,\xi \right) a_1 \left(x,\xi \right)^m \, . \label{eq:pm}$$

The symbol of P(x, D) is given by

$$p(x, \xi) = e_{M-m}(x, \xi) a_1(x, \xi)^m + P_{M-1}(x, \xi)$$

where $P_{M-1}(x, \xi)$ is of order M-1 and, by passing to the operators:

$$P(x, D) = e_{M-m}(x, D) a_1(x, D)^m + R(x, D),$$

or

$$e_{M-m}(x, D)^{-1} P(x, D) = a_1 (x, D)^m + e_{M-m}(x, D)^{-1} R(x, D)$$

where R(x, D) is of order M - 1.

P(x, D) is micro-hypoelliptic if and only if $a_1(x, D)^m + e_{M-m}(x, D)^{-1} R(x, D)$ is micro-hypoelliptic, then by (38) if and only if

$$Q(y, D) = F^{-1}a_1(x, D)^m F + F^{-1}e_{M-m}(x, D)^{-1} R(x, D) F$$

is micro-hypoelliptic, and by Theorem 2 we get that:

$$F a_1(x, D)^m F^{-1} = \underbrace{F a_1(x, D) F^{-1} \cdots F a_1(x, D) F^{-1}}_{m \text{ times}} = b(y, D),$$

such that $b(y, \eta) = \eta_k^m$ for some $k, 1 \le k \le n$. Then

$$q(y,\eta) \sim \eta_k^m + \sum_{i=1}^{\infty} q_{m-j}(y,\eta).$$

Let us assume k=1 and use again the notation $p(x, \xi)$ in the role of $q(y, \eta)$; we may also suppose $\xi_2 \ge 0$ in the corresponding Γ . We can rewrite further $p(x, \xi)$ as:

$$p(x,\xi) = \xi_1^m + \sum_{j=1}^{m-1} p_{m-j}(x,\xi) + \underbrace{p_0(x,\xi)}_{order\ 0};$$

that becomes for Taylor formula stopped at order m-j

$$\xi_1^m + \sum_{j=1}^{m-1} \sum_{r=0}^{m-j-1} \left[\frac{1}{r!} \frac{\partial_{\xi_1}^r p_{m-j}(x,\xi)|_{\xi_1=0}}{\xi_2^s} \xi_1^r \xi_2^s + \xi_1^{m-j} \underbrace{r_{(m-j)}(x,\xi)}_{\text{order } 0} \right] + p_0(x,\xi),$$

with r + s = m - j.

Let us set:

$$h_{r,s}(x,\xi) = \frac{1}{r!} \frac{\partial_{\xi_1}^r p_{m-j}(x,\xi)|_{\xi_1=0}}{\xi_2^s},$$

so, we have:

(39)
$$\xi_1^m + h_{0,m-1}(x,\xi)\xi_2^{m-1} + \sum_{r+s < m-1} h_{r,s}(x,\xi)\xi_1^r \xi_2^s,$$

where $(r,s) \neq (0,m-1)$ in the sum and $h_{m-j,0}(x,\xi) = r_{(m-j)}(x,\xi), h_{0,0}(x,\xi) = p_0(x,\xi)$. All the terms $h_{r,s}(x,\xi)$ are homogeneous of order zero, but $h_{0,0}$, which will not play any role when checking the $S_{\rho,\delta}^m$ estimates; observe also that for $(r,s) \neq (m-j,0)$ the symbol $h_{r,s}(x,\xi)$ is actually ξ_1 —independent.

Formula (39) gives the model that we have studied in Section 2 with q = m - 1.

The characteristic manifold of $p(x,\xi)$, in the new symplectic co-ordinates, is the subset $\Sigma'=\{\xi_1=0\}$ of \mathbb{R}^{2n} , so in this case we obtain $p_{m-1}'=p_{m-1}$ and $J^0(x,\xi)=p_{m-1}(x,\xi)|_{\xi_1=0}=h_{0,m-1}(x,\xi)\xi_2^{m-1}$.

Hypotheses (6), (7) and *i*), *ii*) in Theorem 1 are clearly transported by symplectic transformations and multiplication by elliptic factors. Moreover it is simple to verify that, taking χ proportional to $\frac{\partial}{\partial \xi_1}$ by a factor which we again denote ξ_1 after differentation:

$$\frac{1}{r!}\chi^{r} \; p_{m-1}^{'}(x,\xi) = \frac{1}{r!} \partial_{\xi_{1}}^{r} \; p_{m-1}(x,\xi) |_{\xi_{1}=0} \, \xi_{1}^{r} = h_{r,s}(x,\xi) \, \xi_{1}^{r} \, \xi_{2}^{s},$$

with r + s = m - 1.

Immediately we can see that the hypotheses of the Theorem 1 are equivalent to the hypotheses of the Lemma 1, that gives our result.

References

- [1] CORLI A., On local solvability of linear partial differential operators with multiple characteristics, J. Diff. Eq. 81 (1989), 275–293.
- [2] DE DONNO G., Gevrey hypoellipticity for a class of differential polynomials with analytic coefficients, Quad. Dip. Mat. Univ. Torino 40 (1998).
- [3] EGOROV Y.V. AND SCHULZE D.W., *Pseudo-differential operators, singularities, applications*, Birkhäuser Verlag, Basel-Boston -Berlin 1997.
- [4] HÖRMANDER L., The analysis of linear partial differential operators, I, II, III, IV, Springer-Verlag, Berlin 1983-85.
- [5] KAJITANI K. AND WAKABAYASHI S., Hypoelliptic operators in Gevrey classes; in: "Recent developments in hyperbolic equations" (Cattabriga L., Colombini F., Murthy M.K.V. and Spagnolo S. eds.), Longman, London 1988, 115–134.
- [6] LIESS O. AND RODINO L., Inhomogeneous Gevrey classes and related pseudo-differential operators, Boll. Un. Mat. Ital. Sez. IV 3-C (1984), 133–223.
- [7] LIESS O. AND RODINO L., Linear partial differential equations with multiple involutive characteristics; in: "Microlocal analysis and spectral theory" (L.Rodino ed.), Kluwer, Dordrecht 1997, 1–38.
- [8] MASCARELLO M. AND RODINO L., Partial differential equations with multiple characteristics, Wiley-VCH, Berlin 1997.
- [9] MENIKOFF A., On hypoelliptic operators with double characteristics, Ann. Scuola Norm. Sup. Pisa Sez IV 4 (1977), 689–724.
- [10] POPIVANOV P.R., On the local solvability of a class of pseudo-differential equations with double characteristics, Trudy Sem. Petrovsk. 1 (1975), 237–278; transl. Am. Math. Soc. Transl. 118 (1982), 51–90.
- [11] POPIVANOV P.R., letter addressed to L. Rodino, Sofia, 7-12/1993.
- [12] POPIVANOV P.R. AND POPOV G.S., Microlocal properties of a class of pseudo-differential operators with multiple characteristics, Serdica 6 (1980), 169–183.
- [13] RAUCH J., Partial differential equations, Springer- Verlag, New York 1991.
- [14] ROBERTS G.B., Quasi-subelliptic estimates for operators with multiple characteristics, Comm. Partial Diff. Eq. 11 (1986), 231–320.
- [15] RODINO L., Linear partial differential operators in Gevrey spaces, World Scientific, Singapore 1993.

- [16] TRÈVES F., *Introduction to pseudo-differential operators and Fourier integral operators*, I, II, Plenum Publ. Corp., New York 1980.
- [17] TULOVSKY V.N., *Propagation of singularities of operators with characteristics of constant multiplicity*, Trudy Mosc. Mat. Obsc. **39** (1979); Trans. Moscow Math. Soc. (1981), 121–144.
- [18] WAKABAYASHI S., Singularities of solution of the Cauchy problem for hyperbolic system in Gevrey classes, Japan J. Math. 11 (1985), 157–201.

AMS Subject Classification: 35S05.

Giuseppe DE DONNO and Luigi RODINO
Dipartimento di Matematica
Università di Torino
Via Carlo Alberto 10
10123 Torino, ITALY

e-mail: dedonno@dm.unito.it, rodino@dm.unito.it

Lavoro pervenuto in redazione il 17.05.1999 e in forma definitiva il 20.01.2000.