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ON THE ANTIMAXIMUM PRINCIPLE FOR PARABOLIC

PERIODIC PROBLEMS WITH WEIGHT

Abstract. We prove that an antimaximum principle holds for the Neu-
mann and Dirichlet periodic parabolic linear problems of second order
with a time periodic and essentially bounded weight function. We also
prove that an uniform antimaximum principle holds for the one dimen-
sional Neumann problem which extends the corresponding elliptic case.

1. Introduction

Let� be a bounded domain inRN with C2+γ boundary, 0< γ < 1 and letτ > 0. Let{
ai, j (x, t)

}
1≤i, j ≤N

{
b j (x, t)

}
1≤ j ≤N anda0 (x, t) be τ -periodic functions int such

that ai, j ,b j and a0 belong toCγ,γ /2
(
�× R

)
, ai, j = a j ,i for 1 ≤ i , j ≤ N and∑

i, j
ai, j (x, t) ξi ξ j ≥ c

∑
i
ξ2
i for somec > 0 and all(x, t) ∈ � × R, (ξ1, ..., ξN) ∈ R

N .

Let L be the periodic parabolic operator given by

(1) Lu =
∂u

∂ t
−
∑

i, j

ai, j
∂2u

∂xi ∂x j
+
∑

j

b j
∂u

∂x j
+ a0u

Let B (u) = 0 denote either the Dirichlet boundary conditionu|∂�×R = 0 or the
Neumann condition∂u/∂ν = 0 along∂�× R.

Let us consider the problem

(
Pλ,h

)




Lu = λmu+ h in �× R,

u τ − periodic int
B (u) = 0 on∂�× R

where the weight functionm = m (x, t) is a τ - periodic and essentially bounded
function,h = h (x, t) is τ - periodic int andh ∈ L p (�× (0, τ )) for somep > N +2.

We say thatλ∗ ∈ R is a principal eigenvaluefor the weightm if
(
Pλ∗,h

)
has a

positive solution whenh ≡ 0. The antimaximum principle can be stated as follows:

DEFINITION 1. We will say that theantimaximum principle(AMP) holds to the
right (respectively to the left) of a principal eigenvalueλ∗ if for each h≥ 0, h 6= 0 (with
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h ∈ L p (�× (0, τ )) for some p> N +2) there exists aδ (h) > 0 such that
(
Pλ,h

)
has

a negative solution for eachλ ∈ (λ∗, λ∗ + δ (h)) (respectivelyλ ∈ (λ∗ − δ (h) , λ∗)).

We prove that, depending onm, these two possibilities happen and that in some
cases the AMP holds left and right ofλ∗, similarly to the purely stationary case where
all data are independent oft (but in that case the period becomes artificial)

Our results are described by means of the real functionµm (λ) , λ ∈ R, defined as
the uniqueµ ∈ R such that the homogeneous problem

(
Pµ
)





Lu − λmu = µu in �× R,

u τ − periodic int
B (u) = 0 on∂�× R

has a positive solution.

This function was first studied by Beltramo - Hess in [2] for H¨older continuous
weight and Dirichlet boundary condition. They proved thatµm is a concave and real
analytic function, for Neumann the same holds ([8], Lemmas 15.1 and 15.2). A given
λ ∈ R is a principal eigenvalue for the weightm iff µm has a zero atλ

We will prove that ifµm is non constant and ifλ∗ is a principal eigenvalue for the
weight m then the AMP holds to the left ofλ∗ if µ′

m (λ
∗) > 0, holds to the right of

λ∗ if µ′
m (λ

∗) < 0 and holds right and left ofλ∗ if µ′
m (λ

∗) = 0. As a consequence of
these results we will give (see section 3, Theorem 1), for thecasea0 ≥ 0, conditions
on m that describe completely what happens respect to the AMP, near each principal
eigenvalue.

The notion of AMP is due to Ph. Clement and L. A. Peletier [3]. They proved an
AMP to the right of the first eigenvalue form = 1, with all data independent oft and
a0 (x) ≥ 0, i.e. the elliptic case. Hess [7] proves the same, in the Dirichlet case, for
m ∈ C

(
�
)
.Our aim is to extend these results to periodic parabolic problems covering

both cases, Neumann and Dirichlet. In section 2 we give a version of the AMP for a
compact family of positive operators adapted to our problemand in section 3 we state
the main results.

2. Preliminaries

Let Y be an ordered real Banach space with a total positive conePY with norm preserv-
ing order, i.e.u, v ∈ Y, 0 < u ≤ v implies‖u‖ ≤ ‖v‖ . Let P◦

Y denote the interior of
PY in Y. We will assume, from now on, thatP◦

Y 6= ∅. Its dualY′ is an ordered Banach
space with positive cone

P′ =
{
y′ ∈ Y′ :

〈
y′, y

〉
≥ 0 for all y ∈ P

}

For y′ ∈ Y′ we sety′⊥ =
{
y ∈ Y :

〈
y′, y

〉
= 0

}
and forr > 0, BY

r (y) will denote
the open ball inY centered aty with radiusr. For v,w ∈ Y with v < w we put
(v,w) and [u, v] for the order intervals{y ∈ Y : v < y < w} and{y ∈ Y : v ≤ y ≤ w}
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respectively.B (Y) will denote the space of the bounded linear operators onY and for
T ∈ B (Y) , T∗ will be denote its adjointT∗ : Y′ → Y′.

Let us recall that ifT is a compact and strongly positive operator onY and if
ρ is its spectral radius, then, from Krein - Rutman Theorem, (as stated, e.g., in [1],
Theorem 3.1),ρ is a positive algebraically simple eigenvalue with positive eigenvectors
associated forT and for its adjointT∗.

We will also need the following result due to Crandall - Rabinowitz ([4], Lemma
1.3) about perturbation of simple eigenvalues:

LEMMA 1. If T0 is a bounded operator on Y and if r0 is an algebraically simple
eigenvalue for T0, then there existsδ > 0 such that‖T − T0‖ < δ implies that there
exists a unique r(T) ∈ R satisfying|r (T)− r0| < δ for which r (T) I − T is singular.
Moreover, the map T→ r (T) is analytic and r(T) is an algebraically simple eigen-
value for T . Finally, an associated eigenvectorv (T) can be chosen such that the map
T → v (T) is also analytic.

We start with an abstract formulation of the AMP for a compactfamily of operators.
The proof is an adaptation, to our setting, of those in [3] and[7].

LEMMA 2. Let {Tλ}λ∈3 be a compact family of compact and strongly positive op-
erators on Y . Denote byρ (λ) the spectral radius of Tλ andσ (λ) its spectrum. Then
for all 0< u ≤ v in Y there existsδu,v > 0 in R such that

(
ρ (λ)− δu,v, ρ (λ)

)
∩ σ (λ) = ∅ and (θ I − Tλ)

−1 h < 0

uniformly in h∈ [u, v] ⊂ Y andθ ∈
(
ρ (λ)− δu,v, ρ (λ)

)
⊂ R.

Proof. We have that

(1) ρ (λ) is an algebraically simple eigenvalue forTλ with a positive eigenvector8λ

(2) T∗
λ has an eigenvector9λ associated to the eigenvalueρ (λ) such that〈9λ, x〉 >

0 for all x ∈ P − {0} .

(3) 8λ normalized by‖8λ‖ = 1 and9λ normalized by〈9λ,8λ〉 = 1 imply that{
(8λ,9λ, ρ (λ)) ∈ Y × Y′ × R

}
is compact.

(4) There existsr > 0 such thatBY
r (0) ⊂ (−8λ,8λ) for all λ ∈ 3.

(1) and (2) follow from Krein - Rutman Theorem.

For (3) {ρ (λ) , λ ∈ 3} is compact in(0,∞) because givenρ (λn) , the sequence
Tλn has a subsequence (still denoted)Tλn → Tλ∞ ∈ {Tλ}λ∈3 in B (Y) . Taking into
account (1), Lemma 1 provides anr > 0 such thatT ∈ B (Y) , ‖T − T∞‖ < r imply
that 0 /∈ (ρ (λ∞)− r, ρ (λ∞)+ r ) ∩ σ (T) = {ρ (T)} , soρ (λn) → ρ (λ∞) > 0. This
lemma also gives{8λ : λ ∈ 3} and{9λ : λ ∈ 3} compact inY andY′ respectively.

(4) follows remarking that{8λ, λ ∈ 3} has a lower boundv ≤ 8λ, v ∈ P◦
Y .

Indeed,1
28λ ∈ P◦

Y sow − 1
28λ = 1

28λ + w − 8λ ∈ P◦
Y for w ∈ Br (λ) (8λ) with
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r (λ) > 0. The open covering
{
Br (λ) (8λ)

}
of {8λ : λ ∈ 3} admits a finite subcovering{

Br(λ j )

(
8λ j

)
, j = 1,2, ..., l

}
and it is simple to obtainr j ∈ (0,1) such that8λ j >

r j
1
28λ1 j = 1,2, ..., l , so v = r8λ1 ≤ 1

28λ j < 8λ for all λ ∈ 3 and somej ( j
depending onλ).

We prove now the Lemma for eachλ andh ∈ [u, v] , i.e. we findδu,v (λ) and we
finish by a compactness argument thanks to (1)-(4).

9⊥
λ is a closed subspace ofY and then, endowed with the norm induced fromY, it

is a Banach space. It is clear that9⊥
λ is Tλ invariant. and thatTλ|9⊥

λ
: 9⊥

λ → 9⊥
λ is

a compact operator. Now,ρ (λ) is a simple eigenvalue forTλ with eigenvector8λ and

8λ /∈ 9
⊥
λ , butρ (λ) > 0 andTλ is a compact operator, thusρ (λ) /∈ σ

(
Tλ|9⊥

λ

)
.

We have alsoY = R8λ
⊕
9⊥
λ , a direct sum decomposition with bounded projec-

tions P8λ , P9⊥
λ

given by P8λ y = 〈9λ, y〉8λ and P9⊥
λ

y = y − 〈9λ, y〉8λ respec-

tively. Let T̃λ : Y → Y be defined bỹTλ = TλP9⊥
λ

Thus T̃λ is a compact operator.
Moreover,ρ (λ) does not belongs to its spectrum. (Indeed, suppose thatρ (λ) is an
eigenvalue for̃Tλ, let v be an associated eigenvector. We writev = P8λv + P9⊥

λ
v.

Thenρ (λ) v = T̃λ (v) = TλP9⊥
λ
v and sov ∈ 9⊥

λ , butρ (λ) /∈ σ
(

Tλ|9⊥
λ

)
. Contradic-

tion). Thus, for eachλ, ρ (λ) I − T̃λ has a bounded inverse.

Hence, from the compactness of the set{ρ (λ) : λ ∈ 3} it follows that there exists
ε > 0 such thatθ I − T̃λ has a bounded inverse for(θ, λ) ∈ D where

D = {(θ, λ) : λ ∈ 3, ρ (λ)− ε ≤ θ ≤ ρ (λ)+ ε}

and that
∥∥∥
(
θ I − T̃λ

)−1
∥∥∥

B(Y)
remains bounded as(λ, θ) runs onD.

But θ I − Tλ|9⊥
λ

: 9⊥
λ → 9⊥

λ has a bounded inverse given by
(
θ I − Tλ|9⊥

λ

)−1
=

((
θ I − T̃λ

)−1
)

|9⊥
λ

and so

∥∥∥∥
(
θ I − Tλ|9⊥

λ

)−1
∥∥∥∥

B
(
9⊥
λ

) remains bounded as(λ, θ) runs

on D.

Forh ∈ [u, v] we setwλ,h = h − 〈9λ,h〉8λ. As θ /∈ σ (Tλ) we have

(2) (θ I − Tλ)
−1 h =

〈9λ,h〉

θ − ρ (λ)

[
8λ +

θ − ρ (λ)

〈9λ,h〉

(
(θ I − Tλ)|9⊥

λ

)−1
wh,λ

]

andu − 〈9λ, v〉8λ ≤ wh,λ ≤ v − 〈9λ,u〉8λ that is
∥∥wh,λ

∥∥ ≤ cu,v for some con-

stantcu,v independent ofh. Hence
(
(θ I − Tλ)|9⊥

λ

)−1
wh,λ remains bounded inY, uni-

formly on (θ, λ) ∈ D andh ∈ [u, v] . Also, 〈9λ,h〉 ≥ 〈9λ,u〉 and since{〈9λ,u〉} is
compact in(0,∞) it follows that 〈9λ,h〉 ≥ c for some positive constantc and all
λ ∈ 3 and allh ∈ [u, v] . Thus the lemma follows from (4).

REMARK 1. The conclusion of Lemma 2 holds if (1)-(4) are fulfilled.
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We will use the following

COROLLARY 1. Let λ → Tλ be continuous map from[a,b] ⊂ R into B (Y). If
each Tλ is a compact and strongly positive operator then the conclusion of Lemma 2
holds.

3. The AMP for periodic parabolic problems

For 1 ≤ p ≤ ∞, denoteX = L p
τ (�× R) the space of theτ - periodic functions

u : �×R → R (i.e. u (x, t) = u (x, t + τ ) a.e.(x, t) ∈ �×R) such whose restrictions
to�× (0, τ ) belong toL p (�× (0, τ )) . We write alsoC1+γ,γ

τ,B

(
�× R

)
for the space

of the τ - periodic Hölder continuous functionsu on� × R satisfying the boundary
conditionB (u) = 0 andCτ

(
�× R

)
for the space ofτ - periodic continuous functions

on�× R.We set

(3)
Y = C1+γ,γ

τ,B

(
�× R

)
if B (u) = u|∂�×R

and
Y = Cτ

(
�× R

)
if B (u) = ∂u/∂ν.

In each case,X andY, equipped with their natural orders and norms are ordered Banach
spaces, and in the first one,Y has compact inclusion intoX and the conePY of the
positive elements inY has non empty interior.

Fix s0 > ‖a0‖∞ . If s ∈ (s0,∞), the solution operatorSof the problem

Lu + su = f on�× R, B (u) = 0, u τ − periodic, f ∈ Y

defined byS f = u, can be extended to an injective and bounded operator, that we
still denote byS, from X into Y (see [9], Lemma 3.1). This provides an extension of
the original differential operatorL, which is a closed operator from a dense subspace
D ⊂ Y into X (see [9], p. 12). From now onL will denote this extension of the original
differential operator.

If a ∈ L∞
τ (�× R) andδ1 ≤ a + a0 ≤ δ2 for some positive constantsδ1 andδ2,

thenL+a I : X → Y has a bounded inverse(L + a I )−1 : X → C1+γ,γ
B

(
�× R

)
⊂ Y,

i.e.

(4)
∥∥∥(L + a I )−1 f

∥∥∥
C1+γ,γ

(
�×R

) ≤ c‖ f ‖L p
τ (�×R)

for some positive constantc and all f ([9], Lemma 3.1). So(L + a I )−1 : X → X and
its restriction(L + a I )−1

|Y : Y → Y are compact operators. Moreover,(L + a I )−1
|Y :

Y → Y is a strongly positive operator ([9], Lemma 3.7).

If ∂ai, j /∂x j ∈ C
(
�× R

)
for 1 ≤ i , j ≤ N, we recall that forf ∈ L p

τ (�× R) ,
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(L + a I )−1 f is a weak solution of the periodic problem

∂u

∂ t
− div (A∇u)+

∑

j

(
b j +

∑

i

∂ai, j

∂xi

)
∂u

∂x j
+ (a + a0)u = f on�× R,

B (u) = 0 on∂�× R

u (x, t) = u (x, t + τ )

where A is the N × N matrix whosei , j entry is ai, j (weak solutions defined as,
e.g., in [10], taking there, the test functions space adapted to the periodicity and to the
respective boundary condition) In fact, this is true for a H¨older continuousf (classical
solutions are weak solutions) and then an approximation process, using thatL is closed
and (4), gives the assertion for a generalf.

REMARK 2. Letm ∈ L∞
τ (�× R) and letM : X → X be the operator multipli-

cation bym. Then for eachλ ∈ R there exists a uniqueµ ∈ R such that the problem(
Pµ
)

from the introduction has a positive solution.

This is shown forλ > 0, a0 ≥ 0 in [9] (see Remark 3.9 and Lemma 3.10). A
slight modification of the argument used there shows that this is true forλ ∈ R, a0 ∈

L∞
τ (�× R) (start with L + r instead ofL, with r ∈ R large enough). Thusµm (λ)

is well defined for allλ ∈ R, µm is a concave function,µm (λ) is real analytic inλ,
µm (λ) is anM simple eigenvalue forL and

µm (λ) = 0 if and only ifλ is a principal eigenvalue for the weightm.

Moreover, the positive solutionuλ of
(
Pµm(λ)

)
can be chosen real analytic inλ (as

a map fromR into Y). As in the casem Hölder continuous we haveµm (−λ) =

µ−m (λ) , λ ∈ R. We recall also that for the Dirichlet problem witha0 ≥ 0 (and also
for the Neumann problem witha0 ≥ 0, a0 6= 0) we haveµm (0) > 0 (see [8], also [5]
and [6]).

Givenλ ∈ R, we will say that the maximum principle (in brief MP) holds forλ if
λ is not an eigenvalue for the weightm and if h ∈ X with h ≥ 0, h 6= 0 implies that
the solutionuλ of the problem

(
Pλ,h

)
belongs toP◦

Y.

The functionµm describes what happens, with respect to the MP, at a givenλ ∈ R

(for the casem Hölder continuous see [8], Theorem 16.6):

µm (λ) > 0 if and only ifλ is not an eigenvalue andM P holds forλ

Indeed, forh ∈ X with h ≥ 0, h 6= 0, for r ∈ R large enough such that− ‖a0‖∞ −

‖λm‖∞ + r > 0, problem
(
Pλ,h

)
is equivalent to

(
r −1I − Sλ

)
u = Hλ with Sλ =

(L + r − λM)−1 and Hλ = r −1Sλh. Now Hλ > 0. Also µm (λ) > 0 if and only
if ρ̃ (λ) < r −1, whereρ̃ (λ) is the spectral radius ofSλ so Krein - Rutman Theorem
ensures, for such au, thatµm (λ) > 0 is equivalent tou ∈ P◦

Y. Moreover,µm (λ) > 0
implies also thatλ is not an eigenvalue for the weightm, since, if λ would be an
eigenvalue with an associated eigenfunction8 and ifuλ is a positive solution ofLu =
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λmu+ µm (λ) u, B (u) = 0, then, for a suitable constantc, v = uλ + c8 would be a
solution negative somewhere for the problemLv = λmv + µm (λ) uλ, B (v) = 0.

Next theorem shows thatµm also describes what happens, with respect to the AMP,
near to a principal eigenvalue.

THEOREM 1. Let L be the periodic parabolic operator given by (1) with coef-
ficients satisfying the conditions stated there, let B(u) = 0 be either the Dirichlet
condition or the Neumann condition, consider Y given by (3),let m be a function
in L∞

τ (�× R) and letλ∗ be a principal eigenvalue for the weight m. Finally, let
u, v ∈ L p

τ (�× R) for some p> N + 2, with 0< u ≤ v. Then

(a) If λ → µm (λ) vanishes identically, then for allλ ∈ R and all h≥ 0, h 6= 0 in
L p
τ (�× R), problem

(
Pλ,h

)
has no solution.

(b) If µ′
m (λ

∗) < 0 (respectivelyµ′
m (λ

∗) > 0), then the AMP holds to the right
of λ∗ (respectivley to the left) and its holds uniformly on h∈ [u, v] , i.e.
there existsδu,v > 0 such that for eachλ ∈

(
λ∗, λ∗ + δu,v

)
(respectively

λ ∈
(
λ∗ − δu,v, λ

∗
)
) and for each h∈ [u, v] , the solution uλ,h of

(
Pλ,h

)
satisfies

uλ,h ∈ −P◦
Y.

(c) If µ′
m (λ

∗) = 0 and if µm does not vanishes identically, then the AMP holds
uniformly on h for h∈ [u, v] right and left ofλ∗, i.e. there existsδu,v > 0 such
that for0< |λ− λ∗| < δu,v, h ∈ [u, v] , the solution uλ,h of

(
Pλ,h

)
is in −P◦

Y.

Proof. Let M : X → X be the operator multiplication bym. Given a closed intervalI
aroundλ∗ we chooser ∈ (0,∞) such thatr > λ∗µ′

m (λ
∗) andr −‖λm‖∞−‖a0‖∞ > 0

for all λ ∈ I . For a suchr and forλ ∈ I , let Tλ : Y → Y defined by

Tλ = (L + r I )−1 (λM + r I )

so eachTλ is a strongly positive and compact operator onY with a positive spectral
radiusρ (λ) that is an algebraically simple eigenvalue forTλ andT∗

λ . Let8λ,9λ be the
corresponding positive eigenvectors normalized by‖8λ‖ = 1 and〈9λ,8λ〉 = 1. By
Lemma 1,ρ (λ) is real analytic inλ and8λ,9λ are continuous inλ. As a consequence
of Krein - Rutman, we have thatρ (λ) = 1 iff λ is a principal eigenvalue for the weight
m. Soρ (λ∗) = 1. SinceTλ is strongly positive we have8λ ∈ P◦

Y, so there existss> 0
such thatBY

s (0) ⊂ (−8λ,8λ) for all λ ∈ I . Let H = (L + r )−1 h, U = (L + r )−1 u
and V = (L + r )−1 v. The problemLuλ = λmuλ + h on� × R, B (uλ) = 0 on
∂�× R is equivalent to

(5) uλ = (I − Tλ)
−1 H

andu ≤ h ≤ v impliesU ≤ H ≤ V. So, we are in the hypothesis of our Lemma 2 and

from its proof we get that

∥∥∥∥
((
ρ (λ) I − Tλ|9⊥

λ

))−1
∥∥∥∥ remains bounded forλ near toλ∗

and from (2) withθ = ρ (λ∗) = 1 we obtain

(6) uλ =
〈9λ, H 〉

1 − ρ (λ)

[
8λ +

1 − ρ (λ)

〈9λ, H 〉

(
(I − Tλ)|9⊥

λ

)−1
wH,λ

]
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wherewH,λ = H − 〈9λ, H 〉8λ.

Tλ8λ = ρ (λ)8λ is equivalent toL8λ = λ
ρ(λ)

m8λ + r
(

1
ρ(λ)

− 1
)
8λ and, since

8λ > 0 this implies

(7) µm

(
λ

ρ (λ)

)
= r

(
1

ρ (λ)
− 1

)
.

If µm vanishes identically thenρ (λ) = 1 for allλ and (5) has no solution for allh ≥ 0,
h 6= 0. This gives assertion (a) of the theorem.

For (b) suppose thatµ′
m (λ

∗) 6= 0. Taking the derivative in (7) atλ = λ∗ and
recalling thatρ (λ∗) = 1 we obtain

µ′
m

(
λ∗
) (

1 − λ∗ρ′
(
λ∗
))

= −rρ′
(
λ∗
)

so ρ′ (λ∗) = µ′
m (λ

∗) /
(
λ∗µ′

m (λ
∗)− r

)
. We have chosenr > λ∗µ′

m (λ
∗) , thus

µ′
m (λ

∗) > 0 impliesρ′ (λ∗) < 0 andµ′
m (λ

∗) < 0 impliesρ′ (λ∗) > 0 and then,
proceeding as at the end of the proof of Lemma 2, assertion (b)of the theorem follows
from (6).

If µ′
m (λ

∗) = 0, sinceµm is concave and analytic we haveµm (λ) < 0 for λ 6= λ∗.

Then 1/ρ has a local maximum atλ∗ and (c) follows from (6) as above.

To formulate conditions onm to fulfill the assumptions of Theorem 1 we recall the
quantities

P (m) =

∫ τ

0
ess supx∈�m (x, t) dt, N (m) =

∫ τ

0
ess in fx∈�m (x, t) dt.

The following two theorems describe completely the possibilities, with respect to the
AMP, in Neumann and Dirichlet cases witha0 ≥ 0.

THEOREM 2. Let L be given by(1). Assume that either B(u) = 0 is the Neumann
condition and a0 ≥ 0, a0 6= 0 or that B(u) = 0 is the Dirichlet condition and a0 ≥ 0.
Assume in addition that∂ai, j /∂x j ∈ C

(
�× R

)
, 1 ≤ i , j ≤ N. Then

(1) If P (m) > 0 (P (m) ≤ 0) , N (m) ≥ 0 (N (m) < 0) then there exists a unique
principal eigenvalueλ∗ that is positive (negative) and the AMP holds to the right
(to the left) ofλ∗

(2) If P (m) > 0, N (m) < 0 then there exist two principal eigenvaluesλ−1 < 0
andλ1 > 0 and the AMP holds to the right ofλ1 and to the left ofλ−1.

(3) If P (m) = then N(m) = 0 then there are no principal eigenvalues.

Moreover if u, v ∈ L p
τ (�× R) satisfy0 < u < v, then in(1) and (2) the AMP

holds uniformly on h for h∈ [u, v] .
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Proof. We consider first the Dirichlet problem. IfP (m) > 0 andN (m) ≥ 0 then
there exists a unique principal eigenvalueλ1 that is positive ([9]). Sinceµm (0) > 0,
µm (λ1) = 0 andµ is concave, we haveµ′

m (λ1) < 0 and (b) of Theorem 1 applies.
If P (m) > 0 andN (m) < 0 then there exist two eigenvaluesλ−1 < 0 andλ1 > 0
becauseµ−m (−λ) = µm (λ) and in this case (µm is concave) we haveµ′

m (λ−1) > 0
andµ′

m (λ1) < 0, so Theorem 1 applies. In each case Theorem 1 gives the required
uniformity. The other cases are similar. IfP (m) = N (m) = 0 thenm = m (t) and
µm (λ) ≡ µm (0) > 0 ([9]). So (3) holds. Results in [9] for the Dirichlet problem
remain valid for the Neumann condition witha0 ≥ 0, a0 6= 0, so the above proof
holds.

REMARK 3. If a0 = 0 in the Neumann problem thenλ0 = 0 is a principal
eigenvalue andµm (0) = 0. To study this case we recall that(L + 1)−1∗ has a
positive eigenvector9 ∈ X′ ⊂ Y′ provided by the Krein - Rutman Theorem and
(4). Thenµ′

m (0) = − 〈9,m〉 / 〈9,1〉 where〈9,m〉 =
∫
�×(0,τ )ψm makes sense

because9 ∈ L p′
(�× (0, τ )) ([9], remark 3.8). Indeed, letuλ be a positiveτ -

periodic solution ofLuλ = λmuλ + µm (λ) uλ on � × R, B (uλ) = 0 with uλ
real analytic inλ and with u0 = 1. Since9 vanishes on the range ofL we have
0 = λ 〈9,muλ〉 + µm (λ) 〈9,uλ〉 . Taking the derivative atλ = 0 and using that
u0 = 1 we get the above expression forµ′

m (0) .

THEOREM 3. Let L be given by (1). Assume that B(u) = 0 is the Neumann
condition and that a0 = 0. Assume in addition that∂ai, j /∂x j ∈ C

(
�× R

)
, 1 ≤

i , j ≤ N. Let9 be as in Remark 3.

Then, if m is not a function of t alone, we have

(1) If 〈9,m〉 < 0 (〈9,m〉 > 0), P (m) ≤ 0 (N (m) ≥ 0) , then 0 is the unique
principal eigenvalue and the AMP holds to the left (to the right) of 0.

(2) If 〈9,m〉 < 0 (〈9,m〉 > 0) , P (m) > 0 (N (m) < 0) , then there exists two
principal eigenvalues,0 andλ∗ wich is positive (negative) and the AMP holds to
the left (to the right) of0 and to the right (to the left) ofλ∗.

(3) If 〈9,m〉 = 0,hen0 is the unique principal eigenvalue and the AMP holds left
and right of0.

If m = m (t) is a function of t alone, then we have

(1’) If
∫ τ

0 m (t) dt = 0 then for allλ ∈ R the above problem Lu= λmu+ h has no
solution.

(2’) If
∫ τ

0 m (t) dt 6= 0 and〈9,m〉 > 0 (〈9,m〉 < 0) then0 is the unique principal
eigenvalue and the AMP holds to the right (to the left) of0.

Moreover, if u, v ∈ X satisfy0 < u < v, then in each case (except(1’)) the AMP
holds uniformly on h for h∈ [u, v] .
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Proof. Suppose thatm is not a function oft alone. If〈9,m〉 < 0, P (m) ≤ 0 then 0 is
the unique principal eigenvalue andµ′

m (0) > 0. If 〈9,m〉 < 0, P (m) > 0 then there
exist two principal eigenvalues: 0 and someλ1 > 0 and sinceµm is concave we have
µ′

m (0) > 0 andµ′
m (λ1) < 0. If 〈9,m〉 = 0 and ifm is not funtion oft alone, then

µm is not a constant andµ′
m (0) = 0 and 0 is the unique principal eigenvalue. In each

case, the theorem follows from Theorem 1. The other cases aresimilar.

If m is a function of t alone thenµm (λ) = −
P(m)
τ
λ, this implies P(m)

τ
=

〈9,m〉 / 〈9,1〉 . If
∫ τ

0 m (t) dt = 0 thenµm = 0 and (a) of Theorem 1 applies. If∫ τ
0 m (t) dt 6= 0 and〈9,m〉 > 0 thenP (m) = N (m) > 0 so 0 is the unique principal

eigenvalue andµ′
m (0) < 0, in this case Theorem 1 applies also. The case〈9,m〉 < 0

is similar. The remaining case
∫ τ

0 m (t) dt 6= 0 and〈9,m〉 = 0 is impossible because
P(m)
τ

= 〈9,m〉 / 〈9,1〉.

For one dimensional Neumann problems, similarly to the elliptic case, a uniform
AMP holds.

THEOREM 4. Suppose N= 1, � = (α, β) and the Neumann condition. Let L be
given by Lu= ut − auxx + bux + a0u, where a0,b ∈ Cγ,γ /2

τ

(
�× R

)
, a0 ≥ 0 and

with a ∈ C1
τ

(
�× R

)
, min

x∈�×R

a (x, t) > 0. Then the AMP holds uniformly in h (i.e.

holds on an interval independent of h) in each situation considered in Theorem 3.

Proof. Let λ∗ be a principal eigenvalue forLu = λmu. Without loss of generality
we can assume that‖h‖p = 1 and that the AMP holds to the right ofλ∗. DenoteM
the operator multiplication bym. Let Iλ∗ be a finite closed interval aroundλ∗ and, for
λ ∈ Iλ∗, let Tλ,8λ and9λ be as in the proof of Theorem 1. Each8λ belongs to the
interior of the positive cone inC

(
�
)

andλ → 8λ is a continuous map fromIλ∗ into
C
(
�
)
, thus there exist positive constantsc1, c2 such that

(8) c1 ≤ 8λ (x) ≤ c2

for all λ ∈ Iλ∗ andx ∈ �. As in the proof of Lemma 2 we obtain (6). Taking into

account (8) and that

∥∥∥∥
(
(I − Tλ)|9⊥

λ

)−1
∥∥∥∥ remains bounded forλ nearλ∗, in order to

prove our theorem, it is enough to see that there exist a positive constantc independent

of h, such that

∥∥∥∥
(

I − Tλ|9⊥
λ

)−1
wH,λ

∥∥∥∥
∞

/ 〈9λ, H 〉 < c for λ ∈ Iλ∗ . Since

(
I − Tλ|9⊥

λ

)−1
wH,λ

〈9λ, H 〉
=
(

I − Tλ|9⊥
λ

)−1
(

H

〈9λ, H 〉
−8λ

)
,

it suffices to prove that there exists a positive constantc such that

(9) ‖H‖∞ ≤ c 〈9λ, H 〉
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for all h ≥ 0 with ‖h‖p = 1. To show (9) we proceed by contradiction. If (9) does not
holds, we would have for allj ∈ N, h j ∈ L p

τ (�× R) with h j ≥ 0,
∥∥h j

∥∥
p = 1 and

λ j ∈ Iλ∗ such that

(10)
〈
9λ j , (L + r I )−1 h j

〉
<

1

j

∥∥∥(L + r I )−1 h j

∥∥∥
∞
.

Thus limj →∞

〈
9λ j , (L + r I )−1 h j

〉
= 0.We claim that

(11)
∥∥∥(L + r I )−1 h

∥∥∥
∞
/ min
�×[0,τ ]

(L + r I )−1 h ≤ c

for some positive constantc and all nonnegative and non zeroh ∈ L p
τ (�× R) . If (11)

holds, then
〈
9λ j , (L + r I )−1 h j

〉
≥
〈
9λ j ,1

〉
min

�×[0,τ ]
(L + r I )−1 h j ≥

≥ c′c
∥∥∥(L + r I )−1 h j

∥∥∥
∞

〈
9λ j ,8λ j

〉
= cc′

∥∥∥(L + r I )−1 h j

∥∥∥
∞

for some positive constantc′ independent ofj , contradicting (10).

It remains to prove (11) which looks like an elliptic Harnackinequality. We may
supposeα = 0.Extendingu := (L + r I )−1 h by parity to [−β, β] we obtain a function
ũ with ũ (−β, t) = ũ (β, t) , so we can assume that̃u is 2β - periodic in x and τ
periodic int . ũ solves weakly the equatioñut − ã̃uxx + b̃̃ux + (a0 + r ) ũ = h̃ in R×R

wherẽa, ã0, h̃ are extensions toR × R like ũ, but b is extended to an odd functioñb
in (−β, β) then 2β periodically. In spite of discontinuities of̃b, a parabolic Harnack
inequality holds for̃u = ũ

(̃
h
)

([10], Th. 1.1) and using the periodicity of̃u in t, we
obtain (11).
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