
Rend. Sem. Mat. Univ. Pol. Torino
Vol. 59, 4 (2001)

C. Macci∗

MIXED PARAMETRIZATION FOR CURVED EXPONENTIAL

MODELS IN HOMOGENEOUS MARKOV PROCESSES WITH

A FINITE STATE SPACE

Abstract. In this paper we deal with homogeneous continuous-time
Markov chains (namely homogeneous Markov processes with a finite state
space) and we apply the so-called geometrical theory of statistical models
to analyze their structure. The results presented here can be considered as
a continuous-time version of the results of Rogantin ([10]).

1. Introduction

In this paper we consider the so-called geometrical theory of statistical models and we
present a geometrical model of homogeneous continuous-time Markov chains (namely
homogeneous Markov processes with a finite state space). Theanalogous results con-
cerning the discrete-time case are presented by Rogantin ([10]); in particular, for the
binary case (namely the case with 2 states only), there is another reference (Rogantin,
[9]).

The results presented in this paper and the analogous results concerning the
discrete-time case are similar; however there are some differences which will be
pointed out in section 6.

In this paper we find a parametrization such that the set of parameters splits in
two orthogonal blocks: the first one represents the marginaldistributions, the second
one represents the intensity matrix which plays the role of the transition matrix in
the discrete-time case. We remark that the maximum likelihood estimators of two
orthogonal blocks of parameters are asymptotically independent: see e.g. Barndorff-
Nielsen and Cox ([4] p. 98) and Murray and Rice ([7] p. 216). Wealso remark that
orthogonal parametrizations are considered in several different situations: for instance
see Cox and Reid ([5]).

Section 2 is devoted to recall some preliminaries.

In section 3 we present the log-likelihood (with respect to asuitable lawQ) con-
cerning a homogeneous continuous-time Markov chain(Jt )t∈[0,T] and we still have a
so-called curved exponential model (see e.g. [4] p. 65).

In section 4 we generalize the mixed parametrization for thecurved exponential
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model presented in section 3; we recall that the mixed parametrization is a way to
obtain an orthogonal parametrization between two subsets of parameters in exponential
models: for instance see Amari ([1]) and Barndorff-Nielsenand Cox ( [4] p. 62).

In section 5 we consider two submodels: the first one is a particular exponential
submodel, the second one concerns the stationary case.

Finally section 6 is devoted to present some concluding remarks.

An infinite-dimensional version of the mixed parametrization is presented in an ar-
ticle of Pistone and Rogantin ([8]) where one can find a wide bibliography concerning
the geometrical theory of statistical models; in particular we point out here the refer-
ence of Amari ([2]).

2. Preliminaries

In this section we give a short overview of the basic definitions in this paper. For a
detailed presentation the reader should consult one of the sources cited above.

LetX be a measurable space (called sample space) and letν be aσ -finite measure
onX . Then a statistical model is a family of probability densities(p(x; θ) : θ ∈ 2)

with respect toν (ν is called dominating measure) where2 is an open subset ofRd

(for somed ≥ 1) andp(x; θ) is sufficiently smooth inθ .

Given a statistical model(p(x; θ) : θ ∈ 2), we have a submodel whenθ belongs
to a suitable subset20 of 2.

Now let T : X → R
d be a measurable function and let us denote the usual scalar

product inR
d by 〈·, ·〉. Then(p(x; θ) : θ ∈ 2) is an exponential model if the log-

likelihood logp(x; θ) can be written as

(1) log p(x; θ) ≡ 〈T(x), θ〉 −9(θ)

for all θ ∈ 2, where9 is the normalizing factor

9(θ) ≡

∫

X

e〈T(x),θ〉ν(dx).

Similarly (p(x; θ) : θ ∈ 20) is an exponential submodel if (1) holds for allθ ∈ 20.

In view of presenting another concept, let the log-likelihood (1) of an exponential
model and an open subset2′ of R

d′
with d′ < d be given; then a statistical model

(q(x; u) : u ∈ 2′) is said to be a curved exponential model if we have

logq(x; u) ≡ 〈T(x), θ(u)〉 −9(θ(u))

for all u ∈ 2′, whereθ = θ(u) is satisfies suitable conditions.

Before concluding this section, in view of presenting the topics below, we point out
that we use capital letters for the random variables and small letters for the correspond-
ing sample values.
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3. Homogeneous and non-stationary case

Let (Jt )t∈[0,T] be a continuous-time Markov chain, namely a homogeneous Markov
process with a finite spaceE = {1, . . . , s}, let us denote its initial distribution by
(p(0)1 , . . . , p(0)s ) and let us denote its intensity matrix byG = (α(i , j ))i, j ∈E. More
precisely we assume thatα(i , j ) > 0 for all i , j ∈ E with i 6= j and

∑

j ∈E

α(i , j ) = 0 (∀i ∈ E);

in what follows it is useful to refer to the positive values

(2) α(i ) = −α(i , i ) =
∑

j ∈E, j 6=i

α(i , j ) (∀i ∈ E).

Moreover, for eacht ∈ [0, T ], the marginal distribution(p(t)1 , . . . , p(t)s ) of Jt satisfies

the obvious condition
∑

i∈E p(t)i = 1 and we have

(3) (p(t)1 , . . . , p(t)s ) = (p(0)1 , . . . , p(0)s )etG

whereetG is the matrix exponential oftG.

The papers of Rogantin ([9] and [10]) concerning the discrete-time case deals with
a n-sample; here, in order to have a simpler presentation, we always consider a 1-
sample of(Jt )t∈[0,T] .
In what follows the ensuing random variables are needed:
for each statei ∈ E, let N(0)

i be the indicator of the event{J0 = i } (namelyN(0)
i =

1J0=i );
for each statei ∈ E, let T(i ) be the sampling occupation time of(Ju)u∈[0,T ] in i ;
for i , j ∈ E with i 6= j , let K i j be the sampling number of transitions of(Ju)u∈[0,t ]
from i to j .
Moreover letK be defined as

(4) K =
∑

i, j ∈E, i 6= j

K i j

and let(Th)h≥0 be the epochs of the jumps of(Jt )t≥0, so that in particular we have

0 = T0 < T1 < . . . < TK ≤ T < TK+1.

Then we can consider a version of the likelihood with respectto a dominant lawQ
for (Jt )t∈[0,T] having q(0) = (q(0)1 , . . . ,q(0)s ) as the initial distribution andGQ =

(β(i , j ))i, j ∈E as the intensity matrix; in particular we can consider the positive val-
ues(β(i ))i∈E which play the role of the values(α(i ))i∈E in (2) for the matrixG and
we have

β(i ) = −β(i , i ) =
∑

j ∈E, j 6=i

β(i , j ) (∀i ∈ E).
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Thus a version of likelihood is
f (p(0),G)

f (q(0),GQ)

where

f (p(0),G) = p(0)j0

k
∏

h=1

α( jth−1) exp(−α( jth−1)(th − th−1))
α( jth−1, jth)

α( jth−1)
︸ ︷︷ ︸

=1 if k=0

· exp(−α( jtk)(T − tk)) =

=
∏

i∈E

(p(0)i )n
(0)
i

∏

i, j ∈E, j 6=i

α(i , j )ki j
∏

i∈E

e−α(i )t(i )

and, obviously,

f (q(0),GQ) = q(0)j0

k
∏

h=1

β( jth−1) exp(−β( jth−1)(th − th−1))
β( jth−1, jth)

β( jth−1)
︸ ︷︷ ︸

=1 if k=0

· exp(−β( jtk)(T − tk)) =

=
∏

i∈E

(q(0)i )n
(0)
i

∏

i, j ∈E, j 6=i

β(i , j )ki j
∏

i∈E

e−β(i )t(i ) .

If we consider a choice of the matrixGQ such thatβ(i ) = 1 for all i ∈ E and if we set

p(0) = q(0) (namelyp(0)i = q(0)i for all i ∈ E), we obtain

f (p(0),GQ) =
∏

i∈E

(p(0)i )n
(0)
i

∏

i, j ∈E, j 6=i

β(i , j )ki j e−T

whence we have

log
f (p(0),G)

f (p(0),GQ)
= −

∑

i∈E

t(i )α(i )+
∑

i, j ∈E, j 6=i

ki j log
α(i , j )

β(i , j )
+ T =

=
∑

i, j ∈E, j 6=i

ki j log
α(i , j )/α(i )

β(i , j )/β(i )
+

∑

i, j ∈E, j 6=i

ki j logα(i )+
∑

i∈E

(1 − α(i ))t(i )

because
∑

i∈E t(i ) = T . This expression agrees with the expression presented by
Dacunha-Castelle and Duflo ([6] p. 286) which concerns a counting point process
with marks (see [6] p. 264).

Throughout this paper we consider a different choice of the dominant law Q,
namely

q(0)i =
1

s
(∀i ∈ E)
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and
β(i , j ) = 1 (∀i , j ∈ E with i 6= j ).

Then the positive values(β(i ))i∈E which play the role of the values(α(i ))i∈E in (2)
are

β(i ) = −β(i , i ) =
∑

j ∈E, j 6=i

β(i , j ) = s − 1 (∀i ∈ E).

Thus it is easy to check that a version of the log-likelihood is

log
f (p(0),G)

f (q(0),GQ)
= logs +

∑

i∈E

n(0)i log p(0)i −
∑

i∈E

t(i )α(i )+

+
∑

i, j ∈E, j 6=i

k(i j ) logα(i , j )+ (s − 1)T;

indeed we havef (q(0),GQ) = 1
s exp(−(s − 1)T).

By taking into account
∑

i∈E n(0)i = 1 and
∑

i∈E t(i ) = T , the latter can be rewrit-
ten in a different way; more precisely we choose the elementswith indexs to play the
role of pivot (other choices lead to analogous results) and we have

log
f (p(0),G)

f (q(0),GQ)
=

s−1
∑

i=1

n(0)i log
p(0)i

p(0)s

+

s−1
∑

i=1

t(i )(α(s)− α(i ))+

+
∑

i, j ∈E, j 6=i

ki j logα(i , j )+ logs + log p(0)s − α(s)T + (s − 1)T =

=

s−1
∑

i=1

n(0)i log
p(0)i

p(0)s

+

s−1
∑

i=1

t(i )(α(s)− α(i ))+(5)

+
∑

i, j ∈E, j 6=i

ki j logα(i , j )− [(α(s)− (s − 1))T − logsp(0)s ].

We remark that we should write down 1−
∑s−1

k=1 p(0)k in place ofp(0)s .

Now let us consider the following parameters:
θ asθi j = logα(i , j ) for i , j ∈ E with i 6= j ;

ζ asp(0)i for i = 1, . . . , s − 1.
Then the model (5) can be parametrized withθ andζ ; indeed, by (2), we have

α(i ) =
∑

j ∈E, j 6=i

eθi j (∀i ∈ E)

which define a full rank transformation (see Appendix). The model (5) is curved be-
cause the relations between the parameters(θ, ζ ) and the canonical parameters are not
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linear and the dimension of the sufficient statistics is larger than the dimension of the
parameters. Indeed the sufficient statistics is

((n(0)i , t(i ))i=1,...,s−1, (k(i j ))i, j ∈E, i 6= j )

so that its dimension is

2(s − 1)+ s(s − 1) = s − 1 + s2 − 1,

while the dimension of the parameters(θ, ζ ) is obviously

s(s − 1)+ s − 1 = s2 − 1.

Now let us consider the smallest exponential model which contains the model (5).
For this exponential model we refer to the usual notation of the log-likelihood

(6) 〈r1, θ1〉 + 〈r2, θ2〉 − ψ(θ1, θ2)

whereψ is the normalizing factor; more precisely here we have
r1 = (n(0)i , t(i ))i=1,...,s−1 andr2 = (ki j )i, j ∈E, i 6= j so that the dimensions ofθ1 andθ2
are 2(s − 1) ands(s − 1) respectively. Moreover, for better explaining the structure
of the curved exponential model concerning (5), in (6) we have θ1 = θ1(θ, ζ ) and
θ2 = θ2(θ, ζ ) defined by

(7)







θ1 = ((log
p(0)i

p(0)s
)i=1,...,s−1, (

∑s−1
j =1 eθs j −

∑s
j =1, j 6=i eθi j )i=1,...,s−1)

θ2 = (θi j )i, j ∈E, i 6= j

where, as before,p(0)s stands for 1−
∑s−1

k=1 p(0)k .

Thus, if we denote the manifold corresponding to (6) byM, the model (5) corre-
sponds to a submanifoldSomoembedded inM. Moreover, as far as the dimensions are
concerned, we have

(8) dimM = 2(s − 1)+ s(s − 1) = s − 1 + s2 − 1

and

(9) dimSomo = s(s − 1)+ s − 1 = s2 − 1;

we remark that, as for the discrete-time case, the difference between dimM and
dimSomo is equal tos − 1.
The first 2(s − 1) elements of∇ψ(θ1, θ2) will be denoted by(∇ψ(θ1, θ2))1 and they
correspond to the parameters which depend on the marginal distributions. Then

M :

{

η1 = (∇ψ(θ1, θ2))1
θ2 = θ
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represents a mixed parametrization for the exponential model (6).
We remark that the parametrization of the marginal distributions in (6) emphasizes the
initial distribution and the integral of the marginal distributions on [0, T ]; indeed, for
all i ∈ E, we have

(10) Ep(0),G[N(0)
i ] = p(0)i

and

(11) Ep(0),G[T(i )] =

∫ T

0
p(t)i dt.

We also remark that

d

dt
(p(t)1 , . . . , p(t)s ) = (p(0)1 , . . . , p(0)s )etGG = (p(t)1 , . . . , p(t)s )G

by (3); thus, by taking into account (11), we obtain

Ep(0),G[(T(1), . . . , T(n))]G =

∫ T

0

d

dt
(p(t)1 , . . . , p(t)s )dt

= (p(T)1 , . . . , p(T)s )− (p(0)1 , . . . , p(0)s ).

As pointed out in the papers of Rogantin ([9] and [10]), the parametrization of marginal
distributions in the smallest exponential model which contains the model of a homoge-
neous discrete-time Markov chain(Jt )t=0,1,...,T emphasizes the following quantities:
the initial distribution(p(0)i )i∈E, the final distribution(p(T)i )i∈E and the sum of the

intermediate marginal distributions(
∑T−1

t=1 p(t)i )i∈E .

Thus (10) and (11) lead us to similar conclusions for the continuous-time case;
indeed here we have the integral which plays the role of the sum and the main differ-
ence is that the final distribution(p(T)i )i∈E is not emphasized. This means that, with
respect to this parametrization, the final statejT can be neglected; this can be moti-
vated by noting thatjT is determined by the initial statej0 and the transitions num-
bers(ki j )i, j ∈E, i 6= j and this leads us to think that it is possible to consider a different

parametrization with respect to which the final distribution (p(T)i )i∈E is emphasized.
For better explaining how we can determinejT by knowing j0 and(ki j )i, j ∈E, i 6= j , for
each statei ∈ E let Ai andBi be the random variables

Ai =
∑

j ∈E, j 6=i

K j i and Bi =
∑

j ∈E, j 6=i

K i j ;

then we have two different situations: ifjT = j0 we have

ai − bi = 0 for all i ∈ E;

if jT 6= j0 we have

ai − bi =







0 if i 6= j0 andi 6= jT
+1 if i = jT
−1 if i = j0

.
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Finally we point out another difference: in the continuous-time case the total number of
transitions of(Jt )t∈[0,T] is a random variable (namelyK in (4)), while in the discrete-
time case the total number of transitions of(Jt )t=0,1,...,T is not random because it is
equal toT . Some further differences between discrete-time case and continuous-time
case are presented below (section 6).

4. Generalization of mixed parametrization for curved exponential models

First of all let us consider a notation used in what follows: the identity matrix of di-
mensionm (m ≥ 1) will be denoted byIm.
Then let us start with a parametric representation ofSomo in M: for the functionF
defined by (7) we have

(12) Somo :

{

θ1 = F(ζ, θ)
θ2 = θ

.

Then let us consider̂P = (ζ̂ , θ̂ ) in Somo and letγ P̂(θ) be the coordinate surface

throughP̂ lying onSomo; a parametric representation is

γ P̂(θ) :

{

θ1 = F(ζ̂ , θ)
θ2 = θ

Now let F2(ζ̂ , θ̂ ) be the matrix with the derivatives ofF(ζ, θ) with respect to the
parametersθ and evaluated in̂P; we remark that the matrixF2(ζ̂ , θ̂ ) has 2(s− 1) rows

ands(s − 1) columns. Then the columns of the matrixγ ′

P̂
(θ̂ ) = (

F2(ζ̂ ,θ̂ )

Is(s−1)
) generate the

tangent space toγ P̂(θ) at the pointP̂; obviously the matrixγ ′

P̂
(θ) has 2(s−1)+s(s−1)

rows ands(s − 1) columns.
It is possible to write down an exponential model which corresponds toM such that in
P̂ has the latters(s−1) coordinates proportional toγ ′

P̂
(θ̂ ) and the parameters - denoted

by (τ1, τ2) - are linear combinations of(θ1, θ2). More precisely we have

〈r1, τ1〉 + 〈(r1, r2)γ
′

P̂
(θ̂ ), τ2〉 − ψ̃(τ1, τ2)

which can be rewritten as follows

〈r1, τ1 + F2(ζ̂ , θ̂ )τ2〉 + 〈r2, τ2〉 − ψ̃(τ1, τ2)

so that, by taking into account (6), we can consider the function h defined as follows

(τ1, τ2) 7→ (θ1, θ2) = h(τ1, τ2) =

{

θ1 = τ1 + F2(ζ̂ , θ̂ )τ2
θ2 = τ2

;

then in particular we have

ψ(h(τ1, τ2)) ≡ ψ̃(τ1, τ2)
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and
∇θψ(h(τ1, τ2))Jh(τ1, τ2) ≡ ∇τ ψ̃(τ1, τ2)

where

Jh(τ1, τ2) =

(

I2(s−1) F2(ζ̂ , θ̂ )

0 Is(s−1)

)

is the Jacobian matrix ofh in which we exhibit the blocks of dimension 2(s − 1) and
s(s − 1). Thus, as far as the first 2(s − 1) components are concerned, the gradients
coincide:

(13) (∇θψ(h(τ1, τ2)))1 ≡ (∇τ ψ̃(τ1, τ2))1.

In conclusion, if we consider the mixed parametrization onSomo, the parametersη1
which depend on the marginal distributions are orthogonal to the parametersθ in P̂.

Now letH be the coordinate surface corresponding toη1 in P̂; we remark thatH
corresponds to an exponential submodel inM so that it is not curved. We can say that
H is orthogonal to the tangent space toγ P̂(θ) at the pointP̂.
Moreover let us consider the surfaceComo = H ∩ Somo. We can say that dimComo =

s − 1. Indeed, for eacĥP ∈ Somo, the tangent space toH (which isH itself) at the
point P̂ is orthogonal to the tangent space toγ P̂(θ) at the pointP̂ and the sum between
the dimensions of these two tangent spaces is equal to dimM; then, by (9) and (8),

(14) dimComo = dimH + dimSomo− dimM =

= 2(s − 1)+ (s2 − 1)− (s − 1 + s2 − 1) = s − 1

follows from Grassmann formula.
This fact does not depend on the selected pointP̂. Indeed, for any other point̃P in
Como, let γ P̃(θ) be the coordinate surface throughP̃ and the orthogonal space to the
tangent spaceγ ′

P̃
(θ̃ ) is still H by (13).

In conclusion the surfaceComo can be represented withs − 1 parameters function of
η1.

5. Two submodels inSomo

The first submodel concerns the case in which all the valuesα(i , j ) (i , j ∈ E with
i 6= j ) are equal to a fixed positive value; in such a case we obtain anexponential
submodel. The second case concerns the stationary case.

5.1. An exponential submodel inSomo

Let us consider the case in which all the valuesα(i , j ) (i , j ∈ E with i 6= j ) are equal
to a positive valueα; in such a case (2) gives

α(i ) = (s − 1)α (∀i ∈ E).
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Then, by referring to the random variableK defined in (4), the log-likelihood in (5)
becomes

s−1
∑

i=1

n(0)i log
p(0)i

p(0)s

+ k logα − [(s − 1)(α − 1)T − logsp(0)s ];

we still remark that we should write down 1−
∑s−1

k=1 p(0)k in place ofp(0)s .
Thus we have an exponential submodel ofSomo (so that it corresponds to a not curved
surface) and its dimension iss; more precisely

〈v1, θ1〉 + 〈v2, θ2〉 − ψ∗(θ1, θ2)

where:
ψ∗ is the normalizing factor;
v1 andθ1 have dimensions − 1, v1 = (n(0)i )i=1,...,s−1 and

(15) θ1 = (θ
(i )
1 )i=1,...,s−1 = (log

p(0)i

p(0)s

)i=1,...,s−1;

v2 andθ2 have dimension 1,v2 = k andθ2 = logα.
Then, as far as the expression ofψ∗(θ1, θ2) is concerned, we have

(16) ψ∗(θ1, θ2) = (s − 1)(eθ2 − 1)T − log[s(1 +

s−1
∑

i=1

eθ
(i )
1 )−1];

we remark that, in order to obtain (16),θ2 = logα and (15) give

(17) α = eθ2

and
s−1
∑

i=1

eθ
(i )
1 =

∑s−1
i=1 p(0)i

p(0)s

=
1 − p(0)s

p(0)s

=
1

p(0)s

− 1,

whence we obtain

(18) p(0)s = (1 +

s−1
∑

i=1

eθ
(i )
1 )−1;

thus (16) follows by replacing (17) and (18) in(s − 1)(α − 1)T − logsp(0)s .
Finally let us consider the gradient ofψ∗(θ1, θ2) in (16); we obtain

∂
θ
(i )
1
ψ∗(θ1, θ2) =

eθ
(i )
1

1 +
∑s−1

j =1 eθ
( j )
1

(∀i ∈ {1, . . . , s − 1})

and
∂θ2ψ

∗(θ1, θ2) = (s − 1)eθ2T,
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so that we have

∂
θ
(i )
1
ψ∗ =

p(0)i

p(0)s

1 +
∑s−1

j =1
p(0)j

p(0)s

= p(0)i (∀i ∈ {1, . . . , s − 1})

and
∂θ2ψ

∗ = (s − 1)αT.

In conclusion the parameters(p(0)i )i=1,...,s−1 concerning the initial distribution are or-
thogonal to(s − 1)αT .

5.2. Stationary case

In such a case the initial distribution and the other marginal distributions coincide;
these distributions can be expressed in terms of the entriesof the matrixG introduced
at the beginning of section 3; thus we haves(s− 1) parameters. In such a case the log-
likelihood in (5) can be rewritten in an analogous way, with(p(0)i )i=1,...,s−1 replaced
by suitable functions of the entries of the intensity matrixG.
This model is represented by a submanifoldSsta embedded inM and let us consider
Csta = H ∩ Ssta; then, since we have dimSsta = s(s − 1), we can still employ
Grassmann formula as in section 4 and we obtain

dimCsta = dimH + dimSsta − dimM =

= 2(s − 1)+ s(s − 1)− (s − 1 + s2 − 1) = 0.

In next section 6 dimCsta = 0 will be explained in a more direct way.
Finally we remark that the choice of initial distribution inorder to have the stationary
case givess − 1 further conditions; this explains in a direct way the following:

(19) dimComo− dimCsta = s − 1.

6. Concluding remarks

6.1. Comparison with the discrete-time case

Let us start by recalling some results derived in the previous sections:

dimCsta = 0; dimComo = s − 1; dimH = 2(s − 1)

where dimH coincides with the number of components ofη1.
The analogous results concerning the discrete-time case are (see Rogantin, [10]):

dimCsta = s − 1; dimComo = 2(s − 1); dimH = 3(s − 1).
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Thus (19) still holds in the discrete-time case and it seems to be natural; indeed, in
order to have the stationary case, the initial distributioncan be expressed in terms of
suitable functions of the entries of the transition matrix and we still haves − 1 further
conditions.

In both the cases (continuous-time and discrete-time) we have (8) and (9). More-
over we have

dimSomo = s − 1 + s(s − 1)

(see (9)) which seems to be natural; indeed we haves − 1 conditions for the initial
distribution ands(s − 1) further conditions which concern the intensity matrixG in
the continuous-time case and the transition matrix in the discrete-time case.

As far as dimH is concerned, (14) holds in both the cases and the differencebe-
tween the continuous-time case and the discrete-time case concerns the different di-
mensions of the sufficient statistics. More precisely, by referring to the log-likelihood
in (6), in the continuous-time case we have

r1 = (n(0)i , t(i ))i=1,...,s−1

while, in the discrete-time case, its analogous is

r1 = (n(0)i ,

T−1
∑

t=1

n(t)i ,n
(T)
i )i=1,...,s−1

where, for each statei ∈ E and for each timet ∈ {0,1, . . . , T}, the random variable
N(t)

i is the indicator of the event{Jt = i } (namelyN(t)
i = 1Jt=i ).

Finally by (10) and (11) we have

η1 = (η
(1)
1 , η

(2)
1 ) = ((p(0)i )i=1,...,s−1, (

∫ T

0
p(t)i dt)i=1,...,s−1);

thus, by (12) withF defined by (7), the surfaceComo can be represented withs − 1
parameters functions ofη(1)1 only (namely the initial distribution only). This fact also
explains in a more direct way that the surfaceCsta concerning the stationary case is
reduced to a single point.

6.2. A possible future work

An idea for a possible future work concerns Markov additive processes (see e.g. [3]
pp. 39–47), namely bivariate Markov processes(Jt , St )where(Jt ) is a Markov process
with state spaceE and the increments of theRd-valued process(St ) satisfy a suitable
condition. In particular one could refer to the case in whichE is finite because, in such
a case, the structure of Markov additive process is completely understood with some
differences between discrete-time case and continuous-time case.
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Thus we could expect to find out some differences in terms of geometrical theory of
statistical models. These differences could have some connection with the differences
presented in this paper between discrete-time case and continuous-time case for(Jt ).

Appendix

Let us consider the model (5) and the parameters introduced in section 3:
θ asθi j = logα(i , j ) for i , j ∈ E with i 6= j ;

ζ asp(0)i for i = 1, . . . , s − 1.

We concentrate our attention on the function defined as follows: the image of a
point ((p(0)i )i=1,...,s−1, θ) in the domain is

((log
p(0)i

1 −
∑s−1

k=1 p(0)k

)i=1,...,s−1, (

s−1
∑

j =1

eθs j −

s
∑

j =1, j 6=i

eθi j )i=1,...,s−1, θ).

Thus the jacobian matrix is

J =





B1 0
0 B2
0 Is(s−1)





in which we exhibit three blocks:

B1 = (
∂

∂p(0)j

log
p(0)i

1 −
∑s−1

k=1 p(0)k

)i, j ∈1,...,s−1;

B2 = (
∂

∂θi j
(

s−1
∑

j =1

eθs j −

s
∑

j =1, j 6=k

eθkj ))k=1,...,s−1, i, j ∈E i 6= j ;

Is(s−1).

Then the transformation has full rank if we find an invertibleminor in J of orders −

1 + s(s − 1). To this aim we remark that

det

(

B1 0
0 Is(s−1)

)

= detB1;

then we need to prove that detB1 6= 0. This follows from the next

PROPOSITION1. We have

detB1 =
1

p(0)1

· · ·
1

p(0)s−1

1

1 −
∑s−1

k=1 p(0)k

.
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Proof. In this proof it will be useful to write downp(0)s in place of 1−
∑s−1

k=1 p(0)k . Let
us start an explicit expression for the entries ofB1; for i , j = 1, . . . , s − 1 we have

∂

∂p(0)j

log
p(0)i

1 −
∑s−1

k=1 p(0)k

=







1
p(0)i

+ 1
1−

∑s−1
k=1 p(0)k

= 1
p(0)i

+ 1
p(0)s

(i = j )

1
1−

∑s−1
k=1 p(0)k

= 1
p(0)s

(i 6= j )
.

Then, in order to write down the columns ofB1, let us consider the following notation:
let beC the column having all the entries equal to1

p(0)s
and, for allk = 1, . . . , s− 1, let

Ck be the column having1
p(0)k

in thek-th place and all the other entries equal to zero.

Then we have
B1 = (C + C1, . . . ,C + Cs−1);

namely, for allk = 1, . . . , s − 1, thek-th column isC + Ck. It is known that the
determinant of a matrix is multilinear with respect to the columns of matrix and, when
at least two columns of a matrix coincide, its determinant isequal to zero; thus we
obtain

detB1 = det(C1, . . . ,Cs−1)+

s−1
∑

k=1

det(C1, . . . ,Ck−1,C,Ck+1, . . . ,Cs−1) =

=
1

p(0)1

· · ·
1

p(0)s−1

+

s−1
∑

k=1

1

p(0)1

· · ·
1

p(0)k−1

1

p(0)s

1

p(0)k+1

· · ·
1

p(0)s−1

=

=
p(0)s +

∑s−1
k=1 p(0)k

p(0)1 · · · p(0)s

=
1

p(0)1 · · · p(0)s

.
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