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SOME GENERATING FUNCTIONS INVOLVING THE
STIRLING NUMBERS OF THE SECOND KIND

Abstract. Certain general results on generating functions (asstisith
the Stirling numbers of the second kind) are applied hereeteral in-
teresting sequences of special functions and polynommadaé& and more
variables. Relevant connections of the generating funstiwhich are de-
rived in this paper, with those given in earlier works on thbject are also
indicated.

1. Introduction, Definitions and Preliminaries

Following the work of Riordan [11] (p. 96t seq), we denote by5(n, k) the Stirling
numbers of the second kind, defined by

1 & k
) k—j :
) SO0 = 5 3 (5
so that
1 (n=0
(2) S(n,O) =
0 NneN:={1,2,3,...})

and
Sn,))=S(n,n)=1 and Snh,n-—-1) = <;)

Recently, several authors (see, for example, Gabutti ameds [3], Mathis and
Sismondi [7], and Srivastava [12]) considered various f@nbf generating functions
associated with the Stirling numbe®gn, k) defined by (1). We choose to recall here
the following general results on these families of genagpfunctions, which were
given by Srivastava [12].

*The present investigation was carried out during the thaded author’s visit to Chung Yuan Christian
University at Chung-Li in December 2000. This work was supgmh in part, by theFaculty Research
Program of Chung Yuan Christian Universiipder Grant CYCU 89-RG-3573-001 and thatural Sciences
and Engineering Research Council of Canadaler Grant OGP0007353.
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THEOREM 1 (SRIVASTAVA [12], p. 754, THEOREM 1). Let the sequence
{Sh (X))} be generated by

>

00
k=0

k
<n—||(— )Sn+k Ot = f D {g X D) Sn (h(x, 1)

(neNo:=Nu{0},

where f, g and h are suitable functions of x and t.

Then, in terms of the Stirling numbergrg k) defined by(1), the following family
of generating functions holds true:

00 k
z
3 K" Sk (h (x, — _—
3) > k (h(x Z))<g(x, _z)>

k=0
n
={f (x, —z)}_lzk! S(n, k) Sk(X)Z (ne Np),
k=0

provided that each member (&) exists.

THEOREM 2 (SRIVASTAVA [12], P.765, THEOREM 2). Suppose that the multi-
variable sequence
{En (X1, ..., Xs)}neo

is generated by

— k
(4) Z(n: )En-'rk (Xl,..,XS)tk

k=0
=0 (X1, ..., X ) {p (X1, ..., X )} "
B (X1, .. XDy s (X1, ..., Xss 1) (N e Np; seN),
whered, ¢, ¥1, ..., s are suitable functions ofx..., xs and t. Also let §n, k)
denote the Stirling numbers of the second kind, defindd)oy
Then the following family of multivariable generating ftioas holds true:

(5) an Ek(l/fl(xla "'7XS; _Z)’ "'71//S(X17"'5XS; _Z))
k=0

(roe5s)
¢ (X1, ..., %Xs; —2)

n
={0(X1,...,Xs; —z)}_lzk! S(n, k)
k=0

-Ek(xl,...,xs)zk (neNp; seN),

provided that each member (&) exists.
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Srivastava [12] also applied his general result (Theoretoli@as well asts mul-
tivariable extension (Theorem 2 above) with a view to obtajrgenerating functions
(associated with the Stirling numbers of the second kindpféairly wide variety of
special functions and polynomials in one, two, and moreaaeis, thereby extending
the corresponding results given earlier by Gabutti and &gri8] (and, subsequently,
by Mathis and Sismondi [7]). The main object of this sequeh®work of Srivastava
[12] is to derive severdlurther applications of Theorem 1 and Theorem 2.

For the sake of convenience in our present investigatiorfinsemake use of the
following notational changes:

1 1
Sn(x):m%(x) and En(xla"axs):mAn(Xla'7XS)

in order to restate Theorem 1 and Theorem 2 in thgirivalenforms given by Theo-
rem 3 and Theorem 4, respectively.

THEOREM 3. Suppose that the sequer{@g (X))} is generated by
(6) > Tk (07 = F DG DI T (h(x, 1) (n € No),
k=0 :

where f, g and h are suitable functions of x and t. Also lét,%) denote the Stirling
numbers defined ki1).

Then the following family of generating functions holdstru

>, k" z k
(1) gﬁﬁ((h (X, =2)) (m)
n
={f (-2} Y S K&K Z (eNy,
k=0

provided that each member @f) exists.

THEOREMA4. Let the multivariable sequence

{An (Xq, ..., Xs)}ﬁio
be generated by
8) D Ank (K1 X6) (g =0 (XL X D (X X D)
k=0 '

An (U1 (X1, .., X5 D)oo, s (X1, .., X3 1)) (neNp; seN),

wheref, ¢, ¥, ..., s are suitable functions of1x. .., Xxs and t. Suppose also that
S(n, k) denotes the Stirling numbers defined(by
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Then the following family of multivariable generating ftioas holds true:

9) D AW (X X5 —=2) L Y (X Xsi —2)

0
(oo )
¢ (X1, ...,%Xs; —2)

n
={0(x1.....%: =2}t > _S(n. k)

k=0
-Ak(xl,...,xs)zk (neNp; seN),

provided that each member () exists.

2. Applications of Theorems 1 and 3

2.1. Hermite Polynomials

For the classical Hermite polynomials defined by (cf., ¢1f], Chapter 11)

[n/2]
o k(M@ o2k
Hn (X) .—g( 1) <2k> 0 (20

or, equivalently, by

1 1 1 1
— n . .

in terms of hypergeometric functions, it is known that (0], p. 197, Equation (1);
see also [14], p. 419, Equation 8.4 (13))

(10) > Hnie () 17 = exp(2xt - t2> Hh(x—t) (neNp,
k=0

which obviously belongs to the family given by (6). Indeedg,domparing (10) with
(6), it is readily observed that

f(x,t) = exp<2xt—t2), gx,t)=1, hXxt) =x-—t,

and
Tk (X) —> Hg (X) (k € Np).
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Thus the assertion (7) of Theorem 3 leads us to the followpngs@imably nejgener-
ating function for the classical Hermite polynomials:

00
2
k:O

n
= exp(2xz+ 22> Z S, k) Hk(X)Z (neNp),
k=0

kn K
HHk(x—i—z)z

which, forx — X — z, assumes the form:
(o) kn k
(11) kXc:) g Heeoz

n
= exp<2xz— 22) . Z S, k) He (X —2) ZX (n e Np).
k=0
In view of the evaluation (2), a special case of (11) whea 0 would immediately

yield the classical generating function for the Hermiteypolmials (cf., e.g., [15], p.
106, Equation(5.5.7)).

2.2. Bessel Functions

For the Bessel functiod, (z) of the first kind (and of ordev € C), defined by

o (L1 (%Z)sz

J (2 3=§)m (ze C\ (—00,0)),

the following generating function is well-known [18], p. LAquation 5.22 (5):
s tk 2t\ 2"

(12) o dk (0 o= (1 - —) J (\/x2 - 2xt)
o k! X

1
C; |t = Ix|),
<V€ ||<2||>

which is in the family given by (6) with, of course,— v + n (n € Np),

f(x,t) = 1—§ E (X t)—,/l—g
k) — X k] g 9 - Xv

hx,t) =vx2—2xt, and Tx(X)+— Jik(X) (veC; keNp).
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Thus, by applying Theorem 3, we obtain the following clasg@fierating functions
for the Bessel functiod, (2):

[e%e) n z k
(13) g F 'JU+k (\/ X2 + 2XZ) (m)

2z

1, n
2 1
=<1+—> Zsm,k) Iy (X) 2 (ve(C; Izl < = |X|; neNo>.
X s 2

In the generating function (13), we first s X Z/x and then let

X =+ X2-2XZ.

Upon replacingX and Z by x andz, respectively, we finally obtain the generating
function:

1
k" 2z\ " 2Y
(14) = de (0 2 = (1— ;Z)

3

=0

~

-0 , k
. 2 - JI=2@Z/%)
g) S(n, k) Jy4k (m> <m>

1
<ve(C; |Z|<§|X|; neNo),

which, forn = 0, corresponds to the classical result (12).

2.3. Gottlieb Polynomials

For the Gottlieb polynomialg, (x; A) defined by (cf., e.g., [14], p. 185, Problem 47)

n
Ln(X; 1) =e ™ Z <E) (E) (1- e’\)k =e MoF(-n,—x;1;1—¢€")
k=0

in terms of the Gauss hypergeometric function, it is knovat {t4], p. 449, Problem
20(i)

> k
(15) > (”: )£n+k (: )t

k=0

=1-H*"(1- te‘x)_”‘_1 Ln (oe; loge (%))

(neNp; |t|<1).
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Thus Theorem 1 (or Theorem 3), when applied to (15), yielddehlowing (presum-
ably new generating function for the Gottlieb polynomials:

> e +z z \X
n .
Y iec(aios (T57)) (555

k=0

n
=1+27(1+ ze‘X)“HZ k! S(n, k) Lx (o; X) 2¢
k=0
(neNg; 12| < 1),

which, forz — z/ (1 — z), assumes the form:

Z k"L (ot; loge(z+ (1—2) ex))zk
k:O

n k
— —x\o+1 z
= (1—2) 1(1—Z+Ze X) kgzok! S(n, k)ﬁk (a; X) (rz)

(neNg; |z] <1).

2.4. Meixner Polynomials

The Meixner polynomials\, (x; 8, ¢) are defined by (cf., e.g., [14], p. 75, Equation
1.9 (3); p. 443, Problem 5)

(16) Mn (X; 8,0 i= (P Hnl oFy (—=n, —x; g; 1—c7Y)
nt Py (2 g)
! 2_1),

(B>0,0<c<1; xeNp)

in terms of the classical Jacobi polynomials [15], Chaptén fact, these polynomials
are known to satisfy the generating-function relationghdj, p. 449, Problem 20 (ii):

> tk t\* X —t

ZMM (a5 B, X) = S (1— —) Mn (a; B, —)

vy ! X 1-t
(n e No; [t] < min{1, |x[}),

which obviously belongs to the family (6) involved in Theor8. Thus the following
(presumably nejwenerating function holds true for the Meixner polynomidéfined

by (16):
>, k" X+z z \X
kX:(:)W Mk(“’ﬁ’l—i—z)(l—i-z)

= A+2"F (14 ;) Y s(n, k) My (@ B.x) 2
k=0
(n € No; [z < min{1, x|},
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which, forz — z/ (1 — z), assumes the form:

o kn
Yo My Bz+(1-2)0) 2
k=0

e N k
== (1-2+ 2) Y s M 5.%) (é)
k=0

(n e_No; lz| < min{l, [x/ (1 —x)|}.

2.5. Cesiro Polynomials

For the Cesaro polynomia@;‘,(.s) (X) defined by (cf. [14], p. 449, Problem 20)

(17) G 00 = Yo (A& = (I 2F1(-n, L —s —n; %)

_ Prgs-',-l,—s—n—l) (2X _ 1) ’

it is known that [14], p. 449, Problem 20 (jii)

> /n+k e _ x(1—1)
k;( . )gfjk(X)tk:(l_t) s=n-1(1 _xt)~1g® <71_Xt )

(n eNo: It| < min[l, |x|*1}).

By applying Theorem 1 (or Theorem 3), we immediately obtaim following (ore-
sumably neyvgenerating function for the Cesaro polynomials defined1):

ikng(s) X(1+Z) Z K
~ k 1+ x2 1+2

n
=1+2 A +x2 Y K SNk G ()2
k=0

(neNg; |z <D,

which, forz+— z/ (1 — z) andx — x (1 —2) / (1 — x2), assumes the form:

K'6o 0 =1-25t1-x2?

gk

k
Y K Sk G (Xl(l__x?> (1i z>

k=0
(neNg; |z <1).
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2.6. Generalized Sylvester Polynomials

For the generalized Sylvester polynomiajs(x; c) defined by [14], p. 450, Problem
20 (iv)

cx)n 1
on(X;0) = (n! 2Fo <—n,X; - —&>
=(=D"LE (ex)

in terms of the classical Laguerre polynomials [15], Chaptét is known that [14], p.
450, Problem 20 (v)

> /n+k
Z( . >¢n+k(a; )= (1- )" e gn (@ X (1—1))
k=0

(neNg; [t| <1),

so that Theorem 1 immediately yields the generating functio

ik“ X147z _z ‘
@k (a5 X ( ) 112

k=0

n
= (1+2"e*?) K S(n, k) gk (@ X) 2
k=0
(neNp; |z <1,

which, forz — z/ (1 — z) andx — X (1 — 2), assumes the form:

oo
D K k(@02 = (1-2) e
k=0

n k
.Zk! S(n, K) gk (a; X (1 — 2)) (i>
1-z
k=0
(neNp; [zl <1).

2.7. Bessel Polynomials
The Bessel polynomialg, (X, «, B) are defined by [14], p. 75, Equation 1.9 (1)

n k
o= 501 ()

k=0
X

2F0<—n,a+n—1; —;——)
B

(5w (2
B " X
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and satisfy the generating-function relationship [14} b9, Equation 8.4 (8):

o0 tk
(18) D Yk 6@ =K, B) o
k=0 ’

xt 1-a—n xt -1
=(1-= el x<1——> .,
( g ) 4 ( g) xf )
(neNo; [t| <IB/x]).
On the other hand, for tr@mpleBessel polynomialg, (x) defined by

Yn (X) i=Y¥n(X,2,2),
it is known that [14], p. 419, Equation 8.4 (10)

° k
(19) > Yotk (%) tk—, — (1—2xt)"3+D
k=0 :
. exp(x*1 [1 — MD Yn (ﬁ)

1.
n € Np; |t|<§|x| .

Thus, in view of the obviously independent results (18) a8j,(Theorem 3 yields the
following (presumably nejgenerating functions for the Bessel polynomials:

> k" xz\ *
= 1+=) a-k Bz
S (<) ko)
xz\* 1 , n K
:(14-?) eZS(n,k)yk(x,a—k,ﬁ)z
k=0

(n e No; [z < [B/XD),

which, for

assumes the form:

o0 1,n 1-«
%yk(x,a—k,ﬁ)zk:(l—%z> e
k=0

n -1
.ZS(n,k)yk(x(l—%z) ,a—k,ﬁ)zk

k=0
(n e No; [z < [B/XD);
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> k" X z K
gﬁ K («/1+ 2x2> <J1+2x2)

=1+ 2xz exp(—x_1 [1 —V1+ 2xz]>

n
1
Y S,k Yk (x) Z¢ <n €No; |2/ < 3 IXI‘1>.
k=0

2.8. Generalized Heat Polynomials

For the generalized heat polynomid&ls , (x, u) defined by [14], p. 426, Equation 8.4
(52)

n n\ /v+n—12
. 2k 2 2n—2k, k
Py (X, U) 1= 22 (k)( K )k! X u

k=0

bl 2
— (4u)"n! Lr<, J (-X—),

4u

it is easily observed that

oo tk l
> Poky (%, W) 1 = (1— duty™ "2
k=0 L

ex X72t P <# u)
P\i—au) ™ \ i aur

ne Np: |t] 1|u|’1
; < - )
0 4

so that Theorem 3 yields the generating function:

o]

n X z K
T vV 7,[.1
k;k! P"*( T+ duz )<1+4uz)

2 n
_ vt Xz k
= (1+4uz'*3 eXp(1+4uz) I(E_OS(n, K) Pk.v (X, U) Z

ne Np; |z 1|u|*1
0; <4 .

2.9. Modified Laguerre Polynomials

For themodifiedLaguerre polynomial$ (x) defined by (cf. [8], p. 68; see also [14],
p. 425, Equation 8.4 (45))

n k
o . __1\n—k -« X__ _1\n| (—a—n)
(20) i (%) .—g( iy (n_k> o= DL 00,
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it is readily seen that (cf. [8], p. 70, Equation (4))

00 +K
Z <n . ) L 00t = (1— )™ Mexp(xt) & (x (1—t))
k=0

(neNp; |t|<1).
Thus Theorem 1 immediately yields the generating function:

k
anfk (x(1+z))( Z)

k=0

n
= (1+2%exp(x2) Y _K! S(n, k) & (x) Z
k=0
(n e No; [z] < 1),

which, forz +— z/ (1 — z) andx — x (1 — 2), assumes the form:

(21) DKM (x) ZX=(1-2"%exp(x2)
= L
.g)k! S, k) f¥ (x(1—12) <E)

(neNgy; |z <1).

2.10. Poisson-Charlier Polynomials

For the Poisson-Charlier polynomials(x; «) defined by (cf., e.g., [14], p. 425, Equa-
tion 8.4 (47); see also [15], p. 35, Equation (2.81.2))

n
Cn (X; @) i = Z (=D (E) <);)k! a ¥
k=0

=(—a) "N L% (@) (¢>0; xeNp),
it is not difficult to observe thatf. [8 p. 71])

(22) ch+k (a; x) <1— —> e cn(a;x —1)

(neNo; [t] <Ix]).

Thus, by means of (22), Theorem 3 would yield the followipge6umably nejwen-
erating function for the Poisson-Charlier polynomials:

n

s k Z\ —« 7 n K
Fck(oz X + 2) Z¢ —(1—1—;) e Z;S(n,k)ck(a;x)z

(n e No; [z < [x]),
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which, forx — x — z, assumes the form:

o kn k Z\« n k
. _ _ = Z . _
kz_o ” Ck (a; X) 2" = (1 x) € kE_OS(n, Kyck (a; x—2) 2

(neNo; |zl < Ix]).

2.11. Sequences of Generalized Hypergeometric Functions

We first consider the sequence of generalized hypergeanfigtictions:

) T b
a)n,N[ala"'aaU;ﬂla"'vﬁv X] h=0

defined by (cf., e.g., [13], p. 18, Equation (4.4); see alst},[fh. 428, Equation 8.4
(59))

(23) o\ Lo, .. aui Br ..., By i X]
= N+UFU[A(N;)“+n)7a11"'7au;ﬁlv"'sﬁv:X]
(neNp; N eN),

where, for convenience) (N; A) abbreviates the array &f parameters

A A+1 A+N-1
NN N

(N eN).

For the sequence defined by (23), it is known that [14], p. £2@iation 8.4 (60)

(0.¢]

A+n+k-—1

(24) E < K )a)f(i\:k,N [(X]_,...,(Xu;ﬂ]_, ...,ﬁv . X] tk
k=0

—@A-t)y "W |:oc,...,oc; yeees Py X ]
(neNg; NeN; [|t] <1,
which is of the form (6) with

fx,H)=10-t™", gxt)=1-t, hai):ffjﬁﬁ’

and

A+k—1
fE(X)F—)( ) >k!w8ﬁ[aL..”cm;ﬁL.“,ﬁu:X] (k € No).
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Thus, by appealing to Theorem 3 once again, we obtain

o k
hpk—1 X z
k" o) oo B :
> ( K ) DN [ O Ui o B A+2N\1+z

k=0

n

At+k—1

=(1+2)AZ( K )k! S(n,k)a)l(é,)\l [al,...,au;ﬁl,...,ﬁv:x]z"
k=0

(neNg; NeN; |z < 1),
which, upon letting

z X
Z— —— and X —,
1-z 1-2

yields the following generating function:

o (A t+k—1
(25) Z( k )knwl((),hl)\l [al’aaUaﬁlaaﬁvX]Zk
k=0
n
k-1
=(1—z)*§:(k+k )k!SULm
k=0

(1) : X 2 k
'wk,N o{l,...,Otu;,Bl,u-vﬁv-(1_Z)N 1—z

neNp; NeN; |z1 <1,
which, in thespecialcase when. = 1, reduces immediately to Srivastava’s result [12],
p. 765, Equation (4.15).
For another sequence of generalized hypergeometric umcti
o0

[fr% [al,-.-,au;ﬁl,...,ﬂu:x]}
defined by [1], p. 171, Equation (5.14)

n=0

(26) g o, o Br L By i X]
= uFN+v[a1,...,au;A(N;l—)\,_n),ﬂl,...,ﬁv;x]
(neNp; NeN),

it is known that [1], p. 171, Equation (5.15)

o0

A+n+k-1

(27) Z( K ){,E_?KN[al,...,au;ﬁl,...,ﬁv:X]tk
k=0

::(1-—t)*A*”ggf§[al,...,au;ﬁl,...,ﬁv: x(l——t)N]
neNg; NeN; |t] <1,
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which also belongs to the family (6) with
fxh=1-v7", gxbh=1-t, hxt=x2-t",

and

k-1
Tk(x)r—>( ) )k! g lon, . aw B Buix] (ke Np).

Theorem 3, when applied to the generating function (27)dgie

N (A+k—1 z \¥
Z( ‘ )k”;k%[al,...,au;ﬁl,...,ﬁu:x(1+z)N]<—1+Z>

k=0

n
28) =(1+zﬁ§:<k+t_1>msanm

k=0

g o, o B, B X1 (NeNg NeN; |zl < 1),

which, upon letting
z
Z— and xr— x(1-2)N,

assumes the form:

S +k—1

k=0

n
:(1—Z)A§:(A+:_1)HSULM
k=0

k
V4
G0 o B x -2 ] (m)

(neNg; NeN; |z < 1).

For the KonhausdsiorthogonalpolynomialsZ? (x; «) (x € N) of thesecondind,
defined by (cf. [5], p. 304, Equation (5); see also [14], p.,J&bblem 65)

a+ Kn) (kn)!

Kn n!

(30) Z8 (X5 k) = <

X\ K
K

Fe[-mawa+:(5) ]
(k €N),

which incidentally were consideregrlier by Toscano [16Jvithouttheirbiorthogonal-
ity property (emphasized upon in Konhauser’s work [5]), it isigaseen by comparing
(26) and (30) that

31) 20K (x: ) = (oc —k+ Kn) (Knr:)! CLE;(O[) [_n; _ - (f)x]

Kkn K
(ke Ng; k eN).
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In view of the relationship (31), the generating functio@)2an easily be specialized
to the form [4], p. 157, Equation (5.29):

32 > <k - _kKn - 1) Zi it = (1= ZE X1 —1): k)
k=0
neNg;, keN; |t <1).

Upon replacingh ande in (32) by N anda — n, respectively, if we apply Theorem
3 to the resulting generating function, we obtain

C k—a—kN—1 noa—k _ z k
(33) g( . )k Z5 (x(1+2); k) <m>
n

K—a—«N-1
- (1+z)‘“2< * kK >k! S(n, k) 247 (x; 1) 2
k=0
neNg; keN; |z < 1),
which, for ,
z+—>rz and X—x(1-2),

assumes the form:

X (k—a—«kN—
(34) Z( kN 1

k=0

" k—a—«kN-—1 a—k z \X
Z( K )k' S(n, k) ZN xX1-2;«) (E)

k=0

)k“zﬁ," X k) Z¥ = (1—2)®

neNg; keN; |z <1).

The generating functions (33) and (34) adternativelybe deduced from the cor-
responding general results (28) and (29), respectivelggdpealing to the relationship
(31).

2.12. Jacobi and Laguerre Polynomials

Srivastava [12] did not consider severalusualgenerating functions for the classi-
cal Jacobi polynomial@,ﬁ“’ﬁ) (x) and the classical Laguerre polynomiah]%,?’) (X) in
which the summation index appeanslyin these polynomials’ indicas andg, just as

in the generating function (32) for the Konhaub@rthogonalpolynomialsZy (x; «)

(« € N) defined by (30). However, as pointed out earlier by Chen aindS8ava [1],

p. 180, each of thesgnusualgenerating functions is actually a special case of the hy-
pergeometric generating function (2¥th N = 1. Consequently, instead of applying
Theorem 3 to each of the following known generating fundiowlividually, we can
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deduce the corresponding result by suitably specializieggenerating functions (28)
and (29) (cf. [1], pp. 168, 171 and 177):

o]

(35) Z (k - ; n-— 1) Prga—k,ﬁJrk) ) t€

k=0
=A-0)*P*P (x—x=-1t) (neNp; |t| <1);

(36) Z <k - ﬁ ; n-— 1) Prga-‘rk,ﬂ—k) (X) tk

k=0
=1A-t P> (x —(x+ D) (neNp; |t <1);

kea—n—1
S

37) >
k=0

1 n X —Lx—1t

=A-tH*{1+ = x=1t! pp 2

¢-v { T )} " (1+%(x—1)t

(neNop; It] <1);

(38) Z <k - B ; n-— 1) Prga_ﬂ—k) (X)'[k

k=0

=1 t)ﬂ{l 1(x+1)t}np(a,ﬂ) X_%(X-i-l)t
. ? "o \1- 3+t

(n e Np; [t] <1);

k=0

X +1
=@1-ty o Fipleh <—1J_rt> (neNg; [t <1);

> k
(40) Z(a+ﬂ—k|rn+ >Prga,ﬁ+k) )tk
k=0

—t
=1-ty e Fn-1lpp <X—> (neNg; |t] <1);

1-t
(41) >

K—a—n-1
( k )Lg‘a_k) oot
0

=1-t)"L® x@1-1) (neNg; |t| <1,

o]
k=
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which indcidentally is an obvious special case of (32) whea 1, since
Z(x;1) = L™ (x) (n € No).

Thus, by setting = 1 in (34), we immediately obtain the generating function:

(42) > (k - |_( N - 1)k” L™ )X = (1-2)°
k=0
n Kk—a—-—N-=-1 (a—k) Z k
.kzo( K )k!S(n, KLy &~ x(1-2) <E)

(neNp; |zl <1

for the classical Laguerre polynomials. Furthermore, esponding to each of the
generating functions (35) to (40), we similarly find from teneral result (29) that

(43) Z <k -« I—( N — 1> Kl P’Elafk,ﬁJrk) )= (12

k=0
n

k—a—N-1 (a—kp+k) o ik
Z( ‘ )k!S(n,k)PN (X — (X 1)Z)<1—z)

k=0
(neNpg; NeNp; |zl <1),

@4 Y k_ﬂ_kN_1>"n PP  0 2= -2f
k=0
n <k—/3—N—1

k
(a+kB—k) ., z
K )k!S(n,k) N (x (X+1)z)(1_z>

k=0
(neNpg; NeNp; |zl < 1),

Z (k—a—N-=-1 o
4s) Y ( ) )k” pkh) ()
k=0

" 1 N~ (k—a—N-1
=1-2 {1+§(x—1)z} g( . )k!S(n,k)

. ple—kp) X—3(x—-1z ( z )k
N 1+ix-1z)\1-z

(neNg; NeNp; |zl < 1),
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(46) > <k -’ B N~ 1>k“ PP 0 2
k=0

N n
:(1—z)ﬁ{1—%(x+l)z} Z(k_“;N_l>k! S(n, k)
k=0

. p(@p X—3(x+1z < z )k
N 1-1x+nz)\1-2

neNp; NeNp; |z < 1),

= N +k
@ (TN )"” PUTD 00 2 = (1 - 9PN
k=

5 k
n k
N + k
(TP ENTRY G g,k pltn (XH2) (2
= k 1-z 1-z
(neNp; NeNp; [zl < 1),
and
> N + k
(48) Z<W+ﬂt ' )"” PUAH 02 = (1 gma Nt
k=0

n k
<Ol+,3 + N+ k)k'S(n, K) P,&Ia’ﬁ+k) (X — Z) ( 4 >
k 1-z)\1-z2

(neNp; NeNpg; |z < 1),

~

=0

respectively.

In view of some well-knowrindicial relationships between Jacobi polynomials
themselves (cf. [14] and [15]), the generating functiort) ¢® (40) (and hence also
their consequences (43) to (48)) areaglivalento one another (see, for details, [1]).
Furthermore, since [15], p. 103, Equation (5.3.4)

. 2X
(49) L 00 = \ﬂI\ILnoo { P (1 - F>} ’

the generating function (41) can also be deduced as a lirpét oh(for example) (35)
and (37). On the other hand, by appealing to the limit refetidp (49), each of the
generating functions (36) and (3®jth

2X t
X—1— — and tr—>:|:E

B

would yield the following well-known rather classical result (cf., e.g., [14], 172,
Problem 22 (ii)]):

Z L@+ (x) q = L@ (x—t),
k=0 ’
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which, by means of Theorem 3, leads exentuallyto the generating function (cf.
Equation (42)):
% |n n
> FL&,”") x) ¢ = &> " S(n.k) LT (x — ) 2
k=0 k=0
(n € Np; N € Np)

associated with the Stirling numbesgn, k) defined by (1).

In the cases of the polynomials which are related ratheeblde the classical Ja-
cobi or classical Laguerre polynomials, some of the gemagdtinctions presented in
this section camlternativelybe derived from the corresponding results considered by
Srivastava [12], Section 3, by suitably exploiting thedatienships. For example, in
view of the relationship (20) with the classical Lagueer/pomiaIsL,ﬂ“) (x), the gen-
erating function (21) for thenodifiedLaguerre polynomialdy (x) canalternatively
be deduced from the following result of Srivastava [12], §0,/Equation (3.27):

(50) > K'L™ () 2 = (14 2% exp(—x2)
k=0

n 7 k
SRSk LE x@+2) <—)
s 142z
(neNp; |z <1)

by first lettinge — —« and z+—— —z, and then applying the relationship (20) on
both sides of the resulting equation.

3. Applications of Theorems 2 and 4

3.1. Generalized Bessel Functions

In terms of the generalized Bessel functiafy’ (X, y; ) defined by (cf., e.g., Dattoli
etal.[2])

I (x, y; 7)== i J () Jort (N T
lI=—00
so that
lim {39 ¢ yi o} = 39
and

e¢]

Iy D= > J0dha =3 x+y),

|I=—00
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a generalization of the generating function (12) in the form

> tk ot\ 2"
(n) .
k=0

- <X, VY2 —2ytir[l-2 (t/y)]%“)

1
(u,v eC; |t| < > |y|>

was given recently by Pathast al. [9, p. 179, Equation (3.4)]. Thus, by applying
Theorem 4 to the generating function (51), we obtain

5 ) )
k;k! Vi (x VP +yzeli+ 2@y ) (e

(+5)
=(1+=
y

NI

n
Y sk Iy 1) 2
k=0

1
(u,veC; |t|<§|)/|; neNo>,

which, under such variable and notational changes as imahsition from (13) to (14),
but involvingz andy (instead ofz andx, respectively), yields

y
n k
37 s(n, k) 3% (x,,/Z—zz 1-2( —%“><;)

1
(u,veC; |t|<§|)/|; neNo>,

>, kn 27\ "3V
(52) Z W Jlfi)k x,y;1) X = <1— —>
k=0

where we have also set

2z —3u
TH—>T <1— —>
y

after the aforementioned transition.

The generating function (52) unifies (as well as extendsh e&the results (12),
(14), and (51) above.
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3.2. Lauricella Polynomials

Another application of Theorem 4 involves the so-called ricalla polynomials in
several variables (cf. [6]):

F[()s) [—n, by, ..., bs; C; X1, ..., Xs]
ki+-+ks<n ’ )
o Z (=M 1ks O, -+ - (D) X_ll N X_SS
- kil kg!’
kq,....ks=0 (C)kl+"'+ks 1 S

where, as usual in the theory of hypergeometric series,

Mo:=1 and (A=A +1--A+k—-1 (keN).

These Lauricella polynomials are known to satisfy a geirggeiunction relationship
in the form (cf. [17], p. 240; see also [14], p. 439, Equatidh @)):

o (C+ 1)
(53) ZTk FO[-n—k by, ..., bs ¢ xq, ..., xs]th
k=0 '
S —b;
xit \ P
= (l—t)yc™n 14+ 2
1-1 ]_[:(+1_t
j=1
X]_ XS
CF® —n, by, ..., bs; C; e,
D ! STt 4 xt 1T—1 + xet

X; —1|1}),

ne Np; [t|] < min [1,
15jSs

which fits easily into the pattern (8) with, of course,

s xjt \ 7
9(X1,...,Xs;t)=(1—t)Cn!<l+ﬁ> }

j=1

.
X1, ... X ) =1—t, X1, X ) = —
¢ (X1 s; 1) ¥ (Xa s; 1) T t+xt

(J =1,...,S),
and

Ak (X1, ..., Xs) —> (C)k F[()S) [k, b1,...,bs; C; X1, ..., Xg] (k € Np).
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Theorem 4, when applied to the generating function (53)dgie

> (©) k" X1 X
(s) s
54 F —k, b1,...,bs; C; e,
(54) — K D[ ! Y1+ z—x1z 1+z—xsz}

z \¥ e Xjz by
(m) =(1+2 11:[1 ( —m)

n

> @k S k) FS [k, by, ... bs G xa, ... Xs] Z¢

k=0
neNg; |zl < min {1, Xj —1\_1] ,
15jSs
which, for
Z+—> z and X — X] (j=1 S)
-z ! 1-z+xjz =59,
assumes the form:
o
o) k"
55 > ( )|:| FS [k, by, ... b € Xq, .. ., Xs] Z¢
k=0

S . —bj n
:(1—z)cl—[{<1+ %) J}Z(c)kS(n,k)
k=0

j=1

k
X X Z
CFS | =K. by, ..., bs: c; L >
1-z+x12 1-z+ X%z 1-2z

Xj — 1|‘1}).

Forc = 1, these last generating functions (54) and (54) were déaglier by
Srivastava [12], p. 768, Equations (5.11) and (5.12).

neNp; |zl < min {1,
15 Ss

3.3. Multivariable Sequences

Some general multivariable extensions of the hypergedogEnerating functions (24)
and (27) were considered by Chen and Srivastava [1], wheiigated the multivari-
able generating functions [1], p. 172, Equation (5.19):

o
A+n+k—1
(56) > < . )Qfﬁ_ﬁk (01, ..., 08 X1, .. ., Xs) tX
k=0
J, Xl XS
=@A-t) QW ., O
( ) n o1, , O0s; (1_t)017 a(l_t)o-s

(neNp; [t] <1,
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where

A
QY (01,.... 051 X1, ..., Xs)
o
= Z o+ Am, ..., me) X xS
my,..., ms=0

and [1], p. 172, Equation (5.20)

o

A+n+k-1

(57) E < K )Zé)jr)k (01, ...,08 X1, ..., Xs) tX
k=0

=1-t)"ZW (01 ... os xa (L - DT, L, X (1— 1))
(neNp; [t| <1,

where
o0
A(mg, ..., mg)
A . b ) 'S m
Z,ﬁ)(al,...,as;xl,...,xs).= Z —xll---xgns
A-—2—n)y
ma,..., ms=0

(I\/I ‘=o01M +---4+0osMs; Mj € Ng; A, 0 € C; j:l,...,S),

{A(mg,...,ms)} being a suitably bounded multiple sequence of complex nusnbe
These multivariable generating functions (56) and (57) erdact, very specialized
cases of much more general multivariable generating fanstgiven earlier by Srivas-
tava (cf., e.g., [14], p. 491, Problem 3; see also [1], p. 173)

By applying Theorem 4 to each of the generating function}&56@ (57), wdinally
obtain the following multivariable generalizations of oasults (25) and (29) above:

o
A+k—1
Z( K )kn Q(k)") (01,...,0s; X1,...,X5)Zk
k=0

n
=1-27") (}\+||:— 1)k! s, k)

k=0

k
) X1 Xs z
- Q y...,0s; e,
k (”1 Ao A z)“s) <1— z)

(neNp; |zl <1
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and

o0
r+k—-1
Z( + >k”ZlEM(al,...,as;xl,...,xs)zk

k=0 K
n
r+k—-1
= —_ —* !
12 Z( ) )k.S(n,k)
k=0
2P (01, 05 X1 (L= 27, L, Xs (L= 2)%)

neNp; |zl <1).

Many other applications afachof the general results (Theorems 1 to 4 above) can

indeed be presented in an analogous manner.

Ref

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

erences

CHEN M.-P. AND SRIVASTAVA H. M., Orthogonality relations and generating
functions for Jacobi polynomials and related hypergeoiadtinctions Appl.
Math. Comput68 (1995), 153-188.

DatTOLI G., TORRE A., LORENZUTTA S., MAINO G. AND CHiccoLo C.,
Generalized Bessel functions within the group represeridbrmalism Nuovo
Cimento B111(1996), 143-164.

GABUTTI B. AND LYNESSJ. N.,Some generalizations of the Euler-Knopp trans-
formation Numer. Math48 (1986), 199-220.

GONZALEZ B., MATERA J.AND SRIVASTAVA H. M., Some g-generating func-
tions and associated generalized hypergeometric polyalgnilath. Comput.
Modelling34 1-2 (2001), 133-175.

KONHAUSER J. D. E., Biorthogonal polynomials suggested by the Laguerre
polynomials Pacific J. Math21 (1967), 303-314.

L AURICELLA G., Sulle funzioni ipergeometriche alpvariabili, Rend. Circ. Mat.
Palermor (1893), 111-158.

MATHIS M. L. AND SISMONDI S., Alcune funzioni generatrici di funzioni spe-
ciali, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natut18(1984), 185-192.

McBRIDE E. B., Obtaining Generating Function$Springer Tracts in Natural
Philosophy?21, Springer-Verlag, New York, Heidelberg, Berlin 1971.

PATHAN M. A., GOYAL A. N., AND SHAHWAN M. J. S.,Lie theory and gen-
eralized Bessel functionBull. Math. Soc. Sci. Math. R.S. Roumanie (N.80
(88) (1997), 173-181.



224 Shy-Der Lin - Shih-Tong Tu - H. M. Srivastava

[10] RaINVILLE E.D.,Special FunctionsThe Macmillan Company, New York 1960;
Reprinted by Chelsea Publishing Company, Bronx, New Yorki19

[11] RiORDAN J.,Combinatorial IdentitiesWiley Tracts on Probability and Statistics,
John Wiley and Sons, New York, London, Sydney 1968.

[12] SRivasTAvA H. M., Some families of generating functions associated with the
Stirling numbers of the second kintl Math. Anal. Appl251(2000), 752—-769.

[13] SRIVASTAVA H. M., LAVOIE J.-L. AND TREMBLAY R., The Rodrigues type
representations for a certain class of special functiokizn. Mat. Pura Appl. (4)
119(1979), 9-24.

[14] SRIVASTAVA H. M. AND MANOCHA H. L., A Treatise on Generating Functions
Halsted Press (Ellis Horwood Limited, Chichester), JohteWand Sons, New
York, Chichester, Brisbane, Toronto 1984.

[15] SzEGO G., Orthogonal PolynomialsAmerican Mathematical Society Collo-
quium Publication®3, Fourth Edition, American Mathematical Society, Prov-
idence, Rhode Island 1975.

[16] ToscaNoO L., Una generalizzazione dei polinomi di Laguerr&iorn. Mat.
Battaglini (5)4 (84) (1956), 123-138.

[17] ToscaNOL., Sui polinomi ipergeometriche agpvariabili del tipo Fp di Lauri-
cella, Matematiche (Catani@7 (1972), 219-250.

[18] WATSON G. N., A Treatise on the Theory of Bessel FunctiogBscond Edition,
Cambridge University Press, Cambridge, London, New York419

AMS Subiject Classification: 33C45, 33C47, 33C65.

Shy-Der LIN, Shih-Tong TU

Department of Mathematics

Chung Yuan Christian University

Chung-Li 32023, Taiwan, REPUBLIC of CHINA
e-mail: shyder@math.cycu.edu. tw,

e-mail: sttuGmath.cycu.edu.tw

Hari M. SRIVASTAVA

Department of Mathematics and Statistics
University of Victoria

Victoria, British Columbia V8W 3P4, CANADA
e-mail:harimsri@math.uvic.ca

Lavoro pervenuto in redazione il 05.03.2001 e, in forma dt&fi il 20.06.2001.



