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ON A PROOF OF THE JSJ THEOREM

Abstract. In this article we expose a proof of the Canonical Decomposi-
tion Theorem of irreducible 3-manifolds along tori and annuli, also known
as JSJ Theorem. This proof will be based on the ideas that S. Matveev
used in his article [5] which we extend from the closed to the compact
case. The result is equivalent to the one proved by W.D. Neumann and
G.A. Swarup in [6]. Moreover, before doing that, we discuss the relations
between parallelism and isotopy of two surfaces embedded ina 3-manifold
and we establish a result that has been extensively used in many published
proofs of the JSJ Theorem without explicit mentioning.

Riassunto. In questo articolo esporremo una dimostrazione del Teorema
di Decomposizione Canonica di 3-varietà irriducibili lungo tori ed anelli,
anche noto come Teorema JSJ. Questa dimostrazione è basatasu alcune
idee che S. Matveev ha usato nel suo articolo [5] e che estenderemo dal
caso chiuso al caso compatto. Il risultato è equivalente a quello ottenuto da
W.D. Neumann e G.A. Swarup in [6]. Inoltre, prima di dimostrare il teo-
rema, discuteremo le relazioni che intercorrono fra parallelismo e isotopia
di due superfici embedded in una 3-varietà. Otterremo un risultato che pur
essendo stato usato estesamente in molte dimostrazioni gi`a pubblicate del
Teorema JSJ, non sembra esistere in letteratura.

In the first section of this work we recall some definition and study the relations
between parallelism and isotopy of surfaces embedded in an irreducible 3-manifold.
The second section contains two lemmas which will be useful in the last section of this
work, where the JSJ Theorem is proved. In this final section weintroduce the concepts
of rough annulus and torus, which generalize a definition given by S. Matveev in [5]
(we now know that S. Matveev proved the theorem in the generalcase using slightly
different techniques, see [4]). Then, using properties of these surfaces, we prove the
JSJ Theorem.

I wish to warmly thank Prof. Carlo Petronio for many helpful conversations and
support during my work.

1. Parallelism and isotopy

We consider only 3-manifold which are compact and orientable, and very often we use
the irreducibility hypothesis. Recall that a 3-pair is a polyhedral pair(M, T) whereM
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is a 3-manifold andT is a (not necessarily connected) surface contained in∂M. We
will say that a 3-pair (M, T) is irreducibleif M is irreducible andT is incompressible
in M; we will say that it is compact when bothM andT are compact. Let us recall the
definition of parallelism:

DEFINITION 1. Given a3-pair (M, T), let W and W′ be disjoint surfaces embed-
ded in M whose boundaries are contained in T . We say that W and W′ are parallelin
(M, T) if there exists a3-manifold Q⊂ M such that(Q, W ∪ W′) is homeomorphic

to (W × I , W × ∂ I ) and∂ Q − (W
◦

∪ W
◦

′) ⊂ T . Such a manifold Q is said to be apar-
allelism in (M, T) between W and W′. If T = ∂M we simply call Q a parallelism in
M. The surface W is said to be T -parallel in M if it is parallel in (M, T) to a surface
contained in T . If T= ∂M, we say that W is parallel to the boundary in M.

It is clear that parallelism implies isotopy. The converse is false, as one easily sees
for instance inS3, by taking the boundary of a regular neighborhood of a suitable two
component link. But if we add the incompressibility hypothesis, we are able to obtain
the following result:

THEOREM 1. Let F and G be connected, incompressible, bilateral and disjoint
surfaces properly embedded in a3-pair (K , T). If F and G are isotopic in(K , T) then
they are parallel in(K , T).

As previously mentioned, this theorem has been extensivelyused in many proofs of
the JSJ Theorem but without an explicit mentioning, this is the reason why we concen-
trate on it here and we prove it. We deduce it by starting from the articles of F. Wald-
hausen [8, 7], and using a lemma whose proof is contained in [1] (Jaco and Shalen’s
memoir containing one of the first proofs of the JSJ Theorem).One can also prove the
same result by using Waldhausen’s Theorem of h-cobordism. To be able to apply such
a theorem one could carefully use the propositions and the techniques exposed in F.
Laudenbach’s book [3], Chapter II, paragraph IV (see in particular Corollary 4.2). The
first of the lemma we will use is Lemma 1.1 of [8]. Let us recall it:

LEMMA 1. Let K be a (not necessarily finite) polyhedron, and let L be a (not
necessarily connected) subpolyhedron of K . Suppose we havean embedding of L× I
in K , such that L= L × {1/2}, the subspace L× I is closed in K and L× I is a

neighborhood of L× {t} for some t∈ I
◦

. Moreover suppose that:

ker(π j (L) → π j (K )) = 0, f or j = 1, 2 andπ2(K − L) = π3(K ) = 0.

Let Q be an orientable and compact3-manifold and let f : Q → K be a map. Then
there exists a map g, homotopic to f and enjoying the following properties:

1. g is transversal to L;

2. g−1(L) is a compact surface, properly embedded and incompressiblein Q.
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Moreover if f|∂Q is transversal to L, one can suppose that the homotopy between g
and f is constant on∂ Q.

We will use this lemma mostly whenK is a compact, irreducible and sufficiently
large 3-manifold,L is a bilateral and incompressible surface embedded inK , the man-
ifold Q is homeomorphic toF × I whereF is a surface andf is a homotopy between
two embeddings ofF in K . It can be checked that iff (F × {0}) is incompressible in
K , the hypotheses of the lemma are verified.

Another result we will need is the following (the proof of which is contained in the
proof of Lemma V.4.6 of [1]).

LEMMA 2. Let (M, T) be a compact and irreducible3-pair and let(M ′, T ′) be a
3-pair satisfying the following conditions:

1. (M ′, T ′) is embedded in(M, T) (a pair);

2. FrMM′ is incompressible in M;

3. no component ofFrMM′ is T -parallel in M.

Let (W, ∂W) ⊂ (M, T) be a connected, bilateral and incompressible surface in M
such that W∩M ′ = ∅. Suppose that the inclusion i: (W, ∂W) → (M, T) is homotopic

as a map of pairs to a map i′ : (W, ∂W) → (M, T) such that i′(W) ⊂ M
◦

′. Then there
exists a homotopy of pairs F: (W × I , ∂W × I ) → (M, T) between i and i′ such that
F−1(FrMM′) is a union of horizontal leaves (surfaces of the type W× {t} in W × I ).

Another useful result is Lemma 3.4 of [7]:

LEMMA 3. Let F be an orientable surface. Let S⊂ F × I be a properly embedded
surface whose components are of the two following types:

1. discs intersecting∂ F × I only in two vertical arcs;

2. incompressible annuli with one boundary component in F
◦

× {0} and the other

one in F
◦

× {1}.

Then there exists an isotopy, constant on(F × {0}) ∪ (∂ F × I ), which puts S in a
vertical position.

Finally, let us come to the key tool of our proof: Lemma 5.1 of [7].

LEMMA 4. Let M be an irreducible3-manifold. Let F be a closed, incompressible
boundary component of M. In∂M − F, let F′ be an incompressible surface which
need neither be closed nor compact. Suppose: if k is any closed curve in F, then some
non-zero multiple of k is homotopic to a curve in F′. Then, M is homeomorphic to
F × I .
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Now we are ready to prove Theorem 1.

Proof of Theorem 1.Let us prove it first whenF andG are closed. In this case we
will apply Lemma 1 withK the ambient manifold andL = F ∪ G. Moreover we
call Q = F × I and f the isotopy betweenF andG (then f (F × {0}) = F). We
modify now f to obtain a new isotopyf̃ as follows. Using regular neighborhoods
of F and G we can first extend the isotopyf to F × [−1, 2] and then renormalize
it to F × [0, 1], thus assuming thatF = f (F × 1/3), G = f (G × [2/3]) and that
f |F×([0,1/3]∪[2/3,1]) is an embedding. The isotopỹf thus obtained, is such that̃f |∂Q

is transversal toL. Applying Lemma 1 we obtain that, up to homotopy fixed on∂ Q,
the preimagef̃ −1(L) is an incompressible surface inQ, and so by Proposition 3.1 of
[8], up to isotopy inQ, it is a union of “horizontal” leaves inQ (i.e. surfaces parallel
in Q to F × {0}), and in particular parallel between themselves. We can choose two
of them, F ′ andG′, which are consecutive and such thatF ′ is a preimage ofF and
G′ of G. Let us now callQ′ the manifold contained inQ betweenF ′ andG′. Such
a Q′ is homeomorphic toF × [0, 1] and so it is a parallelism inQ betweenF ′ and
G′. The map f̃ |Q′ is a homotopy between(F, ∂ F = ∅) and(G, ∂G = ∅) in (K , T)

such that f̃ |Q′
−1

(L) = F ′ ∪ G′ (there are no other preimages ofL in Q′). Now cut
(K , T) along(L, ∂L) = (F ∪ G,∅). SinceL is incompressible inK , we obtain an
irreducible and compact pair. Let us call it(K ′, T ′). Now we can apply Lemma 4 to
the component of(K ′, T ′) containing the image of̃f |Q′ ; in that component that map
is the homotopy between two incompressible component of∂K ′; it is easily checked
that the hypotheses of the lemma are verified in this case. SoK ′ is homeomorphic to
F × I and its inclusion inK is the parallelism we were looking for.

When F andG have a non-empty boundary, let us callU(F), U(G), U(L) =

U(F) ∪ U(G) regular neighborhoods inK respectively ofF , G, and L. Construct
an isotopy f̃ as follows. Using a regular neighborhood ofF in K we can first extend
the isotopy f to F × [0, 2] and then renormalize it toF × [0, 1], thus assuming that
F = f (F × {1/2}) andG = f (F × {1}), and thatf |F×[0,1/2] is an embedding. The
map f̃ thus obtained, is an isotopy between a surface parallel to(F, ∂ F) in (K , T)

andG ⊂ U(L). It is simple to check that the hypotheses of Lemma 2 are verified if
W is a component of FrKU(G). So there exist two consecutive horizontal leaves of
f̃ −1(FrMU(L)), one corresponding to a componentF1 of FrKU(F), and the other one
to a componentG1 of FrKU(G). If we restrict f̃ to the cylinder contained between
these two leaves we obtain a homotopy between(F1, ∂ F1) and(G1, ∂G1) which does

not intersectU(
◦

L). So we have a homotopy of pairs between(F1, ∂ F1) and(G1, ∂G1)

whose image is contained in a component(K1, K1∩T) of (K − U(L), T∩K − U(L)).
Note now that the components ofT ∩ K − U(L) which contain∂ F1 are (by the incom-
pressibility ofF1) incompressible annuli (they are surfaces with 2 homotopicboundary
components).

Now we reduce to the preceding case by constructing the manifold K2 obtained
by glueing 2 copies ofK1 along the annuli we already mentioned. The manifoldK2
is compact and irreducible since these annuli are incompressible in K1. In K2 the
doublesF2 andG2 of F1 andG1 respectively, are parallel. To obtain a parallelism of
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F andG in K we eventually use Lemma 3. By applying that lemma to the parallelism
Q (homeomorphic toF2 × I ) betweenF2 and G2 in K2, with S the union of the
incompressible annuli along which we glued, we can supposeS vertical in Q. So we
can cutQ along S obtaining that a component of the what is left after cutting is a
parallelism betweenF1 andG1 in K . Finally F andG are parallel inK since they are
parallel by construction to respectivelyF1 andG1, and F1, F, G1, G are pairwise
disjoint (if one ofF or G is contained in the parallelism betweenF ′ andG′, recall that
parallelism is a transitive relation between incompressible disjoint surfaces properly
embedded in an irreducible 3-manifold as shown in [1]; this is an easy consequence of
Proposition 3.1 of [8]).

2. The JSJ Theorem

Let us recall some definitions.

DEFINITION 2. A pair (6,8) is called an I -pair if6 is an I -bundle over a (pos-
sibly non orientable) compact surface and8 is the corresponding∂ I -bundle. The pair
is called product or twisted depending on whether the bundleis trivial or not.

A pair (6,8) is called an S1-pair if 6 can be given the structure of a Seifert
fibered manifold so that8 is saturated. Such a structure is called a Seifert structureof
the pair.

A 3-pair is said to be a Seifert pair if it is an S1-pair or an I -pair.

DEFINITION 3. A 3-pair (M, T) is said to besimpleif each incompressible torus

or annulus W⊂ M such that∂W ⊂ T
◦

is T -parallel in M or parallel in(M, T) to a
component of(∂M) − T . A3-manifold is said to be simple if(M,∅) is a simple pair.

We will prove the following theorem:

THEOREM 2 (JSJ THEOREM). Let M be a compact, orientable, irreducible and
boundary-incompressible3-manifold. Then there exists a unique (up to isotopy in M)
finite set F of incompressible, pairwise disjoint tori and annuli properly embedded in
M, which satisfies the following properties:

1. no component of F is parallel to the boundary in M;

2. each component of(σF (M), σ∂F (∂M)) (the pair obtained by cutting M along
F) is a Seifert pair or a simple pair;

3. F is minimal with respect to inclusion among all the sets which satisfy 1) and 2).

To prove this theorem, we will use some of the ideas of the proof of S. Matveev
given in [5]. The difference here is that we do not require theboundary to consist of
tori. Let us recall the following definition:
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DEFINITION 4. A surface S, properly embedded in a3-pair (M, T), is said to be
essentialif it satisfies the following conditions:

1. S is incompressible in M;

2. S is not parallel in(M, T) to a surface contained in T or in(∂M) − T ;

3. there is no disc D embedded in M, such that∂ D is the union of two arcsα and
β with α ⊂ S andβ ⊂ T andα is not homotopic in(S, ∂S) to an arc contained
in ∂S.

Here are some facts we will use:

LEMMA 5. If M is an irreducible3-manifold and L is a torus embedded and com-
pressible in M, then L bounds a solid torus in M or it is contained in a ball.

LEMMA 6. If (M, T) is an irreducible I -pair and(A, ∂ A) is an essential annulus
embedded in(M, T), then(A, ∂ A) is isotopic to an annulus which is saturated in the
I -fibration of (M, T).

Proof. If (M, T) is a product I-pair, then this lemma is a consequence of Lemma3.
OtherwiseM is an I -bundle over a compact, non-orientable surface6 which is em-
bedded and not bilateral inM. Note thatM has a horizontal foliation whose leaves,
besides6, are two-fold cover of6 and are parallel in(M, ∂M−T) to T ; these surfaces
are homeomorphic to a two-fold covering62 of 6.

By a simple Morse theory argument, it is easy to see that we canisotopeA so to
put it in a “quasi-vertical position”, i.e. such thatA is transversal to the already cited
foliation of M. CuttingM along6, we obtain a productI -bundle(M ′, T ∪T ′) over62
which contains two incompressible, disjoint annuliA1 and A2 obtained by cuttingA.
It is easy to show that, since these two annuli are disjoint and incompressible, we can
isotope the surfaceA1 ∪ A2 so to put it in a vertical position respect to theI -fibration
of M ′, and by an isotopy which is constant on(A1 ∪ A2) ∩ T ′. Then we can lift this
isotopy toM obtaining an isotopy which putsA in a vertical position.

Let us consider first the following:

THEOREM 3. Let M be an irreducible and boundary-irreducible, compact and
orientable3-manifold. It is possible to find a set F of essential, pairwise disjoint and
non-parallel tori and annuli such that each component of thepair (σF (M), σ∂F (∂M))

is either a Seifert pair or a simple pair.

Proof. Choose a setF of essential, pairwise disjoint and non-parallel tori and annuli
which is maximal with respect to inclusion. Using the Haken-Kneser finiteness the-
orem, we know that it is finite; callMi , i = 1, .., n the components ofσF (M). By
maximality of F all the pairs(Mi , σ∂F (∂M) ∩ Mi ) are simple.
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Now by Theorem 3, we can choose a setF of essential tori and annuli which
cutsM in pairs which are either Seifert or simple, and which is minimal with respect
to inclusion among all the sets which have this property. From now on we will call
(Mi , ∂M ∩ Mi ) the components of the pair obtained by cutting(M, ∂M) alongF . We
set∂0Mi = Mi ∩ ∂M and∂1Mi = ∂Mi ∩ F .

To proceed, we will need the following fact (see [2]):

THEOREM 4. If S is a Seifert3-manifold with non-empty boundary, then the fol-
lowing holds:

1. an incompressible torus embedded in S is isotopic to one which is saturated
respect to the Seifert fibration of S;

2. if S is not homeomorphic to S1 × S1 × I or to the twisted I -bundle over the
Klein bottle, then each incompressible and non boundary parallel annulus in S
is isotopic to a saturated one.

We are now ready to prove a first theorem which is useful to distinguish the simple
pairs from the Seifert pairs in the decomposition alongF .

THEOREM 5. If there exists an incompressible annulus A, properly embedded in
(Mi , ∂1Mi ) and not parallel in(Mi , ∂1Mi ) to an annulus contained in∂1Mi , then
(Mi , ∂0Mi ) is an S1-pair.

Proof. Note that the components of∂1Mi are annuli and tori. We distinguish three
cases:

1. both the components of∂ A are contained in annular components of∂1Mi ;

2. a component of∂ A is contained in an annular component of∂1Mi and the other
one in a toric component;

3. both the components of∂ A are contained in toric components of∂1Mi .

Case 1:Let S1 andS2 be the two annuli connected byA. We can distinguish two
subcases:

Case 1.a:S1 6= S2. Let N be a regular neighborhood ofA ∪ S1 ∪ S2 in Mi , and
call A1 and A2 the two annuli constituting FrM i N (see figure 1). If bothA1 and A2
(which are properly embedded in the pair(Mi , ∂0Mi )) are not essential in(Mi , ∂0Mi ),
then it is easy to see that, since they are parallel to annuli contained either in∂0Mi

or in ∂1Mi , the manifoldMi is a solid torus and∂0Mi is made of at most 4 annuli.
Otherwise, suppose thatA1 is essential, therefore(Mi , ∂0Mi ) is not a simple pair. If it
is anS1-pair we are finished; otherwise it is anI -pair, and we will now show that it also
has a structure ofS1-pair. If it is a productI -pair, (Mi , ∂0Mi ) is an I -bundle over an
orientable, compact surfaceX and the projection ofA over X is a homotopy between
two components (one corresponding toA ∩ S1 and the other one toA ∩ S2) of ∂ X. So
X is homeomorphic to an annulus,Mi is a solid torus and the pair is also anS1-pair. If
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(Mi , ∂0Mi ) is a twistedI -pair, the base of theI -fibration is a non-orientable compact
surfaceX and the projection ofA is again a homotopy between two components of
∂ X, but there exists no compact non-orientable surface havingtwo different boundary
components which are homotopic to each other, so this case cannot happen.

Case 1.b:S1 = S2. In this case, consider a regular neighborhoodN of A ∪ S1 in
Mi . The surface FrM i N can consist either of:

1. a union of an incompressible annulusA1 and a torusT

2. an incompressible annulus.

See figure 2.

Case 1.b.1:If T is not essential, it is either parallel to a component of∂0Mi or to
one of∂1Mi , or it is compressible inMi . In the first two cases then(Mi , ∂0Mi ) is an
S1-pair, and we are finished. In fact, ifA1 is essential then(Mi , ∂0Mi ) is a Seifert pair
(it cannot be simple) and actually anS1-pair since there is a toric component of∂0Mi

or of ∂1Mi . If A1 is not essential, thenMi is homeomorphic toS1 × S1 × I and it is
easy to check that(Mi , ∂0Mi ) is anS1-pair.

If T is compressible inMi , then the boundary of the disc compressing it is not
homotopic to the boundary ofA (sinceA is incompressible). Moreover, we further can
distinguish two cases:A1 is either parallel to an annulus contained in∂0Mi or in ∂1Mi ,
and in this case it is easy to check thatMi is a solid torus and(Mi , ∂0Mi ) is anS1-pair,
or A1 is essential. In the latter case(Mi , ∂0Mi ) is a Seifert pair (it is not simple). We
will now show that more precisely it has a structure ofS1-pair. Suppose that it is an
I -pair. By Lemma 6, we can suppose thatA1 is saturated in theI -fibration of Mi .
Cutting (Mi , ∂0Mi ) along A1, we get twoI -pairs, one of which is homeomorphic to
(S1 × I × I , S1 × I × {0, 1}) (note that∂S1 ∪ ∂ A1 is the boundary of two annuli in
∂0Mi ); this is absurd however, sinceA1 would be parallel in(Mi , ∂0Mi ) to S1.

The only case remaining therefore is the case in whichT is essential;(Mi , ∂0Mi ) is
then a Seifert pair. It can be checked that if anI -pair(K , L) contains an incompressible
torusT which is not parallel to a torus contained inL nor to one contained in∂K − L,
then(K , L) is also anS1-pair. In fact, if(K , L) is a productI -pair, by Proposition 3.1
of [7] we obtain that it is homeomorphic to(S1 × S1 × I , S1 × S1 × {0, 1}). If it is a
twisted I -pair, we can reduce ourselves to the preceding case by considering the two
fold cover of(K , L) which is a productI -pair; then, using Lemma 4, we obtain that
the twistedI -pair over a Klein bottle contains no essential tori.

Case 1.b.2:In this case FrM i N consists of a single incompressible annulusA1. If
A1 is parallel to an annulus contained either in∂0Mi or in ∂1Mi then Mi is homeo-
morphic toS1×̃M (whereM is a Moebius strip), and it easy to check that(Mi , ∂0Mi )

is anS1-pair. Otherwise ifA1 is essential,(Mi , ∂0Mi ) is a Seifert pair. If it were an
I -pair, by Lemma 6 we could supposeA1 saturated with respect to theI -fibration of
the pair. But then, cutting(Mi , ∂0Mi ) along A1 we would obtain twoI -pairs, one of
which homeomorphic to the productI -pair over an annulus (since∂ A1 ∪ ∂S0 is the
boundary of two annuli in∂0Mi ), so A1 would be parallel to an annulus contained in
∂1Mi . But this is absurd since we supposedA1 essential.
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Figure 1: Here we draw some transversal section toS1 ∪ A ∪ S2, and distinguish three
cases which are possible whenS1 6= S2. The thickened parts correspond to∂0Mi .
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Figure 2: Here we draw the transversal sections toA ∪ S1 in the two subcases distin-
guished in case 1.b.
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Case 2:Let us callT andS respectively the torus and the annulus which contain
∂ A. Let N be a regular neighborhood ofA ∪ T ∪ S in Mi . The surfaceF = FrM i N is
an incompressible annulus embedded in(Mi , ∂0Mi ). If F is not essential then it is easy
to see thatMi is homeomorphic toS1 × S1 × I and that(Mi , ∂0Mi ) is anS1-pair. If
F is essential, we arrive to the same conclusion because(Mi , ∂0Mi ) is not simple and
there exists a toric component of∂1Mi (there are noI -pairs(K , L) such that∂K − L
contains a torus).

Case 3:Let us callT0 andT1 the tori which contain∂ A. As in the first case, we
can distinguish two subcases.

Case 3.a:T0 6= T1. Let N be a regular neighborhood inMi of A ∪ T0 ∪ T1, and
let F = FrM i N (F being a torus). IfF is parallel to a torus contained either in∂0Mi

or in ∂1Mi , thenMi is homeomorphic toS1 × X whereX is a disc with two holes, and
(Mi , ∂0Mi ) is an S1-pair. If F is compressible, the natural Seifert fibration ofN (in
which the fiber is homotopic to∂ A) extends to a Seifert fibration ofN ∪ R whereR
is the solid torus bounded byF (note thatF is not contained in a ball since otherwise
T0 could not be incompressible), since the meridinal disc ofR has a boundary which
is not homotopic to∂ A. OtherwiseF is essential and then(Mi , ∂0Mi ) is a Seifert pair
and in particular anS1-pair since∂1Mi contains a torus.

Case 3.b: T0 = T1. In this case we can distinguish two subcases:F (defined as
above) can consist of one or two tori.

Case 3.b.1:F consists of two tori. If both the tori constitutingF are parallel to
tori contained either in∂0Mi or in ∂1Mi , thenMi is homeomorphic toS1 × X, where
X is a disc with two holes, and(Mi , ∂0Mi ) is an S1-pair. If one of these two tori is
compressible, it bounds a solid torusR in Mi (also in this case it cannot be contained in
a ball since otherwiseT0 could not be incompressible, moreover, for the same reason,
T0 is not contained inR), and it is easy to see that the Seifert fibration ofN extends to
N ∪ R, sinceA is incompressible and therefore the boundary of the meridinal disc of
R cannot be homotopic to∂ A.

There remains the case where at least one of those two tori is essential: in this case,
(Mi , ∂0Mi ) is anS1-pair since it is not simple and∂1Mi contains a torus.

Case 3.b.2:F consists of one torus.In this case, by distinguishing the analogous
subcases (F is essential or not) it can be checked that(Mi , ∂0Mi ) is anS1-pair.

Before proving another lemma useful to distinguish theI -pairs from theS1 and
simple pairs, we give the following definition.

DEFINITION 5. An essential square embedded in a pair(Mi , ∂0Mi ), is a disc D
embedded in Mi such that:

1. ∂ D ⊂ Mi ;

2. ∂ D ∩ ∂0N =: ∂0D consists of two disjoint arcs;

3. (D, ∂0D, ∂1D) is not isotopic in(N, ∂0N, ∂1N) to a disc contained either in
∂0N or in ∂1N; here, of course,∂1D = ∂ D − ∂0D.
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The next theorem is the analogous forI -pairs of Theorem 5:

THEOREM 6. If there exists an essential square D embedded in(Mi , ∂0Mi ) then
(Mi , ∂0Mi ) is an I -pair.

Proof. We can distinguish two cases:

1. the two arcs of∂1D are contained in two different annuliA1 andA2 of ∂1Mi ;

2. the two arcs of∂1D are contained in the same annulusA1 of ∂1Mi .

Case 1: Let N be a regular neighborhood inMi of A1 ∪ A2 ∪ D. The surface
FrM i N is an annulusSembedded in(Mi , ∂0Mi ). If S is compressible, then(Mi , ∂0Mi )

is a productI -pair over an annulus. IfS is parallel to an annulus contained in∂1Mi ,
then(Mi , ∂0Mi ) is a productI -pair over a disc with two holes (see figure 3). Note that
S cannot be parallel to an annulus contained in∂0Mi since otherwise an arcα ⊂ A1
would exist whose endpoints would be contained in differentcomponents of∂ A1, and
which would be parallel to an arc contained in∂0Mi . But then, using the irreducibility
of Mi and the incompressibility of∂0Mi , we would obtain thatA1 also is parallel to
an annulus contained in∂0Mi , and this is absurd since∂1Mi has at least two compo-
nents (A1 and A2). Hence only the case whereS is essential remains. Then the pair
(Mi , ∂0Mi ) is a Seifert pair (it is not simple). It cannot be anS1-pair since otherwise
we could isotopeSso to make it saturated in a Seifert fibration of the pair and then also
N would be. But this is not possible sinceN ∩ ∂0Mi cannot be saturated in any Seifert
fibration ofMi , since it has a negative Euler characteristic. So(Mi , ∂0Mi ) is an I -pair.

Case 2: Let N be defined as above. The surfaceS = FrM i N can consist of one
or two annuli. In the latter case, both the annuli, denotedS1 andS2, must be incom-
pressible given the hypothesis thatD is essential. For the same reason explained in the
preceding case, if one of the annuliS1 and S2 were parallel to an annulus contained
in ∂0Mi , then A1 would also be, and soD would not be essential. On the contrary if
both of them are parallel to an annulus contained in∂1Mi , then(Mi , ∂0Mi ) is a product
I -pair over a disc with two holes. If bothS1 andS2 are essential, then(Mi , ∂0Mi ) is a
Seifert pair and by the same reason explained in the preceding case, it is not anS1-pair.

Finally, suppose that FrM i N consists of a single annulusS. As in the case seen
above,S cannot be parallel to an annulus contained in∂0Mi . If it is parallel to an
annulus contained in∂1Mi , then(Mi , ∂0Mi ) is an I -pair over a Moebius strip with a
hole. OtherwiseS is essential and the pair(Mi , ∂0Mi ) is a Seifert pair. It cannot be an
S1-pair sinceN ∩ ∂0Mi cannot be saturated in any Seifert fibration ofMi .

3. Rough annuli and tori

Now we can define the notion of rough annulus or torus, which generalizes that of
rough torus given by S. Matveev in [5].
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DEFINITION 6. Let (M, ∂M) be an irreducible, compact3-pair. An incompress-
ible surface(S, ∂S) which can be a torus or an annulus embedded in(M, ∂M), not
parallel to the boundary, is said to bethin if there exists a Seifert pair(N, T) embed-
ded in(M, ∂M) such that:

1. no component ofFrM N is compressible or parallel to the boundary in M;

2. (S, ∂S) ⊂ (N, T) and(S, ∂S) is saturated in a Seifert structure of(N, T);

3. (S, ∂S) is not parallel in(N, T ) neither to a surface contained inFrM N nor to
one contained in∂T .

If (S, ∂S) is not thin we will call itrough.

So a rough torus or annulus is basically one which cannot be contained in an es-
sential way in any Seifert pair embedded in(M, ∂M). Rough tori and annuli have the
following important property:

THEOREM 7. Let (S, ∂S) be a rough torus or annulus, and let(L, ∂L) be an in-
compressible torus or annulus. Then it is possible to isotope (S, ∂S) off (L, ∂L).

Proof. We can distinguish two cases:

Case 1: (S, ∂S) and(L, ∂L) are two annuli. Up to isotopy, we can suppose that
S andL intersect only in a finite number of disjoint arcs or closed curves. Moreover,
if between all these positions we choose one in which the number of components of
S∩ L is minimal, then it is easy to see there are no arc whose endpoints are contained
in the same boundary component of eitherS or L, and that if there is a closed curve
then there is no arc and viceversa. So we can distinguish two subcases (see figure 4):

Case 1.a:∂S ∩ ∂L 6= ∅. Let (R, R ∩ ∂M) be a regular neighborhood of(L ∪

S, ∂S∪ ∂L) in (M, ∂M). The pair(R, R ∩ ∂M) is an I -pair embedded in(M, ∂M)

(the fibers are isotopic to the arcs composingL ∩ S), and it can easily be checked
that no component of FrM R is compressible (by minimality of the number of arcs in
L ∩ S) or parallel to a surface contained in∂M, otherwiseS also would be; in fact,
in this caseS would contain an arc parallel to an arc contained in∂M and sinceM is
irreducible and boundary-incompressible, it is easily checked thatS would be parallel
to an annulus contained in∂M. So, sinceS is saturated in(R, R∩ ∂M) and it is rough,
it can be isotoped on FrM R and so it can be isotoped away fromL (which is embedded
in Int (R)).

Case 1.b:∂S∩ ∂L = ∅. DefineR as above. The surface FrM R consists of annuli
and tori; these tori can be compressible or not, parallel to the boundary inM or not. If
a torusT of FrM R is parallel to the boundary inM, we extendR by attaching to it the
parallelism betweenT and a torus in∂M. If T is compressible, the boundary of the disc
compressingT (note thatT cannot be contained in a ball sinceS is incompressible)
is not homotopic to∂S (by incompressibility ofS), so the natural Seifert fibration of
R extends to the solid torus bounded byT in M. Moreover FrM R can contain annuli
which are parallel to annuli contained in∂M; in this case, as in the previous case, we
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Figure 3:S can be either essential or parallel to∂1Mi in (Mi , ∂0Mi ).
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Figure 4: Here we draw a scheme of the two possibilities distinguished in the first case
of the proof of Theorem 7.



142 F. Costantino

attach the parallelisms toR. So, modifyingR, by glueing some solid torus or some
parallelism to FrM R, we can construct anS1-pair(R, R∩ ∂M) embedded in(M, ∂M)

and such that each component of FrM R is incompressible inM and not parallel to a
surface contained in∂M. Moreover,(S, ∂S) is saturated in the Seifert fibration of the
pair, so since it is rough, it can be isotoped on FrM R′, away fromL.

Case 2:At least one of the two surfaces(S, ∂S) and(L, ∂L) is a torus. In this case
we can proceed in a perfectly analogous way to that used in Case 1.b.

REMARK 1. The same proof shows that given a finite set of pairwise disjoint rough
annuli and tori, and a family of pairwise disjoint incompressible annuli and tori, it is
possible to isotope the first family away from the second family.

Let us now give the following definition:

DEFINITION 7. A finite family F of rough annuli and tori which are pairwise dis-
joint, is maximalif any other rough torus or annulus disjoint from each element of F
is parallel in (M, ∂M) to an element of F.

Another important step is the following:

THEOREM 8. Let (M, ∂M) be an irreducible, compact3-pair. Then there exists,
and it is unique up to isotopy in(M, ∂M), a maximal family of pairwise disjoint rough
tori and annuli such that its elements are pairwise non-parallel in (M, ∂M).

Proof. Take a maximal family of pairwise disjoint and non-parallelrough tori and an-
nuli embedded inM; it is finite by the Haken-Kneser finiteness theorem. To proveits
uniqueness, use Remark 1. In fact, given two maximal family’s T1, ..Tn andT ′

1, ..T
′
m

of pairwise disjoint and non-parallel rough tori and annuli, we can isotope these two
family’s so that their intersection is empty. So by maximality, eachT ′

i is parallel to a
Tj for some j ≤ n and viceversa. So the two family’s are isotopic.

We are now ready to prove the JSJ decomposition theorem. The strategy we will
use will consist in proving that a minimal splitting family (whose existence is given
by Theorem 3) is isotopic to a maximal family of pairwise disjoint and non-parallel
rough tori and annuli; then, using Theorem 8, we obtain the uniqueness of the splitting
family.

Proof. Let S= {S1, S2, ..., Sn} be a family of incompressible tori and annuli embedded
in (M, ∂M), minimal with respect to inclusion between all the family’sof incompress-
ible tori and annuli cutting(M, ∂M) in pairs(Mi , ∂0Mi ) which are either Seifert or
simple. LetF = {F1, F2, ..., Fm} be a maximal family of pairwise non-parallel and
disjoint rough tori and annuli embedded in(M, ∂M). By Remark 1 we can suppose
that the two family’s are disjoint and therefore that eachFi is contained in one pair
(M j , ∂0M j ) which can be either simple or Seifert.
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If (M j , ∂0M j ) is simple, according to the definition of simple pair,Fi can be iso-
toped on∂1M j (not on∂0M j sinceFi is rough), so it is parallel to a certainSt for some
t ≤ n. Suppose now that(M j , ∂0M j ) is a Seifert pair. We claim that, up to isotopy,Fi

is saturated in one of the Seifert fibrations of(M j , ∂0M j ).

To prove the claim, first note that if∂M j = ∅, thenM j is a closed component of
M and it is a closed Seifert 3-manifold, so it cannot contain rough annuli. If it contains
a saturated, incompressible torusL, we can suppose it is disjoint from the rough torus
Fi . Then, by Theorem 4,Fi is isotopic to a saturated torus in the manifold obtained
by cuttingMi alongL, and therefore to a saturated torus inMi and this is absurd. If
Mi does not contain any saturated incompressible torus, then it can be checked that it
cannot contain rough tori. So∂M j 6= ∅.

Now let us suppose that(M j , ∂0M j ) is anS1-pair. By Theorem 4, ifFi is a torus,
then it is isotopic to a torus which is saturated in a Seifert fibration of the pair. Oth-
erwise it is an annulus, and it is easy to examine the two particular cases of Theorem
4, and in the other cases, by applying the same theorem, one concludes that the an-
nulus Fi is isotopic to an annulus which is saturated in a Seifert structure of the pair
(M j , ∂0M j ).

If (M j , ∂0M j ) is an I -pair, and if it contains an essential torus, it is also anS1-pair
(see the proof of Theorem 5). Otherwise, ifFi is an annulus, up to isotopy, we can
suppose it to be vertical in a structure ofI -fiber bundle of(M j , ∂0M j ) (see Lemma 3).

Our claim is now established, so we can suppose that each element of F which is
contained in a Seifert pair(M j , ∂0M j ) is saturated in one of its Seifert fibrations. But
since eachFi is rough, and it is not parallel to a surface contained in∂0M, we deduce
that it is parallel to a surface contained in∂1M j for some j ≤ n and therefore also to
an element ofS. So we showed that each element ofF is parallel to an element ofS
(obtaining a map from the familyF to S) and, since two different elements ofF are
not parallel, this map is injective (otherwise two elementsof F would be isotopic and
disjoint hence parallel by Theorem 1), moreover we can say that m ≤ n. Now we will
show that each element ofS is rough and, sinceF is maximal, that the two family’s
coincide up to isotopy.

Suppose thatS1 is thin, and therefore that there exists a Seifert pair(N, T) which
satisfies the conditions of Definition 6. We can distinguish two cases:S1 is an annulus,
or a torus.

Case 1: S1 is an annulus. In this case we can distinguish two subcases: the pair
(N, T ) is anS1-pair or anI -pair.

Case 1.a: (N, T) is an S1-pair. In this case, let us cut(N, T ) along S1, and
obtain one or twoS1-pairs (depending on whenN − S1 is connected or not). We
will call these pairs(N−, T−) and (N+, T+). Both ∂1N− and∂1N+ containS1. In
the decomposition of(M, ∂M) alongS, there are two pairs containingS1; let us call
these pairs(P−, ∂0P−) and(P+, ∂0P+) (it can happen thatP− = P+). We will now
show that these two pairs, which touch themselves at least along S1, areS1-pairs and
therefore thatS1 is not useful for the decomposition ofM, i.e. that the familyS′ = S−

S1 splitsM into pairs which are either simple or Seifert, and so verifiesthe hypotheses
of the JSJ Theorem, and this is absurd by minimality ofS.
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Let B+ be the base surface of the Seifert fibration of(N+, T+). The projection
in π(S1) of S1 in B+ is an arc which is contained in∂ B+. It is easy to see that it is
almost always possible to find an arc inB+ whose endpoints are contained inπ(S1)

and which is not homotopic to an arc contained inπ(S1) by a homotopy which does
not pass through the projection of the exceptional fibers. The only case when this is
not possible is whenB+ is a disc and there is at most one exceptional fiber. In the
other cases, the preimage of the arc we have found is an incompressible annulus whose
boundary is contained inS1, and non-parallel to a surface contained in∂1N+. Applying
Theorem 5, we obtain that(P+, ∂0P+) is anS1-pair. In the case whereB+ is a disc,N+

is a solid torus and∂1N+ is composed by at least 3 annuli (not only 2 because otherwise
S1 would be parallel to an annulus of∂1N), one of which isS1. We distinguish two
more cases:

Case 1.a.1:N+ intersects another annulus or torusS2 of S. It is easy to prove
that S2 ∩ N+ is an annulus or torus which is saturated in the Seifert structure of N+.
In this case as well, one finds an incompressible annulus which connectsS1 and S2
and which is not∂1P+-parallel. So one can again apply Theorem 5 obtaining that
(P+, ∂0P+) is anS1-pair. The same can be done for(P−, ∂0P−) and henceS′ = S−S1
is a family which still splitsM in pairs which are either Seifert or simple (since the
Seifert manifoldsP− andP+ are glued along a saturated annulus). This contradicts the
minimality of S.

Case 1.a.2:N+ does not intersect any other element ofS and no annulus of
∂1N+ is parallel to an element of S. Any annulus of∂1N+ different from S1, is
essential inP+, so(P+, ∂0P+) is a Seifert pair. Let us now suppose that(P+, ∂0P+) is
an I -pair and deduce a contradiction. Then it will follow that(P+, ∂0P+) is anS1-pair.
Up to isotopy, we can suppose that an annulusL of ∂1N+ is saturated in anI -fibration
of (P+, ∂0P+). Note that we can chooseL so that a component of∂L and a component
of ∂S1 bound an annulus in∂0P+. Then a component of the pair obtained by cutting
the I -pair (P+, ∂0P+) along L is an I -pair product over an annulus, soS1 would be
parallel toL and this is absurd since it is essential in(N+, T+).

Case 1.b: (N, T) is an I -pair. SinceS1 is not parallel to a surface contained in
∂1N in (N, T ) and it is incompressible, it is easy to check that the pairs(N−, T ∩ N−)

and(N+, T ∩ N+) areI -pairs with a base surface which is different from an annulusor
a disc. Hence in each of them we can find an essential square whose two vertical arcs
are contained inS1, so the pairs(P−, ∂0P−) and(P+, ∂0P+) areI -pairs by Theorem 6.
Hence alsoP− ∪ P+ can be given a structure ofI -pair, so alsoS′ = S− S1 is a family
which splitsM in pairs which are either Seifert or simple. This is absurd byminimality
of S.

Case 2:S1 is a torus. We already noted that if anI -pair contains an incompressible
torus, then it is also anS1-pair. So, in this case, we only need to examine the case where
(N, T ) is anS1-pair. We still can distinguish two subcases:

Case 2.a:S1 does disconnectN. Let (N−, T ∩ N−) and(N+, T ∩ N+) be the pairs
obtained by cutting(N, T) alongS1; and let(P−, ∂0P−) and(P+, ∂0P+) (which can
also be coincident) be the pairs of the decomposition ofM alongS containingS1. Let
B− andB+ be the base surface of the Seifert fibration respectively of(N−, T ∩N−) and
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(N+, T ∩ N+). SinceS1 is essential in(N, T ), it is possible to find an essential arc in
B+ whose endpoints are contained in the projection ofS1 and which is not homotopic
to an arc contained in∂ B+ by a homotopy which does not intersect the projection of the
exceptional fibers of(N+, T∩N+). The preimage of this arc is an incompressible annu-
lus whose boundary is contained inS1 and is not∂1N+ parallel. According to Theorem
5, (P+, ∂0P+) is an S1-pair. We can conclude the same for(P−, ∂0P−). It remains
to be proved that the two Seifert fibration of the pairs(P−, ∂0P−) and(P+, ∂0P+) are
compatible, in the sense that their fibers onS1 are homotopic. This is true since the
annuli we found (which are saturated inP− andP+) have a homotopic boundary inS1,
since they are saturated in the Seifert fibration of(N, T). Hence we can since in this
case we can excludeS1 from S therefore obtaining another splitting family, and this is
absurd since we supposedSminimal.

Case 2.b:S1 does not disconnectN. This case is similar to the preceding one; the
difference is this we cannot exclude that(N+, T ∩ N+) (which in that case coincides
with (N−, T ∩ N−)) is homeomorphic to(S1×S1× I , S1×S1×{0, 1}). But in this last
case(N, T) coincides with a component of(M, ∂M) and this is absurd sinceS− S1
would be another splitting family forM.
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