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GENERALIZED DENSITIES AND DISTRIBUTIONAL

ADJOINTS OF NATURAL OPERATORS

Abstract. Distributional adjoints of the main operators arising in fun-
damental field theory are examined, with particular regard to their direct
geometric construction, in the context of generalized densities valued in a
vector bundle; this notion extends the usual one of ‘section-distributions’.

1. Introduction

Generalized maps (in the distributional sense) have been usually treated in a purely
analytical setting, all constructions being based onRn. However, the notion of gen-
eralized sections of a vector bundle, in a geometrical setting, is certainly important in
fundamental physics. This notion has been briefly considered by some authors [10, 6],
and some specific cases [8] have been examined in greater detail.

Let us consider an arbitrary finite dimensional vector bundle, with no fixed back-
ground structure; I will argue that, in this setting, the notion of section-distribution has
to be introduced as that of ‘generalized density’ valued in the bundle. All other cases,
including currents and generalized half-densities, can beseen as particular cases of this
one. If a volume form on the base manifold is fixed, then one recovers the notion of
section-distribution.

The notion of distributional adjoint of a differential operator can be readily intro-
duced in the geometrical setting. Actually, the local coordinate expression of the ad-
joint can be written by the standard methods. However, the intrinsic geometric meaning
of this expression may not be evident.

The main goal of this paper is to examine the distributional adjoints of the main
operators arising in fundamental field theory, with particular regard to their geometric
construction. First, I will consider natural operators on scalar-valued currents. Then I
will argue that, in some cases, the Frölicher-Nijenhuis bracket yields a natural opera-
tor on bundle-valued currents, and examine these. Next, thecovariant derivative of a
generalized section along a given vector field, relatively to a given connection, yields
a non-trivial case. The codifferential and Laplacian are considered in a setting which
generalizes Lichnerowicz’ [8]. Finally, the distributional adjoint of the Dirac operator
on curved background confirms the importance of spacetime torsion in this context.
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2. Generalized densities

By aclassical manifoldI mean a Hausdorff paracompact smooth real manifold of finite
dimension. Byp : E � M I will denote a real or complex vector bundle over an
oriented classical manifoldM without boundary; dimE = m+n , dimM = m . I will
write Y := (∧mTM)+, so thatY∗

� M is the bundle of all positively oriented volume
forms onM .

By D◦(M ,E∗) I will denote the vector space of all C∞ sectionsM → E∗ which
have compact support. IfX ⊂ M is an open set andEX := p−1(X) is trivializable, then
the subspaceD◦(X,E∗

X) ⊂ D◦(M ,E∗) can be given the usual test map topology [10, 6]
by choosing any trivialization(p, y) : EX → X × Rn. This topology is actually
independent of the chosen mapy, and it turns out that a bundle atlas yields a topology
on the whole spaceD◦(M ,E∗) of ‘test sections’. I will denote its topological dual space
∗ by

D(M ,Y∗ ⊗
M

E) := D
′
◦(M ,E

∗) ,

and call it the space ofgeneralizedE-valued densities.

An ordinaryE-valued densityθ : M → Y∗ ⊗M E is said to belocally integrableif
the ordinary densityM → Y∗ : x 7→ 〈u(x), θ(x)〉 is integrable for allu ∈ D◦(M ,E∗).
Suchθ can be identified with an element ofD(M ,Y∗ ⊗M E) ; if φ is an arbitrary el-
ement, then I will also writeφ : M  Y∗ ⊗M E. Note that a generalizedE-valued
density has a coordinate expression just like an ordinary section, its components being
generalized functions.

A few special cases are of particular interest. By replacing† E with Y
1/2 ⊗M E

one obtains generalizedE-valuedhalf-densitiesM  Y−1/2 ⊗M E , whereY−1/2 ≡
(Y1/2)∗. If a smooth Hermitian structure in the fibres ofE is given (in particular, in
the case of scalar generalized half-densitiesM  C ⊗ Y−1/2), then the test space
D◦(M ,Y−1/2 ⊗M E∗) is naturally included into its dualD(M ,Y−1/2 ⊗M E); moreover
one has a well-defined notion of square-integrable sections, and a Hilbert spaceH can
be introduced; finally, one gets a so-called ‘rigged Hilbertspace’D◦ ⊂ H ⊂ D [1].
In the other cases there exist no such natural inclusions, unless one has a fixed volume
form and an isomorphismE ∼= E∗.

By replacing E with ∧m−r TM ⊗M E , because of the isomorphism
Y∗ ⊗∧m−r TM ∼= ∧r T∗M , one getsE-valued r -currents M  ∧r T∗M ⊗M E ;
this includes 0-currents which can be identified with the usual section-distributions [6].
In particular, a locally integrable ordinary sectionα : M → ∧r T∗M acts as a functional
on test sectionsβ ∈ D◦(M ,∧m−r T∗M) by the rule〈α, β〉 :=

∫

M
α ∧β .

∗The most usual notation isD for the space of test maps andD′ for the corresponding distributional
space. This, however, could generate some confusion in the present context, since the two mutually dual
spaces live in different bundles.

†The ‘square root’ bundleY1/2 is characterized, up to isomorphism, byY
1/2 ⊗ Y

1/2 ∼= Y [4, 5].
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3. Differential operators and their distributional adjoin ts

Let v : M → TM be a smooth vector field. Ifα : M → ∧r T∗M is a smooth ordinary
current andβ : M → ∧m−r T∗M is a test current, then〈v.α, β〉 = −〈α, v.β〉 , wherev.
denotes the Lie derivative operator. This formula can be taken as thedefinitionof v.α
for an arbitrary currentα , and it turns out that the mappingα 7→ v.α is a continuous
linear operator inD(M ,∧r T∗M) . A similar construction can be carried out for scalar
generalized half-densities [4]. In the domain of a coordinate chart, in particular, on has
thepartial derivativesof a scalar current or generalized half-density.

Consider nowE-valued currents (the following argument is quite similar for E-
valued generalized half-densities). Given a frame ofE , the components of any such
current are scalar currents, whose partial derivatives with respect to the base coor-
dinates are well-defined. IfD is a differential operator acting on smooth currents,
which can be locally expressed in terms of partial derivatives, thenD has a unique
continuous extension to the whole space of currents, and this extension maintains the
same coordinate expression. More specifically, one considers a polynomial deriva-
tion operator of order k∈ N, which means that its coordinate expression is of the
type (Dα)i =

∑

|p|≤k c i
p j∂

pα j ; here, p = {p1, .., pm} is a multi-index of order

|p| :=
∑

a pa , andc i
p j : M → C are smooth functions.

Because the operatorD can be expressed in terms of Lie derivatives, it yields a
distributional adjointoperatorD′ , fulfilling

〈

D′φ, θ
〉

= 〈φ, Dθ〉 ; this acts in the dual
space, is still a polynomial operator of degreek, and extends to the whole, appropriate
space of generalized sections. In practice, its coordinateexpression is usually found
by assumingφ to be Ck, expressing〈φ, Dθ〉 as an integral and applying integration by
parts (boundary terms disappear).

In the case of scalar-valued currents one has some importantinstances. Letv :
M → TM be a smooth vector field, andω : M → ∧ T∗M a smooth form; indicating
by |θ | the degree of the currentθ , by simple exterior algebra calculations and taking
into account∂M = ∅ one obtains

〈v|α, β〉 = (−1)|α|+1〈α, v|β〉 , |β| = m − |α| + 1 .

〈ω∧α, β〉 = (−1)|α|·|ω|〈α,ω∧β〉 , |β| = m − |α| − |ω| .
〈dα, β〉 = (−1)|α|+1〈α,dβ〉 , |β| = m − |α| − 1 .

〈d(v|α), β〉 = −〈α, v|(dβ)〉 , |β| = m − |α| .
〈v|(dα), β〉 = −〈α,d(v|β)〉 , |β| = m − |α| .
〈v.α, β〉 = −〈α, v.β〉 , |β| = m − |α| .
〈∗α, β〉 = (−1)|α|(m+1)〈α, ∗β〉 , |β| = |α| .
〈δα, β〉 = (−1)|α|〈α, δβ〉 , |β| = m − |α| + 1 .

〈dδα, β〉 = 〈α, δdβ〉 , |β| = m − |α| .
〈(dδ + δd)α, β〉 = 〈α, (dδ + δd)β〉 , |β| = m − |α| .



246 D. Canarutto

In the four last formulas,∗ stands for the Hodge isomorphism relatively to a given non-
degenerate (pseudo)metric onM . The operatorsδ := ∗d∗ and dδ + δd are, up to sign,
the usual codifferential and Laplacian of scalar-valued currents; in general, the latter is
different from the connection-induced Laplacian defined onE-valued currents (§6).

4. Operators induced by the Fr̈olicher-Nijenhuis bracket

Let N be a classical manifold. Let us recall that the Frölicher-Nijenhuis bracket [7,
9] of two differentiable tangent-valued formsF : N → ∧pT∗N ⊗N TN, G : N →
∧r T∗N ⊗N TN, is a tangent-valued form

[F,G] : N → ∧p+r T∗N ⊗
N

TN .

This operation can be carried on fibred manifolds; in particular consider the case when
N ≡ E, the total space of our vector bundle. A smooth currentα : M → ∧r T∗M ⊗M E
can also be seen as a tangent-valuedr -form on E (because of the natural inclusions
T∗M ⊂ T∗E andE ⊂ E ⊗M E ≡ VE ⊂ TE). Then we can consider the F-N bracket
[ω, α] , wheneverω is a smooth tangent-valued form onE. In practice, one is interested
mainly inbasicformsω : M → ∧pT∗M ⊗E TE which areprojectableover TM -valued
forms. Taking fibred coordinates(xa, yi ) : EX → Rm×Rn, the projectability condition
for ω becomes∂ jω

b
a1...ap

= 0 , and one obtains the local expression

[ω, α] =
(

ωb
a1...ap

∂bα
i
ap+1...ap+r

+ (−1)prr ∂arω
b
ar+1...ar+p

αi
a1...ar−1 b+

+ (−1)pr+1∂ jω
i
ar+1...ar+p

α
j
a1...ar

)

dxa1 ∧ . . . ∧ dxap+r ⊗ ∂yi .

In order that [ω, α] be still a current, then, one has to assume thatω is a linear morphism
overM , which in coordinates readsωi

a1...ap
= y jωi

j a1...ap
with ωi

j a1...ap
: M → R .

Now it is clear that the mappingα 7→ [ω, α] extends naturally to a continuous operator
acting on the distributional space ofE-valued currents. The coordinate expression of
its distributional adjoint is readily written. We see that,in general, its geometrical in-
terpretation involves viewingα as a T∗M ⊗M E-valuedr −1 current, leading to a rather
involved situation. However, the really interesting casesfor field theory applications
are simpler: essentially, whenω is either a vertical-valued form or a connection.

Consider the first instance, namelyω : M → ∧pT∗M ⊗M VE, so thatωb
a1...ap

= 0 .
We obtain the distributional adjoint formula

〈[ω, α], β〉 = (−1)pr+1
∫

M

(

α
j
a1...ar ω

i
j ar+1...ar+p

βi ar+p+1...am

)

dxa1 ∧ . . . ∧ dxam ⊗ dy j

= (−1)pr+1〈α, [ω∗, β]
〉

,

whereβ : M → ∧m−p−r T∗M ⊗M E∗ andω∗ : E∗ → ∧pT∗M ⊗M E∗ is the transpose
morphism overM .
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A similar result holds for a linear connection on the bundleE � M ; this can
be defined [9] as a sectionγ : E → T∗M ⊗E TE, which is projected over the identity
11 : M → T∗M ⊗M TM and is a linear morphism overM . This means that its coordinate
expression isγ = dxa ⊗ ∂xa + γ

j
a i y

i dxa ⊗ ∂y j . We obtain

〈[γ, α], β〉 = (−1)r+1
∫

M
αi

a1...ar

(

∂ar+1βi ar+2...am + γ
j

ar+1 i β j ar+2...am

)

dxa1 ∧ . . . ∧ dxam

= (−1)r+1〈α, [γ ∗, β]
〉

,

whereγ ∗ is the dual connection onE∗. In particular ifr = 0 then [γ, α] ≡ ∇α , the
standard covariant derivative of sectionsM → E; the distributional adjoint of∇ is now
seen to be the F-N bracket ofγ ∗ with E∗-valued (generalized) densities.

5. Covariant derivative along a given vector field

In this section I assume an assigned linear connectionγ on E � M and an assigned
vector fieldv : M → TM . Consider the differential operatorD′ acting inD◦(M ,E)
which, for each test sectionu, is given byD′u := ∇vu or, in coordinates,D′u =
va(∂aui − γ i

a ju
j )∂yi (the choice of test maps as sectionsM → E is for notational

convenience, and in what follows one could reverse the rolesof E andE∗).

The expression of the adjoint operatorD, acting inD(M ,Y∗ ⊗M E∗), turns out to
be

Dφ = −
[

(∂av
a)φ j + va(∂aφ j + γ i

a jφi )
]

dx ⊗dy j ,

where dx ≡ dx1 ∧ . . . ∧ dxm. We can recover this operator by a direct geometrical
construction as follows.

First, since V∗E ∼= E ⊗M E∗, from φ we obtain a sectioñφ : E → Y∗ ⊗M V∗E ;
then, using the connection formωγ := 11TE − γ : TE → VE we obtain a section

ω∗
γ φ̃ : E → ∧mT∗M ⊗

E
T∗E ↪→ ∧mT∗E ⊗

E
T∗E ,

with coordinate expressionω∗
γ φ̃ = φi dx ⊗ (dyi − γ i

a dxa) . On turn, by anti-
symmetrization this yields a section

φ̂ : E → ∧m+1T∗E ,

in coordinateŝφ = φi dx ∧ dyi .

Let now v̂ : E → TE be the lift ofv by γ , and consider the(m+1)-form v̂.φ̂ on
E. One checks immediately that dφ̂ = 0, thusv̂.φ̂ = d(v̂|φ̂); we obtain the coordinate
expressions

v̂|φ̂ = va (∂xa + γ i
a ∂yi )|(φ j dx ∧ dy j ) = va φi (dxa ∧ dyi + (−1)m γ i

a dx) ,

where dxa := ∂xa|dx and, finally,

v̂.φ̂ = d(v̂|φ̂) = [(∂av
a)φ j + va(∂aφ j + γ i

a jφi )
]

dx ∧dy j .
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Then,v̂.φ̂ is in the image of the composition

∧mT∗M ⊗
E

T∗E ↪→ ∧mT∗E ⊗
E

T∗E
∧→ ∧m+1T∗E ,

which is a monomorphism overE. Thusv̂.φ̂ comes from a unique V∗E-valued density;
since its components do not depend actually onE, this can be identified with aE∗-
valued density, which is exactly our−Dφ .

Observe thatD, the distributional adjoint of∇v , is not itself a covariant derivative.
If κ is a connection onY∗

� M then we have a connection onY∗ ⊗M E∗ and the
covariant derivative∇vφ with coordinate expression

∇vφ = va(∂aφ j + γ i
a jφi + κaφ j )dx ⊗dy j .

The difference between the two operators has the expression

−Dφ − ∇vφ = (∂av
a − κav

a)φ .

6. Codifferential and Laplacian

I considered the codifferential and Laplacian of scalar-valued currents in §3. A some-
what different notion of these operators can be introduced for E-valued distributions,
by taking a linear connectionγ on E � M , a non-degenerate (pseudo)metricg on
M and a metric connection0 on TM � M (while the latter notion of codifferential
coincides with the former one for scalar-valued currents, this needs not be true for the
Laplacian). I will not assume the torsionT of 0 to vanish in general.

Let u : M  T∗M ⊗M E (this will include alsor -currents, seen as 1-currents
valued in∧r−1T∗M ⊗M E). We define its covariant codifferential as·∇u :=

〈

g−1,∇u
〉

:
M → E , with coordinate expression

·∇u = gab∇au i
b ∂yi = gab(∂au i

b + 0 c
a b u i

c − γ i
a j u j

b ) ∂yi .

Its distributional adjoint acts onE∗-valued generalized densitiesφ : M  Y
∗ ⊗M E∗

to give TM ⊗M E∗-valued generalized densities; we find the coordinate expression

·∇ ′φ =
(

−gab∂aφi − (∂agab)φi + gac0 b
a cφi − γ

j
a i φ j

)

dx ⊗ ∂xb ⊗ dyi .

By introducing the 1-formT̆ : M → T∗M obtained from the torsion by contraction, in
coordinates̆Ta = Tc

ac = 0 c
c a − 0 c

a c , after some calculations we arrive to

·∇ ′φ = −gab(∇aφi + T̆a φi )dx ⊗ ∂xb ⊗ dyi ,

or ·∇ ′φ = −g−1c(∇φ + T̆ ⊗φ) .

Next I consider the Laplacian operator in the same setting asabove. Ifu : M → E
is a smooth section, then its Laplacian1u :=

〈

g−1,∇∇u
〉

has the coordinate expres-
sion

1u = gab(∂a∂bui −2γ i
a j ∂bu j −∂aγ

i
b j u j +γ i

akγ
k

b j u j +0 c
a b ∂cui −0 c

a bγ
i

c j u j ) ∂yi .
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Let us denote byD, acting inD(M ,Y∗ ⊗M E∗), the distributional adjoint of1. We
obtain the coordinate expression

φ =
[

∂a∂b(g
abφ j )+ 2∂b(g

abγ i
a j φi )− gab (∂aγ

i
b j ) φi + gabγ i

akγ
k

b j φi

− ∂c(g
ab0 c

a bφ j )− gab0 c
a bγ

i
c j φi

]

dy j ⊗ dx =

= gab (

∂a∂bφ j + 20 c
c a ∂bφ j + 0 c

a b ∂cφ j + ∂a0
c

c bφ j + 0 d
d c0

c
a bφ j + 0 c

c a0
d

d bφ j

+ ∂aγ
i

b j φi + 2γ i
a j ∂bφi + 20 c

c a γ
i

b j φi + 0 c
a bγ

i
c j φi + γ i

ak γ
k

b j φi
)

dy j ⊗ dx .

With the considered structures we also have the Laplacian1φ :=
〈

g−1,∇∇φ
〉

;
after some calculations we arrive to the coordinate-free expression

Dφ −1φ =
〈

g−1, (2 T̆ ⊗∇φ + ∇ T̆ ⊗φ + T̆ ⊗ T̆ ⊗φ)

〉

.

7. Dirac operator

The language of 2-spinors turns out to be very convenient foran integrated approach to
Einstein-Cartan-Maxwell-Dirac fields starting from minimal geometric assumptions,
and for other important issues in field theories [3, 5]. Moreover it can be proved [2]
that the more usual 4-spinor language is completely equivalent to it, provided that one
assumes the basic structures needed for physics. In this section I will give a very brief
account of that language, before examining the distributional adjoint of the Dirac opera-
tor; the reader is referred to the above cited papers for details and various developments
concerning 2-spinors.

Let S be a 2-dimensional complex vector space, andS its conjugate space. Then
∧2S is 1-dimensional. The Hermitian subspace of∧2S⊗∧2S is a real vector space
with a distinguished orientation; its positively orientedsemispaceL2 has the square
root semispaceL, called the space oflength units. The fundamental 2-spinor space is
defined to beU := L−1/2 ⊗ S. The space∧2U is naturally endowed with a Hermitian
metric, so that normalized symplectic formsε ∈ ∧2UF (I indicate complex-dual spaces
by aF) constitute a U(1)-space (any two of them are related by a phase factor). Then
ε⊗ ε̄ is unique and determines a natural Lorentz metric on the Hermitian subspace
of H ⊂ U ⊗ U; this real vector space is also naturally endowed with a Clifford map
γ : H → End(W), whereW := U ⊕ UF is the 4-spinor space.

If now S � M is a complex vector bundle with 2-dimensional fibers, a linear
connection4 on it determines linear connectionsG on L, A on ∧2U and 0̃ on H.
Moreover4 can be expressed in terms of these connections as

4 A
a B = (Ga + i Aa)δ

A
B + 1

2
0̃ AȦ

a B Ȧ,

where capital latin indices refer to a frame ofU, and dotted indices to the corresponding
frame ofU.
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Let now M be 4-dimensional. Atetrad is defined to be a linear morphism
2 : TM → L ⊗ H. A non-singular field theory can be constructed [3] even if2 is
not required to be invertible everywhere; this requirement, however, is needed in order
to recover a theory of the Einstein-Cartan-Maxwell-Dirac type. One finds that an in-
vertible tetrad determines, by pull-back, a Lorentz metriconM and a metric connection
on TM � M , as well as a Dirac map.

The fields of the above said theory are the 2-spinor connection4, the tetrad2, the
electromagnetic fieldF and the Dirac fieldψ : M  L−3/2 ⊗ W. The gravitational
field is represented by by2 and0̃ . The connectionG induced onL is assumed to
have vanishing curvature, dG = 0, so that I can find local charts such thatGa = 0 ; this
amounts to ‘gauging away’ the conformal ‘dilaton’ symmetry. Coupling constants arise
as covariantly constants sections ofLr (r rational). One writes a natural Lagrangian
which yields all the field equations: the Einstein equation and the equation for torsion;
the equationF = 2 dA (thusA is identified with the electromagnetic potential) and the
other Maxwell equation; the Dirac equation.

REMARK 1. In standard gravity theory, allowing a non-zero torsion is somewhat
questionable, since it can be considered just as a further field, separated from the space-
time connection. In the above sketched Einstein-Cartan-Maxwell-Dirac context, how-
ever, the spacetime connection is not a fundamental field butderives from the 2-spinor
connection and the tetrad. These yield also the torsion, which couples to the Dirac field
in such a way to become unavoidable.

Let us consider the Dirac equation with fixed background gravitational and electro-
magnetic fields. The Dirac Lagrangian (which we do not need here) yields the Euler-
Lagrange operatorE , and the Dirac equation can be written asEψ = 0 , where

Eψ : M → L
3/2 ⊗ Y

∗ ⊗
M

WF .

Namely, the Euler-Lagrange operator can be viewed as sending generalized
L−3/2 ⊗ W-valued sections to generalizedL3/2 ⊗ W∗-valued densities (as we have a
fixed background volume formη induced by the metric, the distinction between sec-
tions and densities is not essential here). It can be conveniently expressed through the
co-tetrad2̆ := 2−1 ⊗ η as

(Eψ) Ȧ =
√

2 i 2̆a
AȦ ∇aψ

A − mψȦ det2+ i√
2 TAȦψ

A ,

(Eψ)A =
√

2 i 2̆aAȦ ∇aψȦ − mψ A det2+ i√
2 T AȦψȦ ,

wherem ∈ L−1 and

TAȦ := 2̆a
AȦ T̆a = ∂a2̆

a
AȦ + 1

2 (2̆
a
B Ȧ 0̃

BĊ
a AĊ + 2̆a

AḂ 0̃
C Ḃ

a C Ȧ)

(spinor indices are raised and lowered through a normalizedsymplectic formε, its
inverse and their conjugates).
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If φ ∈ D◦(M ,L3/2 ⊗ W) then 〈Eψ,φ〉 =
〈

ψ, E ′φ
〉

, where E ′φ : M →
L3/2 ⊗ Y∗ ⊗ WF has the local coordinate expression

(E ′φ)A = −
√

2 i ∂a(2̆
a
AȦφ

A˙)−
√

2 i 2̆a
AȦ4

A
a B φ

A˙− mφA det2+ i√
2 TAȦφ

A˙,

(E ′φ)A˙= −
√

2 i ∂a(2̆
aAȦφA )+

√
2 i 2̆aAȦ 4̄ Ḃ

a Ȧ φA − mφA˙ det2+ i√
2 T AȦφA .

Now, our task is working on this expression in such a way to recognize it as represent-
ing an intrinsic object. Taking into account the above written expressions for4 A

a B and
TAȦ we arrive, after some calculations, to

(E ′φ)A = −
√

2 i 2̆a
AȦ ∇aφ

A˙− mφA det2− i√
2 TAȦφ

A˙,

(E ′φ)A˙= −
√

2 i 2̆aAȦ ∇aφA − mφA˙ det2− i√
2 T AȦφA .

This formula has a straightforward interpretation. Consider the conjugate generalized
sectionψ̄ : M  L3/2 ⊗ W and note that the target bundle is the same as that ofφ

above (by the way,̄ψ can be identified with the ‘Dirac adjoint’ ofψ via the exchange
mapW ≡ U ⊕ UF → UF ⊕ U ≡ WF). Then

E
′ψ̄ = Ēψ ≡ Eψ,

namelyE ′ is just the complex-conjugate operator ofE .

Note how this balance depends from the fact that the torsion is included in the
operator. If one defines a new operatorẼ by dropping the torsion terms, then one gets
them doubled in the distributional adjointẼ ′.
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