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GEVREY HYPOELLIPTICITY FOR PARTIAL DIFFERENTIAL
EQUATIONS WITH CHARACTERISTICS OF HIGHER
MULTIPLICITY

Abstract. We consider a class of partial differential equations wihracteristics

of constant multiplicitym > 4. We prove for these equations a result of hypoellip-
ticity and Gevrey hypoellipticity, by using classical Faurintegral operators and
S;”,S arguments.

1. Introduction and statement of the result

This paper concerns the Gevrey hypoellipticity of lineattiphdifferential operators:

@ P= ) cxD*.

lo]<M

We use in (1) standard notations, and we assume that theotewtfic, (x) are analytic, defined
in a neighborhood? of a pointxg € R". More generallyP could be assumed in the following
to be a classical analytic pseudo-differential operatefingd as, for example, in Rodino [15],
Treves [16].

We recall thatP is said to be hypoelliptic at (a neighborhofdof) the pointxg when

) singsupp Pu= singsuppu for all ue D'(Q)

and Gevrey d-hypoelliptic, .k d < +o0, when

3) d —singsupp Pu= d —singsuppu for all ue D'(Q).

In (3) the d-singular support of a distributionis defined as the smallest closed set in the com-
plement of whichu is aGH function, 1 < d < oo, i.e.; it satisfies locally estimates of the

type
D f(x)| < ClIH1gn)d.

We want to study the multiple characteristics case. Nangelysider the principal symbol:

PMOGE) = D Cal0)E”
la|=M

Arguing microlocally, we fixsg # 0 and set:
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DEFINITION 2. We say that P is an operator with characteristics of constanttiplicity
m > 2at (Xg, &) if in a conic neighborhood” ¢ © x (R™0) of (xg, £&g) we may write

PmM(X, &) = em_m (X, &) ag (x, )M,

where @1_m (X, &) is an analytic elliptic symbol, homogeneous of order-Mn, and the first
order analytic symbol &(x, &) is real- valued and of microlocal principal type, i.e g aj (X, &)
never vanishes and it is not parallel }67_; &j dxj on

X ={Xx& eI, a((x,§ =0}

Observe that® is also characteristic manifold gby (X, £€); we understandxg, &g) € X.
For P satisfying such definition, we want to study hypoelliptjc@r, more precisely, micro-
hypoellipticity at(xg, &g), defined by

(4) F(YWFPu=T(|WFu forallue D'(Q)
and d-micro-hypoellipticity, defined by
(5) I (YWRPu=T(|WFRu forallue D',

for a sufficiently small neighborhodd of (xg, &g). See for example Hormander [4], Rodino [15]
for the definition of the wave front s&V F uand Gevrey wave front s&V Fy u of a distribution
u. We observe that (4), (5) imply respectively (2), (3), whatis§ied in a conic neighborhodd
of (xp, &) for all &g # 0.

To express our result we need the so-called subprincipabslof P:

18 2

PM_106E) = D Ca(EY =D ———
=M1 2i = aXj 0&]

pm (X, §).

We recall thatpijl has a geometric invariant meaning¥t see for example Hormander [4];
we shall write in the following

00,8 = py_1 Oz -
Let us assume for simplicity iff :
(6) pm (X, &) is real — valued and when mis een, non— negative

(this is not restrictive, if we are allowed to multiply by altigtic factor passing to the pseudo-

differential frame).

It is then known from Liess-Rodino [6] that in the ca3e)®(xp, £5) # O we have micro-
m

hypoellipticity and d-micro-hypoellipticity atxg, o) for d > =~7. In this paper we shall

allow 3 J9%xg, &) = 0, but assumét J9(xg, &9) # 0. To be definite, let us set
(7) % JI0%x,6) <0 for (x,£) € x.

Fixing attention here on the higher multiplicity case > 3, we need to consider some other
invariants associated M\/I—l' cf. Liess-Rodino [7], Mascarello-Rodino [8]:

Jr(x S X) _ 1 r +
z = r!X Pm—1(X, &),
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for (x, &, X) € N(¥),1 <r < m-2,whereN(X) is the normal bundle to the characteristic
manifold X and x is a vector field inl" such thaty (x, &) at (x, £) € X is in the equivalence
class ofX € Ny g)(Z).

Obviously we have:

®) (X, =X) = (D' I"(x. 8, X).
For uniformity of notation we shall also regaﬂ(ﬁ’ as a function orN(X), independent oK at

(%, 8).

THEOREM1. Let P be an operator with characteristics of constant miittity m, satisfy-
ing (6), (7). Assume moreover there exists 0 < r* < @ such that

) IIT(xE X) £ 0 forall (x,&, X) € N(Z), X # 0,
i) IITEX)IIXE X) > 0 forall (X, £, X) € N(2),0 <1 < r*

Then P is micro-hypoelliptic and d-micro-hypoelliptic fr> ﬁ

Let us compare our result with the existing literature. Fa sake of brevity, we limit
attention to some models &2, satisfying (6), (7) ak? = 0,x9 = 0,£9 = 0,£9 > 0. We
list first the following examples, representative of gehefasses already considered by other
authors:

© DY — DIt m= 2.,

(10) DY — D! +ix; Dy, DY 2 (m = 3),

(11) DR - DRt +ix2" Dt m=> 2,

(12) DR — Dt +ix2" D +ix| Dy, D2 (m = 3).

The operators (9), (10) are not hypoelliptic; observe diab({10) is not locally solvable, cf. Corli
[1]. The operator (11) is hypoelliptic for aly > 1, despite the fact that Jo(xo, &) = 0, cf.
Menikoff [9], Popivanov [10], Roberts [14]; the operato2]1having the samd? as (11), is not
hypoelliptic if h is sufficiently large with respect to> 1, cf. Popivanov-Popov [12], Popivanov
[11].

Theorem 1 gives new conditions dh, i.e. on the coefficient of the terms

D§(1 DQ;_“l for models of the preceding type, to guarantee hypoelliptand Gevrey hypoel-
lipticity. We have to assumenom > 4.

Let us observe that, if* is odd, then), ii) in Theorem 1 and (8) actually imply J" = 0 for
evenr < r*; as examples of hypoelliptic operators characterized ofdm 1 consider in this
case

(13) DR — DIt +iDy D2 (r* = 1),

(14) DY — D! 4+ ix2 Dy, D2 +i DS DA (rF = 3),
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having the samd? as the non-hypoelliptic operators (9), (10)r fis even, then), ii) and (8)
imply 3 J" = 0foroddr < r*;as corresponding example of hypoelliptic operator carsid

(15) DR — DR 4+ ix2 Dt +iDZ DRt = 2).

having the samd? as (11), (12). In (13), (14), (15), the orderhas to be chosen sufficiently
large, to satisfy the assumpticfﬂg—1 > r*. Returning to general operators, we may regard
Theorem 1 as extension of a result of Liess-Rodino([7], Teen6.3), which prove the same
order of Gevrey hypoellipticity, requiring andy¥ J" = 0 for allr < r*, which is stronger
thanii) ; see also Tulovsky [17] for hypoellipticity in tHe°>°-sense. Observe however that Liess-
Rodino [7] allow 0 < r* < m — 2, whereas we do not know whether our result is valid for
mol —pf < m-—2.

The proof of Theorem 1 will be reduced, after conjugation Iagsical Fourier integral op-

erators, to a simplsgn s argument (let us refer in particular to the result of Kajitdvakabayashi
[5] in the Gevrey frame).

2. Gevrey hypoellipticity for a class of differential polynomials.

In this section we begin to study a pseudo-differential nhadsuitable simplectic co-ordinates.
The conclusion of the proof of Theorem 1 will be given in thbseguent Section 3. As before
we denote by = (Xq, ..., Xn) the real variables i®, open subset dR"; £ = (&1, &, ..., £n),
& > 0, the dual variables of. We consider the conic neighborhoad = {0 < 512 +

I£12 < C&2) of the axisé, > O, where; = (&3, ....&n) € R"~2, for a suitable constart.
Moreover we takey, m,r,s € Nsuchthaim > 2,1 < g < m, and(r, s) belong to the set
| ={(r,s) e N2:0 < qgr + ms < qm}.

Letthe functionin x A = T

(16) pX. &) = & — hoq(x. £)&) + > hrs(x. &) &]ES

(r,s)el

be a differential polynomial, symbol of a (micro) pseudéfetential operato(x, D), where
h(.,.) ' - C ,h(.,.) =N h(.,.) + i?sh(.,.),m h(.’.), ‘\Nsh(.,.) ' - R, .‘Rh(.’.), ‘\Nsh(.,.) €
GL(), see below.

We define the sets, fdr € N,0 < k < gm:

Ik = {(r,s) € N2 : gr + ms = k}
and fixk = k* such thag(m — %) < k* < gm. We use the notatiok™ for all k < k* and
ktforallk > k*. Wemaysplitt = I |J lir U I, withl— = J e, I+ = U It

LEMMA 1. Let p(x, &) be the functior(16)where h. . is assumed to be homogeneous of
order zero with respect t& and analytic, which implies for some constantL 0

17 D DE (.l < LI+IPI+ a1 @+ eIl

Assume moreovegs consists of one couple*, s*), k* = gr* + ms"*, such that:

() Shexge(x,&) # O, forall (x,£) e T,
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(i) Shrs g (X, &) Shrs(x, &) & HESTS > 0, forall (x,&) € T',k* < kT = gr+ms <
am,

(ii)) 3hoq(x, &) Shes sr(x, £) &I < 0, forall (x,8) e T,
(iv) Mthgqg(x,§) # O, forall (x,&) € T.
Then for alla, B € Z7, for all K cc £, we have for new positive constants L and B
independent of , 8:
Dg Df p(x, )] 110161 ~dled
IP(X, §)I

(18) < Llel+1B+ 10181 €] > B,

wherep = K —qngm—l)’ § = 90= K” Observe that we have < p, since we have assumed
k* > qm—2)

REMARK 1. Hypothesigii) implies that3 hy« s«(x, £) and3 hy s(x, &) are both positive or
both negative § hr s(x, §) may vanish, too), and thatis according (both even or both odd) to
r* for all r such thak* < k*t. Otherwise ( is not according to*), 3 hr,s(x, &) has to vanish
inT.

Hypothesig(iii) inducesY hg q(x, §) = 0if r* is odd.

REMARK 2. By formula (18) and by Kajitani-Wakabayashi([5], Theor#.9), we have that
the operatoP(x, D), associated to the symbplx, &) in (16), isGd-microIocaIIy hypoelliptic
inT ford > max{1 i} =1

P15 T o

REMARK 3. Whenp < 1, andd > 0, one can prove by means of interpolation theory
as in Wakabayashi([18], Theorem 2.6) that (18) is valid foy @, 8 < Z" , if (18) holds for
le + B| = 1. Hence it is sufficient to verify (18) fdw + 8| = 1 because = Hr(nm—_l) <

qmr;k > 0.

d <1 ands =

REMARK 4. For the proof of Theorem 1 it will be sufficient to apply Lemarh forq =
m — 1. The general case ¥ q < mleads to a more involved geometric invariant statement,
which we shall detail in a future paper.

Proof of Lemma 1.We first estimate the numerator of (18), then we give some lasnim esti-
mate the denominator of (18).
If le| =1, 8] =0, we get

IDx; p(x. &) &7 = \Z«,sm Dyx; hr.s(x. &) £} &5 — Dx; ho q(x. &) &5 | 1£]7°
=L (Seger Gl +68) 11 | =1 m;

for a suitable constarit1 in view of the assuption (17).
If | =0, |8| =1, then

(19)  IDg px. )| E1° < Lz( > |51|“s§+s§) E1° A+ &)

(r,s) el
=3 ..,n
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for a suitable constarit,, in view of (17).
Moreover:

De, PO EP < (MiEd™ D+ Ls g ey E2 285 IIP

(20)

tLa(Seser a8 +65) 1610 A+ gD
and
- D, P O IE1P < (dLogs2® L+ Ls Xg et Eal 657 1617

Lo (T er lEal85+87) k1P @+ 1ED 7™

for suitable constantss, L4, Ls, Lg, Lo,q in view of (17).
On the other hand, we have:

(22) €17 A+ 1EDT < 15170, forall ¢ € A,
in fact, by multiplying by|£|(1+ |£]) on both sides of (22), we obtain
5] — 5P +1>0, forall € A,

wherep = p+48 < 1.

Then in the right-hand side of (19), (20), (21) we may furtkstimate£ |° (1 + |£]) L by |£] 9.
Therefore, to prove (18), it will be sufficient to show the hdadness i, for || > B, of the
functions

(Seser Eafe5+65) 1™

Qi) = E) :
(migt™ 2+ La X gyt Il e5) 1e1°
Q2(8) = P E)] ,
(alogléld 2+ Ls g et lEales ™) lel?
Qs(®) = Ip(X, )]

(we observe that terms of the ty@®, Q3 were already considered in De Donno [2]).
First introduce in the con4, three regions:

Ri: c& <&M < Céj,
(23) Ry: g1 > csé‘,
Rs: &)™ < c&;s

where the constants, C satisfyc << min{%min(x,s)ep IR ho,q(x,§)|, 1}, andC >>

max{2maxy g)er % ho,q(x. £)1. 1}.
The following inequalities then hold:

P m
. Cilg/™®s . e AR ()
(24) lE]7° < €179 . Ee ANR an

£° . Ee ARy (D)
note that(ll) and(lll) hold for allé € A, but for our aim we may limit ourselves to consider

them respectively im\ () Rx and inA () R3. By abuse of notation, in the following we shall
also denote byR1, Ry, Rz the set€2 x Ry, 2 x Ry, © x Rg;recallthatl = Q x A.
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We will show in Lemma 2, Lemma 3 and Lemma 4, that there ardipesionstantK 1 <
1, Ky < 1, K3 < 1, B, such that:

(25) Ip(X. &) = K1 [She s (x. &)] E1/ &5 . inT () Ry, €] > B,
(26) Ip(x, &) = K2 1&1|™,  inT (] Ry, I§] > B,
@7 Ipx, )l = Kg&9, inT (7] Rs, I£] > B.

In (25) we may further estimaﬂéhr*,s*(x, 5)] > Afori > 0, inview of(i) in Lemma 1.
We first consideQ1 (&) separately in the regiorR;, Ry, Rz, to prove boundedness.
In Ry by (24),(25), we get easily, writing as befdte= qr + ms

Qu) < const(z L +1), £ > B,

mi_
k 15 9

wherem— K > 0 by definition ofl andly — sets
Inthe regionsRy, R3 by using respectively (24),(26) and (24),(27), we have foorestant > 0
which we may take as small as we want by fixiBgufficiently large:

1 1
Q1(8) =< COHSI(Z ﬁ‘f——s) < €, |&] > B,
K |§1|m+q7ﬁ7ﬁ |§1|

and
1

1
Q1(§) < const — = t— . 11 > B.
1 (Xk: 6221~ '52'8) o

We have therefore proved th@t; (¢) is bounded. Let us estimat@y (), Q3(£). As above in
the regionsR;, Ry, Rg, we obtain

Q2(6) = const (1+Z i _) :
k [ga] @

Qz(£) < const (

=~

o3|

1
_1+Z |(m+%—1>—§) < €,

&1l k &1

in Ry for |§] > B,

Q2(6) =< const(;k* +y° ;) <e,

m—- 2m—k_ Kt
ST ko 1gf7 9 d

1
55
m_qy_k om+D_1)—(k E)
|§1|(m+q )= |%.1|( m+g—D-G+7g)

Q3(£) < const (
k
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in Ry for |§] > B,

1 1
Q2(8) gconst( q_@+z 2q—k_k*) < e,
[Eof"m  k [E2fTTmTm

Qs3(6) < const( ! =+ L ) <e,

L B YR R

in Rz for |£] > B.
Now Lemma 2, Lemma 3 and Lemma 4 complete the proof.
|

LEMMA 2. Let p(x, &) be the function(16), such that(17) and (i), (i), (iii) in Lemmal
hold. Then there are positive constants K 1, B, such that:

Ip(x. £)] = Kq [Shre s+ (x, 8)] [E1 &5, (x.€) € T[] Ry, &] > B.

Proof. We have that

2
P, 62 = (6 = Mhoq(x ©)& + Lrger NMhrsx, 6)6[65) +
(28) + (Shee s O 85 + Lrger. Shrstx §) €65+
2
+ Lrser, SNrstx 66165 — Shoqx.£)63)

by removing the terms rising from the real partpi, &), we can write

4
Ip(X. £)% = Shye e (6. £)2627 635 + Y Jj(x.£)
=1

where

(29) hx.8 = (Z Shrs(x, §)ELES+
(r,s)el_

2

Z Shr,s(xvf)fiég—Sho,q(xvf)fg) ,
(r,s)el+

(30) BH(x.§) = Whs g (x. &) Y Jhrsx.§)&] TTES TS,

(r,s)el_
(31) J3(x.§) = Whs g (x.§) Y Jhrsx.§)&] TTES TS,

(r,s)ely

32) I, E) = —23 s 2 (%, ) Sho g(x, £) &) €5 79
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(29) is non-negative for alix,§) € TI', (31) and (32) are also non negative by hypotheses
(i), (iii)forall (x,&) € T.
Let us fix attention ordy(x, &) defined by (30). We have for all > 0

(Shre s (x, )2 6177635 + J(x, ) > (1— ) (Shy» & (x, )2 817 €357,
in (M Ry, |§] > B. In fact, assuming for simplicitg; > 0,by (17), (23) in[' () Ry and
hypothesis (i), for alk > 0 we get forB sufficiently large

r*4r os*+s
[J2(X, §)| < const § &
Sh 2, 2reg2se ~ £ 2725 ©
(~5 r*,s*(X,f)) §19°&5 rs)el_ Sl 52
r*+r+(s*+s)%
o )
< const(r gejl ng*+25*% <e, |E]>B;
SIE= 5
we remark thak* = qr* + ms®* > k= = qr + ms

Then, .
IP(X, £)] > Kq |[Shps g (X, &) [E1]" &5, (X, 6) € T ﬂ Ry, €] > B,

for a suitable constark ;.
|

LEMMA 3. Let p(x, &) be the function(16)such that(17) holds. Then there are positive
constants k < 1, B, such that:

1P, &) = K2 1&1|™, (x,€) € T[] Ry, €] > B.

Proof. We write|p(X, £)|2asin (28); by removing the terms arising from the imaginaast pf
p(x, §), we get

2
(33) PO, )12 = (67 = 9thog(x. §)85 ) + Wa(x, £) + Wa(x, §)
where
2
(34) Wy (x, §) = ( > mhr,s<x,5)s{s§) ,
(r,s)el

(35) Wax, &) =2 > 9Rhrs(x.§) &S — 2hhgq(x. &) Y Sthrsx. &) &6

(r,s9)el (r,s)el
Observe first that fok > 0 sufficiently small
m " q 2 2m
(61 - Rhoqex. ©)85)" > 267™;

in fact 5
(6 = 9thog(x. ©)65)" = €™ — 2o g(x. &) &5 .
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and using (23) i (1] Ry, we have foithg g &1 > 0

M — 2hho q(x. £) &% = (1— ém ho,q(Xw‘E)) M > 25,

sinceC > 2maxy g)er [N ho,q(X, §)I.
(34) is non negative for allx, £) € I'. We denote (35) bir1(x, £) — Ta(X, &), then

IpX, )12 > AE2™ 4 T1(X, ) — Ta(X, ).

Arguing onYq, Yo in the same way as we have done in Lemma 2, it is possible to geaivor
alle >0

JEE 4 T E) — Mo 8) = (- OEE™ (k.6 € T (| R, lg1> B,

then

Ip(x, )l = K2 1&1|™, (x,§) e T[] Ry, |5 > B,

1
whereKy = (A —€)2.
a

LEMMA 4. Let p(x, &) be the functior(16), such thaf(17) and (iv) in Lemma. hold. Then
there are positive constantsgk< 1, B, such that:

Ip(x, &) = K&, (x,§) e I'[| Rs, & > B.

Proof. We apply again (33), (34), (35) i@(Xx, £)|2. Observe that i () Rs, arguing as above,
sincec < %min(x,g)er [N ho,q(X, &)|, we obtain for a suitable constaat > 0

2
(67 — 9hoqx. ©)83)" > ngd?.

About the terms in (34) and (35), the remarks we have donenmh& 3 hold by replacing Elzm
. 2q
with w &5 , then we have

Ipx, ) = Kg£29, (x,§) € I' (| Rs, €] > B,

1
whereKz = (u —€)2.

3. Fourier integral operators and proof of Theorem 1

We consider in this section an operator mapping a fuctiowligiribution, or ultradistributioni
into

(36) @0 [ axx oue e x de .
The phase functiop(x, &) is assumed to be analytic real-valued, homogenuous of eldgnéth

respect tc&; (36) is called a Fourier integral operator (F.1.O.). Canégg the symboh(x, &),
we suppose it belongs t84(Q), the space of the classical analytic symbols of oldeThe
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functionT(&) is the Fourier transform of the functian The particular case(x, §) = x - &
corresponds to the usual pseudo-differential operators.

The machinery of the F.I.O.’s (see Hormander [4], Trevés,[Rodino [15]) may lead to relevant
simplifications in the study of the micro-operatBr = P(x, D) in (1). Precisely, lety be
a homogeneous analytic canonical transformation actmg fhe conic neighborhoot of the
point pg = (Xg, &g) to a conic neighborhooﬁ/ of the pointy (pg) = (Yo, ng); thaty is canonical
means that it preserves the symplectic two-farns= Z’-‘Zl dxj A dg;j.

Then we may consider the Fourier integral operd&owith phase functiorp corresponding to
x; thisisamapg- : Md(F) — Md(l“/), 1 < d < ocowithinverseF—1 : Md(l”/) — Md(F)
whereMd(T") denotes the factor spaﬁé(Q)/ ~,whereu ~ v meansthal W Fy(u—v) =
@, foru, v € D'(Q), with WFx u = W F u. More details are, for example, in Rodino [14].
We then have:

37) WFy (Fu) = x(WFRgu), WFy (F~ 1) = x T (WFRyv),

moreover ) )
P=FPF1:MmIT)—> MIT)

is a micro-pseudo-differential operator, with homogerseanalytic principal symbol

Pm(y.m = Pm (xfl(y, n)).

On the other hand, as it follows from (37)

(38) P is micro— hypoelliptic or d— micro— hypoelliptic
if and onlyif P is such

Moreover, if we assumgy € X and denote by the characteristic manifold éf, theny (po) €

$ands = x(2)inT.

In this way, by fixing a suitable canonical transformatipnwe may reduce ourselves to the

study of operator® of a truly elementary form. Particular simplification in teepression of

can be obtained by means of the following theorem.

THEOREMZ2. Let A be a classical pseudo-differential operator of miogall principal type
of first order, the function a (principal symbol of A) be real andi@xg, &) = O, Xg € €,
£ # 0. Then there exists a F.1.O. F, such that= FAF~1 and A is a pseudo-differential
operator of first order, whose symbol is equaktoin a conic neighborhood of the poityg, ng)
corresponding taxg, &g) for some k1l <k <n.

For the proof see, for example in t@¥° frame, Egorov-Schulze([3], cap. 6, Theorem 9).

We apply Theorem 2 to the operat®(x, D) with characteristics of constant multiplicity at
(Xo, £0), such that in a conic neighborho®uits principal symbol admits a decomposition as in
Definition 2:

PM(X, §) = em—m (X, &) ag (x, 5.
The symbol ofP(x, D) is given by

P(X, §) = em—m (X, §) a1 (X, §) + Py_1(x, §)
wherePy_1(x, &) is of orderM — 1 and, by passing to the operators:

P(x, D) = em_m (X, D)a; (x, D)™+ R(x, D),
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or
eM_m(x, D)1 P(x, D) = a1 (X, D)™+ em_m(x, D) "L R(x, D),

whereR(x, D) is of orderM — 1.
P(x, D) is micro-hypoelliptic if and only ifa; (X, D)™ 4+ ep—m(X, D)~1R(x, D) is micro-
hypoelliptic, then by (38) if and only if

Q(y. D) = F~ta (x, D)™ F + Ftey_m(x, D) "' R(x, D) F

is micro-hypoelliptic, and by Theorem 2 we get that:

Fayx,D)"F1=Fa;x, D)F1...Fa;(x,D)F~1 = b(y, D),

m times

such thab(y, n) = "IT forsomek, 1 < k < n. Then

o0
quy.m ~ mg + D Gmj (Yo ).
j=1

Let us assum& = 1 and use again the notatign(x, &) in the role ofq(y, n); we may also
suppose, > 0 in the corresponding. We can rewrite furthep(x, &) as:

m—1
PO E) = & + D Ppmej(X. &) + Po(X. £);
j:1 N——

order 0

that becomes for Taylor formula stopped at order m-j

m—1m—j—1

108 P (% ©)ley—o0 y
SIED MDD R s 6™ rn 0, 6) | + Potx ©),
j= =0 . 2 [ ——

=

order 0

withr +s=m— j.

Let us set: ;
1 9, Pm—j (X, §)lg =0
hrsx, &) = — =% ,
r! £5
so, we have:
(39) EN + homo1(GOET + Y hrs(x.£)£]ES,
r+s<m-1

where(r, s) # (0, m—1) in the sum andhm_j 0(X, §) = rm-j)(X, &), ho,0(X, &) = po(X,§).
All the termshy s(x, &) are homogeneous of order zero, bgtp, which will not play any role
when checking th@m(g estimates; observe also that fors) # (m— j, 0) the symbohy s(x, &)
is actuallyé1—independent.
Formula (39) gives the model that we have studied in Sectwitt?2qg = m — 1.

The characteristic manifold op(x, &), in the new symplectic co-ordinates, is the sub-
setT = {& = 0} of R?", so in this case we obtaip,, ; = pm_1 and J%(x, &) =

Pm-1(X. &)lg=0 = hom-1(x. £)&3" .
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Hypotheses (6), (7) an), ii) in Theorem 1 are clearly transported by symplectic trans-
formations and multiplication by elliptic factors. Moreswit is simple to verify that, taking
proportional tOBL& by a factor which we again denctg after differentation:

1 / 1
X P16 8) = S0 Pmo1(X )l =081 = hrs(X, §) 1 &5,

withr +s = m— 1.
Immediately we can see that the hypotheses of the Theorem dgaivalent to the hypotheses
of the Lemma 1, that gives our result.
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