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MIXED PARAMETRIZATION FOR CURVED EXPONENTIAL
MODELS IN HOMOGENEOUS MARKOV PROCESSES WITH
A FINITE STATE SPACE

Abstract. In this paper we deal with homogeneous continuous-time
Markov chains (namely homogeneous Markov processes witlita §tate
space) and we apply the so-called geometrical theory d$stal models

to analyze their structure. The results presented hereeanrisidered as

a continuous-time version of the results of Rogantin ([10])

1. Introduction

In this paper we consider the so-called geometrical thebsyatistical models and we
present a geometrical model of homogeneous continuowesMiarkov chains (namely
homogeneous Markov processes with a finite state space)arfdlegous results con-
cerning the discrete-time case are presented by Rogaffif);(jn particular, for the
binary case (namely the case with 2 states only), there ihanceference (Rogantin,
[9]).

The results presented in this paper and the analogous sesuitcerning the
discrete-time case are similar; however there are somerdif€tes which will be
pointed out in section 6.

In this paper we find a parametrization such that the set adrpaters splits in
two orthogonal blocks: the first one represents the margiis#tibutions, the second
one represents the intensity matrix which plays the rolehef transition matrix in
the discrete-time case. We remark that the maximum likethestimators of two
orthogonal blocks of parameters are asymptotically inddpat: see e.g. Barndorff-
Nielsen and Cox ([4] p. 98) and Murray and Rice ([7] p. 216). &g remark that
orthogonal parametrizations are considered in severerdiit situations: for instance
see Cox and Reid ([5]).

Section 2 is devoted to recall some preliminaries.

In section 3 we present the log-likelihood (with respect wudable lawQ) con-
cerning a homogeneous continuous-time Markov clidiitc[o, ] and we still have a
so-called curved exponential model (see e.g. [4] p. 65).

In section 4 we generalize the mixed parametrization forciimyed exponential

*The author thanks G. Pistone and M.P. Rogantin for usefaldisons.
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model presented in section 3; we recall that the mixed pararaton is a way to
obtain an orthogonal parametrization between two sub$§etrameters in exponential
models: for instance see Amari ([1]) and Barndorff-Nielaed Cox ( [4] p. 62).

In section 5 we consider two submodels: the first one is aqdati exponential
submodel, the second one concerns the stationary case.

Finally section 6 is devoted to present some concluding resna

An infinite-dimensional version of the mixed parametriaatis presented in an ar-
ticle of Pistone and Rogantin ([8]) where one can find a widdidigraphy concerning
the geometrical theory of statistical models; in particul@ point out here the refer-
ence of Amari ([2]).

2. Preliminaries

In this section we give a short overview of the basic defingidn this paper. For a
detailed presentation the reader should consult one obilmess cited above.

Let X be a measurable space (called sample space) anthéeto -finite measure
on X. Then a statistical model is a family of probability derestip(x; 6) : 6 € ©)
with respect tov (v is called dominating measure) whegeis an open subset &
(for somed > 1) andp(x; 0) is sufficiently smooth irf.

Given a statistical mod€lp(x; 0) : 6 € ®), we have a submodel whénbelongs
to a suitable subs&g of ©.

Now letT : X — RY be a measurable function and let us denote the usual scalar
product inRY by (-, ). Then(p(x; #) : 6 € ©) is an exponential model if the log-
likelihood logp(x; 8) can be written as

1) log p(x; 6) = (T(x), 6) — W (0)

for all 0 € ®, whereV is the normalizing factor
v() = f elT®0)y(dx).
X

Similarly (p(x; 6) : 0 € ®g) is an exponential submodel if (1) holds for élk ©q.

In view of presenting another concept, let the log-liketidd1) of an exponential
model and an open subset of RY with d’ < d be given; then a statistical model
(q(x; u) : u € ®) is said to be a curved exponential model if we have

logq(x; u) = (T(x), 6(U)) — W (6 (W)

forallu € ®, wheref = 6(u) is satisfies suitable conditions.

Before concluding this section, in view of presenting thade below, we point out
that we use capital letters for the random variables andl $ettars for the correspond-
ing sample values.
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3. Homogeneous and non-stationary case

Let (J)tepo,1] be a continuous-time Markov chain, namely a homogeneou&dar
process with a finite spacé = {1,...,s}, let us denote its initial distribution by
(p(lo), péo)) and let us denote its intensity matrix Iy = («(i, j))i,jee. More
precisely we assume thati, j) > O foralli, j € Ewithi # j and

Y ali, j)=0 (vi € E);

jeE

in what follows it is useful to refer to the positive values

2 a(i) =—al.iy= Y al.j) (Vi €E).
jeE, j#Ai
Moreover, for each € [0, T], the marginal distributiori p(lt), pg)) of J; satisfies

the obvious condition) ;. pi(t) = 1 and we have

(3) (p:(l_t)7 AR ét)) = (p;_O)7 AR éO))etG

whereet® is the matrix exponential dfG.

The papers of Rogantin ([9] and [10]) concerning the discteghe case deals with
a n-sample; here, in order to have a simpler presentation, wayal consider a 1-
sample of( J)te[o0,1]-
In what follows the ensuing random variables are needed:
for each staté e E, let N© be the indicator of the everiy = i} (namelyN® =
1Jo=i);
for each state € E, let Tj) be the sampling occupation time @f,)uefo, 17 iNi;
fori, j e Ewithi # j, letKj; be the sampling number of transitions @f)ue[o,1]
fromi to j.
Moreover letK be defined as

(4) K= > Kij

i,jeE, i#j
and let(Th)n>0 be the epochs of the jumps @3 )t>0, SO that in particular we have
O=To<Ti<...<Tgk<T <TK+1.

Then we can consider a version of the likelihood with respea dominant lanQ
for (J)tepo,1) havingq©® = (qio), ..., 09 as the initial distribution anGq =
(B(i, )i jee as the intensity matrix; in particular we can consider thsitpe val-
ues(B(i))ice Which play the role of the valug®(i))ice in (2) for the matrixG and
we have

Bl)=—pi.iy= > BG.j) (vieE).

jeE, j#i
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Thus a version of likelihood is
f(p@, G)

f(q©@,Gg)

where

a(jth,la jth)

k
f(p(O), G) = pg(?) l—[ @(jt,_y) €XP(—a(jtp_y) (th — th-1)) a(jty_1)

h=1

=1if k=0

exp—a(je) (T — ) =
© C e (it
=TT [T et s [Te @
icE i,jeE, j#i icE

and, obviously,

ﬁ(jth,la jth)

k
1@©, G =a ] Blin-0) exp—=B(it )t — th-1)) =2
IB(Jth,l)

h=1

=1 if k=0

~exp(—B(ju)(T — ) =
0 ks _B(it
=[Ta@®™ [T sa.p[TerOw.
icE i,jeE, j#i icE
If we consider a choice of the matr&qg such thaig(i) = 1 foralli € E and if we set

p©@ =q© (namelyp® = g foralli € E), we obtain

(0) N
fp@, o =[]me™" [] sdpeT
icE i,jeE, j#i

whence we have

f(p©,G) . ad, j)
ogiz—g tiyo(i) + E kijlog———= +T =
f(p0.Go — & e TR

al, j)/ald . .
= Z Kij log,BEij'ii/ﬂEi; + Z Kij |Oga(l)+2(l—a(l))t(i)
i,j€E, j#i 1D/ i,j€E, j#i icE

becaused ; gty = T. This expression agrees with the expression presented by
Dacunha-Castelle and Duflo ([6] p. 286) which concerns a togrpoint process
with marks (see [6] p. 264).

Throughout this paper we consider a different choice of tbhmidant law Q,
namely

1
q% = S (Vi € E)
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and
B, J)=1 (vi, ] € Ewithi # j).

Then the positive value@(i))ice which play the role of the value®(i))ice in (2)
are
Bli)=—pi.i)= >  Bl.j)=s—1 (Vi €E).
JjeE, j#i

Thus it is easy to check that a version of the log-likeliha®d i

f(p©,G)

— 0) (0) i
ogf(q(T7GQ)_logs+Zni log p{” = Y "tiyerli)+

icE icE
+ ) kiploga(.j)+(s—DT;
i jeE, j#i
indeed we haved (@, Gg) = L exp(—(s— DT).
By taking into accoun} ; g n; n® =1 and) ;g tiy = T, the latter can be rewrit-

ten in a different way; more preC|ser we choose the elemgitisindexs to play the
role of pivot (other choices lead to analogous results) aathave

2.6 & oo, P, .
91— Z log P =+ >t (s —al) +
f(q©.Go & g) ot
+ Z kij loga(, j) +logs+ log p¥ — a(9)T + (s— DT =
i,jeE, j#i
s—1 p s—1
(5) =Y n?log '(0)+Zt(i)(cx(s)—cx(i))+
i Ps” iz

=1
+ > kjloga(, j) - [(a(s) — (s— 1)T —logsp].
ijeE, j#i
We remark that we should write down—lzk 1 pl((o) in place ofp(o).

Now let us consider the following parameters:
0 asdjj = loga(i, j) fori, j € Ewithi # j;
;“asp(o)forl_l ,s—1.
Then the model (5) can be parametrized withnd¢ ; indeed, by (2), we have

ali) = Z eli (Vi € E)
jeE, j#i

which define a full rank transformation (see Appendix). Thedel (5) is curved be-
cause the relations between the parameters) and the canonical parameters are not
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linear and the dimension of the sufficient statistics iséatpan the dimension of the
parameters. Indeed the sufficient statistics is
0
((ni( ), ti))i=1,...s—1, (Kij)i,jeE, i=j)
so that its dimension is
26-D+ss-)=s-1+s*-1,

while the dimension of the parametéés ¢) is obviously

ss—1)+s—1=s°—1.

Now let us consider the smallest exponential model whichaina the model (5).
For this exponential model we refer to the usual notatiomefibg-likelihood

(6) (r1,61) + (ra2, 62) — ¥ (61, 62)

whereyr is the normalizing factor; more precisely here we have

rg = (ni(o), tiy)i=1,...s—1 andrz = (kij)i,jeE, i»j SO that the dimensions éf andé;
are 4s — 1) ands(s — 1) respectively. Moreover, for better explaining the struetu
of the curved exponential model concerning (5), in (6) weehav = 61(6, ¢) and
02 = 62(0, ¢) defined by

© L ’
(7) 61 = ((log %)izl,...,s—l, (Z?:i & =3t i @)imt 5D
02 = (0ij )i, jeE, i

where, as beforegp”’ stands for - Sl plio).

Thus, if we denote the manifold corresponding to (6)/bty the model (5) corre-
sponds to a submanifolehnoembedded ioV1. Moreover, as far as the dimensions are
concerned, we have

(8) dmM =2(s—1)+s(s—1)=s—1+s°—1
and
(9) dimSomo=s(s—1) +s—1=s>—1;

we remark that, as for the discrete-time case, the differbetween diro1 and
dimSomois equal tos — 1.

The first 2s — 1) elements oV (01, 62) will be denoted by(V/ (01, 62))1 and they
correspond to the parameters which depend on the margstebdtions. Then

) m= (V01,021
e
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represents a mixed parametrization for the exponentiabin&.

We remark that the parametrization of the marginal distidins in (6) emphasizes the
initial distribution and the integral of the marginal dibtrtions on [Q T]; indeed, for
alli € E, we have

(10) Ep“”,G['\'i(O)] = pi(O)
and

T t
(11) E o6l = fo pdt.

We also remark that
d
gi(P p) = pP, ..., pMeCe = (pl,..., PG

by (3); thus, by taking into account (11), we obtain

Td
Epo cl(Ta, ... To)IG = /0 a(pf),..., O)dt
= (pg_T)!"'v péT))_(pg_O),.-., péo)).

As pointed out in the papers of Rogantin ([9] and [10]), theap@etrization of marginal
distributions in the smallest exponential model which edmg the model of a homoge-
neous discrete-time Markov chaid:)t—o,1....T emphasizes the following quantities:
the initial distribution(pi(o))ieE, the final distribution( pi(T))ieE and the sum of the
intermediate marginal distributiorqgtT:_l1 pi(t))ieE.

Thus (10) and (11) lead us to similar conclusions for the icolous-time case;
indeed here we have the integral which plays the role of the @od the main differ-
ence is that the final distributio(rpi(T))ieE is not emphasized. This means that, with
respect to this parametrization, the final statecan be neglected; this can be moti-
vated by noting thajt is determined by the initial statp and the transitions num-
bers(kij)i,jcE, iz} and this leads us to think that it is possible to consider &wdift

parametrization with respect to which the final distribnt'(mi(T))ieE is emphasized.
For better explaining how we can determifeby knowing jo and(kij )i, jeE, ixj, for
each staté € E let Aj andB; be the random variables

A = Z Kji and Bj = Z Kij s
JE€E, j#i J€E, j#i
then we have two different situations:jif = jo we have
g — b =0 foralli € E;
if jT # jowe have
0 ifi # joandi # jT
a—-b=4{ +1 ifi=jr
=1 ifi=jo
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Finally we point out another difference: in the continudiuse case the total number of
transitions of( J)t<[o,1] is @ random variable (namely in (4)), while in the discrete-
time case the total number of transitions(df)t=o.1,.... 7 IS not random because it is
equal toT. Some further differences between discrete-time case amihcous-time
case are presented below (section 6).

4. Generalization of mixed parametrization for curved expmential models

First of all let us consider a notation used in what followse tdentity matrix of di-
mensionm (m > 1) will be denoted by .

Then let us start with a parametric representatiodgfo in M: for the functionF
defined by (7) we have

(12) Somo : { gi;(i,e)

Then let us consideP = (¢, 6) in Somo and letys(0) be the coordinate surface
throughlf> lying on Some; & parametric representation is

oy 5 | B2 FE0

Now let F»(Z, ) be the matrix with the derivatives d¥ (¢, ) with respect to the
parameterg and evaluated i?; we remark that the matrik>(¢, ) has 2s— 1) rows

249 generate the
s(s—1)

tangent space tps (6) at the poinﬂ5; obviously the matri>§/|’3 (0) has 4s—1)+s(s—1)
rows ands(s — 1) columns.

Itis possible to write down an exponential model which cep@nds to\t such that in

P has the lattes(s— 1) coordinates proportional %(6) and the parameters - denoted
by (t1, T2) - are linear combinations @b1, ). More precisely we have

ands(s — 1) columns. Then the columns of the matpié,((é) = (

(11, 72) + (11, r2) 75 0). 72) — ¥ (21, 2)
which can be rewritten as follows
(r1, 7+ F2(2, 0)12) + (12, 12) — ¥(11, 72)

so that, by taking into account (6), we can consider the fanc¢t defined as follows

01 =11+ F2(Z,0)12
o =10

’

(t1, 72) > (01, 02) = h(r1, ) = {

then in particular we have

Y (h(ty, 12)) = ¥ (11, T2)
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and 3
Vo (h(t1, 2)) In (71, T2) = Ve (11, 72)

las—1)  Fa(;.0
In(r1, 12) = < 02(5 D |52(£§’1) ) )

where

is the Jacobian matrix df in which we exhibit the blocks of dimensiof®— 1) and
s(s — 1). Thus, as far as the first — 1) components are concerned, the gradients
coincide:

(13) (Vor (N(t1, )1 = (Vo ¥ (71, T2)1.

In conclusion, if we consider the mixed parametrizationSamo, the parameters;
which depend on the marginal distributions are orthoganti¢ parametersin P.

Now let H be the coordinate surface correspondingidn P; we remark that{
corresponds to an exponential submodebihso that it is not curved. We can say that
H is orthogonal to the tangent spaceAg(d) at the pointP.

Moreover let us consider the surfa@gno = H N Somo We can say that diyme =

s — 1. Indeed, for eaclP € Somo the tangent space & (which is A itself) at the
point P is orthogonal to the tangent spaceig(0) at the point® and the sum between
the dimensions of these two tangent spaces is equal taudirtmen, by (9) and (8),

(14) dimCOmQ: d|mH + dimSOmo— d|mM ==

=25—1D+(*-1)—(s—1+s?—-1)=s—-1

follows from Grassmann formula. A }
This fact does not depend on the selected pBintindeed, for any other poirf in
Como let y(6) be the coordinate surface throughand the orthogonal space to the

tangent spacgzl’5 (0) is still H by (13).
In conclusion the surfac&me can be represented with— 1 parameters function of
ni.

5. Two submodels inSomo

The first submodel concerns the case in which all the vadiesj) (i, j € E with
i # j) are equal to a fixed positive value; in such a case we obtagexponential
submodel. The second case concerns the stationary case.

5.1. An exponential submodel inSome

Let us consider the case in which all the valugis j) (i, j € E withi # j) are equal
to a positive valuer; in such a case (2) gives

ai) = (s— Da (Vi € E).
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Then, by referring to the random varialite defined in (4), the log-likelihood in (5)
becomes

Z n® log (0) - kloger — [ — D(er — DT — logsp®]:

we still remark that we should write down-1) ;_7 pf(o) in place ofp .

Thus we have an exponential submodebgh (S0 that it corresponds to a not curved
surface) and its dimension$s more precisely

(v1, 01) + (v2, 62) — Y™ (61, 602)

where:
Y¥* is the normalizing factor;
v1 andd; have dimensios — 1, v1 = (ni(o))i=1,...,sfl and

EPNON _ P . .
(15) b1= (61 i=1..s-1 = (109 —5)i=1..s-1;
Ps

v2 andé, have dimension Iy, = k andf, = loga.
Then, as far as the expressionyof(61, 62) is concerned, we have

s—-1 .
(16) PH(61.62) = (s — (€2 — DT —logls(1 + Y &)~ 1;
i=1

we remark that, in order to obtain (16)» = log« and (15) give

(17) a =¢e”
and .
s— 0
Tt - Yraie” 1-p 1
—~ p(0) péo) p(O)
whence we obtain
(18) (0)—(1+Ze1) L,

thus (16) follows by replacing (17) and (18)(8— 1)(@ — 1)T — logsp.
Finally let us consider the gradient ¢f (61, 62) in (16); we obtain

o
aeiw*(el, 02) = Vie{l,....,s—1}

1 oM
1435 5eh

and
do, " (01, 62) = (s — 1)E’T,



Mixed parametrization 263

so that we have

0
p®

0
0 .
By ¥ = —Fr  —=p? vie(d....s-1)

s—1 Pj
1+>5 @
and
3o, " = (s — DaT.
In conclusion the paramete(rpi(o))iﬂws,l concerning the initial distribution are or-
thogonal to(s — 1)aT.
5.2. Stationary case

In such a case the initial distribution and the other malgiistributions coincide;
these distributions can be expressed in terms of the emwifila® matrixG introduced

at the beginning of section 3; thus we hays — 1) parameters. In such a case the log-
likelihood in (5) can be rewritten in an analogous way, V\(i[:lﬁo))iﬂws,l replaced
by suitable functions of the entries of the intensity ma@ix

This model is represented by a submanifsigh, embedded if and let us consider
Csta = H N Ssta; then, since we have disia = s(s — 1), we can still employ
Grassmann formula as in section 4 and we obtain

dimCSta = d|mH + dimSSta— d|mM =

=25—1)+s(s—1)—(s—1+s°—1)=0.

In next section 6 dindsta = 0 will be explained in a more direct way.
Finally we remark that the choice of initial distributiond@nder to have the stationary
case gives — 1 further conditions; this explains in a direct way the faling:

(19) dimCOmo— dimCsta =S — 1

6. Concluding remarks

6.1. Comparison with the discrete-time case

Let us start by recalling some results derived in the prevgmctions:
dimCsta=0; dimComo=5—1;, dmH =2(s—1)

where dinfH coincides with the number of components)af
The analogous results concerning the discrete-time cadsee Rogantin, [10]):
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Thus (19) still holds in the discrete-time case and it seemset natural; indeed, in
order to have the stationary case, the initial distributian be expressed in terms of
suitable functions of the entries of the transition matrid ave still haves — 1 further
conditions.

In both the cases (continuous-time and discrete-time) we (8) and (9). More-
over we have
dimSomo=s—1+s(s—1)

(see (9)) which seems to be natural; indeed we lsavel conditions for the initial
distribution ands(s — 1) further conditions which concern the intensity mat@xin
the continuous-time case and the transition matrix in teerdie-time case.

As far as dinf{ is concerned, (14) holds in both the cases and the differeece
tween the continuous-time case and the discrete-time caszems the different di-
mensions of the sufficient statistics. More precisely, Hgnming to the log-likelihood
in (6), in the continuous-time case we have

0
r= (ni( ), ti))i=1,..s-1
while, in the discrete-time case, its analogous is

T-1

0 t) (T
ri= (ni( ), Z ni( ), ni( ))izl,...,s—l
t=1
where, for each statee E and for each timé € {0, 1, ..., T}, the random variable

1) - .- . t
Ni( ) is the indicator of the everfty =i} (namerNi() =13=i).

Finally by (10) and (11) we have

m=m", 02 = (P, sl,(/ pVdt)izt s 1)

thus, by (12) withF defined by (7), the surfacg,mo can be represented with— 1
parameters functions 071‘11) only (namely the initial distribution only). This fact also
explains in a more direct way that the surfatg, concerning the stationary case is
reduced to a single point.

6.2. A possible future work

An idea for a possible future work concerns Markov additivecesses (see e.g. [3]
pp. 39-47), namely bivariate Markov process&s S ) where(J;) is a Markov process

with state spac& and the increments of tHed-valued processS ) satisfy a suitable

condition. In particular one could refer to the case in wHicis finite because, in such
a case, the structure of Markov additive process is complatelerstood with some
differences between discrete-time case and continumesdase.
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Thus we could expectto find out some differences in terms ofrggtrical theory of
statistical models. These differences could have someemtiom with the differences
presented in this paper between discrete-time case anidgous-time case for;).

Appendix

Let us consider the model (5) and the parameters introduncgekition 3:
6 asdjj =loga(i, j) fori, j € Ewithi # j;
e aspi(o) fori=1,...,s—1.

We concentrate our attention on the function defined asvistiahe image of a

point((pi(o))i=1ws,1, 9) in the domain is

p_(o) s—1 s
((log ﬁ)i:lw,st (Z efsi — Z el )i=1,...,.s-1, 0).
1-2 1P i1 =1, j#i

Thus the jacobian matrix is

Bi O
J = 0 B>
0 |s(s—1)
in which we exhibit three blocks:
0
9 B

B1=( log -
3p§0) 1- Y501 Py

s—1 S
d ) .
B2 = (87--(2 e’ — Z M) ket s 1 i jeE i)
=1 j=1. j#k
|s(s—1)'

Then the transformation has full rank if we find an invertibieaor in J of orders —
1+ s(s—1). To this aim we remark that

det( B 0 > = detBy;
0 Is(s—l)

then we need to prove that d&t # 0. This follows from the next

ProPOSITION1. We have

1 1

1
OO s—1 (0"
Py Ps_11— k1 P«

detB; =
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Proof. In this proof it will be useful to write dowrpé in place of 1- Y p_7 pf(o) Let

us start an explicit expression for the entriedBgf fori, j = 1,...,s— 1 we have
©) + = + i=j
30 log p! _ I(0) Zﬁ I ng) pl<o> péo) (- J.)
8p( ) 1- Zk 1 p|(() 1— ZS ip&(’) = PO G#1

Then, in order to write down the columns Bf, let us consider the following notation:
let beC the column having all the entries equal;)% and, forallk =1,...,s—1, let
S

Ck be the column havin%% in thek-th place and all the other entries equal to zero.
k

Then we have
By =(C+Cy,...,C+Cs_1);

namely, for allk = 1,...,s — 1, thek-th column isC + Ci. It is known that the
determinant of a matrix is multilinear with respect to théuoons of matrix and, when
at least two columns of a matrix coincide, its determinargdsal to zero; thus we
obtain

s—1
detBlzde(Cl,...,Cs,l)Jeret(Cl,...,Ck,l,C,Ck+1,...,Cs,1)=
k=1
s—1
1 1 +Z 1 1 1 1 1
OO © o 0.0 0o —
pl Ps—1 k=1 P1 pk 1 Ps™ Pria ps 1
0 0
. () Zk 1p|(<)_ 1
- 0 0 =0 0"
p(1>...p§> p(1>...p§>
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