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ON A PROOF OF THE JSJ THEOREM

Abstract. In this article we expose a proof of the Canonical Decomposi-
tion Theorem of irreducible 3-manifolds along tori and aiyraiso known

as JSJ Theorem. This proof will be based on the ideas that Sekla
used in his article [5] which we extend from the closed to tbenpact
case. The result is equivalent to the one proved by W.D. Neanaad
G.A. Swarup in [6]. Moreover, before doing that, we discumsrelations
between parallelism and isotopy of two surfaces embedda8imanifold
and we establish a result that has been extensively usediy poadblished
proofs of the JSJ Theorem without explicit mentioning.

Riassunto. In questo articolo esporremo una dimostrazione del Teorema
di Decomposizione Canonica di 3-varieta irriducibili gotori ed anelli,
anche noto come Teorema JSJ. Questa dimostrazione & basataune
idee che S. Matveev ha usato nel suo articolo [5] e che estemadedal
caso chiuso al caso compatto. Il risultato & equivalentesfi@ottenuto da
W.D. Neumann e G.A. Swarup in [6]. Inoltre, prima di dimos¢rd teo-
rema, discuteremo le relazioni che intercorrono fra peliatho e isotopia

di due superfici embedded in una 3-varieta. Otterremo wittai® che pur
essendo stato usato estesamente in molte dimostrazsopugblicate del
Teorema JSJ, non sembra esistere in letteratura.

In the first section of this work we recall some definition ahdy the relations
between parallelism and isotopy of surfaces embedded inr@duicible 3-manifold.
The second section contains two lemmas which will be usaftilé last section of this
work, where the JSJ Theorem is proved. In this final sectiomntveduce the concepts
of rough annulus and torus, which generalize a definitioemivy S. Matveev in [5]
(we now know that S. Matveev proved the theorem in the gemase using slightly
different techniques, see [4]). Then, using propertiehesé surfaces, we prove the
JSJ Theorem.

| wish to warmly thank Prof. Carlo Petronio for many helpfolhwersations and
support during my work.

1. Parallelism and isotopy

We consider only 3-manifold which are compact and oriemtgdohd very often we use
the irreducibility hypothesis. Recall that goaidr is a polyhedral paitM, T) whereM
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is a 3-manifold andr is a (not necessarily connected) surface containetMn We
will say that a 3pair (M, T) isirreducibleif M is irreducible and’ is incompressible
in M; we will say that it is compact when bo andT are compact. Let us recall the
definition of parallelism:

DEFINITION 1. Given a3-pair (M, T), let W and W be disjoint surfaces embed-
ded in M whose boundaries are contained in T. We say that W drat&parallelin
(M, T) if there exists eS—mamfoId Qc M such that(Q, W U W) is homeomaorphic

to(Wx I,Wxadl)andaQ — (WU W) C T. Such a manifold Q is said to bepar-

allelismin (M, T) between W and WIf T = dM we simply call Q a parallelism in
M. The surface W is said to be T -parallel in M if it is parallel(M, T) to a surface
contained in T. If T= 9M, we say that W is parallel to the boundary in M.

Itis clear that parallelism implies isotopy. The convesstaise, as one easily sees
for instance inS®, by taking the boundary of a regular neighborhood of a slétto
component link. But if we add the incompressibility hypatise we are able to obtain
the following result:

THEOREM 1. Let F and G be connected, incompressible, bilateral andodisj
surfaces properly embedded irBgair (K, T). If F and G are isotopic ifK, T) then
they are parallel in(K, T).

As previously mentioned, this theorem has been extensigggl in many proofs of
the JSJ Theorem but without an explicit mentioning, thisésreason why we concen-
trate on it here and we prove it. We deduce it by starting froendrticles of F. Wald-
hausen [8, 7], and using a lemma whose proof is contained| ifl§to and Shalen’s
memoir containing one of the first proofs of the JSJ Theor&nk can also prove the
same result by using Waldhausen’s Theorem of h-cobordisrheTable to apply such
a theorem one could carefully use the propositions and dteniques exposed in F.
Laudenbach’s book [3], Chapter Il, paragraph IV (see inipaldr Corollary 4.2). The
first of the lemma we will use is Lemma 1.1 of [8]. Let us rectll i

LEmMMA 1. Let K be a (not necessarily finite) polyhedron, and let L be @t (n
necessarily connected) subpolyhedron of K. Suppose wedmasebedding of Lx |
in K, such that L= L x {1/2}, the subspace Ix | is closed in K and Lx | is a

neighborhood of Lx {t} for some te IO. Moreover suppose that:
ker(mj(L) - 7j(K)) =0, for j =1 2andm(K — L) =n3(K) =0

Let Q be an orientable and compa®manifold and let f: Q — K be a map. Then
there exists a map g, homotopic to f and enjoying the follgwiroperties:

1. gistransversalto L;

2. g1(L) is a compact surface, properly embedded and incompressilfe
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Moreover if f|3q is transversal to L, one can suppose that the homotopy batgee
and f is constant 0d Q.

We will use this lemma mostly whel is a compact, irreducible and sufficiently
large 3-manifoldL is a bilateral and incompressible surface embeddéd, ithe man-
ifold Q is homeomorphictd x | whereF is a surface and is a homotopy between
two embeddings oF in K. It can be checked that if (F x {0}) is incompressible in
K, the hypotheses of the lemma are verified.

Another result we will need is the following (the proof of whiis contained in the
proof of Lemma V.4.6 of [1]).

LEMMA 2. Let(M, T) be a compact and irreducib@pair and let(M’, T’) be a
3-pair satisfying the following conditions:

1. (M’, T') is embedded itM, T) (a pair);
2. FryM’ is incompressible in M;
3. no component dfnyM’ is T -parallel in M.

Let (W,9W) c (M, T) be a connected, bilateral and incompressible surface in M
such that WWM’ = @. Suppose that the inclusion (W, dW) — (M, T) is homotopic

as amap of pairstoamap i (W, dW) — (M, T) such thati(W) c I\O/I’. Then there
exists a homotopy of pairs F(W x |, dW x |) — (M, T) between i and’isuch that
F~1(FryM’) is a union of horizontal leaves (surfaces of the typedWt} in W x 1).

Another useful result is Lemma 3.4 of [7]:

LEMMA 3. Let F be an orientable surface. LetSF x | be a properly embedded
surface whose components are of the two following types:

1. discs intersectingF x | only in two vertical arcs;

2. incompressible annuli with one boundary componen; v {0} and the other
onein Fx {1}.

Then there exists an isotopy, constant(@hx {0}) U (3F x 1), which puts S in a
vertical position.

Finally, let us come to the key tool of our proof: Lemma 5.14f [

LEMMA 4. Let M be an irreduciblg-manifold. Let F be a closed, incompressible
boundary component of M. [6M — F, let F’ be an incompressible surface which
need neither be closed nor compact. Suppose: if k is any¢tmswe in F, then some
non-zero multiple of k is homotopic to a curve in. FThen, M is homeomorphic to
FxI.
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Now we are ready to prove Theorem 1.

Proof of Theorem 1Let us prove it first wher- andG are closed. In this case we
will apply Lemma 1 withK the ambient manifold and = F U G. Moreover we
call Q = F x | and f the isotopy betweer andG (then f (F x {0}) = F). We
modify now f to obtain a new isotopyf as follows. Using regular neighborhoods
of F andG we can first extend the isotopf/ to F x [—1, 2] and then renormalize
it to F x [0, 1], thus assuming tha = f(F x 1/3), G = f(G x [2/3]) and that
f | x([0.1/3)u[2/3.1]) iS @an embedding. The isotoply thus obtained, is such thdtsq

is transversal td_. Applying Lemma 1 we obtain that, up to homotopy fixed @@,
the preimagef ~1(L) is an incompressible surface @, and so by Proposition 3.1 of
[8], up to isotopy inQ, it is a union of “horizontal” leaves i (i.e. surfaces parallel
in Q to F x {0}), and in particular parallel between themselves. We canshonvo
of them,F’ andG’, which are consecutive and such tltis a preimage of and
G’ of G. Let us now callQ’ the manifold contained ifQ betweenF’ andG’. Such
a Q' is homeomorphic td= x [0, 1] and so it is a parallelism i® betweenF’ and
G'. The mapf~|Qf is a homotopy betwee¢F, 0F = @) and(G, dG = ¢) in (K, T)

such thatﬂQfl(L) = F’ U G’ (there are no other preimageslofin Q"). Now cut
(K, T)along(L,aL) = (F UG, @). SincelL is incompressible irk, we obtain an
irreducible and compact pair. Let us cal(K’, T’). Now we can apply Lemma 4 to
the component ofK’, T’) containing the image of~|Q/; in that component that map
is the homotopy between two incompressible componedof it is easily checked
that the hypotheses of the lemma are verified in this casek'S® homeomorphic to
F x | and its inclusion irK is the parallelism we were looking for.

When F and G have a non-empty boundary, let us dadl{iF), U(G), U(L) =
U (F) U U(G) regular neighborhoods iK respectively ofF, G, andL. Construct
an isotopyf as follows. Using a regular neighborhoodffin K we can first extend
the isotopyf to F x [0, 2] and then renormalize it t& x [0, 1], thus assuming that
F = f(F x {1/2}) andG = f(F x {1}), and thatf |F x[0,1/2] is an embedding. The
map f thus obtained, is an isotopy between a surface paralléFt@F) in (K, T)
andG c U(L). Itis simple to check that the hypotheses of Lemma 2 are gdrifi
W is a component of kiU (G). So there exist two consecutive horizontal leaves of
f~1(FrmU (L)), one corresponding to a componéatof FrqU (F), and the other one
to a componen6G; of FrcU (G). If we restrict f to the cylinder contained between
these two leaves we obtain a homotopy betwden dF1) and(G1, dG1) which does

not intersect (L). So we have a homotopy of pairs betwé&n, dF1) and(G1, 0G1)
whose image is contained in a compon@tt, K1NT) of (K — U (L), TNK — U(L)).
Note now that the componentsdN K — U (L) which contaird F; are (by the incom-
pressibility of F1) incompressible annuli (they are surfaces with 2 homotbpimdary
components).

Now we reduce to the preceding case by constructing the oidrif, obtained
by glueing 2 copies oK; along the annuli we already mentioned. The manifidid
is compact and irreducible since these annuli are incorsjiriesin K;. In Kz the
doublesF; andG; of F; andGj respectively, are parallel. To obtain a parallelism of
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F andG in K we eventually use Lemma 3. By applying that lemma to the feisth
Q (homeomorphic ta; x |) betweenF; and G, in K, with S the union of the
incompressible annuli along which we glued, we can supjsogertical in Q. So we
can cutQ along S obtaining that a component of the what is left after cuttiagi
parallelism betweelr; andG; in K. Finally F andG are parallel inK since they are
parallel by construction to respectivelyy andGj, andF1, F, G1, G are pairwise
disjoint (if one of F or G is contained in the parallelism betweEhandG’, recall that
parallelism is a transitive relation between incomprdssitisjoint surfaces properly
embedded in an irreducible 3-manifold as shown in [1]; thian easy consequence of
Proposition 3.1 of [8]).

O

2. The JSJ Theorem

Let us recall some definitions.

DEFINITION 2. A pair (2, ®) is called an |-pair ifX is an |-bundle over a (pos-
sibly non orientable) compact surface aéds the corresponding|-bundle. The pair
is called product or twisted depending on whether the bursdiiévial or not.

A pair (=, @) is called an $-pair if = can be given the structure of a Seifert
fibered manifold so thab is saturated. Such a structure is called a Seifert structire
the pair.

A 3-pair is said to be a Seifert pair if it is an'Spair or an |-pair.

DEFINITION 3. A 3-pair (M, T) is said to besimpleif each incompressible torus

or annulus WcC M such thattW ¢ 'Fis T -parallel in M or parallel in(M, T) to a
component ofd M) — T. A3-manifold is said to be simple {M, ) is a simple pair.

We will prove the following theorem:

THEOREM 2 (JSJ HEOREM). Let M be a compact, orientable, irreducible and
boundary-incompressib@manifold. Then there exists a unique (up to isotopy in M)
finite set F of incompressible, pairwise disjoint tori anchaii properly embedded in
M, which satisfies the following properties:

1. no component of F is parallel to the boundary in M;

2. each component @¢bg (M), oyr (0M)) (the pair obtained by cutting M along
F) is a Seifert pair or a simple pair;

3. F is minimal with respect to inclusion among all the set&cisatisfy 1) and 2).
To prove this theorem, we will use some of the ideas of the fjopb&. Matveev

given in [5]. The difference here is that we do not requireltbendary to consist of
tori. Let us recall the following definition:
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DEFINITION 4. A surface S, properly embedded ir3goair (M, T), is said to be
essentialf it satisfies the following conditions:

1. Sisincompressible in M;
2. Sis not parallel iNM, T) to a surface containedin T ori(®oM) — T;

3. there is no disc D embedded in M, such thBtis the union of two arce and
Bwitha ¢ Sand8 c T anda is not homotopic in(S, 3S) to an arc contained
inoS.

Here are some facts we will use:

LEmMA 5. If M is an irreducible3-manifold and L is a torus embedded and com-
pressible in M, then L bounds a solid torus in M or it is contadrin a ball.

LEMMA 6. If (M, T) is an irreducible I-pair and A, 9 A) is an essential annulus
embedded iiM, T), then(A, 9 A) is isotopic to an annulus which is saturated in the
| -fibration of (M, T).

Proof. If (M, T) is a product I-pair, then this lemma is a consequence of Le®ima
OtherwiseM is an|-bundle over a compact, non-orientable surfacevhich is em-
bedded and not bilateral iM. Note thatM has a horizontal foliation whose leaves,
besidesz, are two-fold cover ok and are parallel itM, dM —T) to T; these surfaces
are homeomorphic to a two-fold coverian of .

By a simple Morse theory argument, it is easy to see that weastdopeA so to
put it in a “quasi-vertical position”, i.e. such thatis transversal to the already cited
foliation of M. CuttingM alongX, we obtain a produdt-bundle(M’, TUT’) overXx,
which contains two incompressible, disjoint ann#ili and Az obtained by cuttingA.

It is easy to show that, since these two annuli are disjoidtinoompressible, we can
isotope the surfacé; U Ay so to put it in a vertical position respect to thdibration
of M’, and by an isotopy which is constant 6A; U A2) N T’. Then we can lift this
isotopy toM obtaining an isotopy which put& in a vertical position.

O

Let us consider first the following:

THEOREM 3. Let M be an irreducible and boundary-irreducible, companta
orientable3-manifold. It is possible to find a set F of essential, paienilsjoint and
non-parallel tori and annuli such that each component offig (o (M), gyF (0M))
is either a Seifert pair or a simple pair.

Proof. Choose a sef of essential, pairwise disjoint and non-parallel tori andali
which is maximal with respect to inclusion. Using the Hakémeser finiteness the-
orem, we know that it is finite; caM;, i = 1, .., n the components of (M). By
maximality of F all the pairs(M;, oy (dM) N M;) are simple.

O
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Now by Theorem 3, we can choose a $ef essential tori and annuli which
cutsM in pairs which are either Seifert or simple, and which is miai with respect
to inclusion among all the sets which have this property.nF-rmow on we will call
(M;j, aM N M;) the components of the pair obtained by cuttihy, 0M) alongF. We
setogM; = M; NaM andoa;M; = aM; N F.

To proceed, we will need the following fact (see [2]):

THEOREMA4. If S is a SeiferB-manifold with non-empty boundary, then the fol-
lowing holds:

1. an incompressible torus embedded in S is isotopic to oriehwif saturated
respect to the Seifert fibration of S;

2. if S is not homeomorphic to'S S' x | or to the twisted |-bundle over the
Klein bottle, then each incompressible and non boundaralterannulus in S
is isotopic to a saturated one.

We are now ready to prove a first theorem which is useful torgjgish the simple
pairs from the Seifert pairs in the decomposition aléng

THEOREM 5. If there exists an incompressible annulus A, properly erdbddn
(M;, 91M;) and not parallel in(M;, 31M;) to an annulus contained id; M;, then
(Mi, 8M;) is an S-pair.

Proof. Note that the components 6fM; are annuli and tori. We distinguish three
cases:

1. both the components 6fA are contained in annular component9of/; ;

2. acomponent of A is contained in an annular componenbgM; and the other
one in a toric component;

3. both the components 6fA are contained in toric components@iV; .

Case l:Let § and S be the two annuli connected . We can distinguish two
subcases:

Case l.a:S # $. Let N be a regular neighborhood &fU § U $ in M;, and
call A; and A, the two annuli constituting fgr; N (see figure 1). If bothA; and Ay
(which are properly embedded in the péiti, 9oM;)) are not essential iM;, doM;),
then it is easy to see that, since they are parallel to anouliained either irfpM;
or in 91 M;, the manifoldM; is a solid torus andoM; is made of at most 4 annuli.
Otherwise, suppose that is essential, therefor@Vl;, dpM;) is not a simple pair. If it
is anSt-pair we are finished; otherwise it is &rpair, and we will now show that it also
has a structure o8!-pair. If it is a productl -pair, (M;, 9oM;) is an|-bundle over an
orientable, compact surfacé and the projection ofA over X is a homotopy between
two components (one correspondingfo) S and the other one td N ) of 3X. So
X is homeomorphic to an annulugj is a solid torus and the pair is also 8h-pair. If
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(Mj, doM;) is a twistedl -pair, the base of thé-fibration is a non-orientable compact
surfaceX and the projection ofA is again a homotopy between two components of
9 X, but there exists no compact non-orientable surface hawioglifferent boundary
components which are homotopic to each other, so this casethappen.

Case 1.b:S = S. In this case, consider a regular neighborhdbdf AU S in
Mi. The surface kg, N can consist either of:

1. aunion of an incompressible annulisand a torust

2. an incompressible annulus.

See figure 2.

Case 1.b.1:f T is not essential, it is either parallel to a componenigh; or to
one ofd1 M;, or it is compressible iM;. In the first two cases thefM;, doM;) is an
Sl-pair, and we are finished. In fact, & is essential theqM;, 99M;) is a Seifert pair
(it cannot be simple) and actually &}-pair since there is a toric componentdaiM;
or of 31 M;. If A1 is not essential, theM; is homeomorphic t&! x St x | and it is
easy to check thatM;, doM; ) is an Sl-pair.

If T is compressible iV, then the boundary of the disc compressing it is not
homotopic to the boundary & (sinceA is incompressible). Moreover, we further can
distinguish two casesA; is either parallel to an annulus containedgM; or in 91 M;,
and in this case it is easy to check ti4tis a solid torus andM; , 3oM; ) is anS!-pair,
or A; is essential. In the latter cashl;, dpM;) is a Seifert pair (it is not simple). We
will now show that more precisely it has a structurepair. Suppose that it is an
| -pair. By Lemma 6, we can suppose tht is saturated in the-fibration of M;.
Cutting (M;, 9oM;) along A1, we get twol -pairs, one of which is homeomorphic to
(Stx I x 1,8 x | x{0,1}) (note thatdS; U d A; is the boundary of two annuli in
doM;); this is absurd however, sindg would be parallel ifM;, 9oM;) to S .

The only case remaining therefore is the case in whighessential(M;, doM;) is
then a Seifert pair. It can be checked that ifilapair (K, L) contains an incompressible
torusT which is not parallel to a torus containedlimor to one contained 6K — L,
then(K, L) is also anS!-pair. In fact, if (K, L) is a product -pair, by Proposition 3.1
of [7] we obtain that it is homeomorphic (&' x St x I, St x St x {0, 1}). Ifitis a
twisted | -pair, we can reduce ourselves to the preceding case bydayirgj the two
fold cover of (K, L) which is a product -pair; then, using Lemma 4, we obtain that
the twistedl -pair over a Klein bottle contains no essential tori.

Case 1.b.2:In this case Ryj; N consists of a single incompressible annubys If
A; is parallel to an annulus contained eitherogM; or in 91 M; then M; is homeo-
morphic toS'xM (whereM is a Moebius strip), and it easy to check tlit;, 9oM;)
is an Sl-pair. Otherwise ifA; is essential(M;, doM;) is a Seifert pair. If it were an
| -pair, by Lemma 6 we could suppoge saturated with respect to thefibration of
the pair. But then, cuttingM;, dpM;) along A; we would obtain twal -pairs, one of
which homeomorphic to the produttpair over an annulus (sindeA; U 0 is the
boundary of two annuli irdgM; ), so A; would be parallel to an annulus contained in
d1M;. But this is absurd since we supposkgdessential.
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Figure 1: Here we draw some transversal sectiog to AU $, and distinguish three
cases which are possible wh&n# S. The thickened parts correspondiM; .

Figure 2: Here we draw the transversal sectioné\to S in the two subcases distin-
guished in case 1.b.
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Case 2:Let us callT andS respectively the torus and the annulus which contain
dA. Let N be a regular neighborhood 8fU T U Sin M;. The surfacd= = Fry; N is
an incompressible annulus embedded\h, dgM;). If F is not essential then it is easy
to see that; is homeomorphic t@&' x St x | and that(M;, doM;) is an St-pair. If
F is essential, we arrive to the same conclusion bec@usedgM;) is not simple and
there exists a toric component &fM; (there are nd -pairs(K, L) such thabK — L
contains a torus).

Case 3:Let us callTp andT; the tori which contaird A. As in the first case, we
can distinguish two subcases.

Case 3.a:Tp # Ty. Let N be a regular neighborhood M; of AU Tp U Ty, and
let F = Fry; N (F being a torus). IfF is parallel to a torus contained eitherdgM;
orin 31M;, thenM; is homeomorphic t&' x X whereX is a disc with two holes, and
(M, 3oM;j) is an Sl-pair. If F is compressible, the natural Seifert fibrationMf(in
which the fiber is homotopic t8 A) extends to a Seifert fibration ™ U R whereR
is the solid torus bounded Hy (note thatF is not contained in a ball since otherwise
To could not be incompressible), since the meridinal disRdfas a boundary which
is not homotopic td A. OtherwiseF is essential and thefM;, doM;) is a Seifert pair
and in particular arS!-pair sinced; M; contains a torus.

Case 3.b: Top = T1. In this case we can distinguish two subcaseg(defined as
above) can consist of one or two tori.

Case 3.b.1:F consists of two tori. If both the tori constituting= are parallel to
tori contained either idgM; or in 91 M;, thenM; is homeomorphict(S1 x X, where
X is a disc with two holes, an@V;, dgM;) is an Sl-pair. If one of these two tori is
compressible, it bounds a solid torRsn M; (also in this case it cannot be contained in
a ball since otherwis&y could not be incompressible, moreover, for the same reason,
To is not contained irR), and it is easy to see that the Seifert fibratioiNoéxtends to
N U R, sinceA is incompressible and therefore the boundary of the meaxidiisc of
R cannot be homotopic t®A.

There remains the case where at least one of those two tegésal: in this case,
(M, doM;) is anSl-pair since it is not simple an@l M; contains a torus.

Case 3.b.2:F consists of one toruslin this case, by distinguishing the analogous
subcasesH is essential or not) it can be checked thistt , doM; ) is an Sl-pair.

([l

Before proving another lemma useful to distinguish thgairs from theS' and
simple pairs, we give the following definition.

DEFINITION 5. An essential square embedded in a p@i;, doM;), is a disc D
embedded in Msuch that:

1. D c M;;
2. 3D N 9gN =: dpD consists of two disjoint arcs;

3. (D, 99D, 91D) is not isotopic in(N, dgN, 31N) to a disc contained either in
doN orind1N; here, of coursed;1 D = dD — 9gD.
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The next theorem is the analogous fepairs of Theorem 5:

THEOREM 6. If there exists an essential square D embedde@dn doM;) then
(Mj, doM;) is an I-pair.

Proof. We can distinguish two cases:
1. the two arcs 08, D are contained in two different annud; and A, of 91 M;;
2. the two arcs 06, D are contained in the same annulsof 91 M; .

Case 1: Let N be a regular neighborhood ; of A; U A U D. The surface
Frv; N is an annulu$ embedded itM;, dgM;). If Sis compressible, thefM;, dgM;)
is a productl -pair over an annulus. I§is parallel to an annulus containeddpM;,
then(M;, dpM;) is a product -pair over a disc with two holes (see figure 3). Note that
S cannot be parallel to an annulus containedgV; since otherwise an ake C Az
would exist whose endpoints would be contained in diffecembponents 0 A1, and
which would be parallel to an arc containedyM; . But then, using the irreducibility
of M; and the incompressibility afgM;, we would obtain tha#\; also is parallel to
an annulus contained iy M;, and this is absurd sindg M; has at least two compo-
nents @1 and Ay). Hence only the case wheReis essential remains. Then the pair
(Mj, 3oM;) is a Seifert pair (it is not simple). It cannot be Sh-pair since otherwise
we could isotopés so to make it saturated in a Seifert fibration of the pair ard tiso
N would be. But this is not possible sinden dgM; cannot be saturated in any Seifert
fibration of M;, since it has a negative Euler characteristic(8p, doM;) is anl -pair.

Case 2:Let N be defined as above. The surfe8e= Fry, N can consist of one
or two annuli. In the latter case, both the annuli, den@&ednd S, must be incom-
pressible given the hypothesis tHatis essential. For the same reason explained in the
preceding case, if one of the ann@li and S; were parallel to an annulus contained
in doM;, then A; would also be, and sB would not be essential. On the contrary if
both of them are parallel to an annulus containegi M; , then(M;, doM; ) is a product
| -pair over a disc with two holes. If botf andS, are essential, thegM;, oM;) is a
Seifert pair and by the same reason explained in the pregedse, it is not as!-pair.

Finally, suppose that N consists of a single annulus As in the case seen
above,S cannot be parallel to an annulus containeddivi;. If it is parallel to an
annulus contained iy M;, then(M;, dgM;) is anl-pair over a Moebius strip with a
hole. Otherwises is essential and the paiM;, dpM;) is a Seifert pair. It cannot be an
Sl-pair sinceN N dpM; cannot be saturated in any Seifert fibratiorvhf

O

3. Rough annuli and tori

Now we can define the notion of rough annulus or torus, whiategaizes that of
rough torus given by S. Matveev in [5].
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DEFINITION 6. Let (M, aM) be an irreducible, compa@-pair. An incompress-
ible surface(S, 3S) which can be a torus or an annulus embeddedNh 9 M), not
parallel to the boundary, is said to lhin if there exists a Seifert paiiN, T) embed-
ded in(M, M) such that:

1. no component dfry N is compressible or parallel to the boundary in M;
2. (5,05 c (N, T)and(S, a9) is saturated in a Seifert structure G, T);

3. (5,089 is not parallel in(N, T) neither to a surface contained FryyN nor to
one contained i T.

If (S, d9) is not thin we will call itrough

So a rough torus or annulus is basically one which cannot h&aowed in an es-
sential way in any Seifert pair embedded M, 0 M). Rough tori and annuli have the
following important property:

THEOREM 7. Let (S, 8S) be a rough torus or annulus, and Iét, aL) be an in-
compressible torus or annulus. Then it is possible to iset&oS) off (L, dL).

Proof. We can distinguish two cases:

Case 1: (S,09) and(L, aL) are two annuli. Up to isotopy, we can suppose that
SandL intersect only in a finite number of disjoint arcs or closedves. Moreover,
if between all these positions we choose one in which the murabcomponents of
SN L is minimal, then it is easy to see there are no arc whose entdparie contained
in the same boundary component of eitl®or L, and that if there is a closed curve
then there is no arc and viceversa. So we can distinguishutvceses (see figure 4):

Case 1.a:9SNJdL # @. Let (R, RN dM) be a regular neighborhood ¢f U
S,aSUL) in (M,3M). The pair(R, RN aM) is an | -pair embedded iiM, dM)
(the fibers are isotopic to the arcs composing S), and it can easily be checked
that no component of R is compressible (by minimality of the number of arcs in
L N §) or parallel to a surface contained dM, otherwiseS also would be; in fact,
in this caseS would contain an arc parallel to an arc contained vt and sinceM is
irreducible and boundary-incompressible, it is easilyotieel thatS would be parallel
to an annulus contained M. So, sinceSis saturated iR, RNaM) and it is rough,
it can be isotoped on [gfR and so it can be isotoped away frdmm(which is embedded
in Int(R)).

Case 1.b:SN oL = @. DefineR as above. The surfaceyrR consists of annuli
and tori; these tori can be compressible or not, paralldiéddbundary irM or not. If
a torusT of Fny R is parallel to the boundary iM, we extendR by attaching to it the
parallelism betweem and atorusi®M. If T is compressible, the boundary of the disc
compressingl (note thatT cannot be contained in a ball sin€as incompressible)
is not homotopic td S (by incompressibility ofS), so the natural Seifert fibration of
R extends to the solid torus bounded Byin M. Moreover Ff; R can contain annuli
which are parallel to annuli contained aM; in this case, as in the previous case, we
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Figure 3:S can be either essential or paralleldgd; in (M;, doM;).

Figure 4: Here we draw a scheme of the two possibilitiesristished in the first case
of the proof of Theorem 7.
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attach the parallelisms tB. So, modifyingR, by glueing some solid torus or some
parallelism to Fyy R, we can construct aB!-pair (R, RN M) embedded iiM, M)
and such that each component ofylR is incompressible irM and not parallel to a
surface contained iAM. Moreover,(S, 9S) is saturated in the Seifert fibration of the
pair, so since it is rough, it can be isotoped og Rf, away fromL.

Case 2:At least one of the two surfacés, 0S) and(L, dL) is a torus. In this case
we can proceed in a perfectly analogous way to that used ia Cas
O

REMARK 1. The same proof shows that given a finite set of pairwiseigdisjough
annuli and tori, and a family of pairwise disjoint incompsige annuli and tori, it is
possible to isotope the first family away from the second fiami

Let us now give the following definition:

DEeFINITION 7. A finite family F of rough annuli and tori which are pairwiseseli
joint, is maximalif any other rough torus or annulus disjoint from each elet&nF
is parallel in (M, dM) to an element of F.

Another important step is the following:

THEOREM 8. Let (M, dM) be an irreducible, compa@-pair. Then there exists,
and it is unique up to isotopy M, M), a maximal family of pairwise disjoint rough
tori and annuli such that its elements are pairwise non-flatén (M, oM).

Proof. Take a maximal family of pairwise disjoint and non-parattaigh tori and an-
nuli embedded iM; it is finite by the Haken-Kneser finiteness theorem. To piits/e
unigueness, use Remark 1. In fact, given two maximal fasiily, .. T, andTl’, T
of pairwise disjoint and non-parallel rough tori and anpwié can isotope these two
family’s so that their intersection is empty. So by maxiyaleachT, is parallel to a
T; for somej < nand viceversa. So the two family’s are isotopic.

O

We are now ready to prove the JSJ decomposition theorem. tidtegy we will
use will consist in proving that a minimal splitting familwlose existence is given
by Theorem 3) is isotopic to a maximal family of pairwise digf and non-parallel
rough tori and annuli; then, using Theorem 8, we obtain thguaness of the splitting
family.

Proof. LetS={S, &, ..., §} be afamily of incompressible tori and annuliembedded
in (M, aM), minimal with respect to inclusion between all the familgfancompress-
ible tori and annuli cuttingM, aM) in pairs (M;, doM;) which are either Seifert or
simple. LetF = {Fq, Fo, ..., Fm} be a maximal family of pairwise non-parallel and
disjoint rough tori and annuli embedded (i, dM). By Remark 1 we can suppose
that the two family’s are disjoint and therefore that e&ghs contained in one pair
(Mj, 3oMj) which can be either simple or Seifert.
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If (Mj, doM;j) is simple, according to the definition of simple pdif,can be iso-
toped ord1 Mj (not ondgM; sinceF; is rough), so it is parallel to a certagh for some
t < n. Suppose now thaM;, doMj) is a Seifert pair. We claim that, up to isotogy,
is saturated in one of the Seifert fibrationg(dfj, JoMj).

To prove the claim, first note that #M; = ¢, thenM; is a closed component of
M and it is a closed Seifert 3-manifold, so it cannot contairgioannuli. If it contains
a saturated, incompressible tofuswe can suppose it is disjoint from the rough torus
Fi. Then, by Theorem 4E; is isotopic to a saturated torus in the manifold obtained
by cuttingM; alongL, and therefore to a saturated torushMin and this is absurd. If
M; does not contain any saturated incompressible torus, treamibe checked that it
cannot contain rough tori. StMj # .

Now let us suppose thaMj, doMj) is an Sl-pair. By Theorem 4, iff is a torus,
then it is isotopic to a torus which is saturated in a Seifération of the pair. Oth-
erwise it is an annulus, and it is easy to examine the twoqadati cases of Theorem
4, and in the other cases, by applying the same theorem, ordudes that the an-
nulusF; is isotopic to an annulus which is saturated in a Seifericsitine of the pair
(Mj, doMj).

If (Mj, doMj) is anl -pair, and if it contains an essential torus, it is alscSpair
(see the proof of Theorem 5). Otherwise Hf is an annulus, up to isotopy, we can
suppose it to be vertical in a structurelefiber bundle off M;, 3oM;) (see Lemma 3).

Our claim is now established, so we can suppose that eacleetefF which is
contained in a Seifert pa{iM;j, M) is saturated in one of its Seifert fibrations. But
since eacltt; is rough, and it is not parallel to a surface containeépill, we deduce
that it is parallel to a surface containedagM; for somej < n and therefore also to
an element o5. So we showed that each elementrofs parallel to an element &
(obtaining a map from the familfF to S) and, since two different elements Bfare
not parallel, this map is injective (otherwise two elemenft& would be isotopic and
disjoint hence parallel by Theorem 1), moreover we can satnth< n. Now we will
show that each element &is rough and, sinc& is maximal, that the two family’s
coincide up to isotopy.

Suppose tha$; is thin, and therefore that there exists a Seifert piirT) which
satisfies the conditions of Definition 6. We can distinguisb tasesS; is an annulus,
or a torus.

Case 1: S is an annulus. In this case we can distinguish two subcases: the pair
(N, T) is anSt-pair or anl -pair.

Case 1.a: (N, T) is an St-pair. In this case, let us cutN, T) along S;, and
obtain one or twoS!-pairs (depending on wheN — S is connected or not). We
will call these pairs(N_, T_) and (N4, T;). Both91N_ anddi1 N, containS;. In
the decomposition ofM, 9 M) alongsS, there are two pairs containirg; let us call
these pairgP_, dgP_) and (P4, doP4) (it can happen thaP_ = P;). We will now
show that these two pairs, which touch themselves at leasy &, are St-pairs and
therefore tha; is not useful for the decomposition b, i.e. that the famil\§ = S—
S splitsM into pairs which are either simple or Seifert, and so verifieshypotheses
of the JSJ Theorem, and this is absurd by minimalitof
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Let By be the base surface of the Seifert fibration(bf., T). The projection
in 7(S) of § in By is an arc which is contained iB... It is easy to see that it is
almost always possible to find an arci1r. whose endpoints are containedsiiS, )
and which is not homotopic to an arc containedrif§;) by a homotopy which does
not pass through the projection of the exceptional fiberse dily case when this is
not possible is whem,. is a disc and there is at most one exceptional fiber. In the
other cases, the preimage of the arc we have found is an inessible annulus whose
boundary is contained i, and non-parallel to a surface containediiN... Applying
Theorem 5, we obtain th&P.., 99P,.) is anS!-pair. In the case whetB, is a disc,N..
is a solid torus and; N is composed by at least 3 annuli (not only 2 because otherwise
S would be parallel to an annulus 6fN), one of which isS. We distinguish two
more cases:

Case l.a.1:N; intersects another annulus or torus$ of S. It is easy to prove

that S N N, is an annulus or torus which is saturated in the Seifert siracf N, .

In this case as well, one finds an incompressible annulushadoonectsS; and S

and which is not; P, -parallel. So one can again apply Theorem 5 obtaining that
(P4, doPy) is anSl-pair. The same can be done f&_, doP_) and henc& = S— 5

is a family which still splitsM in pairs which are either Seifert or simple (since the
Seifert manifold€_ andP,. are glued along a saturated annulus). This contradicts the
minimality of S.

Case 1.a.2:Ny does not intersect any other element o5 and no annulus of
91Ny is parallel to an element of S. Any annulus ofd; N, different from S, is
essential inP, so(P5, dgP4) is a Seifert pair. Let us now suppose thBf, doP;) is
an| -pair and deduce a contradiction. Then it will follow thi&, , 9o P..) is anSt-pair.

Up to isotopy, we can suppose that an annldwdf 91 N is saturated in ah-fibration

of (P4, d0P4+). Note that we can choodeso that a component 61L and a component
of 35 bound an annulus ifgPy. Then a component of the pair obtained by cutting
the | -pair (P4, doP4) alongL is an|-pair product over an annulus, § would be
parallel toL and this is absurd since it is essentia( k., T ).

Case 1.b:(N, T) is an | -pair. Since$ is not parallel to a surface contained in
91N in (N, T) and it is incompressible, it is easy to check that the p@irs, T N N_)
and(Nx, TN N4 ) arel -pairs with a base surface which is different from an annatus
a disc. Hence in each of them we can find an essential squargewiivo vertical arcs
are contained it%, so the pairgP_, dgP_) and(P,., 9pPy) arel -pairs by Theorem 6.
Hence alsd®_ U P, can be given a structure dfpair, so alsd&S8 = S— S is a family
which splitsM in pairs which are either Seifert or simple. This is absurdtixyimality
of S.

Case 2:5 is atorus. We already noted that if ain-pair contains an incompressible
torus, then itis also aB-pair. So, in this case, we only need to examine the case where
(N, T) is anS*-pair. We still can distinguish two subcases:

Case 2.a:5 does disconnecN. Let (N_, TNN_) and(N+, T N N;) be the pairs
obtained by cuttingN, T) alongS;; and let(P_, 9gP-) and (P, dpP4.) (which can
also be coincident) be the pairs of the decompositiomMadlongS containingS;. Let
B_ andB. be the base surface of the Seifert fibration respective(ilof TNN_) and
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(N4, T N Ny). Since$S is essential iN, T), it is possible to find an essential arc in
B, whose endpoints are contained in the projectiofcéind which is not homotopic

to an arc contained ifiB. by a homotopy which does not intersect the projection of the
exceptional fibers ofN;., TNN,.). The preimage of this arc is an incompressible annu-
lus whose boundary is contained$nand is not; N parallel. According to Theorem

5, (P4, 9oPy) is an Sl-pair. We can conclude the same fd?_, doP_). It remains

to be proved that the two Seifert fibration of the paifs., 3gP-) and (P4, doP;.) are
compatible, in the sense that their fibers ®nare homotopic. This is true since the
annuli we found (which are saturatedih andP,.) have a homotopic boundary #,
since they are saturated in the Seifert fibratior{ldf T). Hence we can since in this
case we can excludg from Stherefore obtaining another splitting family, and this is
absurd since we suppos8&aninimal.

Case 2.b:S does not disconneciN. This case is similar to the preceding one; the
difference is this we cannot exclude th@at,, T N Ny) (which in that case coincides
with (N_, TNN_)) is homeomorphict@S! x St x |, St x St x {0, 1}). Butin this last
case(N, T) coincides with a component @M, 3dM) and this is absurd since— §
would be another splitting family fok.

O
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