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SOME RESULTS ON OPERATOR MEANS AND SHORTED
OPERATORS

Abstract. We prove some results on operator equalities and inecgsliti
involving positive maps, operator means and shorted operanequali-
ties for shorted operators involving convex operator fioms and tensor
product have also been proved.

1. Introduction

With a view to studying electrical network connections, Arebn and Duffin [2] intro-
duced the concept of parallel sum of two positive semidefimiatrices. Subsequently,
Anderson [1] defined a matrix operation, called shorted af@m to a subspace, for
each positive semidefinite matrix. X andB are impedance matrices of two resistive
n-port networks, then their parallel suf: B is the impedance matrix of the parallel
connection. If ports are partitioned to a grougsgforts and to the remaining group of
n — s ports, then the shorted matrixs to the subspacé& spanned by the former group
is the impedance matrix of the network obtained by shortiregastn — s ports.

Anderson and Trapp [3] have extended the notions of pardiéition and shorted
operation to bounded linear positive operators on a HilkgaceH and demonstrated
its importance in operator theory. They have studied furetgai properties of these
operations and their interconnetions.

The axiomatic theory for connections and means for pairsositipe operators
have been developed by Nishio and Ando [12] and Kubo and Aadp [This theory
has found a number of applications in operator theory.

In Section 2, we shall study when the equalities of the typ&o B) = ¢ (A)o¢(B)
hold for a connectiow, positive operator#\, B on a Hilbert spacé{, and positive
map¢. In these resultg is not assumed to be linear. In Section 3, we shall obtain
some operator inequalities involving shorted operatodscmvex operator functions.
An inequality for shorted operation of tensor product of tpasitive operators has
also been proved in this section.

*The authors would like to thank a referee for pointing out atakie in the earlier version of this paper
and for giving useful suggestions.
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2. Positive Maps And Operator Means

In what follows, S(H) shall denote the set of positive linear operators on a Hilber
spaceH, whereasP (H) shall denote the set of positive linear invertible operstor

‘H. An operator connection according to Kubo and Ando [11] is defined as a binary
operation among positive operators satisfying the follaypaxioms:

monotonicity:
A<C,B<Dimply AcB <CoD,

upper continuity:
An | AandB, | B imply (AhoBp) | (Ao B),
transformer inequality:
T*(AcB)T < (T*AT)o(T*BT).
A mean is a connection with normalization condition

AcA=A.

The main result of Kubo-Ando theory is the order isomorphistween the class
of connections and the class of positive operator monotanetions onR.. This
isomorphisnmo <> f is characterized by the relation

AcB = AY2f(A1/2B A1) pl/2

for all A, B € P(H). The operator monotone functioh is called the representing
function ofo.

The operator connection corresponding to operator moedtorctionf (X) = s+
tx,s,t > 0, is denoted bysst. v1/2,1/2 s called the arithmetic mean and is denoted by
v. The operator mean corresponding to the operator monotogidnx — x%/2 is
called the geometric mean and is denoted by #. The operataection corresponding
to the operator monotone function— —*-, s,t > 0, is denoted bygli. !1/21/2 is

Stix’
called the harmonic mean and is denoted by !.

The transpose’ of a connectiorr is defined byAc’B = Bo A. For a connection

o, the adjointz* and the duak* are respectively defined by *B = (A~l¢ B~1)~1
andAc1B = (B~lo A1)~ forall A, B € P(H). These definitions extend ()
by continuity. A connectiom is called symmetric it = o, selfadjointife* = o and
selfdual ifo- = o. It follows that if f is the representing function ef thenx f (x 1)

is the representing function of , (f(x~1))~1 is the representing function of* and
x(f(x))~1is the representing function of-. v, # and ! are examples of symmetric
means.yy and ! are adjoints of each other while # is selfadjoint. Megxat follows
that # is the only operator mean which is the dual of itself.

By a positive map, we mean a mapping from the set of boundedidioperators
on a Hilbert spacé{ to the set of bounded linear operators on a Hilbert spaegich
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maps positive intertible operators into positive invddibperators. A map is called
unitalif (1) = 1.
In [10], it is proved that ifp is a C*-homomorphism, then
¢(AoB) = ¢(A)o¢(B)

for any operator meas, here we shall obtain similar type of results for a positivam

®.

THEOREM1. Let¢ be a positive map such that

¢ (A#B) = ¢ (A)#9(B)
forall A, B € P(H). Then

$(AocB) = ¢(A)o¢(B)
implies

¢(AotB) = (Ao ¢(B)

for all connectionss.
Proof. The equality

(Ao B)#(AcTB) = A#B
implies

¢ (Ao B)#p(AcB) ¢ (AHB)
¢ (A#p(B)
= (p(Aod(B)H#p(A)at¢(B))

P (Ao B)#(p(A)aL¢(B))

which further implies
$(Ac'B) = ¢p(A)o"¢(B),

since A#B = A#C impliesB = C.
O

REMARK 1. Itis not always true that the inequalig#B < A#C impliesB < C.

Indeed, letA = I,B = g g ,C = i g).Then the inequalityA#B <

A#HC is satisfied. HoweveB < C is not true.

THEOREM?Z2. Let¢ be a unital positive map. Then any two of the following condi-
tions imply the third:

() p(A™Y) = (p(A)Lforall A e P(H).

(i) p(Avst B) =¢(A) vst¢(B) forall A, B € P(H)andst > 0.

(iii) p(AlstB) =@ (A)lsip(B) forall A,B € P(H)andst > 0.
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Proof. (i) and (ii) imply (iii): Observe that

p(Atvst B oA™Y vstp(B™Y
@A) st (9(B) L.

The above equality implies

¢(AlsB) p(Atys B™H™h
= @Aty BT

¢ (A)lsto(B).

(i) and (iii) imply (ii):

p(A g BT

d(A Hlsip(B™H
(@A) Hs(p(B)) L.

Consequently,

d((Avsi B)™h
(A Mg B™h

= (p(A) Hsi(p(B) 2
= (p(A) Vst p(B) .

(@(Avst B)™L

Thus
#(Avst B) =¢(A) vst ¢(B).
(i) and (iii) imply (i):
The equality
A+ 1AL = 2]

implies
Hg(A) + 1p(A™H =21,

I+ @A) H T+ + @A) H 1=,
which implies
T+ @A) ™H+ A+ @A™ =1+ @A) HU + @A™,

Consequently,
PAPA™ = 1.
Hence

oA™Y = @A) L.



Some Results on Operator Means 193

REMARK 2. Note that in Theorem 2 to prove (ii) and (iii) imply (i) weeu§i) and
(iii) for particular choice ok, t whens =t = 1.

COROLLARY 1. Let¢ be a unital positive map such that
() p(Av B) =¢(A) v o(B)forall A, B € P(H),
(i) p(AIB) = ¢p(A)!¢p(B) forall A, B € P(H).
Then

$(A) = (@(A)?
forall A € P(H).
Proof. For a fixedA € P(H), consider the mag defined orP(H) by
Y(X) = ($(A) 29 (AVZXAYZ) (g (A) 2.
Then

v = 1,
v(XVvY) v(X) vy (Y),
vXIY) = ¢ OON(Y),

since¢ satisfies these. Therefore by Theorem 2 and Remark 2,

v(A™H = Ay

@A) = (A2 (AD) g (A2,

which gives the desired equality

P (A%) = (p(A)>.

O

COROLLARY 2. Let ¢ be a unital positive map. Then any two of the following
conditions imply the third:

(i) ¢ (A#B) = ¢ (A)#p (B) for all A, B € P(H).
(i) p(Avst B) =¢(A) vst¢(B) forall A,B € P(H)andst > 0.
(iii) p(AlstB) =@ (A)lsip(B) forall A,B € P(H)andst > 0.

Proof. The implications (i) and (ii) imply (iii), and (i) and (iii)mply (ii) follows from
Theorem 1.

(i) and (iii) imply (i):
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If ¢ is the map considered in Corollary 1, then

vy = 1,
V(X VY) v(X) vy (Y),
vXIY) = g OOM(Y).

Therefore, by Corollary 1,
Y(X?) = (¥ (X)>2.

Using thatx — x1/2 is operator monotone o, co), we obtain
¥ (XM?) = (X2,

ie.,

Y (1 #X) = 1 #y(X)
forall X € P(H). Now

H(AEB) = @(AV2(1#(A~Y2B A1/2)) Al/?)
= (@(A)Y2Y (I ATZBATY2)) (g (A)Y?
= (p(A)Y2(1#y (AT2BATY2)) (g (A2
P (A#g(B).

3. Shorted Operators and Operator Means

Given a closed subspacéeof H, the shorted operatdks of a positive operatoAto S
is defined as:
As=max{D :0<D < A, RanD) C S}.

The existence of such a maximum is guaranteed by Andersoia@mp [3]. The
operationA — Ag is called the shorted operation. The shorted operation s t
following properties [3]:

(i) As = A,

(i) (¢A)s = aAg fora >0,

(ii)) (As)s = As,

(iv) As + Bs < (A+ B)s.

The parallel additiomA : B = (A~ + B~H)~1 for A, B € P(H) is the opera-
tor connection corresponding to the operator monotonetioma — 13, X > 0.

ThusA: B = %(A! B). The important interconnections between parallel additind
shorted operator were established by Anderson and Trapp [3]
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Q) lim (A:aP) = Ag
o—> 00
whereP is the projection to the subspase An important consequence of (1) is the
commutativity of parallel addition and shorted operation:
(A:B)s=As:B=A:Bgs.

Our first result of this section is an inequality involvingesptor convex function
and shorted operator.

THEOREM 3. Let f be a strictly increasing operator convex function [6noo)
with f(0) = 0and f(x~1) = (f(x))"1forall x > 0. Then

(f(A)s = f(As),
forall A € P(H).

Proof. Let P be a projection onté ande > 1. Then for alle > 0, we have

f(l—aHA T+ P+
[f(l-—aHA e t(P+eo ™t
(A—aHfA Y+ TP+t
= Q—aH A af (P +o).

f(l—aH A a(P +e)

v

On taking the limit where — 0, we get
2) f(l—aH A aP)> A —aH A 1 af (P).

Sincef (0) = 0 andf (1) = 1, we have,f (P) = P. Also note that for an)X € P(H)
and for any projectior®

B A-abHX:iaP=Q-aH X (@=DP]=@A+y H[X:yP]

wherey = o — 1. Now on taking limit whernx — oo in inequality (2) and using the
identities (3) and (1), we obtain

f(As) = (f(A)s.

This completes the proof.
O

Since the functiox — x', 1 <r < 2is operator convex on [@o), we have the
following corollary:

COROLLARY 3. Let A€ P(H). Then

(AHs < (As)

foralll<r <2.
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Since a positive operator concave function ond®) is operator monotone and
hence is strictly increasing, one can prove the followireptiem by an argument simi-
lar to that used in Theorem 3.

THEOREMA4. Let f be a positive operator concave function®noco) with f(0) =
Oand f(x~1) = (f(x))~Lforall x > 0. Then

(f(A)s = f(As),
forall A € P(H).
COROLLARY 4. Let Ae P(H). Then
(As = (As)'
forall0O<r < 1.

Proof. Since the functiox — x", 0 <r < 1is operator concave on,[6c), one have
the desired inequality by Theorem 4.
O

Let g be a complete orthonormal system fdr Then for operator#\, B on H,
their tensor produch ® B is determined by

(A®B)(& ®e)), &®a)=(Aq,&)(Be, a).
We have the following theorem:
THEOREMS. Let A B € S(H) andS be a closed subspace®f. Then
(A® B)sgs = As ® Bs.
Proof. Indeed, by definition
As=maxD:0<D < A, RanD) € §} =max)
and
Bs=max{D:0< D < B, Ran(D) € §} = max)_,.
LetD1 € ) ;andDz € ) 5. Thenitis clear that
Di1®D2e) 1®Y,Cma{D:0<D <A®BRanD) CSQ®S},
sinceRan(D1 ® Do) CS® Sand 0< D; ® D2 < A® B. Consequently,
(A® B)sgs = As ® Bs.

This completes the proof of the theorem.
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