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GENERALIZED DENSITIES AND DISTRIBUTIONAL
ADJOINTS OF NATURAL OPERATORS

Abstract. Distributional adjoints of the main operators arising im{fu
damental field theory are examined, with particular regartheir direct
geometric construction, in the context of generalized tiessvalued in a
vector bundle; this notion extends the usual one of ‘sedtigtributions’.

1. Introduction

Generalized maps (in the distributional sense) have beeallygreated in a purely
analytical setting, all constructions being based®n However, the notion of gen-
eralized sections of a vector bundle, in a geometricalrggtts certainly important in
fundamental physics. This notion has been briefly consitleyesome authors [10, 6],
and some specific cases [8] have been examined in greatér deta

Let us consider an arbitrary finite dimensional vector bandlith no fixed back-
ground structure; | will argue that, in this setting, theiontof section-distribution has
to be introduced as that of ‘generalized density’ valuedatiundle. All other cases,
including currents and generalized half-densities, caselea as particular cases of this
one. If a volume form on the base manifold is fixed, then onevers the notion of
section-distribution.

The notion of distributional adjoint of a differential og¢or can be readily intro-
duced in the geometrical setting. Actually, the local cameite expression of the ad-
joint can be written by the standard methods. However, ttimsic geometric meaning
of this expression may not be evident.

The main goal of this paper is to examine the distributionbiats of the main
operators arising in fundamental field theory, with pattcuegard to their geometric
construction. First, | will consider natural operators calar-valued currents. Then |
will argue that, in some cases, the Frolicher-Nijenhuacket yields a natural opera-
tor on bundle-valued currents, and examine these. Nexgdhariant derivative of a
generalized section along a given vector field, relativelg given connection, yields
a non-trivial case. The codifferential and Laplacian aresidered in a setting which
generalizes Lichnerowicz’ [8]. Finally, the distributiairadjoint of the Dirac operator
on curved background confirms the importance of spacetins@toin this context.
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2. Generalized densities

By aclassical manifold mean a Hausdorff paracompact smooth real manifold of finite
dimension. Byp : E — M | will denote a real or complex vector bundle over an
oriented classical manifoll without boundary; dinE = m+n, dimM = m. | will
write Y := (AM"TM) ™, so thatY* — M is the bundle of all positively oriented volume
forms onM.

By D,(M, E*) | will denote the vector space of all’€sectionsM — E* which
have compact support. ¥ ¢ M is an open set anll, :== p~1(X) is trivializable, then
the subspac®, (X, E}) C D,(M, E*) can be given the usual test map topology [10, 6]
by choosing any trivializationp,y) : Ex — X x R". This topology is actually
independent of the chosen mgpand it turns out that a bundle atlas yields a topology
on the whole spacB, (M, E*) of ‘test sections’. | will denote its topological dual space
* by

DM, Y*®E) :=D/(M,E"),
M

and call it the space @feneralizedE-valued densities

An ordinaryE-valued density : M — Y* ®y E is said to bdocally integrableif
the ordinary densitfl — Y* : x — (u(x), 8(x)) is integrable for alu € D,(M, E*).
Suché can be identified with an element 8f(M, Y* ®y E) ; if ¢ is an arbitrary el-
ement, then | will also writep : M ~ Y* ®y E. Note that a generalized-valued
density has a coordinate expression just like an ordinanyose its components being
generalized functions.

A few special cases are of particular interest. By replading with Y2 @y, E
one obtains generalizeégvaluedhalf-densitiesM ~ Y~12g, E, whereY~1/2 =
(YY/2)*. If a smooth Hermitian structure in the fibresBfis given (in particular, in
the case of scalar generalized half-densilks« C® Y~1/?), then the test space
D, (M, Y~12®, E*) is naturally included into its dudb(M, Y~1/2 @, E); moreover
one has a well-defined notion of square-integrable sectamnba Hilbert spacgl can
be introduced; finally, one gets a so-called ‘rigged Hiltgrdce'D, ¢ H C D [1].

In the other cases there exist no such natural inclusiomassione has a fixed volume
form and an isomorphisia = E*.

By replacing E with A"™'TM ®yE, because of the isomorphism
Y*@AT™'TM = AT*M, one getsE-valuedr-currentsM ~ AN T*M @y E;
this includes 0-currents which can be identified with thealisaction-distributions [6].
In particular, a locally integrable ordinary secten M — A’ T*M acts as a functional
on test sectiong € D,(M, A" "T*M) by the rule(, B) := [, a A B.

*The most usual notation B for the space of test maps af for the corresponding distributional
space. This, however, could generate some confusion inréeept context, since the two mutually dual
spaces live in different bundles.

TThe *square root’ bundi&’l/2 is characterized, up to isomorphism, B2 ® Y1/2 = Y [4, 5].
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3. Differential operators and their distributional adjoin ts

Letv : M — TM be a smooth vector field.  : M — A T*M is a smooth ordinary
currentang® : M — AT TT*M is a test current, thepv.a, 8) = —(a, v.8) , Wherev.
denotes the Lie derivative operator. This formula can beras thelefinitionof v.«

for an arbitrary currend, and it turns out that the mapping— v.« is a continuous
linear operator ilD(M, A T*M) . A similar construction can be carried out for scalar
generalized half-densities [4]. In the domain of a coortéirtdart, in particular, on has
thepartial derivativesof a scalar current or generalized half-density.

Consider nowE-valued currents (the following argument is quite similar E-
valued generalized half-densities). Given a fram&othe components of any such
current are scalar currents, whose partial derivativeb waspect to the base coor-
dinates are well-defined. 1D is a differential operator acting on smooth currents,
which can be locally expressed in terms of partial deriestjthenD has a unique
continuous extension to the whole space of currents, asdiiension maintains the
same coordinate expression. More specifically, one corssigipolynomial deriva-
tion operator of order ke N, which means that its coordinate expression is of the
type (Do)’ = 3| <k cp'japai . here,p = {p1, .., pm} is @ multi-index of order
Ipl:=>",Pa, andcp'j : M — C are smooth functions.

Because the operat@ can be expressed in terms of Lie derivatives, it yields a
distributional adjointoperatorD’, fulfilling (D’¢, 9) = (¢, DO) ; this acts in the dual
space, is still a polynomial operator of degke@nd extends to the whole, appropriate
space of generalized sections. In practice, its coordiegbeession is usually found
by assuming to be &, expressind¢, D) as an integral and applying integration by
parts (boundary terms disappear).

In the case of scalar-valued currents one has some impanstances. Leb :

M — TM be a smooth vector field, ard: M — A T*M a smooth form; indicating
by |6] the degree of the currefit by simple exterior algebra calculations and taking
into accounvM = ¢ one obtains

(e, B) = (=D*H(a, v|B) Bl=m— o +1.
(wAa, B) = (=D“"a, 0 A B) 1Bl =m—la| — o] .
(da, B) = (=D ha, dB) Bl=m—laf - 1.
(d(vle), B) = —(, v[(dB)) , Bl =m—laf.
(v|(da), B) = —(, d(v]B)) , 1Bl =m—|af.
(v.a, B) = —{a, v.B) , 1Bl =m—|af.

(xa, B) = (=Dl D (g, 5p) 1Bl = laf .

(8, B) = (=D)" (e, 8B) Bl=m—laf+1.
(ddr, B) = (o, 6dB) , 1Bl =m—|af.

(

(d§ + 8d)e, B) = (e, (dS + 5d)8) , [Bl=m— |« .
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In the four last formulas; stands for the Hodge isomorphism relatively to a given non-
degenerate (pseudo)metric bh The operators := xd« and & + §d are, up to sign,
the usual codifferential and Laplacian of scalar-valuedlents; in general, the latter is
different from the connection-induced Laplacian definedtevalued currents (86).

4. Operators induced by the Filicher-Nijenhuis bracket

Let N be a classical manifold. Let us recall that the Frolichgehhuis bracket [7,
9] of two differentiable tangent-valued form’s : N — APT*N®yTN, G : N —
NT*N®y TN, is a tangent-valued form

[F.G]:N— AP T*N®TN.
N

This operation can be carried on fibred manifolds; in paldicconsider the case when
N = E, the total space of our vector bundle. A smooth cureenM — A T*M ®u E
can also be seen as a tangent-valuddrm on E (because of the natural inclusions
T*M c T*E andE ¢ E®Qw E = VE c TE). Then we can consider the F-N bracket
[w, @] , whenevew is a smooth tangent-valued form Bn In practice, one is interested
mainly inbasicformsw : M — APT*M ®g TE which areprojectableover T™M -valued
forms. Taking fibred coordinatgs?, y') : Ex — R™xR", the projectability condition

for w becomes; wgl._ap = 0, and one obtains the local expression

_ b i _a\pr b i
[w,a] = (wal...ap abo‘ap+1...ap+r + (=DMr 0q Dy y1..ar1p Yay.ar g bt

+ (D pr+1aj wiar+1..~ar+p O!él._.ar )dxal A AT R ayi -

Inorder that f, o] be still a current, then, one has to assumedhiata linear morphism
overM, which in coordinates readsy, o, = y'o) ay...a, With ] ap.a - M~ R.
Now it is clear that the mapping — [w, «] extends naturally to a continuous operator
acting on the distributional space Bfvalued currents. The coordinate expression of
its distributional adjoint is readily written. We see thiatgeneral, its geometrical in-
terpretation involves viewing as a TM ®, E-valuedr —1 current, leading to a rather
involved situation. However, the really interesting cakedfield theory applications
are simpler: essentially, whesis either a vertical-valued form or a connection.

Consider the first instance, namely. M — APT*M ®y VE, so tharwg1 =0.

.8
We obtain the distributional adjoint formula P

([w,a], ) = (=D pr+l/M (O[(J;ll...ar wij aryl...8r4p Bi ar+p+1-..am>

dx® A ... A dx® @ dy!
= (-1 pr+1(a, [o*, B},

whereg : M — A"PTT*M @y E* andew* : E* — APT*M ®y E* is the transpose
morphism oveM.
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A similar result holds for a linear connection on the bunBle— M; this can
be defined [9] as a sectign: E — T*M ®g TE, which is projected over the identity
1:M — T*M ®w TM and s a linear morphism ovbt. This means thatits coordinate

expression iy = dx3® dxa + v,y dx® ® dy; . We obtain

[y, al, B) (_1)r+1/M O‘i’n...ar (aar+1ﬁi ari2..am T J/awlji Bj ar+2-~-am)

dx® A ... AdxBm
= (=D Yo, [y B]),

wherey* is the dual connection oB*. In particular ifr = 0 then |/, ] = Ve, the
standard covariant derivative of sectidis— E; the distributional adjoint o¥ is now
seen to be the F-N bracket pf with E*-valued (generalized) densities.

5. Covariant derivative along a given vector field

In this section | assume an assigned linear connegtion E — M and an assigned
vector fieldv : M — TM. Consider the differential operat@’ acting inD,(M, E)
which, for each test sectiom, is given byD’u := V,u or, in coordinatesP’'u =
v3(dgul — ya{juj)ayi (the choice of test maps as sectidis— E is for notational
convenience, and in what follows one could reverse the afl€ésandE*).

The expression of the adjoint operafdr acting inD(M, Y* ®y E*), turns out to
be

D¢ = —[(0av®)$j + v?(Badj + v4;¢1)] X @y,

where & = dx! A ... Adx™. We can recover this operator by a direct geometrical
construction as follows.

First, since VE = E ®y E*, from ¢ we obtain a sectiop : E — Y* ®y V*E;
then, using the connection for®), := Irg — y : TE — VE we obtain a section

i E—> A"T'MQTE > A"T*EQ T'E,
E E
with coordinate expression);jJ) = ¢idx® @y — yaidxa). On turn, by anti-
symmetrization this yields a section
éE > AMITHE |
in coordinates = ¢;j dx Ady' .
Letnowo : E — TE be the lift ofv by y, and consider thém-+1)-form 6.43 on

E. One checks immediately thapd= 0, thusd.¢ = d(3|$); we obtain the coordinate
expressions

Dl = v® (9%a + 4 0D (@) dX Adyl) = v¥ g (dxa A dy' + (=D y, dx) ,
where &5 := 9x4|dx and, finally,

0.6 = d(d1) = [(Bav™)¢j + v*(Padj + va 9] dx Ady) .
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Then,b.¢ is in the image of the composition
A'T*M @ T'E <> A"T*E® T*E > A™IT*E
E E

which is a monomorphism ové&:. Thusd.¢ comes from a unique*E-valued density;
since its components do not depend actually=grthis can be identified with &*-
valued density, which is exactly owrD¢ .

Observe thaD, the distributional adjoint oV,, is not itself a covariant derivative.
If ¥ is a connection orfY* — M then we have a connection & ®y E* and the
covariant derivativéd/,¢ with coordinate expression

Voop = 1% (3adj + ¥a;6i + kad)dx @y .
The difference between the two operators has the expression

—D¢ — Vyp = (dav® — kav™)¢ .

6. Codifferential and Laplacian

| considered the codifferential and Laplacian of scaldned currents in §3. A some-
what different notion of these operators can be introduceétfvalued distributions,
by taking a linear connectiop on E — M, a non-degenerate (pseudo)metyion
M and a metric connectiofi on TM — M (while the latter notion of codifferential
coincides with the former one for scalar-valued curreis, needs not be true for the
Laplacian). | will not assume the torsidnof I to vanish in general.

Letu : M ~ T*M ®y E (this will include alsor-currents, seen as 1-currents
valued inA" ~1T*M @y E). We define its covariant codifferential & := (g‘l, Vu) :
M — E, with coordinate expression

Vu = g*Vauy dyi = g*°@auy + Tah U — vaj Uy ) BYi -

Its distributional adjoint acts oB*-valued generalized densitigs: M ~~ Y* @y E*
to give TM ®y E*-valued generalized densities; we find the coordinate sspoa

V' = (~0"adi — (00" + T Ledt = 74, 4] Jx@ Mo @l

By introducing the 1-forn¥ : M — T*M obtained from the torsion by contraction, in
coordinated, = TS, = I'&, — ', after some calculations we arrive to
V¢ = —g*(Vagi + Tag)dx@xp@dy',

orv'g =—g (Ve +T®9).

Next | consider the Laplacian operator in the same settirapase. Ifu : M — E
is a smooth section, then its Laplaciam := (gfl, VVu) has the coordinate expres-
sion

AU = g*P(0adbU’' —2y 1 doU —daypj U +y ey U HT G dcu =T v e ub) ayi -
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Let us denote byD, acting inD(M, Y* @y E*), the distributional adjoint of\. We
obtain the coordinate expression

¢ = [0a90(0%° ¢)) + 200(0 v 4} d1) — G7° (Bavp)) & + GV v @i
- 3c(gabracb¢j) — gab Tl Vclj ¢i] dy! ® dx =

= §°° (Badoej + 2T & 0 + Ty ) + 9al G &f + Td'eTap @) + D&l o]
+ 8aypj #i +2Vaj i + 20 vy di +Taprej i + J/alkybkj ¢i)dy’ ®dx.

With the considered structures we also have the Laplagian= (g‘l, VV¢);
after some calculations we arrive to the coordinate-freeession

D¢—A¢=(g*1, (2f®V¢+Vf®¢+f®T’®¢)>.

7. Dirac operator

The language of 2-spinors turns out to be very convenieratriontegrated approach to
Einstein-Cartan-Maxwell-Dirac fields starting from mirahrgeometric assumptions,
and for other important issues in field theories [3, 5]. M@exdt can be proved [2]
that the more usual 4-spinor language is completely ecerivad it, provided that one
assumes the basic structures needed for physics. In thisrséwill give a very brief
account of that language, before examining the distrilmatiadjoint of the Dirac opera-
tor; the reader is referred to the above cited papers foilslatad various developments
concerning 2-spinors.

Let S be a 2-dimensional complex vector space, &rits conjugate space. Then
A2Sis 1-dimensional. The Hermitian subspace/8B® A?S is a real vector space
with a distinguished orientation; its positively orienteeimispacé.? has the square
root semispacé,, called the space déngth units The fundamental 2-spinor space is
defined to bdJ := L.~1/2®S. The space:?U is naturally endowed with a Hermitian
metric, so that normalized symplectic forms A2U* (I indicate complex-dual spaces
by a*) constitute a W1)-space (any two of them are related by a phase factor). Then
& ®¢ is unique and determines a natural Lorentz metric on the Hiemmsubspace
of H ¢ U®U; this real vector space is also naturally endowed with &f@tif map
y - H > EndW), whereW := U @ U* is the 4-spinor space.

If now S — M is a complex vector bundle with 2-dimensional fibers, a linea
connectionZ on it determines linear connectio® on I, A on A2U andI" on H.
MoreoverZ can be expressed in terms of these connections as

, 1o as
Bas = (Ga+iAa)d"; + 5ra’*’*BA.,

where capital latin indices refer to a framelgfand dotted indices to the corresponding
frame ofU.
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Let now M be 4-dimensional. Atetrad is defined to be a linear morphism
® : TM — L®H. A non-singular field theory can be constructed [3] eve® ifs
not required to be invertible everywhere; this requiremiotvever, is needed in order
to recover a theory of the Einstein-Cartan-Maxwell-Dirggd. One finds that an in-
vertible tetrad determines, by pull-back, a Lorentz meiriM and a metric connection
on TM — M, as well as a Dirac map.

The fields of the above said theory are the 2-spinor conrne&jdhe tetradd, the
electromagnetic fieldF and the Dirac fieldy : M ~ L=2@ W. The gravitational
field is represented by b§ andI". The connectiorG induced orlL is assumed to
have vanishing curvature@= 0, so that | can find local charts such tkat = O; this
amounts to ‘gauging away’ the conformal ‘dilaton’ symmetpupling constants arise
as covariantly constants sectionsldf (r rational). One writes a natural Lagrangian
which yields all the field equations: the Einstein equatiod the equation for torsion;
the equatiorr = 2 dA (thusA is identified with the electromagnetic potential) and the
other Maxwell equation; the Dirac equation.

REMARK 1. In standard gravity theory, allowing a non-zero torsi@semewhat
guestionable, since it can be considered just as a furthey digparated from the space-
time connection. In the above sketched Einstein-Cartarvid-Dirac context, how-
ever, the spacetime connection is not a fundamental fielddxites from the 2-spinor
connection and the tetrad. These yield also the torsiorgiwtwuples to the Dirac field
in such a way to become unavoidable.

Let us consider the Dirac equation with fixed backgrounditgienal and electro-
magnetic fields. The Dirac Lagrangian (which we do not need)hgelds the Euler-
Lagrange operatd, and the Dirac equation can be writtenéag = 0, where

Ey M > L2 Y @W* .
M

Namely, the Euler-Lagrange operator can be viewed as sgndemeralized
L—3/2 @ W-valued sections to generalizéd/2 ® W*-valued densities (as we have a
fixed background volume form induced by the metric, the distinction between sec-
tions and densities is not essential here). It can be coemtpiexpressed through the
co-tetrad® := ©1@nas

(EY)A = V2i05;Vay” — mys det® + 5 Tas ¥,

(EY)A = V21 0P, — my” det® + ﬁ TA Y,
wherem € =1 and

Tas =003 Ta = 0200+ 3 (O34T %+ 0% TS

(spinor indices are raised and lowered through a normakyedplectic forme, its
inverse and their conjugates).
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If ¢ € D.(M,L¥2@W) then (£y,¢) = (¢,E'¢), where&'¢ @ M —
L.3/2® Y* @ W* has the local coordinate expression

(E'$)a=—V210a(03;6™) — V2i O, ESy 9" — Mgy det® + I Tang”,

(5/¢)A'=—ﬁiﬁa(éaAA¢A)+«/§i@aAA éaB;.\'(/J)A md) detO+ JZTAA(bA

Now, our task is working on this expression in such a way togeize it as represent-
ing an intrinsic object. Taking into account the above \eritexpressions fag,; and
Taz We arrive, after some calculations, to

(E'P)a=—V2i102,Vap® —mg, det® — ﬁ Taxo™,

(E'P)" = —V210" Vag, — Mo det® — 5, T g, .

This formula has a straightforward interpretation. Coesithe conjugate generalized
sectiony : M ~ L%2@ W and note that the target bundle is the same as that of
above (by the wayys can be identified with the ‘Dirac adjoint’ af via the exchange
mapW = U @ U* — U* @ U = W*). Then

£ = £y =EV,

namely&’ is just the complex-conjugate operatoréof

Note how this balance depends from the fact that the torsidndluded in the
operator. If one defines a new operafay dropping the torsion terms, then one gets
them doubled in the distributional adjoifit
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