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L2 EXPANSIONS IN SERIES OF FRACTIONAL PARTS

Abstract. In this paper we consider the problemlof expansions in series
of fractional parts for functiond e L2([0, 1], R) which are odd with
respect to the poin%. Sufficient conditions are given, but we also prove
by the Banach-Steinhaus theorem that this is not alwayshjess

1. Introduction
Let:

_ lsin@rmx) [ x—[x] -1 ifx¢z
(1) P(x) = nzi—{ 2

m 0 ifxeZ
m>1

In a paper of 1936 [5] H. Davenport considered the formaliitien

) > amPnx) = Z Zd/ n Sln(Znnx)

n>1 n>1

which is obtained by substituting into (2) the expansioRdfiven in (1) and collecting
together the terms for which the produeh has the same value. Davenport considered
the cases in whick(n) has the valuegﬁ ””) and Arﬂn) where, as usual,A andA
denote, respectively, the Mobius, Llouwlle and Von Malugéuntions.

In [5] Davenport proved the following results:

i) The funcUonsZn 1 “(”) P(nx) andzr':':1 @ P(nx) are uniformly bounded in
N andx.

i) The identities
E wP( nx) = —lsin(an)
n T

n>1

A(n) B sin(2zn2x)
L

n>1 n>1

hold almost everywhere.
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In a subsequent paper [6], Davenport, using Vinogradov'thote and the Siegel-
Walfisz theorem, showed that the identities ii) hold evergwehand that the two series
converge uniformly irR. The proof of the weaker properties ii) (the almost everywghe
convergence) depends @8 convergence, namely on the estimate [5]:

log(N)
N

)

Lo () 1
| Ry II° = f | Z K b (nx) + = sin2rx)|2dx = O(
0 = n g

The aim of the present paper is just to consider the formatitye(2) for generab:(n)

and from the point of view of 2-convergence. In order to state in a more precise way
the problems studied and the results obtained we give thenfiolg definitions.

Le us define:

LZ={f € L([0,1],R), f(x) = —f(1—x) ae on]0,1]}

that isL(Z) is the subspace of the functiofise L2([0, 1], R) which are odd with respect
to the point%. Itis easy to see théig is a closed subspace bf([0, 1], R) and so it is
a Hilbert space.

Moreover, ifn is a nonnegative integer, we denote wkh™(n) the greatest prime
which dividesn and, as usual, we S8t(X, ) = > n<x m+m<y; 1-

We shall consider the following problems:

a) Is it possible to apply the Gram-Schimdt procedure to thetionsP(nx) and,
if (en(X))n is the resulting orthonormal system, is it true that

00 =) bMen(x)

n>1

in the L2 sense for every € L3 ?

B) Isit possible to give sufficient conditions for expandinutfieL? sense) in series
of fractional parts the functions belonging to certain mbst% ?

) ls it possible to expand (in the? sense) everyf ¢ Lg in series of fractional
parts ?

Theorem 1 below answers positively to ques@gnwhile in Theorem 2 we show that
it is possible to give a positive answer to questn

On the contrary, the answer to questinis negative. This is proved in Theorem 3,
whose proof depends on the Banach-Steinhaus theorem amdamymptotic formula
with an estimate of the error term (see Lemma 1) for the difiee¥ (x, y) — W (3, y)
with y fixed.
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REMARK 1. The identity

p(n) 1
(3) ZTP(nx)_—;sm(an) X € R

n>1

has interesting applications. For example, it was used]ito[grove a result of linear
independence for the fractional parts, namely the factttieatleterminant:

d -1
(4) de(P(") #0 O=d=m= =
Actually, for the proof of(4), it is enough to know that3) holds for rationak and this,
in turn, is equivalent to the result(1, x) # 0 (herey is a caractemod gandL (s, x)
is the corresponding function). Moreover it can be shown that also the weakertresu
that(3) holds in theL.2 sense can be used to prove results like the following one.
Leth : [0, 1] — R be continuous and of bounded variation. Let us also suppage t
h(x) = h(1—x), ¥x € [0, 1]and thatfo1 f (x)dx = 0. Then the following implication

holds:
d

Zh(%)zo Vd>1=hx) =0, Vxel0,1]

a=1
It is well known (see [3] and [2]) that this property is faldenie drop the bounded
variation condition.

2. Notation and results

If a andb are positive integer&, b) will denote the greatest common divisoraodnd
b, andd|n means thatl dividesn. With z(n) we will indicate the number of divisors
of n, as usual.

We have obtained the following results.

THEOREM 1. The following properties hold:

i) The functions f(x) = P(nx), n =1, 2, ... ,are linearly independent.
i) The set of functionspix) = P(nx), n =1, 2, ... is complete in %

iii) Let (pn(x)) be the orthonormal system obtained from(x) = P(nx) by the
Gram-Schmidt procedure. Then we have

N
(5) I bgn(x) — F(X) 2= 0 when N — oo

n=1

for every f e L2, where the(b(n)) are the Fourier coefficients of (k) with
respect to the syste@n(x)).
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Theorem 1 solves the problem of expanding every funcfioa LS in series of
linear combination of fractional parts, since we have

n
on() =Y maPhx)
h=1

where they n are suitable coefficients ([8], p.305).
As for the problem of the expansion of functiofise L% in series of fractional parts
we have the following theorems.

THEOREM?2. Let f(x) ~ Zkzl a(k) sin(2rkx) be the Fourier series of £ Lg.
Set

N
Rv(X) =Y a(mPmx) — f(x)
n=1

with «(n) € R. Then we have

1 1 n
6) IRy I7=35 ) 1= > am— +am?
2mzl T n|mN m
n=<

If | Ry |l— Owhen N— co we must have
pu(d) _n
(7) an) =—m de: Ta(a)~

Finally, let
a\m= ) lah?

h>1
h=0(n)

If the condition

(8) Zr(n)\/a*(n) % < 400

n>1

holds then

N
©) IRy 1=l f =D amP®x) |- 0
n=1

when N— +o0, witha(n) as in(7).
THEOREM3. There exist functions & L3 such that

(10) sup|l RN |l= +o0
N

where R (X) = Z,’;‘zla(n)P(nx) — f(x) and thex(n) are given by(7).
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REMARK 2. Condition(8) of Theorem 2 is not a very restrictive one. Itis certainly
satisfied, for instance, if there exists(n)) c ¢2 such thab(n + 1) < b(n), |a(n)| <
b(n), vn > 1, since in this case we have

1 b |12
a*(n) = Z la(thn)|? < Z (ﬁ sz((h —n +r)) _ Il n||

h>1 h>1 r=1

This means that (8) holds in particular for all bounded v@riafunctions, since in this
case we hava(n) = O(}) ([1], vol.I, p. 72).

Another example is given by the claas; of functions which satisfy a Lipschitz con-
dition of orderg > 0: in this case we have ([1], vol.l, p.215)

2y3 _ 1
(O 1a[®)2 = O(5)

k>n

which givesa*(n) = O(3;) and (8) holds again.

It should be noted that under condition (8) we can asserittigaformal identity
(2) holds almost everywhere for a subsequence. This is aioadeorollary of (9), (7)
and Mobius inversion formula.

REMARK 3. The proof of Theorem 3 is based on Banach-Steinhaus timesnel
so we do not give an explicit example.

The contrast between (5) of Theorem 1 gth€) of Theorem 3 can be explained as
follows.
If fe Lg, the minimum value of the difference

N
I f =Y caP(x) |

n=1

can be obtained directly by solving the linear system ([0B3)

N
(11) Zam,ncn =bm, m=1.,N
n=1

where
1 (n,m)2

12 nm

1
am.n =/ P(nx)P(mx)dx =
0
and
1
bn = / P(mx) f (x)dx
0
or equivalently by considering the sum

N N n N
oN() =Y bMen() =Y b maPhx) =Y caP(nx)
n=1 h=1 n=1

n=1
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which appears in (5) of Theorem 1. Generally th@) given by (7) of Theorem 2
are not the solution of system (11): for example it is easyhc& directly that when
f (x) = —1 sin2rx) we have

_u(n) [ 5 ifm=1
o == bm_{ 0  otherwise

and the numberg(n)/n do not satisfy conditioif11), and consequently the difference
| f— Z,’:‘Zla(n)P(nx) || is not the minimal one.

Usually, if the function is not a very irregular one (see dtiod (8) of Theorem 2)
the sumSy (X) = Zr';'zl a(n)P(nx) will be a good approximation tey (x) and it will
happenthal Sy —on ||— 0whenN — +o0. But there exist very irregular functions
f e L2 for which we have

sup|l R [l=sup|l Sy —on [|= +oo
N N

although we think that is not easy to give an explicit example
Let us now prove the results stated.

Proof of Theorem 1Proof of property).
We want to prove that the relation

n
(12) > «Pkx) =0 aeon[0,1] c«eR
k=1

impliescy =0 Vk =1, ..., n. If n = 1 the implication is obviously true. Suppose now
that the equality (12) holds with > 2.
IfO <x < % we have kx] = 0 for everyk < n and from(12) follows

n
1 1
E ck(kx—=)=0 ae on [0,-)
2 n
k=1
from which we obtain

(13) Z ck=0
k=1

1

=1 We have

1
Ifﬁ§X<

1 ifk=n
Wﬂ:{o ifk<n—1

and so from(12) follows

n—1

1 3 1
ch(kx— =)+cp(nx—=-)=0 ae on [—,
— 2 2 n

1
n-1

)
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which in turn implies

n-1
(14) Y &+3e=0
k=1

Relations (13) and (14) givey = 0 and the desidered implication follows by induction.
This gives property).

Proof of propertyii) .

Take f € L3 and seB(n) = [01 f (x)P(nx)dx. Since

. 1 sin(2rkx)
PO = T kZ; k
we have
1«1t 1 c(kn)
(15) o) = —— kgl E/o sin2rknx) f (x)dx = —5 kgl »

where thec(n) are the Fourier coefficients df. The relation (15) can be inverted and
we have

§(nk)
(16) c(n) = —27 Z (k) ”
k>1
provided the sufficient condition
k k
(7) ZW<+O® vyn>1

k>1

is satisfied ([7], Theorem 270). But (17) is certainly trueSphwarz inequality, and so
(16) holds. If we supposé&(n) = 0 vn > 1 from (16) followsc(n) = 0 vn > 1, but
this means that € Lg has all the Fourier coefficients equal to zero. The compésten

of the trigonometrical system impliefls(x) = 0 a.e. and propertyi) follows.

Proof of propertyiii) .
If (pn(X)) is the orthonormal system obtained frdminx) by the Gram-Schmidt pro-
cedure we have ([8], p. 305)

n
on(X) =Y yhnP(hx)
h=1
and viceversa

n
PX) =Y ¥y nok(X)
k=1
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where theyn n and Vr/],n are suitable coefficients. This implies, by propei}y that

the orthonormal systefty, (X)) is complete irLS and so Parseval identity holds. This
proves (5) and concludes the proof of Theorem 1.
Let us now prove Theorem 2.

O

Proof of Theorem 2Formula (6) is simply Parseval identity fdRy(x) = Zrﬁ':l
a(n)P(nx) — f(x) in fact we have

cn(m) = ﬁfol Ry (X) sin(2rmx)dx =

18
4o = - (%(ZnnS.mNa(n)r—';Ha(m))

To justify (18) we note that

NAE , V21t ,
2/ P(nx) sin2rmx)dx = — — Z—/ sin(2rknx) sin(2rmx) =
0 e

—n .
_ | 77 if njm
0 otherwise

Since we havél Ry |?= > m=1 lcn (m)|2 from (18) we obtain (6). Let us prove (7).
If | Ry ||[— O from (6) it follows immediatly that

1 n

= am—)=-am Vvym=1

o m

from which we obtain (7), since the Dirichlet inversef]pfs @
Let us now suppose that condition (7) holds: in this case ¢6bimes

o]

1 1 n
2_ 2
(19) IR IP=35 30 1= 3 e +am)
m=N+1 njm
n<N
whenN — +o00. From (19) it follows
> n
no
(20) IRN =0 > ) am_?~0
m=N+1 nm
n<N
since(a(m)) € ¢2. But we also have
(21) Iy et =T ad i T u)
T = m H

nm dim k|(m/d)
n<N d<N k<(N/d)
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From (20) and (21) follows

o
(22) IRy = 0= > Jay(m?—0
m=N+1

whenN — oo, where

! 1
aym = = da@)( Y wk).

dim k|(m/d)
d<N k<(N/d)

Let us now prove that (8) implies (9). First we note that

/ n h
(23) lay ()] < ; lalz ()~ =y

uniformly in N. From the definition of/ (n) in (23) follows easily

3 y2m) ZDa(h)Ha(k)h(E)r(E)E—'; <

n>1 n>1 hin
kin
72(m) k h (h, k)?
(24) < (m;l 2 )(hélla(h)”a(k)lf((h,k))f((h,k)) | =
72(m)
- (Z m2 )Z
m>1

say, if we remember that(nm) < t(n)z(m). If (h,k) = § so thath =r4§, k = s§,
(r,s) = 1 we also have
rs

r,s>1 5>1

(25) = %;:(S)(Da(rsnz)%@m(ss)n% =

rs>1 §>1 §>1

2
(Z r(r)«/a*(r)) < 400
r

r>1

Z T(r)T(s) Z la(ré)||a(ss)| <

if condition (9) holds. From (24) and (25) follows that theieeznzlyz(n) is con-
vergent, but this implies that condition (22) is satisfigdcs from (23) it follows ob-

viously that
oo (.¢]

Y laymPEs Y yAm -0

n=N+1 n=N+1
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whenN — +o0. This proveg10) and concludes the proof of Theorem 2.

Proof of Theorem 3We need the following two lemmas.

LEMMA 1. Let pp < p2 < ... < pp be the prime numbers up tq,pwith p; =
2. If MT (k) denotes the greatest prime divisor of the integer k, withcivevention
MT(@1) = 1, set

v, p) = 1
k<x

M+(K)<pn
Then we have

(26) W(X, pn) — \Il(g, pn) = (M) IN""1(x) + O(n""?(x)) when x— +oo

where
1 ifn=1

c(n) = _ .

™ { oot [ke2(n(p) ™ ifn>2

Proof. Formula (26) is obviously true i = 1, because in this case we have
PP - WP =1 VX2

Now we will prove that if (26) holds for the integerthen it holds also fon 4+ 1 and
the lemma will follow by induction. We have

(oy/ipal
@) vy = ) 1= ) ‘I'( kn+l,|0n)

ko k Kns1=0 P
pl1mpnn p:rrllsy N1 n+1

withkj > 0for j =1,...,n+ 1. From (27) withy = x andy = 3 we obtain

[In3/1n pnya]
X X X
PO Prr) = W(E’ Pn+1) = Z (‘I’( kny1’ pn) — ‘I’(—Z T pn)> +
kny1=0 n+1 Pni1
X
(28) + Z \I'(—kn+l , Pn) = Z(X) + Z(X)’
fin 3/1n pns1<kn1 =<0 x/1n ppss] n+1 1 2

where) ", (x) is zero if the sum is empty. Consider ngw; (x): by induction hypoth-
esis we have

[n%/1In pnia] x
;(x) cny > It ( pkn+1) +0 (In“_1 x) =

Kn+1=0 n+1

(29)

n-1 - 0 $/10 pnal
cm Y DT I e g | Y K |+
h=0

Kn4+1=0
+ O (In”*l x)
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where, ifn = 1 the above expression must obviously be interpreted as
Z( ) = —Inx+O(1)

We now recall that
2+ m-Dh=
L (1 h + 1 h + 1 h—1
= B B
(30 g (e T e (T mat
where theB; are the Bernoulli numbers ([9], p. 65). If we use the exp@s$80) in
(29) we obtain

(In(3)/n pntal

> KD = ( Inx >h+l+ o(n"x) when x— +
= — w — +00
kn1=1 " h+ 1\ pn

and if we substitute this in (29) we have

_ ¢t _
Xl:(x) = o (Z( phe " )In X+ O(In"1x) =

c(n)
nin pni1

in view of the identity

(31) In"x + O(In"~1x)

n—1 n 1 n 1
L on—
G )h———Z( H"( h+1)——
h=0 h=0
which holds since

n—1 n

YD) =A==

h=0

Let us now consider the suin,(x) which appears in (28).
Since 0< In2/In pp+1 < 1,vn > 1 the sum, if it is not empty, contains at most
one term, namel¥kn+1 = [In X/ In ppy1] : for this value ofk,;1 we obviously have

/P2y < pnya which implies that

(32) Z(X) ( ) n) < ¥ (pn+1, Pn) = O(D)
pn-i-l
uniformly in x. From (28), (31) and (32) it follows that
_yl _ ™ e n-1
W (X, Pn+1) ‘I'(Z, Pnt1) = T b IN"x + O(In"*x)

which proves the lemma.
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LEMMA 2. Let

1
S(X) = Z K
§<h,k<x
(h,k=1
Then we have
6 2
(33) S(X) = —2(In 2)+0(1)
T

when Xx— +o0.

Proof. If we set
1
o= ) K

§<h,k<x

we can write

1
o) =Y 580)

n<x

and, by Mobius inversion formula, we have
un) X
S(x) = Z ?G(ﬁ)
n<x
Sinceitis

2
1 1
a(X):( > H) :(In2)2+0(;)

§<h<x

we have
w(n) 5 wu(n) 2
(34) S(X) = Z 7(|n 2% +o0(l) = (Z ?) (IN2)% + o(1)
n=<y/x nx1
whenx — +oo. From 34 follows (33) if we remember that

pm 6
2 E =z

n>1
[l

We return to the proof of Theorem 3. It is based on the Bandel$aus theorem:
for N > 1 we consider the bounded linear transformation

02— 42
Nl a= An@ =4
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defined by
0 ifl<n<N

(35) a()= [ %Z an da(d) <Z Ki(n/d) /L(k)) ifn>N
d<N k<(N/d)

where we have set = (a(n)) € ¢2 anda’ = (a (n)). The linearity ofAy is obvious:
let us prove that is also bounded. We have

2
/ N N 1 slall
aml=— ) lad) < — (Z |a(d>|2) NZ< Nz~

din d<N

d<N
from which the conclusion is immediatly obtained by squgrand summing over
n. We will now prove that the family of linear transformatigny is not uniformly
bounded. Letp; < p2 < ... < pn < ... be the sequence of prime numbers and let
M (n) the greatest prime divisor of the integerWe define

1 if Y <n<N and M(n) < p

(36) an(m = { 0 otherwise

for pr andN fixed.
From formula (35) follows that in this casaé\l = An(an) is given by

) 0 ifl<n<N
aym=1 1y 4 dan@) ifn>N
%<d§N

since the inner suf_ n w©(K) reduces tqu(l) = 1.
k<(N/d)

Consider now
o

IAnGN) I1P= ) lay(m)?
n=N+1
we have
1 1
IAnGaN) IP= ) an(dpan(dy) > D T
N gy dy<N (N=N+1, n=0(dp). n=0 (dp) *  + /2

_ Z an (dy)an (d2) (ds. d2)2 Z m—2

dido
5 <d1.d2<N m> Néd}jdz)
1dp

If § <di<Nand <dz < Nwe have% (d1, d2) < 4 and it follows

an (dp)an (dp)

d1, dp)?
4y (dq, d)

(37) IAnGaw) P> )

%<d1,d2§N
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wherety = ) .4 m~2. From formula (33) of Lemma 2 we have
N 1
(38) S= ) ppz%>0
N k<N
(hky=1
wherec; is an absolute constant,-'g# is sufficiently large, say’&'— > m. Let

1 fMY(n) < pr
0 otherwise

fr(n) = {

so that

xp) = Yy, 1= fn

n<x n<x
M+ (n)<pr

Consider now formula (37): collecting together the termthulie same greatest com-
mon divisor we obtain, taking, > m,

N
’ an (hd)a (kd)
An(a > C —_— | >
I An(an) I = 12 E K >
d=1| N <N
k=g
(h.k=1
N
39 > C fr (d)S(—) > ¢4C fr(d
(39) > 12 r()S(d)_lzg r(d)
N <N N g<N
pr="-=m pr="=m

if we remember definition (36) and formula (38). From form(2%) of Lemma 1
follows

[Inpr/In2]-1
Yo fd = > Yo k@] =
#Sdf% k=[Inm/In2]+1 2kNT<d5§lk‘
[Inpr/In2]-1 N N
= <‘Ij(§, Pr) — ‘I’(W, pr)) =
k=[Inm/In2]+1
[Inpr/In2]-1 N N
(40) = > (c(r) "G + 0<Inf—2<?>)> =
k=[Inm/In2]+1
_ Inp Inm _
_ r—1 227y r—2
(41) = c¢(r)in"™*N <[ In2] [In2] 1)+O(In N)

for N — +o0, wherec(r) is the constant specified in (26) of Lemma 1. From (39) and
(40) follows

| AnGw 12 SO N (53~ (551 - 1) + O 2N)
I @n) 17~ 1 cr)IN""IN + O(n"2N)

(42)
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since, by the definition (36) afy (n) and by lemma 1 we have
I (@) 1= c(r)In""1 N + O(n" "2 N)

From (42) we obtain

43) fiming ILAN@N) 2
N—+oo | (an) |12

| |
> &% ([ "y - 1) _Lm

wheret; ,C2 andm are absolute constants. Sincesufr) = +oo formula (43) proves
that the linear transformatiofy are not uniformly bounded and this implies, by the
Banach-Steinhaus theorem, the existence of a seqaeao@(n)) € £2 such that

(44) supl| An(@) |= +o0

If f(x)~ anl a(n) sin(2rnx) and Ry (X) = Z,’:‘Zla(n)P(nx) — f(x), where the
coefficientsx(n) are given by (7) of Theorem 2, it is easy to see that

o
(45) I An@) [P< 4] Ry IIP+2] Y lam)?
n=N+1
since
1 & : )
2__
I RvIP=35 > I—am+am)
n=N+1
and
o
I AN@) IIP= > Jam)?
n=N+1

if we remember (20), (22) and (35). From (44) and (45) foll@d3). This concludes
the proof of Theorem 3.
O
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