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CHARACTERIZATION, SPECTRAL INVARIANCE AND THE
FREDHOLM PROPERTY OF MULTI-QUASI-ELLIPTIC
OPERATORS

Abstract. The class P 73(IR”) of pseudodifferential operators of zero
order, modelled on a multi-quasi-elliptic weight, is showm be a
Ww*—algebra in the algebr#(L%(R")) of all bounded operators on
L2(R™. Moreover, the Fredholm property is proven to charactettiee
elliptic elements in this algebra. This is achieved throagtharacteri-
zation of these operators in terms of the mapping propdrétseen the
Sobolev spacer;(R”) of their iterated commutators with multiplication
operators and vector fields. We also prove and make use o&théhiat
order reduction holds in the scale of thl%(R”)-Sobolev spaces, that is
everyH;(R”) is homeomorphic td.2(R™) through a suitable multi-quasi-
elliptic operator of ordes.

1. Introduction. Statement of the results.

Multi-quasi-elliptic polynomials were introduced in theventies as a natural general-
ization of elliptic and quasi-elliptic polynomials. Thegesan important subclass of the
hypoelliptic polynomials of Hormander [15] and were sealby many authors, among
them Friberg [9], Cattabriga [8], Zanghirati [24], Pini [1&hd Volevic-Gindikin [23].

In [5] this theory is used to develop a pseudodifferentidtuas for a class of
operators on weighted Sobolev spaceR#A based on the concept of a “Newton poly-
hedron”.

DEerFINITION 1. A complete Newton polyhedrdR is a polyhedron of dimension

din Ri ={reRr?: ri >0,j =1,...,d} with integer vertices and the following
properties:
@) If v®,k = 1,..., N are the vertices oP, then{r € RY : rj < vj(k),j =
1,...,d}CP.

(i) There are finitely many elementd’al = 1,..., M, with a}') > 0 for |
1,....d, such that

P={reRl:@"n<11=1..,Mm)
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In other words? may contain only points with non-negative coordinates andtm
have one face on each coordinate hyperplane, while the &hes must have nor-
mal vectors with all components strictly positive; in pauntiar these faces must not be
parallel to the coordinate hyperplanes.

Given a polynomiap = )" c,z” in d complex variables, we associate with it the
polyhedronP consisting of the convex hull of ajt € Ng with ¢, # 0. Itis called
multi-quasi-ellipticif the associated polyhedron is a complete Newton polyhednal
there exist constants, R, such that:

Y 1Z|=Clp@| for|z| = R
yeP

Here and in the following the notatioh.,, . indicates that we sum over all multi-
indicesy e Nj NP, so that the sum is clearly finite.
The corresponding operatoP(D;) = Zye'P ¢, D} are also said to be multi-quasi-
elliptic.

We now consider the case of even dimengloa 2n, n > 1, and splitz € R?" into
z= (X, &), wherex € R", & € R". Giving to& the role of a covariable, we recover the
case of operators with polynomial cefficients:

p(x, D) = Z x*DE.
(o, B)eP

Easy but significant examples are the operator® arfithe form:
P = x?m 4 x?opZo 4 pZa,
If ho, h1, ko, k1 € N satisfy the conditions:

0 < hg < hy, 0 < ko < Ky, @+@>1,
h1 ki
then to P is associated the complete polyhedrBnwith vertices{(0, 0), (2h1, 0),
(2ho, 2ko), (0, k1)}, andP is multi-quasi-elliptic with respect t®.
The symbolss (P) = x21 + x20g2Zo 4 24 gssociated with these operators were
originally considered by Gorcakov [10] and Pini [17] ancelastudied by Friberg in
connection with differential operators with constantsficients.

As an example of multi-quasi-elliptic operators in dimemai let us consider the

operators of the form
A+ Y x®D¥ 4 x
la+B|<k

They are multi-quasi-elliptic. The associated polyhedoo® = {z € R x R :

21211 zj < 2k}. Unlike the class of quasi-elliptic operators, the space oftirguasi-
elliptic operators is closed under composition:Af and Ay are multi-quasi-elliptic
with respect tavp, andwp,, then the operatoh; o A; is multi-quasi-elliptic with re-
spect tawp, 1 p, (WhereP1+P, = {z € R : 7 = z1+7,forsomez; € P1; 22 € P2}).
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In particular, any product of quasi-elliptic operators igltaquasi-elliptic although it
is, in general, no more quasi-elliptic. On the other handetaee multi-quasi-elliptic
operators that are not product of quasi-elliptic operafses Friberg [9]).

More generally, for a fixed complete polyhedrBnone can introduce pseudodif-
ferential operators in classes suitably modelled on thghmulron?. Before stating
our results we summarize here some facts about this thelbowfog [5], [3].

DEFINITION 2. Letwp(2) = (3, p 22)Y2, 2 = (x,£) € R?, be the standard
weight function associated ®. For m e R, p €]0, 1], we define the symbol classes:

AT LR ={ae CPR™M) : [8}a@)| < C,wp (@),
The choice of the best constants definesé&ket topology fov\;”P(RZ”).

For technical reasons we will also assume i{hatoes not exceed a certain value
1/u < 1, whereu is the “formal order” of p(z), depending on the polyhedrdp.
This is of no importance for our purposes, see [3] for moraitetThe corresponding
classes of operators are:

LM, ={A=0p(@) :ae Al ,(R™)}.
Here [Op@u](x) = 27)™" fzn €X¢a(x, £)0(£)dE, while G(&) = [ e~ *¢u(x)dx for
u € S(R"), the Schwartz space of all rapidly decreasing functions.

DEFINITION 3. EA;”73 is the space of all & AS‘P(RZ”) such that, with suitable
constants CR > 0,

wp(z2) <Cla@@)l, |zl =R

The elements of Emp are called multi-quasi-elliptic symbols, the corresporgli
classes of operators are denoted with

EL™

np={A=0p@): aeEAmP}

Being a natural generalization of the classes considereéilyerg and Cattabriga,
we call these operators multi-quasi-elliptic of order m.

Form = 0, multi-quasi-ellipticity of a symbad requires thata(x, £)| > ¢ > 0, so
multi-quasi-ellipticity then coincides with uniform gfliicity.

In caseP is the simplex with vertices the origin and the poifes9}2" , of the
canonical basis dR?", we are reduced to Shubin’s clasit‘;ﬁ(RZ”), see Shubin [21],
Chapter IV; Helffer [14], Chapter I.

DEFINITION 4. LetAs = Op(w%). For s € R we define the Sobolev spaces

HE(R™ = {u e S(RM : Asu € LARM)}.
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The pseudodifferential operators with symbols\i/’ﬁP(Rzn) act continuously on these
spaces: For a Apmp(RZ”) and se R,

Op(a) : HZ(R") — HZ M(RM

is bounded and the operator norm can be estimated in ternteeafitmbol semi-norms
of a.

The first result we present is that the pseudodifferentiatators in Lgp can be
characterized by commutators, in fact we have

THEOREM 1. A linear operator A: S(R") — S (R") belongs td_g p ifand only

if, for all multi-indices,«, 8 € N, the iterated commutatomsd® (x)ad® (Dy) A have
bounded extensions

ad (0ad’ (DA : LZR") — HA“HI®M).
Theorem 1 is the key tool in the proof of the spectral invaz@result for I%_P:

THEOREMZ2. Let Ae L%_P, and suppose that A is invertible B(L2(R")). Then
-1 0 '
A" e Lp,P'

The idea of characterizing pseudodifferential operatgrsdmmutators and using
this for showing the spectral invariance goes back to R. Bela [1], Beals had in-
troduced a calculus with pseudodifferential operatorsrigagymbols in very general
classe§§,,¢. In [1] he stated the analogs of Theorems 1 and 2 under theéctist
¢ = ®. Since the proof was not generally accepted, Ueberberg88 p8blished an
article where he showed corresponding versions of Theoteans! 2 for the operators
with symbols in Hormander's classég,g, 0<4d8<p=<14§< 1 Letuspointout,
however, that the symbols we are considering are not cadamthe class introduced
by Beals, since our case corresponds to the choice

p(X,§) = P(X,§) = w%(X, £),
which does not satisfy Beals’ conditian <const. In 1994, Bony and Chemin [6]

proved analogous of the above theorems for a large classrdfalg using the Horman-
der-Weyl quantization:

[Op”alu(x) = (27)" / / o ia* T urydyds.

Multi-quasi-elliptic operators can be naturally re-calesied in the frame of the
Weyl-calculus, see [4], so that if one can show that the metri

Ox.s = Wi (X, £)(dx|% + |d&[?)
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satisfies the conditions "Lenteur”, "Principe d’Incertiel’ (which are actually obvi-
ous), and "Tempérence (Forte)” (not evident in our cas¢dlpthen Theorems 1 and 2
could be deduced from [6], Théoremes 5.5 and 7.6. It seawsVer that the present
direct proof, which relies on the spectral invariance reiuul%o(R” x R™M), shows an
easier, alternative technique.

From Theorems 1 and 2 we will obtain

THEOREM 3. Lg P is a submultiplicatival* -subalgebra ofZ(L2(R")).

W* algebras were introduced by Gramsch [11], Definition 5.1uBadgebrad of
L(H), H aHilbert, space is called&*-subalgebra, if

(i) it carries a Fréchet topology which is stronger thannben topology ofL(H),
(i) itis symmetric, i.e.,A* = A, and
(iii) itis spectrally invariant, i.e., AN £(H)™t = AL,

Here, A~! and£(H)~! denote the groups of invertible elements in the respective
algebras.w*-algebras have many important features\Jifralgebras there is a holo-
morphic functional calculus in several complex variablesre are results in Fredholm
and perturtation theory [11] as well as for periodic geotkesiConcerning decom-
positions of inverses to analytic Fredholm functionals #mel division problem for
operator-valued distributions, see [12]. For further hsson thew *-property see also
[13], [14], [18], [19], [20].

The Fréchet topology onq,_P is the one induced fromo_P(RZ“) via the injective
mappingOp. A Fréchet algebrad is called submultiplicative if there is a system of
semi-normgg; : j € N} which defines the topology and satisfies

gj(@b) < gj@qj(b), a,be A

We next show the existence of order reduction within thisdals, see Lemma 2.
This allows us to extend the results on the characterizaf@ommutators and spectral
invariance to the case of arbitrary order.

Finally we characterize the Fredholm property by multisjtelipticity.

THEOREM 4. Let Ac L7, s € R. Then A: HZR™ — HZ ™R") is a
Fredholm operator if and onIDy if it is multi-quasi- elllptm‘ order m.

LetA e Lg‘P, s e R. ThenA: H3(R") — HZ ™(R") is a Fredholm operator if
and only if it is multi-quasi-elliptic of ordem

The links between pseudodifferential calculus and quatitin are pointed out in
Berezin-Shubin [7]. Before going on to the technical pathef paper let us recall two
basic examples of multi-quasi-elliptic operators that earp in quantum mechanics.
For a more detailed exposition, as well as for further exaspind motivations, we
refer to [5], [3], [4].
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Let p(x) be a positive multi-quasi-elliptic polynomial in the varlasx € R".
Then the Schrodinger operatBr = —Ayx + p(X), a generalization of the harmonic
oscillator of quantum mechanics, is multi-quasi-elligticthe sense of our previous
definition.

A slight modification of the above operatdps= x2 4 x20pZo 4 D21 yields
self-adjoint multi-quasi-elliptic operators of the form:

P = x21 4 pko <x2h°D"°) + D,

In both cases one would like to have spectral asymptotimes#is for these operators,
in particular for the functiom (1) = Z,\j ;. 1 counting the number of the eigenvalues
Xj not exceeding. ([3] can be considered a first step in this direction). Theide
to follow the approach taken by Helffer in [14] which is baseda thorough analysis
of Shubin’s classes, and this makes the results of spentratiance and their conse-
guences patrticularly interesting.

2. Pseudodifferential operators ianP
0,

We now review the main properties of the multi-quasi-eitigglculus assuming famil-
iarity with the standard pseudodifferential calculus,[t6].

PROPOSITION1. Letm mg, my € R.
(a) AZ‘_P(Rd) is a vector space.

my d my d mp+mp d
(b) If a1 € Apl,p(R ), ap € ApZ’P(R ), then aap € Amin(pl,pz),P(R ).

(c) Forevery multi-index € N¢ we have dfa e AZ;‘)“’“(R").
(d) MNimer Ame(Rd) = S(RY), the Schwartz space of rapidly decreasing functions.

DEFINITION 5. Let g € A}, (RY) and my — —oo for j — +oo. We write
a~3 2 ajifae C*®(RY) and a— Zﬁ;ll aj € AQ’P(Rd) wherem, = maxj>r m;.
We then have & AZ‘_P(Rd), m = maxj>1 mj.

PROPOSITION2. Given g € AZjP(Rd) with mj — —oo as j — +oo there
exists ac C*(RY) such that a~ >_j=1aj. Furthermore, if b is another function such
thatb~ 352, a;, then a— b € S(RY).

PROPOSITION3. Let Ay = Opay € L)', and A = Opaz € L%, Then AA; €

L;’”;mz, and the symbal (A1 A») of A1 A> has the asymptotic expansionA; Ay) ~

Yo ardfau(x, &)Dyag(x, ).
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PROPOSITION4.  (a) If a € EAT, then al e EA,'S and alya e
EA;’%"“ for all « (possibly after a modification of(a) on a compact set).

(b) Ifa1 € EAT, and & € EAT?, then aap € EA;‘};mZ.

(c) If Av e EL)%, and A € ELT%, then AA, € ELTA™.

DEFINITION 6. An operator Re (g Lg‘P is calledregularizingor smooth-
ing. Regularizing operators define continuous maps &R") — S(R"). They have
integral kernels R= R(x, y) € S(RY x Rg).

PROPOSITIONS (EXISTENCE OF THEPARAMETRIX). Let Ae ELZ‘P; then there
exists an operator & EL;T) such that the operatorsiR= AB—l and R = BA—1|

both are regularizing. B is said to begarametrixo A. If B is another parametrix to
the same operator A, then B B’ is a regularizing operator.

PROPOSITIONG (ELLIPTIC REGULARITY). Let Ae ELZ‘P. If Au e S(R™ for
some ue S (R") then necessarily & S(R").

Definition 4 of the Sobolev spacetg‘(R”) can be rephrased.

PROPOSITION7. Let P be a fixed complete Newton polyhedron and lef, &
E LZ‘P be a multi-quasi-elliptic operator; then

HRR") = AHLARD).
Note that HJ'(R") depends neither op nor on the particular operator 4, but only

on m andp.

The main features of these spaces are the following.

PROPOSITIONS. H%‘(R”) has a Hilbert space structure given by the inner prod-
uct (u, v)p = (Amu, Amv) 2 + (Ru, Rv)| 2. Here Ay is an elliptic operator defining
the space lﬁ‘(R”) according to Proposition 7,and R | — AmAm, with a parametrix
Am of Amn. We denote bjju||m the norm of an element u in the spac%"(-R”). Equiv-
alently, we could define

HA@R" = {u e SR : x*DPu e LAR") for (a, B) € P}.
with the inner productu, v)o, = Z(a’ﬂ)ep(x“ DAu, x*D# V)| 2.

PROPOSITIONS. (a) The topological dual lg"(R”) of HR(R") is Hgm(R”) .
(b) We have continuous imbedding®S) — HZ(R") — S(R").
(c) We have compact imbedding%ﬁR“) — HZRM ift > s,
(d) proj— limgpcg HF(R™) = SR™), ind — limper HE(R™) = S(R).
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3. Abstract characterization, order reduction, spectral nvariance and the Fred-
hold property

We now adress the central questions of this paper. We begindwng that the opera-
tors of order zero can be characterized via iterated comorsta

DEFINITION 7. Let A: S(R") — S (R") be a linear operator. For j=1,...,n,

we setad(Dy)A = A; adP(x))A = A; ad'(Dy)A = [Dy;,ad1(Dy)Al;
ad‘(xj)A = [Xj, ad"l(xj)A]. For multi-indices, 8 we let

B A = ad’(x)ad’ (Dx) A = ad* (x1) . . . ad"" (xn)ad™ (Dy,) . . . ad’ (Dy,) A

THEOREM 5 (ABSTRACT CHARACTERIZATION). A linear operator A
S(R") — SR belongs toLg p if and only if, for all multi-indices, g, the iter-
ated commutatorsﬁA have continuous extensions to linear mapg'AB LZ(R") —
H7/;|0t+ﬁ|(Rn)_

Proof. If A e L9, then the symbol oBg A is o¢dfa e A 4 PI(R2), so that

clearly the commutators extend to continuous meﬁp.\ :L2R") — Hf;'““s'(R”).
Conversely assume tha admits the required continuous extensiong‘A :
LZ(Rn) N H;;\OJ‘HS\(RH)

Let ao, Bo be arbitrary multi-indices and let pjoq+4, = Op(w;;('““ﬂ"')) be as in
Definition 4. For all multi-indices, 8, we then have continuous maps:

(1) BS[Aplaotol © Bao Al : LZR™) — LZ(RM.
This follows from Leibniz’ rule:

BE[Aplao+fol © B Al = D Caranpufo BgZAplaotpol © Bp By A
aqtap=a
Prpo—p
and the continuity of the operators:
B;li_ ngA LZ(Rn) N Hé(‘al+a0+ﬂl+ﬂ0|)(Rn),
id - H7/;(\0!1+0!o+ﬁ1+ﬁ0|)(Rn) N Hg(laolf\dzlﬂﬁolf\ﬁzl)(Rn) ;

B2 A pjags i)+ HAIo0 121011820 iy, 2,

The continuity of the first operator is due to the hypothesis the equalityBgl1 ngA
= Byl 1% Awhich is easily checked.

According to the characterization of the Hormander C%RZ”), see Beals [2],
Ueberberg [22], (1) implies tha ;|qq-+ 0] © ngA is a pseudodifferential operator with
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the symbol

(2) Bog.po = 0 (A plag+pol © ng A e %,O(Rzn)'

In particular, choosingo = Bo = 0, we see thaf is a pseudodifferential operator and
boo =0 (A) =ae P RM.

Since w%(x,é) is a polynomial, there exisn € R and p’ > 0 such that
Aplag+pol € L) o- For the symbob we therefore have the asympotic expansion:

jlel
I
Bug. po ~ Z JagU(AﬂlaoﬂSol) BQU(BES A,

o

whered§o (B A) = a“°+°‘8ﬂ°a € oR™ anddgo (A pjag+po) = ag(wg“"wo‘) €
S";' 4 “H(RZI‘\)_

Nextlet us assume thatg+ Bo| = 1, i.e. B“OB ax, &) = azj a(z)withz = (x, &)
and suitable] € {1,..., 2n}. Using the asymptotlc expansion laf, s, we have, for
sufficiently largek e N ,

»
@3) Buosfo — Ia—aga(A oo 050 (BLA) € S o(R2Y).

lo|<k

In particular, the difference is a bounded function.

For 1 < |a| < k the terms under the summation in (3) are products of deviesti
of a € §,(R?") and ofw?, € Aﬁ’P(Rzn). They are therefore bounded. By (B), 4,
is also bounded, hence so is the termdos 0, namelyd,; a(z) w%(z). So we have
the estimateag‘oafoa(zﬂ = |3za(2)| < Cw;"(z), for |ao + Bo| = 1, with a suitable
constanC > 0.

We may now repeat the argument wélz) replaced by a(z), k = 1,...,2n.
The operator with the symbé}, « also satisfies the assymption of the theorem. Just as
before, we see th@izzj Zka(z)wé’)(z) forall j € {1, ..., 2n} is bounded. By iteration we

conclude thaﬂ%’a(z)w;;(z) is bounded for every multi-index. This shows that
(4) dza(2) € Ay (R™.

Notice that we still have the subscript “0” instead of theidEs“p”. Let us now
supposdag + Bol = 2. The terms of (3) with 1< || < k are now products of

derivatives ofa(z) and ofw (2) € AZp (R?"), so that, thanks to (4), they are still
bounded. Proceeding as before we conclude that the seeordtiVes ofa(z) belong

to A*ZP(RZ”) lteration of the argument shows thigta(z) € A, IJ/lp(Rzn) forall y,

which impliesa Ag (R2).
7 O

The following corollary is an immediate consequence of Theo5.
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COROLLARY 1. A linear operator A: S(R") — S (R") belongs tOL?,_p if and
only if, for all multi-indicese, g and for all s € R , the iterated commutators gB\

have continuous extensions to linear map4:A& H(R") — Hfj"‘”ﬂ‘(R”).

As a preparation for the proof of the spectral invariance wednthe following
lemma. The proof is just as in the standard case. The cragatity one has to verify
is that

[A7L Al = —AYA AJAL
forall A e L?,,p and a suitable > 0. As before,A; = Op(w}). Equality holds,

becauseA e Q,O(RZ”) andwp € S;)’O(Rzn) for suitablem, p’ > 0. For details see
[22] or [21], Section I.6.

LEMMA 1. Let Ae Lg P be invertible in the clas8(L2(R")) of bounded opera-
tors on L2(R™). Then A is invertible iB(HZ(RM) forall's € R.

THEOREM®6 (SPECTRAL INVARIANCE AND SUBMULTIPLICATIVITY )). Let Ae
Lg p» and suppose that A is invertible B(L2(RM). Then Al ¢ Lg - Moreover,

Lg,P is a submultiplicativel*-subalgebra of3(L2(R")).

Proof. L%_P is a symmetric Fréchet subalgebral2(R"™)) with a stronger topology.
In order to show it is @ *-subalgebra, we only have to check spectral invarianceeSin
R is aw*—algebra A~! necessarily belongs ) ,(R?"), hence

[xj. A = =AY x;, AJAT,
(5) [Dj, A" = ~A~[Dj, AIA ™Y,
cf. [20], Appendix. Using Leibniz’ rule and Lemma 1, theseritities show that
BYA™L: L2R") — HA* IR

is bounded. HencA—! e Lg,P by Theorem 5.

Finally let us check submultiplicativity. Corollary 1 suggis the following system
of semi-normg pygs: @, B € NB, s € N} for the topology of I%_P:

pOl,,B,S(A) = ” BgA||£(H%(Rn),H;+p‘a+ﬂ‘(Rn))‘

A priori, this topology is weaker than the topology induceatt A%_P(Rzn), since the
operator norm can be estimated in terms of the symbol semigor he open mapping
theorem yields that both are equivalent. The constructiofi 8], 3.4 ff, eventually
shows how to derive submultiplicative semi-norms from ty&tem{ py, g s}

O

We proceed by constructing order reducing operators. Thiépevused in Corol-
lary 2.
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LEMMA 2 (ORDER REDUCTION. For all s € R there exists an operator Te
EL; psuchthat T: H;(R”) — L2(RM) is a bicontinuous bijection.

Proof. Let us setA = Op(w%/Z) IS ELZ/%. If A* is its L2-formal adjoint, then

AA*F € EL;73 andAA* : HZ(R") — L2(R™) is Fredholm. It can be shown easily
that KerAA* = AA*(H%(R”)){ where_L means orthocomplementation irf (R™).

In fact, KerAA* C S(R"), is independent 0§, and f € KerAA* is equivalent to
f LAA*(S(R™) which in turn is equivalent td J_AA*(H;(R”)) as AA*(S(RM) is
dense inAA*(H;(R”)). Suppose now thaf f1, .., fk} is an orthonormal basis of the
finite dimensional vector space KeA* = AA*(H;(R”)){ viewed now as imbedded
in both H3(R") and L2(R™. We consider the operat®® = AA* + P whereP

is the continuous extension H;(R“) of Pf = Z'j‘:l(f, fi)2fj, f e SR". P

is compact as it has finite rank and is smoothing since it hamtagral kernel in
S(R" x R"). ThenB is a Fredholm operator iEL;,P and indexB) = 0. It can be

easily checked thaB : H%(R”) — L2(R") is injective so that it is a bijection. The

continuity of B~ follows from the open mapping theorem and the continuit@of
O

COROLLARY 2. Let A€ Lg p be invertible inB(H%(R”)) for some se R, then
Ale Lg P

Proof. If T : H3(R") — L2(R") is the order reduction, we know thBt= T AT €
L9 5 is invertible onL?(R"). By Theorem 6B~ € L% ;,, soA™t = TB1T ! ¢

Lo .
P
g 0

REMARK 1. A consequence of Corollary 2 is that the spectrum of anaiper
Ae Lg 5 is independent of the spaé? (R"). This is particularly relevant in view of
the developement of a spectral theory for multi-quaspgtlioperators.

The fact that multi-quasi-elliptic operators have the fi@dh property was proven
in [5]; we show here that the converse holds.

THEOREM7Y. Let Ae LZ‘P, m € R. Then the following are equivalent:
(@) Ae ELZ],P'
(b) A: HZR") — Hf;m(R”) is a Fredholm operator for all & R.

(©) A: HRX®RM — HA™(R") is a Fredholm operator for some € R.

Proof. By [5], (a) implies (b), (b) trivially implies (c). In ordeotshow that (c) implies
(a), we can apply order reduction and assumerthat o = 0. Next we observe that,
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for suitables > 0, C, > 0O,
W (X, ) = Ce(x)°(£)°.

This implies tha’rAg’P(RZ”) is embedded in the clas® ,(R" x R") of slowly varying
symbols, cf. Kumano-go [16], Chapter I, Definition 5.11orRhese symbols it has
been shown in [18], Theorem 1.8 that the Fredholm properti &R") implies uni-
form ellipticity. This concludes the proof, fdﬂg(R”) = L2%(RM), and the notion of
uniform ellipticity coincides with that of multi-quasid@dticity of order zero.

O
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