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I. Vaisman

LOCALLY LAGRANGIAN SYMPLECTIC AND

POISSON MANIFOLDS

Abstract. We discuss symplectic manifolds where, locally, the structure
is that encountered in Lagrangian dynamics. Examples and characteristic
properties are given. Then, we refer to the computation of the Maslov
classes of a Lagrangian submanifold. Finally, we indicate the generaliza-
tion of this type of symplectic structures to Poisson manifolds. The paper
is the text of a lecture presented at the Conference “Poisson 2000” held at
CIRM, Luminy, France, between June 26 and June 30, 2000. It reviews
results contained in the author’s papers [9, 12, 13] as well as in papers by
other authors.

1. Locally Lagrangian Symplectic Manifolds

The present paper is the text of a lecture presented at the Conference “Poisson 2000”
held at CIRM, Luminy, France, between June 26 and June 30, 2000, and it reviews
results contained in the author’s papers [9, 12, 13] as well as in papers by other authors.
The notion of a locally Lagrangian Poisson manifold is defined for the first time here.

The symplectic structures used in Lagrangian dynamics are defined on a tangent
manifold TN , and consist of symplectic forms of the type

(1) ωL =
1

2

(

∂2L
∂qi∂uj

− ∂2L
∂qj∂ui

)

dqi ∧ dqj +
∂2L

∂ui∂uj
dui ∧ dqj .

In (1), (qi)n
i=1 (n = dimN) are local coordinates in the configuration space N , (ui) are

the corresponding natural coordinates in the fibers of TN , and L is the non degenerate
Lagrangian function on TN (i.e., L ∈ C∞(TN), rank(∂2L/∂ui∂uj) = n). (In this
paper, everything is C∞.)

The most known geometric description of ωL is that it is the pullback of the
canonical symplectic form of T ∗N by the Legendre transformation defined by L. But,
geometrically, it is more significant that ωL is related with the tangent structure of the
manifold TN . The latter is the bundle morphism S : TTN → TTN defined by

(2) SX ∈ TV, (SX)(< απ(u), u >) =< απ(u), π∗Xu >,

where V is the foliation of TN by fibers (the vertical foliation), u ∈ TN , X ∈ ΓTTN ,
α ∈ ΓT ∗N , and π : TN → N is the natural projection. (Γ denotes spaces of global
cross sections.) Formulas (2) define the action of SX on qi, ui, and one has

(3) S

(

∂

∂qi

)

=
∂

∂ui
, S

(

∂

∂ui

)

= 0.
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The relation between ωL and S is e.g., [4]

(4) ωL = dθL, θL = dL ◦ S.

A symplectic form given by (4) is called a global Lagrangian symplectic (g.L.s.) struc-
ture. The Lagrangian L on TN uniquely defines ωL but, if (and only if) we change L
by

(5) L′ = L + f(q) + αi(q)u
i,

where f ∈ C∞(N) and αi(q)dqi is a closed 1-form on N , we get the same symplectic
form ωL′ = ωL.

Accordingly, it is natural to study locally Lagrangian symplectic manifolds M i.e.,
manifolds which have an open covering M = ∪α∈AUα, with local Lagrangian functions
Lα ∈ C∞(Uα) that give rise to a global symplectic form which locally is of the type (4).
In particular, this is interesting since we may expect to also have compact manifolds
of this type while, a g.L.s. manifold cannot be compact since its symplectic form is
exact.

First, we must ask our manifold M to carry a tangent structure [1] i.e., an almost
tangent structure S ∈ ΓEnd(TM) where

S2 = 0, im S = ker S,

which is integrable i.e., locally defined by (3). The existence of S implies the even-
dimensionality of M , say dim M = 2n, whence rank S = n, and integrability is equiv-
alent with the vanishing of the Nijenhuis tensor

(6) NS(X, Y ) = [SX, SY ] − S[SX, Y ] − S[X, SY ] + S2[X, Y ] = 0.

It is important to notice that S defines the vertical distribution V := im S = ker S,
which is tangent to a foliation V if S is integrable. Moreover, in the latter case V is
locally leafwise affine since a change of local coordinates where (3) holds is of the form

(7) q̃i = q̃i(qj), ũi =
∂q̃i

∂qj
uj + θi(qj).

(We use the Einstein summation convention.) The parallel vector fields of the locally
affine structure of the leaves of V are the vector fields SX where X is a V-projectable
vector field on M .

Now, we can give the formal definition: a locally Lagrangian symplectic (l.L.s.)
manifold is a manifold M endowed with a tangent structure S and a symplectic struc-
ture ω of the form (4), where L are local functions on M .

A simple example can be obtained as follows. Take N = IRn, TN = IR2n, and the
Lagrangian of the modified harmonic oscillator [6]

L =
1

2
(δiju

iuj + αijq
iqj),

where (δij) is the unit matrix and (αij) is a constant symmetric matrix. Then, quoti-
entize by the group

qi 7→ qi + mi, ui 7→ ui + si (mi, si ∈ Z)
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to get the torus T 2n. The tangent structure of IR2n projects to T 2n, and the function
L yields local functions on T 2n which have transition relations (5) hence, define the
same Lagrangian symplectic form namely, the canonical symplectic form of the torus
T 2n . Notice that this example is on a compact manifold.

Another interesting example is that of the tangent bundle TN of a symplectic
manifold N with symplectic form σ. Namely, the form ω = d([∗σλ), where λ is the
Liouville form (e.g., [9]) of T ∗N and [σ : TN → T ∗N is the usual index-lowering
isomorphism, is an l.L.s. form on TN with its canonical tangent structure. This
follows by an easy computation in local Darboux coordinates on (N, σ).

Further examples will be given later on.

Following is a coordinate-free characterization of the l.L.s. manifolds [13]:

Proposition 1. Let M be a manifold with a tangent structure S and a symplectic
form ω. Then, ω is locally Lagrangian with respect to S iff

(8) ω(X, SY ) = ω(Y,SX) (∀X,Y ∈ ΓTM).

Proof. Using local coordinates where (3) and (1) hold, it is easy to check (8). Con-
versely, from (8), it follows that the vertical foliation V of S (TV = im S) is ω-
Lagrangian. Hence, M may be covered by local charts (U, xi, yi) such that

(9) V := TV = span

{

∂

∂yi

}

, ω =
∑

i

dxi ∧ dyi.

Furthermore, we must also have

(10) S

(

∂

∂xi

)

=
∑

k

λik
∂

∂yk
,

where, because of (8), λik = λki.

Now, (6) implies

[S
∂

∂xi
, S

∂

∂xj
] = 0

hence, there are new coordinates

qi = xi, ui = ui(xj , yj)

such that

(11) S

(

∂

∂qi

)

= S

(

∂

∂xi
+

∂yk

∂qi

∂

∂yk

)

= S

(

∂

∂xi

)

=
∂

∂ui
.

From (10) and (11) we get ∂yi/∂uk = λki, and, since λki = λik, there exist local
functions L such that yi = −∂L/∂ui. Using (9), we get (1).

(8) is the compatibility condition between S and ω. It allows us to notice one more
interesting object namely,

(12) Θ([X]V , [Y ]V ) := ω(SX, Y ),
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where the arguments are cross sections of the transversal bundle νV := TM/V of the
foliation V. Θ is a well defined pseudo-Euclidean metric with the local components
(∂2L/∂ui∂uj). If this metric is positive definite, we say that the manifold (M, S, ω) is
of the elliptic type.

Proposition 2. Let (M, ω) be a symplectic manifold endowed with a Lagrangian
foliation V (TV = V ), and a V-projectable pseudo-Euclidean metric Θ on νV =
TM/V . Then, there exists a unique ω-compatible tangent structure S on M for which
Θ is the metric (12).

Proof. Split TM = V ′ ⊕V , where V ′ also is a ω-Lagrangian distribution, and identify
νV with V ′. Then define

S/V = 0, S/V ′ = ]ω ◦ [Θ,

where the musical isomorphisms are defined as in Riemannian geometry. It is easy
to check that S is the required tangent structure. In particular, we must check that
NS(X, Y ) = 0, and it suffices to look at the various cases where the arguments are in
V, V ′ while, if in V ′, they are V-projectable vector fields. The only non trivial case
X, Y ∈ ΓV ′ is settled by noticing that, whenever X, Y, Z ∈ ΓprojV

′, one has

dω(Z, SX, SY ) = ω(Z, [SX, SY ]) = 0,

whence [SX, SY ] = 0.

Proposition 2 allows us to find more examples of l.L.s. manifolds. Let

(13) H(1, p) := {





Idp X Z
0 1 y
0 0 1



 / X, Z ∈ IRp, y ∈ IR}

be the generalized Heisenberg group, and take the quotients

M(p, q) := Γ(p, q)\(H(1, p) × H(1, q)),

where Γ(p, q) consists of pairs of matrices of type (13) with integer entries. Then, with
the notation of (13) on the two factors, the form

ω = tdX1 ∧ (dZ1 − X1dy1) + tdX2 ∧ (dZ2 − X2dy2) + dy1 ∧ dy2

(t denotes matrix transposition) defines a symplectic structure on M(p, q), and the
equations

X1 = const., X2 = const., y1 − αy2 = const. (α ∈ IR),

define an ω-Lagrangian foliation V [2, 10]. Furthermore

g := tdX1 ⊗ dX1 + tdX2 ⊗ dX2 + [d(y1 − αy2] ⊗ [d(y1 − αy2]

is a projectable metric on the transversal bundle of V.

Correspondingly, the construction of Proposition 2 yields a l.L.s. structure of
elliptic type on M(p, q).

A similar construction holds on the so-called Iwasawa manifolds

I(p) = Γc(1, p)\Hc(1, p),
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where Hc(1, p) is given by (13) with IR replaced by C, and Γc(1, p) consists of matrices
with Gauss integers entries [2, 10].

We end this section by

Proposition 3. The l.L.s. manifold (M, S, ω) is globally Lagrange symplectic iff
ω = dε for some global 1-form ε on M such that (i) ε vanishes on the vertical leaves
of S, and (ii) if η is the cross section of V ∗ (V = TV, V is the vertical foliation of S)
which satisfies η ◦ S = ε, then η = dVL, where dV is the differential along the leaves
of V and L ∈ C∞(M).

Proof. Notice the exact sequence

0 → V
⊆→ TM

π→ TM/V ≈ V → 0

which shows that V ∗ can be identified with the subbundle (TM/V )∗ of T ∗M . Ac-
cordingly, we see that a unique leafwise form η as required is associated with each ε
that satisfies (i) namely, using the local coordinates of (3), we have

ε = εidqi 7→ η = εi[dui](TM/V )∗ .

If we are in the g.L.s. case, we have (4), and ε = θL is the required form.

Conversely, if ω = dε, where (i), (ii) hold, we must locally have

ε = (
∂L
∂ui

dui) ◦ S =
∂L
∂ui

dqi,

and L is the required global Lagrangian.

Notice that condition (ii) has a cohomological meaning. If the l.L.s. form ω = dε
where ε satisfies (i) then (4) implies

ε/U = θLU
+ λU , dλU = 0,

where U is an open neighborhood on which the local Lagrangian LU exists, and λ is
a 1-form which vanishes on the leaves of V. Thus,

λ = d(ϕ(q)), η =

(

∂LU

∂ui
+

∂ϕ(q)

∂qi

)

[dui],

and we get dVη = 0. In foliation theory (e.g., [8]), it is known that if H1(M, ΦV) = 0,
where ΦV is the sheaf of germs of functions f(qi), then dVη = 0 implies η = dVL for
a global function L.

2. Further geometric results

a). Let (M, S) be a manifold endowed with an integrable tangent structure S. Then,
the following problem is of an obvious interest: find the symplectic structures ω on M
which are compatible with S hence, are l.L.s. forms.
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Proposition 4. The symplectic form ω on M is S-compatible iff

(14) ω =
1

2
ϕij(q)dqi ∧ dqj + d(ζi(q, u)dqi),

where (qi, ui) are the local coordinates of (3), the first term of (14) is a local closed
2-form and ζ = ζidqi is a local 1-form such that dV(ζi[dui]) = 0 and dζ is non
degenerate.

Proof. If ω is S-compatible, ω is of the form (4), which is (14) with a vanishing first
term.

For the converse result, we notice that our hypotheses indeed imply that the form
ω is closed and non degenerate, while the compatibility condition (8) is equivalent to
∂ζi/∂uj = ∂ζj/∂ui i.e., dV(ζi[dui]) = 0.

The local Lagrangians of the form ω of (14) are obtained by putting (locally)

1

2
ϕij(q)dqi ∧ dqj = d(αi(q)dqi), ζi[dui] = dVf, f ∈ C∞(M).

Then the Lagrangians are

(15) L = f + αiu
i.

A coordinate-free criterion which ensures (14) is given by

Proposition 5. The symplectic form ω on (M, S) has the local form (14), possibly
without dV(ζi[dui]) = 0, iff the vertical foliation V of S is a Lagrangian foliation with
respect to ω.

Proof. Consider the vertical foliation V of S, denote V = TV, and let V ′ be a transver-
sal distribution. We will use a well known technique of foliation theory namely, the
bigrading of differential forms and multivector fields associated with the decomposition
TM = V ′ ⊕ V . In particular, one has

d = d′
(1,0) + d′′

(0,1) + ∂(2,−1),

where d′′ may be identified with dV , and d2 = 0 becomes

(16) d′′2 = 0, ∂2 = 0, d′d′′ + d′′d′ = 0, d′∂ + ∂d′ = 0, d′2 + d′′∂ + ∂d′′ = 0.

Furthermore, d′′ is the coboundary of the leafwise de Rham cohomology, and it satisfies
a Poincaré lemma e.g., [8].

Clearly, V is Lagrangian with respect to (14).

Conversely, if the foliation V is Lagrangian for a symplectic form ω, we must have
a decomposition

ω = ω(2,0) + ω(1,1),

and dω = 0 means

(17) d′′ω(1,1) = 0, d′′ω(2,0) + d′ω(1,1) = 0, d′ω(2,0) + ∂ω(1,1) = 0.
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Accordingly, there exists a local (1, 0)-form ζ such that ω(1,1) = d′′ζ (the d′′-Poincaré
lemma), and (with (16)) the last two conditions (17) become

d′′ω(2,0) + d′d′′ζ = d′′(ω(2,0) − d′ζ) = 0,

d′ω(2,0) + ∂d′′ζ = d′ω(2,0) − d′2ζ − d′′∂ζ = d′(ω(2,0) − d′ζ) = 0,

whence,
Φ := ω(2,0) − d′ζ

is a closed 2-form of bidegree (2, 0). Therefore, ω has the local expression (14).

The simplest geometric case is that of a tangent bundle M = TN with the canon-
ical tangent structure (3). In this case, the local expressions (14) can be glued up by
means of a partition of unity on N , and we get all the global S-compatible symplectic
forms [12]

(18) ω = π∗Φ + dζ,

where π : TN → N , Φ is a closed 2-form on N , and ζ is a 1-form on TN which
satisfies the hypotheses of Proposition 2.1. In particular, dV(ζi[dui]) = 0, and the
contractibility of the fibers of TN allows to conclude that ζi[dui] = dVϕ, ϕ ∈ C∞(TN).
This also yields another expression of the S-compatible forms on TN :

(19) ω = π∗Φ + ωϕ,

where ωϕ is given by (1).

Furthermore, if we also use Proposition 3, we see that ω of (18) is globally La-
grangian iff it is exact. Indeed,if ω of (18) is ω = dξ, where ξ = ξ(1,0) + ξ(0,1), we must
have d′′ξ(0,1) = 0 since ω has no (0, 2)-component. Then, because the fibers of TN are
contractible, ξ(0,1) = d′′ϕ, ϕ ∈ C∞(TN), and

ω = dξ(1,0) + dd′′ϕ = dξ(1,0) + d(d − d′)ϕ = d(ξ(1,0) − d′ϕ) = dε,

where ε = ξ(1,0) − d′ϕ is a (1, 0)-form. If (18) is l.L.s., then it is clear that ε satisfies
the hypotheses of Proposition 3, with a global Lagrangian of the form (15).

In this context it is interesting to mention that a criterion to distinguish the tan-
gent bundles in the class of the manifolds (M, S) with an integrable tangent structure
is available. Namely, M is a tangent bundle iff the following three conditions hold: (i)
the vertical foliation V of S has simply connected leaves, (ii) the flat affine connec-
tion induced by S on the leaves of V is complete, (iii) E(V) = 0, where E(V) is the
1-dimensional cohomology class with coefficients in the sheaf of germs of V-projectable
cross sections of TV produced by the difference cocycle of the local Euler vector fields
E := ui(∂/∂ui) [3, 10].

b). At this point we restrict ourselves to the case of a tangent bundle M = TN with
the canonical tangent structure S of (3). Then, we may speak of second order vector
fields X on TN i.e., vector fields X such that the projection on N of their trajectories
satisfy an autonomous system of ordinary differential equations of the second order.
With respect to the local coordinates (3) such a vector field has the form

(20) X = ui ∂

∂qi
+ γi(q, u)

∂

∂ui
.
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For TN , the local coordinate transformations (7) of ui are linear (i.e., θi = 0 in
(7)) and E = ui(∂/∂ui) is a well defined global vector field on TN (the infinitesimal
generator of the homotheties) called the Euler vector field. We see that the vector field
X is of the second order iff SX = E.

Proposition 6. The symplectic form ω on TN is S-compatible iff the following
conditions are satisfied: (i) the vertical foliation V by the fibers of TN is ω-Lagrangian,
(ii) there exist ω-Hamiltonian vector fields which are second order vector fields.

Proof. ([12]) If ω is S-compatible, it must be of the form (19), and (i) holds. Concern-
ing (ii), it is known in Lagrangian dynamics that, if we consider the energy associated
with the Lagrangian ϕ of (19) given by

Eϕ = Eϕ − ϕ,

its ωϕ-Hamiltonian vector field Xϕ (i(Xϕ)ωϕ = −dEϕ) is of the second order.

Furthermore, all the second order vector fields are given by X = Xϕ + Z, where
Z is an arbitrary vertical vector field, and the 1-form Ψ = i(X)π∗Φ (Φ of (19)) is
independent on Z.

If we want a function h ∈ C∞(TN) such that

−dh = i(X)ω = i(Xϕ + Z)ω = Ψ − dEϕ + i(Z)ωϕ,

it means we want a relation of the form

(21) Ψ + i(Z)d′′ζ = df,

where ζ is the 1-form of (18), d′′ is defined using an arbitrary complementary distri-
bution V ′ of V = TV, and f = Eϕ − h must be the lift of a function on N , since the
left hand side of (21) is of bidegree (1, 0).

Because the Lagrangian ϕ is non degenerate, (21) has a solution Z for any f ∈
C∞(N). Therefore, condition (ii) of Proposition 6 is satisfied and we even know how
to find all the ω-Hamiltonian, second order vector fields.

Conversely, condition (i) implies (18) (see Proposition 5), and, if a vector field X
of the form (20) such that i(X)ω = −dh (h ∈ C∞(TN)) exists, the equality of the
(0, 1)-components yields

ui ∂ζi

∂uk
=

∂h

∂uk

whence the derivatives
∂ζj

∂uk
=

∂2h

∂uj∂uk
− ui ∂2ζi

∂uj∂uk

are symmetric, and we are done (see Proposition 4).

Concerning second order vector fields on a tangent bundle TN , the following
problem is important:
Problem 1. Let X be a second order vector field on TN. Study the existence and
generality of the Poisson structures P on TN such that X is a P -Hamiltonian vector
field.
Conversely, we can formulate:
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Problem 2. If P is a Poisson structure on TN , study the existence and generality of
second order P -Hamiltonian vector fields.

In analogy with the variational calculus problems, Problem 2 can be called the
direct problem, and Problem 1 the inverse problem for Hamiltonian second order vector
fields. Proposition 6 gives the solution of the direct problem for symplectic structures
ω on TN for which the vertical foliation V is Lagrangian [12]. But, it is easy to check
that if W is a Poisson structure on N its lift P to TN has no second order Hamiltonian
vector fields. P is defined by {f ◦π, g ◦π} = 0 for all f, g ∈ C∞(N), π : TN → N , and

{α, f ◦ π} = (]W α)f, {α, β} = L]W αβ − L]W βα − d(W (α,β)),

for fiberwise linear functions identified with 1-forms α, β. We again refer to [12] for
an iterative method of solving the inverse problem for Poisson structures P such that
{f ◦ π, g ◦ π} = 0.

It is interesting to notice that the notion of a second order vector field may also be
defined for arbitrary manifolds endowed with an integrable almost tangent structure.

Let (M, S) be a manifold with the integrable structure (3). Then, (7) shows the
existence of a natural foliated structure on the vector bundle V = TV (V is the vertical
foliation of S), and it makes sense to speak of V-projectable cross sections of V . A
vector field X ∈ ΓTM will be called a second order vector field if for each canonical
coordinate neighborhood (U, qi, ui), SX − EU , where EU = ui(∂/∂ui) is the local
Euler vector field, is a V-projectable cross section of V . The condition is invariant by
the coordinate transformations (7), and the local expression of X is of the form

(22) X = (ui + αi(q))
∂

∂qi
+ βi(q, u)

∂

∂ui
,

which yields

(23)
d2qi

dt2
= βi(qj ,

dqj

dt
− αi(q)) +

∂αi

∂qj

dqj

dt

along the trajectories of X. Equation (23) explains the name.

The following fact, which is known for tangent bundles (e.g. [6]) is also true in
the general case: if X is a second order vector field then (LXS)2 = Id, where L
denotes the Lie derivative. This is easily checked by using (22) and by acting on
∂/∂qi, ∂/∂ui. It follows that F := LXS is an almost product structure on M which
has the (+1)-eigenspace equal to V = TV. The complementary distribution

V ′ = span

{

∂

∂qi
− 1

2

(

∂αj

∂qi
− ∂βj

∂ui

)

∂

∂uj

}

is the (−1)-eigenspace of F .

In particular, if the functions βi of (22) are quadratic with respect to ui (a con-
dition which is invariant by (7)), V ′ is an affine distribution transversal to V i.e., the
process of lifting paths of transversal submanifolds of V to paths tangent to V ′ yields
affine mappings between the leaves of V [5, 10].

c). In what follows, we give a result concerning symplectic reduction of locally La-
grangian symplectic manifolds.
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Proposition 7. Let (M, S, ω) be a l.L.s. manifold and N a coisotropic submani-
fold with the kernel foliation C = (TN)⊥ω . Assume that the following conditions are
satisfied:
(i) S(TN) ⊆ TN, V ∩ TN ⊆ S(TN) + C (V = im S),
(ii) the leaves of C are the fibers of a submersion r : N → P ,
(iii) the restriction of S to N sends C-projectable vector fields to C-projectable vector
fields.
Then S induces a tangent structure S′ on P which is compatible with the reduction ω′

of the symplectic structure ω to P .

Proof. (i) and the compatibility condition (8) imply S(C) ⊆ C, therefore, we get an
induced morphism S̃ : TN/C → TN/C, such that S̃2 = 0 and im S̃ = (V ∩TN)/(V ∩
C).

Since the quotient is Lagrangian for the reduction of ω, we get

rank S̃ =
1

2
dim (TN/C).

Condition (ii) allows us to reduce ω to a symplectic structure ω′ of P , and (iii)
ensures that S̃ projects to an ω′-compatible tangent structure S′.

3. Maslov Classes

Since a l.L.s. manifold (M, S, ω) has a canonical Lagrangian foliation V = im S,
any Lagrangian submanifold L of M has Maslov classes, which are cohomological
obstructions to the transversality of L and V. In this section, we will indicate a
differential geometric way of computation of these Maslov classes.

We begin by a brief recall of the general definition of the Maslov classes [9]. Let
π : E → M be a vector bundle of rank 2n, and σ ∈ Γ ∧2 E∗ a nowhere degenerate
cross section. Then (E, σ) is a symplectic vector bundle. Furthermore, (E, σ) has a
reduction of its structure group Sp(2n, IR) to the unitary group U(n) which is defined
up to homotopy, and can be fixed by the choice of a complex structure J calibrated by
σ (i.e., σ-compatible: σ(Js1, Js2) = σ(s1, s2), and such that g(s1, s2) := σ(s1, Js2) is
positive definite, s1, s2 ∈ ΓE).

If L0 → M is a Lagrangian subbundle of (E, σ), the complex version of (E,J, g)
has local unitary bases of the form

(24) εi =
1√
2
(ei −

√
−1Jei),

where (ei)
n
i=1 is a local, real, g-orthonormal basis of L0 (L0-orthonormal, J-unitary

bases).

Correspondingly, E admits L0-orthogonal, J-unitary connections ∇0 of local ex-
pressions

∇0εi = θj
0iεj (θj

0i + θi
0j = 0),

and a local curvature matrix

Θ0 = dθ0 + θ0 ∧ θ0.
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Furthermore, if L1 → M is a second Lagrangian subbundle of (E, σ), and ∇1 is a
L1-orthogonal, J-unitary connection, the following objects exist:
i) the difference tensor α := ∇1 −∇0,
ii) the curvature variation

Θt := (1 − t)Θ0 + tΘ1 + t(1 − t)α ∧ α,

0 ≤ t ≤ 1 (of course, α and Θ are matrices),
iii) the Chern-Weil-Bott forms

(25)
∆(∇0,∇1)c2h−1 :=

= (−1)h+1
√
−1

(2π)2h−1(2h−2)!

∫ 1

0
(δ

j1...j2h−1

i1...i2h−1
α̃i1

j1
∧ Θ̃i2

tj2
∧ ... ∧ Θ̃

i2h−1

tj2h−1
)dt,

where the components α̃i
j , Θ̃i

tj of α and Θt are taken with respect to any common,
local, J-unitary bases of (E, J, g) (which may not be La-orthogonal (a = 0, 1)).

It turns out that the forms (25) are closed, and define cohomology classes

(26) µh(E,L0, L1) := [∆(∇0,∇1)c2h−1] ∈ H4h−3(M, IR),

(h = 1, 2, ...), which do not depend on the choice of J , ∇0, ∇1, and are invariant by
homotopy deformations of (L0, L1) via Lagrangian subbundles.

We refer to [9] for details. The classes (26) are called the Maslov classes of the
pair (L0, L1). If L0 ⊕ L1 = E, one may use ∇1 = ∇0 and µh = 0. The following two
properties are also important:

µh(E, L0, L1) = −µh(E, L1, L0),

µh(E,L0, L1) + µh(E, L1, L2) + µh(E, L2, L0) = 0.

If (M, ω) is a symplectic manifold endowed with a Lagrangian foliation V, and if
L is a Lagrangian submanifold of M , we have Maslov classes of L defined by

(27) µh(L) = µh(TM/L, TV/L, TL)) ∈ H4h−3(L, IR).

For h = 1, and if L is a Lagrangian submanifold of R2n = T ∗IRn, µ1(L) is the double
of the original class defined by Maslov.

In particular, if (M, S, ω) is a l.L.s. manifold, and V is its vertical Lagrangian
foliation, formula (27) will be the definition of the Maslov classes of the Lagrangian
submanifold L of M . We will discuss a way of computing these classes.

Let V ′ be a transversal Lagrangian distribution of V = im S. Then F := S/V ′ is
an isomorphism V ′ ≈ V with the inverse F−1 : V ≈ V ′, and it is easy to check that,
if F−1 is extended to a morphism S′ : TM → TM by asking S′/V ′ = 0, then S′ is an
almost tangent structure on M which satisfies the compatibility condition

ω(X, S′Y ) = ω(Y, S′X).

Furthermore, it is also easy to check that J := S′ − S is an ω-compatible almost
complex structure, which is positive iff (M, S, ω) is of the elliptic type (i.e., ω(SX,Y ))
is a positive definite bilinear form on V ′; see Section 1).

Therefore, on l.L.s. manifolds of the elliptic type there is an easy construction of
an almost complex structure J as needed in the computation of the Maslov classes,
and we also get the corresponding Riemannian metric

g(X,Y ) := ω(X, JY ).
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We will say that g is the Riemannian metric associated with V ′, and the restriction of
g to V ′ is the metric Θ defined in Section 1.

Now, we need connections as required in (25). We can obtain such connections
in the following way. Start with a metric connection ∇0 of the vector bundle V , and
extend ∇0 to TM by asking

∇0
XZ = S′∇0

XY,

if Z = S′Y ∈ ΓV ′ (Y ∈ ΓV ). It follows easily that the extended connection, also
denoted by ∇0, is a V -orthogonal, J-unitary connection, and we will use it on TM/L.

Furthermore, since L is a Lagrangian submanifold and J is compatible with ω, the
g-normal bundle of L is JTL, and we may write down Gauss-Weingarten equations of
the form [9]

(28)
∇0ei = λj

i ej + bj
i (Jej),

∇0(Jei) = −bj
iej + λj

i (Jej).

In (28), (ei) is a g-orthonormal basis tangent to L, the coefficients are 1-forms and
the second equation is obtained by acting by J on the first equation. Moreover, the
metric character of ∇0 implies

λj
i + λi

j = 0, bj
i = bi

j .

The coefficients λj
i are the local connection forms of the metric connection ∇1 induced

by ∇0 in L, and bj
i are the local components of the second fundamental form of L.

The connection ∇1 extends to TM by putting

∇1
XJZ = J∇1

XZ (Z ∈ ΓTL),

and it becomes the connection ∇1 which is required in (25).

In order to use (25) we need local unitary bases, and we may use the bases (24)
where ei are those of (28). Accordingly, we get

∇0εi = (λj
i +

√
−1bj

i )εj , ∇1εi = λj
i εj .

The difference tensor has the components

αj
i = −

√
−1bj

i .

The curvature variation can also be obtained by a technical computation [9]. In
particular, we get

Proposition 8. The first Maslov class µ1(L) is represented by the differential
1-form (1/2π)bi

i.

This is a generalization of a result due to J. M. Morvan in IR2n [7], where Proposi-
tion 8 yields a nice relationship between the first Maslov class and the mean curvature
vector of a Lagrangian submanifold L ⊆ IR2n.

An interesting situation where the calculations above can be used is that of a sym-
plectic manifold (M, ω) endowed with a transversally Riemannian Lagrangian foliation
V. The tangent structure is provided by Proposition 2, and the natural connection
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∇0 to be used is that for which ∇0/V ′ is the Levi-Civita connection of the transver-
sal metric of the foliation. In particular, we can apply these choices to the case of a
Lagrangian submanifold of a tangent bundle TN with a global Lagrangian symplec-
tic structure. What we will get is a translation of known calculations on cotangent
bundles via a Legendre transformation [9, 11].

4. Locally Lagrangian Poisson Manifolds

The aim of this section is to suggest an open problem namely, the study of Poisson
manifolds such that their symplectic leaves are l.L.s manifolds. Besides, we would also
like to have the l.L.s. structure of the leaves vary smoothly, in a reasonable sense.
This leads to the following

Definition 1. A locally Lagrangian Poisson (l.L.P.) manifold is a triple
(M, P, S) where P is a Poisson bivector field on M , and S ∈ ΓEndTM and satisfies
the properties:

P (α, β ◦ S) = P (β, α ◦ S),(29)

P (α ◦ S, β ◦ S) = 0,(30)

rankxS/im ]P
=

1

2
rankxP,(31)

NS(X, Y ) = 0, ∀X, Y ∈ Γ(im ]P ),(32)

where α, β ∈ ΓT ∗M , x ∈ M , ]P : T ∗M → TM is defined by < ]P α, β >= P (α, β),
and NS is the Nijenhuis tensor (6). If all these conditions, with the exception of (32)
hold, (M, P, S) is an almost l.L.P. manifold.

The name is justified by

Proposition 9. The symplectic leaves of a l.L.P. manifold are locally Lagrangian
symplectic manifolds.

Proof. Formula (29) also reads

S]P α = −]P (α ◦ S),

and this shows that the tangent spaces of the symplectic leaves are S-invariant. From
(29), (30), it follows that for F := S/im ]P

, F 2 = 0 which, together with (31) and (32),
shows that F defines a tangent structure on every symplectic leaf S of P . Furthermore,
if we look at the symplectic structure

ωS(]P α, ]P β) := −P (α, β)

of the leaf S , we see that (29) implies the compatibility condition (8).

An easy example is provided by a manifold

(33) M = TNn ×f TNn,
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which is the fibered product of two copies of a tangent bundle. In this case, M has an
atlas of local coordinates (xi, yi, zi)n

i=1 with the coordinate transformations

(34) x̃i = x̃i(xj), ỹi =
∂x̃i

∂xj
yj , z̃i =

∂x̃i

∂xj
zj ,

and we get a tensor field S ∈ ΓEnd TM if we ask

S(Xi) = 0, S

(

∂

∂yi

)

=
∂

∂zi
, S

(

∂

∂zi

)

= 0,

where

Xi =
∂

∂xi
+ tj

i

∂

∂zj

are chosen such as to span a fixed transversal distribution of the fibers of the second
copy of TN in (33).

The definition of S is inspired by (3), and it is easy to check that S is invariant
by (34) and satisfies

S2 = 0, NS = 0.

Now, let P be a 2-contravariant non degenerate symmetric tensor field on N .
Then,

Π = P ij ∂

∂yi
∧ ∂

∂zj

is a Poisson bivector field on M with the symplectic leaves given by the fibers of the
natural fibration M → N , and the conditions (29)-(32) are satisfied.

Therefore, (M, Π, S) is a l.L.P. manifold. Moreover, if we define the covariant
tensor Λ such that ΛijP

jk = δk
i , the symplectic structure of the leaf over any fixed

point x ∈ M is Λij(x)dzi ∧ dyj , and the leaf has the global Lagrangian function
L = Λij(x)ziyj , which also is a global function on M .

In agreement with this example we give

Definition 2. A l.L.P.manifold (M, P, S) is a globally Lagrangian Poisson
(g.L.P.) manifold if there exists a global function L ∈ C∞(M) such that its restriction
to the symplectic leaves of P is a global Lagrangian function of the induced symplectic
structure.

Remark. If N is a locally affine manifold with the affine local coordinates (xi),
the manifold (33) can also be seen as M = T (2)N , the second order osculating bundle
of N (i.e., the bundle of the second order jets at 0 of the mappings in C∞(IR, M)).

Now, the following question is natural: on a tangent bundle TN , find all the
Poisson structures P such that (M, P, S) where S is the canonical tangent structure
of TN is a l.L.P. or a g.L.P. manifold.

If we use the coordinates of (3), it follows

(35) dqi ◦ S = 0, dui ◦ S = dqi,

and (30) with α = dui, β = duj yields P (df, dg) = 0 for all f, g ∈ C∞(M). This
means that P must be a zero-related structure i.e., such that π : (TN,P ) → (N, 0) is
a Poisson mapping [12]. Furthermore, again using (35), we see that (29) reduces to

P (dqi, duj) = P (dqj , dui).
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Hence, P must be of the form

(36) P = P ij ∂

∂qi
∧ ∂

∂uj
+

1

2
Aij ∂

∂ui
∧ ∂

∂uj
,

where P ij = P ji, Aij = −Aji.

It is an easy consequence of (35), (36) that

S(im ]P ) = span

{

P ij ∂

∂uj

}

hence, rank S = rank(P ij). Therefore, the problem becomes that of finding the
Poisson bivector fields (36) which satisfy the condition

rank P = 2rank(P ij)

at each point of TN .

For instance, if we start with a Poisson structure w on the manifold N , the com-
plete lift P = w̃ of w to TN , e.g. [12], is an l.L.P. structure on (TN, S). If w is non
degenerate this construction again yields the example of the l.L.s. structure of the
tangent bundle of a symplectic manifold indicated in Section 1.
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