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ON NON-RIGID PROJECTIVE CURVES

Abstract. In this note, we consider the natural functorial rationapma
¢ from the (restricted) Hilbert schentgilb(d, g, r) to the moduli space
My, associating the nondegenerate projective mg€l) of a smooth
curveC to its isomorphism clasg]]. We prove tha® is non constant in
a neighbourhood op(C), for any [C] € U € Mg (whereg > 1 and

U is a dense open subset.biy), providedp(C) is a smooth point or a
reducible singularity oHilb(d, g, r)req, the (restricted) Hilbert scheme
with reduced structure.

1. Introduction

Let k be any algebraically closed field of characteristic zero, asdusual, leP" =
Proj(K[xo, ..., X]) be the associated projective space. Inside the Hilbertnsehe
H(d, g, r), parametrizing closed subschemes of dimension 1, aritbmehusg, de-
greed in P', let us consider the so calladstricted Hilbert schemeHilb(d, g,r),
which is the subscheme &f(d, g, r), consisting of those poings(C), such that every
irreducible componerkK of H(d, g, r) containingp(C) has smooth, non degenerate
and irreducible general element (see Definition 1.31 of)[12]

The aim of the present note is to get some insight in the bebawf the ratio-
nal functorial mapp : Hilb(d, g,r) — Mg, which associates to each poip{C)
in Hilb(d, g, r) representing a smooth non degenerate irreducible cDres corre-
sponding isomorphism clas€] € Mg. In particular, we study in which cases the
image of¢ has positive dimension.

Any non degenerate smooth integral subsch€nédimension 1 ifP" determines
a pointp(C) € Hilb(d, g,r). We give the following:

DEFINITION 1. The projective curve G- P" admits non-trivial first order defor-
mations if the image of the mapg¢D: Tpc)Hilb(d, g,r) — TcjMg has positive
dimension (or equivalently if ® # 0). In this case we say that the corresponding
curve is non-rigid at the first order, for the given embedding

DEFINITION 2. The projective curve G P" admits non-trivial deformations if
there exists at least a curye C Hilb(d, g, r), through gC), which is not contracted
to a point viag. Equivalently, if there exists an irreducible componenitofb (d, g, r)
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containing gC), such that its image itMg throughg has positive dimension. In this
case we say that the curve is non-rigid for the given embegdin

We can somehow get rid of the fixed embedding in some progsiace taking
into accountll possible nondegenerate embeddings, as in the following:

DEerINITION 3. The (abstract) smooth curve C is non-rigid at the first ordsra
smooth non degenerate projective curve, ifdoy non degenerate projective embed-
ding j : C — P', the corresponding map @®: Tpc)Hilb(d, g,r) — TicjMgis non
zero.

Analogously, one has the following:

DEFINITION 4. The (abstract) smooth curve C is non-rigid as a smooth non de-
generate projective curve if, for any non degenerate ptojeembedding j C — P',
there exists an irreducible component of the associateddilg, r ) containing gC),
such that its image itM g through¢ has positive dimension.

In this paper, we prove that there exists a dense open subsetq (g > 1), such
that anyC, with [C] € U, is non rigid at the first order as a smooth non degenerate
projective curve in the sense of Definition 3; moreover, wavprthat these curves are
non-rigid (not only at the first order) under the additions$@amption thaip(C) is a
smooth point ofHilb(d, g, r)req (the restricted Hilbert scheme with reduced scheme
structure) or at worst it is a reducible singularityldflb (d, g, r )req (See Definition 5
in section 3).

2. First order deformations

First of all we deal with the case of smooth projective cuvegenusy > 2 inP'. We
will prove that there exists a dense open suh@,{, C Mg such that for any€] e
UgN and forany non degenerate smooth embeddinglofn P" the corresponding
projective curve is non-rigid at the first order (in the seofBefinition 3).

From the fundamental exact sequence:

(1) 0—-TC— TPI"C—> NC/]Pur—)O,

taking the associated long exact cohomology sequence, ifi¢T C) = H 0(Kgl) =
0 (genugy > 2), we get:

) 0— HOTPle) - HONg/pr) = HY(TC) —
— HY(TP|c) > HY(Ngpr) — 0.

In sequence (2), as usual, we identiﬁyIO(Nc/]pr) with the tangent space
TpcyHilb(d, g,r) to the Hilbert scheme at the poim(C) representingC, and
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HL(T C) with Tic] Mg (see for example [11] and [12]). Thus the coboundary map
represents the differential of the map Hilb(d, g,r) — Mg we are interested in. If
D¢ = 0 (i.e. the corresponding curve is rigid also at the first grttee sequence above
splits and in particulah®(TP!) = h(Ng pr); thus imposingwo(TlP’er) < hO(Ng,pr)
and estimating the dimension of the cohomology groups, vie gelation involving
d, g, r, which, if it is fulfilled implies that the corresponding maris not rigid (at least
at the first order). This is the meaning of the following:

ProPOSITIONL. Let C C P a smooth non-degenerate curve of genus g and
degreed. If d> %[g(r —2) 4 3], or Oc (1) is non special (this holds if & 2g — 2),
then Dp # 0. Furthermore, if CC P' is linearly normal, then @ # 0 provided that

- r—2g4+rr+21+3

®) d r+1

Proof. Itis clear from the exactness of (2) thatit(Nc pr) > hO(TIP"rC), thenD¢ #

0. On the other haan(Nc/Pr) = dim(TpcyHilb(d, g,r)) > dim(Hilb(d, g,r))
anddim(Hilb(d, g,r)) > (r + 1)d — (r — 3)(g — 1), where the last inequality always
holds at points oHilb(d, g, r) parametrizing locally complete intersection curves (in
particular smooth curves), see for example ([12]). TthS\lC/]pr) > (r+1d—

(r —3)(g — 1). Now, applying Riemann-Roch to the vector bund@l&’ onC, we get
hO(TlP’er) =r+DLd—-r(@g-1 + hl(TIP’"C). On the other hand, from the Euler
sequence (twisted wittc):

4) 0— Oc — (r +1)Oc() - TP|c — 0,

we get immediatelyll(T]P’er) < (r + Hh1(Oc (1)) and by Riemann-Roch the latter

is equal to(r + 1H(h%(Oc (1) —d + g —1). Now, if Oc(2) is non special (i.e. if
d > 2g-2), thenhl(TIP"rc) = 0, so that, imposing®(N¢ pr) > hO(T]P’er), we get
3(g — 1) > 0, which is always satisfied (§ > 2). This means that a smooth curve of
genusg > 2, which is embedded via a non special linear system, is away-rigid

at least at the first order.

If insteadO¢ (1) is special, by Clifford’s theorem we hav@(Oc (1)) < d/2+ 1,
so thathl(TP‘rC) < (r + 1)(g — d/2). Imposing agaih®(Nc pr) > hO(TIP"rC), that
isr+0d—(r —-3)(@—-1) > +Dd-r(g—21) + (r +1)(g—d/2), we get the
relationd > 2;[g(r — 2) + 3].

Finally, if C ¢ P' is linearly normal and non degenerate, th8aO¢c (1)) =r + 1.
Substituting inh*(TP[c) < (r + DhYOc(D) = (¢ + H(h°(Oc(D)) —d + g —
1) and imposing the fundamental inequalt§(Nc pr) > hO(T]P’er), we getd >

(r—2)g+rr+1)+3
r+1 '
g

Since the bound (3) is particularly good, but it holds onligifieearly normal curves
and since any curve can be obtained via a series of (genesietions from a linearly
normal curve, we are going to study what is the relation anfiosigorder deformations
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of a linearly normal curve and the first order deformationg#®projections. This is
the aim of the following:

PROPOSITION2. Let C C P a smooth curve of genus g 2 which is non-rigid
at the first order. Then any of its smooth projectioris€ 74(C) C PP'~1 from a point
g € P' is non-rigid at the first order (q is a point chosen out of theas® variety of C,
SecC)).

Proof. First of all, let us remark that the proposition states thahie following dia-
gram:

. D
o) Hilb(d, g.1) 2 Mg
J /" D¢

Tp(c/)H”b(d, g,r — 1

if Im(D¢) # 0, thenIm(D¢') # 0. Now consider the following commutative dia-
gram:

0 — ker@ — ker(b

! ! !

0O - TC — T]P)TC — NC/IP” - 0
= la lb

0 - TC — T]Plfg,l - Neypr — O
) | !

0 - 0 — 0

where the morphisme andb are induced by the projection @fto C’. ClearlyTC =

T C/, becaus€ andC’ are isomorphic curves and moreoeeandb are surjective by
construction. Applying the snake lemma to the previousrdiag we see thdter(a) =
ker(b) and sincea andb are surjective morphisms of vector bundles, it turns out tha
ker(a) = ker(b) = £, whereL is a line bundle orC. Restricting the attention to the
last column of the previous diagram, it is clear from a gesimetasoning that the line
bundle£ can be identified with the ruling of the projective cone, widlitexq through
which we project. Indeed, it is sufficient to look at the inddgrojection ma at a
pointx € C: b : Nc/pr, X — Nc//pr, m(X); the kernel is always the line on the cone
with vertexq going troughx and this is never a subspacelo€, becausg ¢ SecC).
Clearly, we can identify the projective cone with verggxhrough which we project,
with the line bundleC, since we can consider instead of ji#5f the blowing-upBlq (P")

in g in such a way to separate the ruling of the cone (this howeves dot affect our
reasoning since we are dealing with line bundles @&vandq ¢ C).

Applying the cohomology functor to the previous commutatiagram and recall-
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ing thath®(T C) = 0 sinceg > 2 we get the following diagram:

HOL) = HO(L) — 0
v v v
0 - HOTP) — HONew) = HLTO —
la VB Ly
0 - HOTPIGH — HOUNgp) 2 HYTC) —
\ \ \
0 — cokerna) — coker(B) — 0 - 0

Now, Im(D¢) ¢ H(T C) and via the isomorphism it is mapped insidé4 1(T C).
On the other hand, by commutativity of the square having gegthe mapg, y, D¢
andD¢’ it is clear thatim(D¢) € Im(D¢’) so that ifD¢ # 0, then a fortioriD¢’ #

0.
O

The following corollary gives two simple sufficient conditis for having
Im(D¢) = Im(D¢’).

COROLLARY 1. LetC, C, D¢ and D¢’ as in Proposition 2. Then ¢ (1) is non
special or if hL(TIP"rC) =0, then IMD¢) = Im(D¢).

Proof. Rewrite the previous diagram as:

HO) = HO(L) — 0
| ¢ \

0 — HO(TP‘rC) —  HNgpr) — Im(D¢) - 0
b a VB \

0 — HOTPH — HONgpr1) — Im(Dg’) - 0
2 2 \

0 — cokerna) — coker(B) — coker(w)/coker(8) — O

Observe thatoker(w) € H1(£) and the same is true faoker(8). Soif H1(L) = 0,
thenIm(D¢) = Im(D¢’). On the other hand, from the exact sequence-0L —
TIP"rC — TIP"rE,l — 0, taking Chern polynomials, we get thatis a line bundle of
degreed (and one can identiff. with Oc (1) ® £’ for someL’ € Pic%(C)). Thus, if
Oc (1) is non special we conclude. If instehH(TP‘rC) = 0, thencoker(@) = H1(L)
andcoker(@) C coker(8) € H1(L) so thatcoker(@) = coker(8) and we conclude
again.

O

Now we deal with the much simpler case of curves of genus1.

PrRoOPOSITION3. For any smooth curvgC] € My and for any non degenerate
projective embedding of &> P, the corresponding projective curve is non-rigid at
the first order.
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Proof. From the fundamental exact sequence:
0— Tc — T]P’lrc — Ngpr — 0,

sinceTc = Oc (g = 1), we obtain the long exact cohomology sequence:

D
(5) 0— H%Oc) — HATP)e) - HONe/er) =X HLY(Oc) — HY(TPl)...

Twisting the Euler sequence witiPc and taking cohomology, we have that
hl(T]P’er) < (r + Hh1(Oc (1)), butOc (1) is always non special for a curve of genus
g = 1sinced > 2g — 2 = 0. ThusH(TP]) = 0 and beindi*(Oc) # 0, from (5)
we have thaD¢ # 0 and it is even always surjective.

O

We conclude this section with the following theorem, whishttie analogue of
Proposition 3 for curves of gengs> 2 (in this case we do not work over allg, but
just on an open dense subset).

THEOREM 1. For any g > 2, there exists a dense open subsgiuC Mg such
that for any[C] € Ugn and for any non degenerate projective embedding ebCP',
the corresponding projective curve is non-rigid at the fosler.

Proof. According to theorem 1.8, page 216 of [1], there exists a el@pen subset
Usn C Mg such that any€] € Ugn can be embedded i" as a smooth non
degenerate curve of degrééf and only if p > 0, wherep(d, g,r) :=g—(r +1)(g—
d + r) is the Brill-Noether number. Now we consider a cur@ [e Ugn and we
embed it as a linerly normal cun@ of degreed in someP". Since ] € Ugn, we
have thap > 0; on the other hand; is linearly normal and the fundamental inequality
(3) is satisfied sincg > 0 (indeed, it is just a computation to see that (3) is equitale
to p > —e for somee > 0). Thus, by Proposition € is non-rigid at the first order,
and moreover by Propositon 2 all of its smooth projectiorsran-rigid at the first
order. To conclude, observe that any smooth non degenagiefive curveC such
that [C] € Ugn can be obtained via a series of smooth projections from aiipe
normal projective curv€ with corresponding > 0 (since for the curves iblgy the
Brill-Noether condition is necessary and sufficient).

O

3. Finite deformations

Our problem is now to extend the first order deformationsistliéh the previous
section to finite deformations. By Theorem 1, we know that,tf@ curvesC such
that [C] € Ugn (g > 2), the correspondingm(D¢) # 0 and an even stronger re-
sult holds for curves of genug = 1. We need to prove that there exists a vector
v € TpcyHilb(d, g, r), corresponding to a smooth curveC Hilb(d, g, r) through
p(C) such that the image of the curve vpahas positive dimension. To this aim, ob-
serve that if C] € Ugy is not a smooth point of\g, then there arev € TicjUgn
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which are obstructed deformations, that is which do notespond to any curve in
Ugn through [C]. We can easily get rid of this problem, just by restrictingther the
open subsetygn. Indeed, forg > 1, there is a dense open subbét ¢ Mg such
that any ] € U% is a smooth point (see for example [12]). Thus, for curvesesfug
g > 2 we consider the dense open suti$gf, ;= UgnNUC and foranyw € TicjU 3,
the corresponding first order deformations are unobstdyethile for curves of genus
g = 1 we just restrict to the smooth part 81, that we denote asf.

We can draw a first conclusion of such an argument via theviatig:

PrROPOSITIONA. Let[C] € UJ or [C] € U? and let C < P" any projective
embedding such that the corresponding poit€pe Hilb(d, g,r) is a smooth point
of the restricted Hilbert scheme. Then the projective c@we P' is non rigid.

Proof. By Theorem 1 or Proposition 3, the associated rB&p+# 0, so that there ex-
ists aw € TpcyHilb(d, g, r) such thatD¢ (w) # 0. Sincep(C) is a smooth point of
Hilb(d, g, r), the tangent vectap corresponds to a smooth curvec Hilb(d, g, r),
throughp(C), such thaflpc)y = w. Now consider the imagg of this curve inugN
via ¢. Since My exists as a quasi-projective variety, in particular we agpresent
a neighbourhood of@] € Mg, asSpe¢B), for some finitely generatekalgebraB.
This implies that the mag can be viewed locally arounglC) as a morphism of affine
schemes. Thus the image of the cupv@vhich is a reduced scheme) via the morphism
of affine schemes is the subschemé in Spe¢B). Then eithelZ is positive dimen-
sional and in this case we are done, or it is a zero dimensguiacheme, supported
at the point C]; observe that this zero dimensional subschefnean not be the re-
duced point €], otherwise we would certainly hav@¢ (w) = 0. So let us consider
the case in whiclZ is a zero dimensional subscheme, supported at the gojnvfith
non-reduced scheme structure: this case is clearly impessince the imagé& of a
reduced subscheme (the cumvpvia the morphism of affine schemescan not be a
non-reduced subscheme. Indeed, if it were the case, corlkelesctriction ofp to y:
¢y, Zred = [C]; then¢;1([C]) is a reduced subscheme, which coincides witkince
y is reduced. But this would imply thai(y) = [C] and D¢ (w) = 0.

Thus, it turns out thaZ has necessarily positive dimension and we conclude.

O

The hypothesis of Proposition 4, according to whig{C) is a smooth point of
Hilb(d, g, r) is extremely strong. Ideally, one would like to extend theuteof Propo-
sition 4 toany non degenerate projective embedding for curek ¢ UgN. Before
giving a partial extension of Proposition 4 (Theorem 2)uiegive the following:

DEFINITION 5. A point p(C) € Hilb(d, g, r)req is called a reducible singularity
if it is in the intersection of two or more irreducible commnts of Hillad, g, r)red,
each of which is smooth in(g).

THEOREM 2. Let[C] € U3, or [C] € U? and let C < P any projective em-
bedding such that the corresponding poifCp € Hilb(d, g, r) is a smooth point of
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Hilb(d, g, r)req (restricted Hilbert scheme with reduced structure) or stigt p(C)
is a reducible singularity of Hillid, g, r )req. Then the projective curve € P is non
rigid.

Proof. Let us consider the exact sequence:
. D
(6) 0— HOTPle) — T Hilb(d, g,1) = Ticj Mg

from whichker(D¢) = HO(TIP{C). Take the reduced schenttilb(d, g, r)req and
consider the induced morphism of schemedHilb(d, g, r)req — Hilb(d, g,r) (see
for example [13], exercise 2.3, page 79)pliC) is a smooth point oHilb(d, g, r )red,
then we have thadim(Hilb(d, g,r)) = dim(Tpc)Hilb(d, g, r)red). On the other
hand, to prove that there are first order deformations WejumﬁnposemO(T]P’er) <
dim(Hilb(d, g, r)). Now, we want to prove that in the following diagram

0 - HUTF — TyoHib@.gr = ToMy

1 Dr /!
Tp(C)H”b(g, d, MNred

the map Dr is injective, so that sincehO(TIP"rC) < dim(Hilb(d, g,r)) =
dim(TpcyHilb(d, g,r)reqd), we can find aw € Tpc)Hilb(d, g, r)red Wwhose image

in TjcjMyg is non zero and then we can argue as in the proof of PropositidBet-
ting Hilb(d, g,r)red = Xred, P(C) = x andHilb(d, g,r) = X, we have to prove
that givenr : Xeg — X, the associated morphism on tangent spaces is injective
Dr : TxXred — TxX. SinceX;eq is a scheme, we can always find an open affine
subschemél;eq Of X;eq containingx such thatUreq = Spec€Ared), WwhereAreq is

a finitely generate#-algebra without nilpotent elements and the closed poiobr-
responds to a maximal idealy. Recall that, from the point of view of the functor
of points, the closed point corresponds to a morphisin: Speck) — SpecAreq)
(which is induced byAred — Ared.my — Ared,my,/MxAred,m, = K(X) = k, where
Ared.m, is the localization ofAreq at the maximal ideainy). Recall also that via the
algebra magk[e]/e? — k and the corresponding inclusion of schemesSpeck) —
Speck[e]/€?), Tx Xred can be identified withiu € Hom(Speck[e]/e2, SpecAreq)))
such thatu o i = A}, (see for example [8]). Clearly, an analogous descriptioi

for X and Ty X, (we denote the corresponding neighbourhoos of X asSpecA)).
From the description ofy X;eq just given, it turns out any € Ty Xred, w # 0, corre-
sponds to a unique (non-zero) ring homomorphism Areq — k[€]/(€)?, such that
the following diagram is commutative:

Aed 5 Klel/e?
MG E
k(x) =k

On the other hand, saying thBtr (w) # O is equivalent to say that we can lift the
non zero ring homomorphisii : Areq — k[€]/€2 to a non zero ring homomorphism
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% : A — Kk[e]/€? such that the following diagram is commutative:

5t
A -  k(x)=k

a1
Aed 5 Ke]/e?
)\:\ ¢|:

k(x) =k

It is clear that we can always do such a lifting, since the hmmghismsi® and A”
are just given precomposing the corresponding homomanghfsom Areq, with r.
Moreover, since” is a non zero ring homorphism, it turns out tham'if 0, then also
0% # 0 and the previous diagram is commutative. This implies Bratw) # 0 and
thus thatDr : TpcyHilb(d, g,r)red = TpcyHilb(d, g,r) is injective. Reasoning
as in the proof of Proposition 4, we can find a cupve— Hilb(d, g, r)req through
p(C) in such a way thaD¢ o Dr (Tpc)y) # 0. Thus the image of this curve wgo r
contains the point¢] in UgN and a tangent direction. On the other hand the image
via ¢ o r of a reduced scheme can not be a non reduced point (alwaysdzee@ can
represent a neighbourhood @f][in Mg as an affine scheme and consideir locally
as a morphism of affine schemes). Thus the imagetbfoughg or must have positive
dimension and in this way we concludedfC) is a smooth point oHilb(d, g, I )reqd-

Finally, if p(C) is a reducible singularity oHilb(d, g, I )red, it will be sufficient
to repeat the previous reasoning, substitufifgeyHilb(d, g, r)red, with Tpc)H,
whereH is an irreducible component dfiilb(d, g, r)req through p(C), smooth at
p(C) and of maximal dimension, so thdtmpc)H = dimpc)Hilb(d, g,MNred =
dimpcyHilb(d, g, r). In the same way, one can find a smooth cyrve H, through
p(C), such that its image i is positive dimensional, arguing again as in the proof
of Proposition 4 (the image of has to be a reduced scheme, hence necessarily positive
dimensional, in order to hav@¢ +# 0).

([l

REMARK 1. If p(C) is a reducible singularity oHilb(d, g, r )eq, for the Theo-
rem 2 to work, it is not necessary that irreducible components dflilb(d, g, r)red
through p(C) are smooth in a neighbourhood pfC). Indeed, from the proof of
Theorem 2, it is clear that it is sufficient that there existsreeducible component of
maximal dimensioH of Hilb(d, g, r)red, Which is smooth ap(C).

In the light of the previous theorem, let us discuss Mumfefdmous example
of a component of the restricted Hilbert scheme which is remtuced (see [15]). He
considered smooth curv€son smooth cubic surfacesin P2, belonging to the com-
plete linear systendH + 2L |, whereH is the divisor class of a hyperplane section
of SandL is the class of a line o®. It is immediate to see that the degree of such
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a curve isd = 14 and that its genus ig = 24. Therefore we are working with
Hilb (14, 24, 3). In [15], it is proved that the subloculs of Hilb (14, 24, 3) cut out by
curvesC of this type, is dense in a component of the Hilbert schemeaebieer, it turns
out that this component is non reduced. Indeed, Mumford skaWat the dimension
of Hilb (14, 24, 3) at the pointp(C) representing a curv€ of the type just described,
is 56, while the dimension of the tangent spacéiiidb (14, 24, 3) at p(C) is 57. On
the other hand, in [7] it is proved that for the points of typ@) an infinitesimal de-
formation (i.e. a deformation ove8peck[e]/€?)) is either obstructed at the second
order (i.e. you can not lift the deformation 8peck[e]/€)), or at no order at all. This
implies that the corresponding componentbifib (14, 24, 3);e¢q is smooth. Since for
curves of this type, we have that> 97+3, by Proposition 1 we know thdd¢ # 0. If
[C] € Mg is a smooth point, then by Theorem 2, beild@b (14, 24, 3);eq smooth at
p(C) € J3, we have that the cun@ — P2 is non rigid for the given embedding.

For other interesting examples of singularities of Hiloezhemes of curves and
related constructions, see [9], [14], [5] and [17].

In the light of Theorem 2, it would be extremely interestingyive an example of a
smooth curve of genus > 2, which is rigid for some embedding. Unfortunately, this
is a difficult task; indeed, one of the main motivation forstipiaper was to prove that
no such a curve exists. However, we did not succeed in prawisgand we prove a
weaker statement (essentially Thoerem 2). This is strietigted to a question posed
by Ellia: is there any component of the Hilbert scheme of eamf genug > 0 in P",
which is the closure of the action &ut(P")? For this and related question see: [3],
[4], [6] and [2].

4. Some special classes of curvesht

In this section, we take into account some special classesreés and prove that they
are non-rigid at the first order or even non-rigid for the giwambedding. As a first
example, let us consider a projectively normal cuBvin P2, which does not sit on a
guadric or on a cubic. We prove that the curves of this classian-rigid at the first
order. Their ideal sheaf has a resolution of the type (&ith> 4 and consequently
b; > 5):

0— &5_,0pa(—bj) - &5110ps(—a)) - Ic — 0,

from which, twisting withTP2, we get:
(7) 0— @?leﬂﬂ*(—bj) - ea?jm%—aj) — Tps ®Zc — O.

On the other hand, from the Euler sequence (suitably twisted have that
hO(TP3(—k)) = 0 andh(TP3(—k)) = 0 fork > 4. Thus, from (7) it follows
that h®(TP3 ® Zc) = 0. Moreover,H3(TP3(—bj)) is equal by Serre duality to
Hl(Q]%,ﬁ(bj — 4))* and this is zero by Bott formulas (see for example [16]), sinc
we assumedb; > 5. Therefore, again from (7), it follows that(TP3 @ Zc) = 0.
Finally, from the defining sequence 6f twisting by TIP3, we get thatH 9(TP3) =
HO(TP3|c). Now, hO(TP3) = 15, so thatD¢ # 0 as soon as 15< 4d (recall
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that hO(NC/Ps) > 4d), that thisD¢ # 0 ford > 4. Now, recall the important fact
that if C is a projectively normal curve, therilb (P3) is smooth at the corresponding
point p(C) (see [10]) and this implies that the projectively normalveuis non rigid
(Theorem 2) as soon as it does not sit on a quadric or a culfacsur

Now we consider a projectively normal curve which sits on aasth cubic surface
Sin P2 and prove that this curve is non-rigid at the first order andckenon-rigid
always by Theorem 2 and by the result of [10]. From the exapisece:

(8) 00— NC/S — NC/]P3 — Ns|c — 0,

sinceNs|c = Oc(3) andNg/s = wc ® wg* = wc (1) = Oc(C), we getx (N¢ ps) =
x (wc (1)) + x(Oc(3)). By Riemann-Rochy (Oc(3)) = 3d — g + 1 and by Serre
dualityh'(wc (1)) = h%(Oc (1)) = 0, so thaty (wc (1)) = C?+1—gandx (Ng ps) =
3d — g+ 1+ h%wc(1)) = 3d — 2g + 2 + C2. Again from the sequence (8), taking
cohomology, we have thhtl(NC/Ps) = h1(Oc(3)). On the other hand, from the exact
sequence:

0— Zc(3) — Op3(3) - Oc(3) — 0,

assuming thaC is projectively normal and that it sits on a unique cubic, vesen
1-20+h%0c@®) +3d — g+ 1 =0, so thath’(N¢ ps) = 18— 3d + g. Thus
hO(Ng p3) = x (Ng/ps) + h'(Ng/ps) = 20— g + C2. As a remark, notice that since
hO(NC/Ps) > 4d, we obtain the inequalitydt < 20 — g + C? for curves of this type.

To give an estimate ch‘O(T]P’fc), we use as before the Riemann-Roch Theorem and the

Euler sequence, so tHaR(TIP’fC) < 4d + 3(1 — g) + 4h1(Oc(1)). On the other hand,
from the defining sequence 6f twisted byOps (1), assumingC projectively normal
and nondegenerate, we dget(Oc(1)) = g — d + 3, so thathO(TIPfC) < g+ 15.
ThusD¢ # 0 as soon ag + 15 < 20 — g + C2. Using adjunction formula, i.e.
C.(C + Kg) = 2g — 2, we can rewrite this a8.Ks < 3. Now, sinceSis a smooth
cubic Ks = —H whereH is an effective divisor representing a hyperplane section.
Moreover anyC is linearly equivalentt@al — Y bje andh = 3l — )" g (we identify
S with P? blown-up at 6 points in general position, i.e. no 3 on a lind an 6 on a
conic), so thaD¢ # 0 as soon as8— Y bj > 3, but 3 — > bj = d, and so we get
the conditiond > 4.

Finally , as an example we consider the case of projectivetynal curves on a
smooth quadridQ, proving that these curves are non-rigid (indeed it is siefficto
assume that!(Z¢ (2)) = 0). First of all, from the sequence:

0— Ncjo — NC/]P3 — Nglc = 0,

beingNc/q = wc(2) andNglc = Oc(2), we have thah (N ps) = h'(Oc(2));
from the defining sequence8 Zc(2) — Ops3(2) - Oc(2) — 0, since we assumed
h1(Zc(2)) = 0, we have 1- 10+ h1(Oc(2)) + 2d — g + 1 = 0. Moreover, by
Serre duality and Kodaira vanishihg(wc (2)) = h*(Nc,/q) = 0 so thah®(Ng ps) =
x(@c(2) + x(Oc(2) + h*(N¢ pe) and this is equal to 16 g + C2. The previous
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estimate forhO(T]P’|3C) works also in this case (we just used the fact tBas linearly

normal and non degenerate), so tBat # 0 as soon ag + 15 < 10— g + C2. By

adjunction 3 — 2 = C.(C 4+ Kq), and by the fact thakq = —2H, the inequality
g+ 15 < 10— g + C2 can be rewritten as@H > 7, so that, fod > 4, C is non

rigid at the first order for the given embedding and so theynarerigid (Theorem 2
and [10]).

Let us take into account the wider class of curves of maxiraakrin P3. By
definition a curveC is of maximal rank iffth®(Z¢ (k))h'(Zc (k)) = 0 for anyk € Z.
Since we have already dealt with projectively normal curfiesn now on we assume
thatC is a smooth irreducible curve of maximal rank®#d, which is not projectively
normal. As usual, les := min{k/h%Zc(k)) # 0} be the postulation index df.
Observe thah!(Z¢ (k)) = 0 for anyk > s, sinceC is of maximal rank. Thus, having
setc(C) := max{k/h1(Zc (k)) # 0}, we have that(C) < s — 1 (c(C) is called the
completeness index).

As a first case, let us consider= s — 2 and assumbl(O¢ (s — 2)) = 0 (which
is certainly satisfied il(2 — s) + 2g — 2 < 0 or equivalentlyd > 23:22, s > 3).
Observe that in this cas€, is s-regular, i.ehi(Zc(s—i)) = O for anyi > 0. Indeed,
from the defining sequence @, we have thah!(Oc(k)) = h?(Zc(k)) and since
h1(Oc(s — 2)) = 0, we are done. Set:= h%(Zc(s)). Then, if

0 — ®O0ps(—n3z) = ®Opa(—nzi) = SOps(—nyi) - Ic — 0

is the minimal free resolution dic, settingnjfr = max{nji} and nj* = min{nj},
it is easy to see that} = c+ 4 = s+ 2. Moreover, we have; > nj > nJ,
ny >n, >n;andalsony =s+2>n} >n, >n; =s From these we get

n; =n, =s+ 1, thatisny = s+ 1 for anyi. Analogously, one getss; = s+ 2 for

anyi. Thus, in this case, the minimal free resolution is
9 0— yOps(—s—2) = XOp3(—S—1) - uOps(—S) - Zc — 0

(resolution of the first kind), wherg = h1(Zc(c)) = h'(Zc(s — 2)). If we have a
resolution of the first kind, we can split it as follows:

(20) 0 — yOps(—Ss—2) - XOps(—-s—1) - E - O,

(12) 0— E — uOps(—S) > Ic — 0

whereE is only a locally free sheaf (indeed, if it were free, thérwould be projec-
tively normal by (11)). Twisting (10) and (11) P2 and taking cohomology, we
get:

(12) 0— uH%TP3(-s)) > HOZc @ TP?) - HYEQ TP®) — ...

(13) ... —> xHY(TP}(=s—1) > HYE @ TP% - yHATP3(-s—2) — ...

On the other hand, in the sequence (18)TP3(—s — 1)) = h?(Ql5(s —3)) =0
by Serre duality and Bott formulas, whité(TP3(—s — 2)) = h'(Qz5(s — 2) = 0,
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if s > 3. Thus, we get that i§ > 3, thenH(E ® TP3) = 0. Moreover, twisting
the Euler sequence withps (—s), we obtain thah®(TP3(—s)) = 0 as soon as > 2.
Therefore, from the sequence (12), we have lféfc ® TP3) = 0 as soon as > 3.

Now, twisting the defining sequence 6fby TIP3 and taking cohomology, we get
(assumings > 3):

(14) 0— HOTP?) — HOTPY) — HY(Zc ® TP?) — 0.

We want to give an estimate tot(Zc ® TP3). Continuing the long exact cohomol-
ogy sequence (12), using again Serre duality and Bott fasahd assuming > 5,
we get thahl(Zc ® TP3) = h?(E ® TP3). Moreover, going on with the sequence
(13), applying Serre duality and Bott formulas £ 5), we obtainh?(E ® TP3) <
yh3(TP3(—s — 2)) = w Hencehl(Z¢ ® TP?) = w and from
(14) we geth®(TP3) < 154 ¥-DE3) s > 5 Thus, if 4l > 154 YEDE3)

or equivalentlyd > 4 + %M, s > 5, then a curve&€ of maximal rank, with a
resolution of the first kind and with(Oc (s — 2)) = 0, is non rigid at the first order
for the given embedding.

As a final example, let us consider a cur@ of maximal rank, such that
h%(Zc(s)) < 2andh!(Oc(s—3)) = h'(Oc(s-2) = h'(Oc(s—1)) = hY(Oc(s)) =
0 (this happens for exampledf > 29—5_2 and assuming > 4). In this case, we have
c(C) = s— 1. Indeed, if it werec < s — 2, thenC would be (s-1)-regular and this
would contradict the fact thatis the postulation. Moreover, if it wele= s — 2, then
C would be s-regular and sin¢®(Zc(s)) < 2, C would be a complete intersection of

type (s, s), and in particular it would be projectively normal.

Thus,c(C) = s — 1 and from the given hypotheses, the fact t&Zc (s — 1)) =
h1(Oc(s—1)) = 0, andnh'(Zc(s)) = 0 (sincec(C) = s— 1), itis easy to see that is
(s+1)-regular. This implies that the homogeneous itl€d) is generated in degree less
or equal tos + 1. With notation as above, we hawg =c+4=s+3>nJ > nf =
s + 1, where the last equality holds sint€C) is generated in degree less or equal to
s+ 1. From this, we gem;r = S+ 2 and moreoven, > n; = sso than, > s+ 1.
On the other hand, we can say more, because thel-m’i’aiic 5)® HO(O]P)?,(].)) —
HO(Zc (s + 1)) is injective; indeedh®(Zc(s)) < 2 and from a relation of the form
H1Fs = HoF between the two generators in degseeve would have thaHq|F{ but
this is clearly impossible. It turns out that we have no ietat in degree (s+1) between
the generators df(C). Thusn, > s+ 1,n; > n, > s+ 2, so thatng = s+ 3 for
anyi and alsay; = s+ 2 for anyi.

Hence,in this case, the minimal free resolutiofgfis the following:

(15) 0— UOPs(—S —-3) -~ XOIP)3(—S - 2) —
— wOps(—S —1) ® uOp3(—Ss) - Zc — O,

(resolution of the second kind), wheve= hl(Zc(c)) = h'(Zc(s — 1)). In this case,
that is under the following hypotheses:> 5, h'(Oc(k)) = O fork =s,s — 1,5 —

2,s—3 (which is satisfied if for exampla > ZgT’Z, s> 4),h%Zc(s) <2(c=s-1),
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we start from the sequence (15) and we get @& non rigid at the first order for the
given embedding as soonds> 4+ “55=2E+D e leave to the interested reader the
details of this case, which is completely analogous to tlegipus one.
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