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ON THE ANTIMAXIMUM PRINCIPLE FOR PARABOLIC
PERIODIC PROBLEMS WITH WEIGHT

Abstract. We prove that an antimaximum principle holds for the Neu-
mann and Dirichlet periodic parabolic linear problems afes®l order
with a time periodic and essentially bounded weight functi®Ve also
prove that an uniform antimaximum principle holds for theeatimen-
sional Neumann problem which extends the correspondimgieltase.

1. Introduction

Let ©2 be a bounded domain ikN with C2t” boundary, O< y < 1 and letr > 0. Let
{ai (X’t)}lgi,jgN {bj (x,t)}lSjS,\I aﬂdao(x,t) be r-periodic functions int such
thata; j, bj andag belong toC”7/2(Q x R), aj = aj; for1 <i,j < N and
Yoaij (X, 1) &g > CZ;Z for somec > 0 and all(x,t) € Q x R, (&1, ..., EN) € RN,

0]
Let L be the perlodlc parabolic operator given by

ou
1 Lu= — — — u
(1) it & Jax.ax Z ‘a + 8

Let B (u) = 0 denote either the Dirichlet boundary conditiopo.r = 0 or the
Neumann conditiodu/dv = 0 alongd2 x R.

Let us consider the problem

Lu=imu+hinQ x R,
(Px.h) u t — periodic int
B(u)=00n92 x R

where the weight functiom = m(x,t) is at - periodic and essentially bounded

function,h = h (x, t) is 7 - periodicint andh € LP (2 x (0, 7)) for somep > N+2.
We say that\* € R is aprincipal eigenvalugor the weightm if (th) has a

positive solution whet = 0. The antimaximum principle can be stated as follows:

DEerFINITION 1. We will say that thentimaximum principl§ AMP) holds to the
right (respectively to the left) of a principal eigenvalueif for each h> 0, h # 0 (with
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h e LP(Q x (0, 7)) for some p> N + 2) there exists @ (h) > Osuch that( P, 1) has
a negative solution for each e (A*, A* + § (h)) (respectively. € (A* — § (h), A™)).

We prove that, depending an, these two possibilities happen and that in some
cases the AMP holds left and right bf, similarly to the purely stationary case where
all data are independent bfbut in that case the period becomes artificial)

Our results are described by means of the real fungtigiir) , A € R, defined as
the uniquex € R such that the homogeneous problem

Lu—2imu=puuin Q x R,
(Py) u t — periodic int
B(u)=00ndQ2 x R

has a positive solution.

This function was first studied by Beltramo - Hess in [2] fooltiér continuous
weight and Dirichlet boundary condition. They proved that is a concave and real
analytic function, for Neumann the same holds ([8], Lemntad And 15.2). A given
A € Ris a principal eigenvalue for the weigimtiff «m has a zero at

We will prove that ifum is non constant and X* is a principal eigenvalue for the
weightm then the AMP holds to the left of* if u;, (*) > 0, holds to the right of
2*0f um (M) < 0 and holds right and left of* if 7, (A*) = 0. As a consequence of
these results we will give (see section 3, Theorem 1), foctse=ag > 0, conditions
on m that describe completely what happens respect to the AM#P, esch principal
eigenvalue.

The notion of AMP is due to Ph. Clement and L. A. Peletier [3heY proved an
AMP to the right of the first eigenvalue fon = 1, with all data independent afand
ap (X) > 0, i.e. the elliptic case. Hess [7] proves the same, in the Blieiccase, for
meC (ﬁ) . Our aim is to extend these results to periodic paraboliclprob covering
both cases, Neumann and Dirichlet. In section 2 we give dorecf the AMP for a
compact family of positive operators adapted to our prokdeichin section 3 we state
the main results.

2. Preliminaries

LetY be an ordered real Banach space with a total positive Borveith norm preserv-

ing order, i.e.u,v € Y, 0 < u < vimplies|lul| < |v[|. Let Py denote the interior of

Py in Y. We will assume, from now on, th&y # ¢. Its dualY’ is an ordered Banach
space with positive cone

P ={y' eY:[y,y)=0forally € P}
Fory € Y we setyt = {yeY:(y,y)=0} and forr > 0, BY (y) will denote

the open ball inY centered aty with radiusr. Forv, w € Y with v < w we put
(v, w) and u, v] forthe orderinterval§y e Y :v <y <w}and{ye Y:v <y < w}
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respectively B (Y) will denote the space of the bounded linear operatorg and for
T € B(Y), T* will be denote its adjoinT* : Y — Y.

Let us recall that ifT is a compact and strongly positive operator Yrand if
p is its spectral radius, then, from Krein - Rutman Theorem, q@ated, e.g., in [1],
Theorem 3.1)p is a positive algebraically simple eigenvalue with positiigenvectors
associated fof and for its adjointl *.

We will also need the following result due to Crandall - Raviitz ([4], Lemma
1.3) about perturbation of simple eigenvalues:

LEMMA 1. If Tg is a bounded operator on Y and i is an algebraically simple
eigenvalue for §, then there exist8 > 0 such that|T — Tg|| < § implies that there
exists a unique (T) € R satisfyingr (T) —ro| < é for whichr(T) | — T is singular.
Moreover, the map T r (T) is analytic and r(T) is an algebraically simple eigen-
value for T. Finally, an associated eigenvectqiT) can be chosen such that the map
T — v (T) is also analytic.

We start with an abstract formulation of the AMP for a comgautily of operators.
The proof is an adaptation, to our setting, of those in [3] @fd

LEMMA 2. Let{T,},c5 be a compact family of compact and strongly positive op-
erators on Y. Denote by (1) the spectral radius of ;Jando (1) its spectrum. Then
forall0 <u <winY there existd, , > 0in R such that

(p(A) —bup. p (M) No ) =vand (@1 —T,)"th <0
uniformly in he [u, v] C Y andd € (p (A) — u,v. p (1)) C R.
Proof. We have that

(1) p (1) is an algebraically simple eigenvalue fbr with a positive eigenvectab;,

(2) T has an eigenvectd; associated to the eigenvalp€r) such thafy;, x) >
Oforallx e P —{0}.

(3) @, normalized by||®, | = 1 and¥; normalized by(¥;, ®,) = 1 imply that
{(@, ¥, p (V) €Y x Y x R} is compact.

(4) There exists > 0 such thaBrY 0) C (=D, d,)forall A € A.

(1) and (2) follow from Krein - Rutman Theorem.

For (3){p (1), A € A} is compact in(0, co) because givep (1), the sequence
T, has a subsequence (still denotd@g) — T, € {Ta}ca in B(Y). Taking into
account (1), Lemma 1 provides an> 0 such thafl € B(Y), ||T — Tooll < r imply
that 0¢ (o (Aeo) — T, p (hoo) + 1) N (T) = {p (T)}, S0p (An) = p (Aoo) > 0. This
lemma also give$d; : L € A} and{V¥, : » € A} compactinY andY’ respectively.

(4) follows remarking tha{®;, » € A} has a lower bound < ®,, v € Py.
Indeed,3®; € Py sow — 30, = 3d, +w — ;. € PS for w € By (1) with
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r () > 0. The open coverin{;Br(A) (<I>A)} of {®, : A € A} admits a finite subcovering
[Br(kj) (CDM) ,i=212 .., I} and it is simple to obtain; € (0, 1) such thatch >
3@y, j =1.2...,1,500 =rd;, < 3, < @, forall» € A and somej (]
depending o).

We prove now the Lemma for eaghandh € [u, v], i.e. we findsy, , (A) and we
finish by a compactness argument thanks to (1)-(4).

Wl is a closed subspace %fand then, endowed with the norm induced fr¥nit
is a Banach space. Itis clear thif is T, invariant. and thaTm,AL Sk wilis
a compact operator. Now,(A) is a simple eigenvalue fdf, with eigenvectod; and

D, ¢ \Ifkl butp (A) > 0 andT, is a compact operator, thys(A) ¢ o (TM\I,Q .

We have alsef = R, P \IIAL a direct sum decomposition with bounded projec-
tions Py, , Py1 given by Pg,y = (¥, y) @, andPy.y = y — (¥, y) O, respec-
tively. LetT, : Y — Y be defined byl), = T, Py ThusT, is a compact operator.

Moreover,p (1) does not belongs to its spectrum. (Indeed, supposeottigt is an
eigenvalue forT,, let v be an associated eigenvector. We wiite= Py, v + P\I,% v.

Thenp (W) v =T, (v) = T, P,Lv and sov € ¥, butp (1) ¢ o (TM\I%) Contradic-

tion). Thus, for each, p (A) | — 'I’:A has a bounded inverse.

Hence, from the compactness of the geth) : A € A} it follows that there exists
¢ > 0suchthatl — T, has a bounded inverse f@#, ) € D where

D={0.4):2eA pl)—e=0=<pQ)+e}
and thatH (61 — ﬂ)flﬂ 5o remains bounded g%, 6) runs onD.
_ _ -1
Butfl — T, g1 ¥t — Wil has a bounded inverse given é&l - TM\IJ)J:> =

~ 1 -1
((9I -T) >|\PL and so <9I —TMWQ
onD.

Forh € [u, v] we setw; h = h — (¥;, h) ®,. AsO ¢ o (T,) we have

(W, h) 0 —p () -1
60— p 00 [d“ (W, h) (@1 =Ty w“}

andu — (W, v) @, < wh < v — (¥, u) @, thatis||wn,| < cu,. for some con-

remains bounded as., ) runs
B(¥;)

@ @ -Tyth=

stantc, , independent dff. Hence((el — T,\)N,kl) wn_x remains bounded iM, uni-
formly on (6, 1) € D andh € [u, v] . Also, (;, h) > (¥, u) and since(¥;, u)} is
compact in(0, co) it follows that (¥, h) > c for some positive constarmtand all
A € A and allh € [u, v] . Thus the lemma follows from (4).

O

REMARK 1. The conclusion of Lemma 2 holds if (1)-(4) are fulfilled.
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We will use the following

COROLLARY 1. LetA — T, be continuous map frofa, b] ¢ R into B(Y). If
each T, is a compact and strongly positive operator then the coneiusf Lemma 2
holds.

3. The AMP for periodic parabolic problems

For1l < p < oo, denoteX = Lf (22 x R) the space of the - periodic functions
u:2xR— R@i.,e.ux, t) =ux,t+ 1) a.e(x,t) € 2 xR) such whose restrictions
to Q x (0, 7) belong toLP (Q x (0, 7)) . We write aIsoCrl,Jg/’V (€2 x R) for the space
of the r - periodic Holder continuous functionson Q x R satisfying the boundary
conditionB (u) = 0 andC; (§ X R) for the space of - periodic continuous functions
on 2 x R. We set

Y=CH" (@xR) if B =upexr
Q) and
Y=C, (ﬁx]R) if B(u) =2au/dv.

In each caseX andY, equipped with their natural orders and norms are ordered@&an
spaces, and in the first on€,has compact inclusion int& and the coné?y of the
positive elements itY has non empty interior.

Fix 5o > ||lagllse - If S € (S0, 00), the solution operatds of the problem
Lu+su=fonQ xR, B(u) =0, ur — periodic, feY

defined bySf = u, can be extended to an injective and bounded operator, that we
still denote byS, from X into Y (see [9], Lemma 3.1). This provides an extension of
the original differential operatdr, which is a closed operator from a dense subspace
D c Y into X (see [9], p. 12). From now oh will denote this extension of the original
differential operator.

If a e L® (2 xR)andd; < a+ ap < §> for some positive constanés andsy,
thenL+al : X — Y hasaboundedinverge +al)™1: X — C5™"7 (@ xR) C Y,
ie.

4) WL+an4f‘

<c|flp
et @xr) = C 1 ILP@sm)

for some positive constantand all f ([9], Lemma 3.1). S@L +al)™!: X — X and
its restriction(L + al)l_Y1 : Y — Y are compact operators. Moreovelr, + al)l_Y1 :
Y — Y is a strongly positive operator ([9], Lemma 3.7).

If 9aj,j/0x; € C(Q x R) for1 <i, j < N, we recall that forf € LP@ xR,
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(L +al)~! f is a weak solution of the periodic problem

ou . dgj |\ du
— —div (AV bj — | — = f QxR
P v ( u)+2j:(1+2i: axi>8xj+(a+a0)u on x R,

B(u)=00n92 x R
uX,t) =ux,t+r1)

where A is the N x N matrix whosei, | entry isaj (weak solutions defined as,
e.g., in [10], taking there, the test functions space adbjoi¢he periodicity and to the
respective boundary condition) In fact, this is true forad¢i continuoud (classical
solutions are weak solutions) and then an approximatiooga® using thdt is closed
and (4), gives the assertion for a genefral

REMARK 2. Letm € L (22 x R) and letM : X — X be the operator multipli-
cation bym. Then for each. € R there exists a unique € R such that the problem
(P.) from the introduction has a positive solution.

This is shown forA > 0, ag > 0 in [9] (see Remark 3.9 and Lemma 3.10). A
slight modification of the argument used there shows thatithirue fora € R, ag €
LS° (2 x R) (start withL +r instead ofL, with r € R large enough). Thugm (1)
is well defined for allr € R, uny is a concave functionuy, (1) is real analytic i,
um (1) is anM simple eigenvalue fok and

um (X)) = 0if and only if A is a principal eigenvalue for the weigimt

Moreover, the positive solution, of (Pﬂm(k)) can be chosen real analytic in(as
a map fromR into Y). As in the casean Holder continuous we haven (—A) =

u—m ), A € R. We recall also that for the Dirichlet problem witly > 0 (and also
for the Neumann problem withy > 0, ag # 0) we haveum (0) > 0 (see [8], also [5]
and [6]).

Givenx € R, we will say that the maximum principle (in brief MP) holds foiif
A is not an eigenvalue for the weightand ifh € X with h > 0, h # 0 implies that
the solutioru,, of the problen’(Pk,h) belongs toPy.

The functionum, describes what happens, with respect to the MP, at a giveiR
(for the casem Holder continuous see [8], Theorem 16.6):

um (A) > 0if and only if A is not an eigenvalue and P holds fori

Indeed, forh ¢ X withh > 0, h £ 0, forr € R large enough such that ||ag||,, —
[Amll + 1 > O, problem(P, ) is equivalent tor 11 — S))u = H, with S, =
(L+r —aM)"tandH, = r~1Sh. Now H, > 0. Also um (1) > O if and only
if 5(1) <r~1, whereg (1) is the spectral radius d§, so Krein - Rutman Theorem
ensures, for sucha thatum (1) > 0is equivalent tal € Py. Moreover,um (1) > 0
implies also thatx is not an eigenvalue for the weight, since, if » would be an
eigenvalue with an associated eigenfunctioand ifu,, is a positive solution of.u =
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Amu+ um (M) u, B (u) = 0, then, for a suitable constaatv = u; + c® would be a
solution negative somewhere for the problem= Amv + um (A) uy, B (v) = 0.

Next theorem shows that,, also describes what happens, with respect to the AMP,
near to a principal eigenvalue.

THEOREM 1. Let L be the periodic parabolic operator given by (1) with toe
ficients satisfying the conditions stated there, letuB = O be either the Dirichlet
condition or the Neumann condition, consider Y given by &),m be a function
in L2 (2 x R) and letA* be a principal eigenvalue for the weight m. Finally, let
u,v e L? (Q x R) for some p> N + 2, with0 < u < v. Then

(8 If » — um (1) vanishes identically, then forall e R and allh> 0, h # 0in
LP(Q x R), problem(P;, 1) has no solution.

(b) If ur, 0*) < O (respectivelyur, (*) > 0), then the AMP holds to the right
of A* (respectivley to the left) and its holds uniformly oné [u,v], i.e.
there existsdy, > O such that for eachh € (A*, A* + 8y,) (respectively
A € (A* — 8y, A*)) and for each he [u, v], the solution y p of (P, h) satisfies
Uyh € —P?.

(©) If up (2*) = 0 and if um does not vanishes identically, then the AMP holds
uniformly on h for he [u, v] right and left ofA*, i.e. there exist8, , > 0 such
that for0 < |» — A*| < 8u,v, h € [u, v] , the solution y h of (Py h) is in —Pg.

Proof. Let M : X — X be the operator multiplication by. Given a closed intervel
aroundr* we choose € (0, co) suchthat > A*uy, (A*) andr —||Am||,—llagllee > O
forall» € |. Forasuchr andfori € 1, letT, : Y — Y defined by

T.=L+r)2M+rl)

so eachT, is a strongly positive and compact operatoronvith a positive spectral
radiusp (1) that is an algebraically simple eigenvalue TarandT,*. Let ®;, ¥, be the
corresponding positive eigenvectors normalized|ty || = 1 and(¥,, ®,) = 1. By
Lemma 1,0 (A) is real analytic in. and®;, ¥, are continuousin. As a consequence
of Krein - Rutman, we have that(x) = 1iff A is a principal eigenvalue for the weight
m. Sop (A*) = 1. SinceT, is strongly positive we hav®, € P?, so there exists > 0
such thaBY (0) ¢ (—®;, ®;) forallx e l.LetH = (L+r)"th,U = (L +r)"tu
andV = (L +r)_1v. The problemLu; = Axmu, + honQ x R, B(uy) = 0 on
92 x R is equivalent to

(5) u=(—-T) *H

andu < h < vimpliesU < H < V. So, we are in the hypothesis of our Lemma 2 and
) -1

from its proof we get thaH((,o M1 - TM,AL))

and from (2) withd = p (A*) = 1 we obtain

(W H) 1—p 1) -1
© g [ (0 w) ]

remains bounded for near tor*
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wherewy ; = H — (¥, H) ®;.

T, ®; = p (L) @, is equivalent toL &, = ﬁm@k +r (le) - 1) &, and, since
@, > 0 this implies

)= (52

If um vanishes identically them (1) = 1 for all » and (5) has no solution for &l > 0,
h £ 0. This gives assertion (a) of the theorem.

For (b) suppose that;, (A*) # 0. Taking the derivative in (7) at = A* and
recalling thatp (A*) = 1 we obtain

pm (A7) (L= 270" (7)) = —rp’ (A7)

S0 p' (A*) = upm W)/ (M (A*) —r). We have chosem > A*up, (A*), thus
Um (A*) > 0 impliesp’ (A*) < 0 andup, (A*) < 0 impliesp’ (A*) > 0 and then,
proceeding as at the end of the proof of Lemma 2, assertioof the theorem follows
from (6).
If um (A*) = 0, sinceum is concave and analytic we haug, (1) < O for A # A*.
Then ¥/p has a local maximum at* and (c) follows from (6) as above.
O

To formulate conditions om to fulfill the assumptions of Theorem 1 we recall the
guantities

T T
P(m) = f €SS SUpReeM (X, t) dt, N (m) = / ess infcom(x, t) dt.
0 0

The following two theorems describe completely the posis, with respect to the
AMP, in Neumann and Dirichlet cases wih > 0.

THEOREM?Z2. Let L be given byl). Assume that either Bi) = Ois the Neumann
condition and @ > 0, ag # 0 or that B(u) = Oiis the Dirichlet condition and@> 0.
Assume in addition thata; j /0xj € C (2 x R),1<i, j < N. Then

Q) fP@mM >0(P@m)<0), N(m > 0 (N (m) < 0) then there exists a unique
principal eigenvalue.* that is positive (negative) and the AMP holds to the right
(to the left) ofa*

(2) If P(m) > 0, N(m) < 0then there exist two principal eigenvalues; < 0
andx; > 0and the AMP holds to the right @ and to the left of._;.

(3) If P (m) =then N(m) = 0 then there are no principal eigenvalues.

Moreover if uv € L? (€ x R) satisfy0 < u < v, then in(1) and (2) the AMP
holds uniformly on h for ke [u, v] .
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Proof. We consider first the Dirichlet problem. B (m) > 0 andN (m) > 0 then
there exists a unique principal eigenvabyethat is positive ([9]). Sincetm (0) > 0,
um (A1) = 0 andu is concave, we haveg;, (A1) < 0 and (b) of Theorem 1 applies.
If P(m) > 0andN (m) < O then there exist two eigenvalugs; < 0 andi; > 0
becausgi_m (—A) = um (1) and in this caseym is concave) we have;, (A1) > 0
andup, (1) < 0, so Theorem 1 applies. In each case Theorem 1 gives the rdquire
uniformity. The other cases are similar. Bf(m) = N (m) = 0 thenm = m(t) and
um (X)) = um(0) > 0 ([9]). So (3) holds. Results in [9] for the Dirichlet probie
remain valid for the Neumann condition widy > 0, ag # 0, so the above proof
holds.

O

REMARK 3. If ag = 0 in the Neumann problem thexy = 0 is a principal
eigenvalue angum (0) = 0. To study this case we recall thet + 1)~ has a
positive eigenvecto € X' C Y’ provided by the Krein - Rutman Theorem and
(4). Thenup, (0) = — (¥, m)/ (¥, 1) where(¥,m) = fszx(o.f) ¥m makes sense
becausel € LP (2 x (0, 1)) ([9], remark 3.8). Indeed, let, be a positiver -
periodic solution ofLu;, = Amu, + um(A) U, on & x R, B(u;) = 0 with u,
real analytic inA and withup = 1. Since ¥ vanishes on the range &f we have
0 = A{(¥,muw) + um (A) (¥, u,) . Taking the derivative at = 0 and using that
up = 1 we get the above expression fgf, (0) .

THEOREM 3. Let L be given by (1). Assume that(® = O is the Neumann
condition and that @ = 0. Assume in addition thada; j/0x; € C(Q x R), 1 <
i,j < N. LetW¥ be asin Remark 3.

Then, if m is not a function of t alone, we have

Q) f(¥,m < 0(¥r,m >0), P(m) < 0(N(@m)>0), thenO is the unique
principal eigenvalue and the AMP holds to the left (to thént)gpfO.

2) If (¢g,my < 0(¥,m) >0), P(m) > 0 (N(@m) <0), then there exists two
principal eigenvalued) andA* wich is positive (negative) and the AMP holds to
the left (to the right) oD and to the right (to the left) of*.

(3) If (¥, m) = 0,hen0 is the unique principal eigenvalue and the AMP holds left
and right of0.

If m = m(t) is a function of t alone, then we have

@ If for m (t) dt = Othen for allx € R the above problem Le= Amu+ h has no
solution.

(2) If fOT m(t)dt # Oand (¥, m) > 0 ((¥, m) < 0) thenO is the unique principal
eigenvalue and the AMP holds to the right (to the left).of

Moreover, if y v € X satisfy0 < u < v, then in each case (excefd)) the AMP
holds uniformly on h for ke [u, v] .
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Proof. Suppose thah is not a function ot alone. If(¥, m) < 0, P (m) <0thenOis
the unique principal eigenvalue apg, (0) > 0. If (¥, m) < 0, P (m) > O then there
exist two principal eigenvalues: 0 and some> 0 and sinceun, is concave we have
Um (0 > 0andur, (A1) < 0. If (¥, m) = 0 and ifm is not funtion oft alone, then
“m is not a constant and;,, (0) = 0 and 0 is the unique principal eigenvalue. In each
case, the theorem follows from Theorem 1. The other casesrailar.

If mis a function oft alone thenum(A) = —@)\, this implies@
(U, m) / (¥, 1). If foT m(t)dt = 0 thenum = 0 and (a) of Theorem 1 applies. If
[01 m (t) dt £ 0 and{¥, m) > 0 thenP (m) = N (m) > 0 so 0 is the unique principal
eigenvalue ang, (0) < 0, in this case Theorem 1 applies also. The dasem) < 0
is similar. The remaining casJ%T m (t) dt # 0 and(W¥, m) = 0 is impossible because
PO — (w, m) / (¥, 1).

O

For one dimensional Neumann problems, similarly to the#dlicase, a uniform
AMP holds.

THEOREM4. Suppose N= 1, Q = (&, ) and the Neumann condition. Let L be
given by Lu= u; — auyy + buy + agu, where @, b € C/*7/? (2 xR), ap > 0and

with a € C1 (@ xR), min a(x,t) > 0. Then the AMP holds uniformly in h (i.e.
xeQxR
holds on an interval independent of h) in each situation @ered in Theorem 3.

Proof. Let A* be a principal eigenvalue fdtu = Amu. Without loss of generality
we can assume thgh|, = 1 and that the AMP holds to the right af. DenoteM
the operator multiplication byn. Let 1+ be a finite closed interval around and, for
A € Iy, let Ty, @, and ¥, be as in the proof of Theorem 1. Eaéh belongs to the
interior of the positive cone i€ (ﬁ) andx — @, is a continuous map frorh» into

C (Q) . thus there exist positive constasgs c; such that
(8) < di(X)<C

forall A € I« andx € Q. As in the proof of Lemma 2 we obtain (6). Taking into
-1
account (8) and th%}((l — TU\%)

prove our theorem, it is enough to see that there exist aipositnstant independent

remains bounded for nearA*, in order to

-1
of h, such tha\{ (I — M%) wHll /(¥ H) <cfori el Since
o
<| _TM‘I’;\L)ile’A _ <| T L)—1 H o,
(W, H) M (W, H) ’

it suffices to prove that there exists a positive constasuich that

9 [Hlloo = C(Ws, H)
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for all h > 0 with |h||, = 1. To show (9) we proceed by contradiction. If (9) does not
holds, we would have for alf € N, hj € LP (2 x R) with h; > , = land
Aj € Iy such that

1
(10) (Wi, (L+r)7thy) < L +r1)7hy|

] 00
Thus limj _ o0 (¥, (L + 1)~ h;j) = 0. We claim that

(11) H(L+r|)*th / min (L+r)th<c
o0 Qx[0,7]

for some positive constantand all nonnegative and non zéra LP (Q x R) . If (11)
holds, then

(Wi, (L 417 hy) = (95,,2)_min (L+rD)7thy =
Qx[0,7]

>cc

(L+rh)~th; Hoo(%,-,dn,-) =cc H(L +ri)7Hh; HOO

for some positive constact independent of, contradicting (10)

It remains to prove (11) which looks like an elliptic Harnaokquality. We may
suppose = 0. Extendingu := (L 4 r1)~1h by parity to [- 8, 8] we obtain a function
U with U(=,t) = U(B,t), so we can assume thatis 28 - periodic inx andt
periodic int. U solves weakly the equatidh — alyx + bux +(@+ntu= RinR xR
wherea, 3, h are extensions t& x R like U U, butb is extended to an odd functidn
in (=B, B) then 28 periodically. In spite of discontinuities &f a parabolic Harnack
inequality holds foill = T (h ) ([10], Th. 1.1) and using the periodicity @fin t, we
obtain (11).

O
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