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ON THE ENERGY OF SECTIONS OF TRIVIALIZABLE
SPHERE BUNDLES

Abstract. Let E — M be a vector bundle with a metric connection over a
Riemannian manifoldM and consider ot the Sasaki metric. We find a
condition for a section of the associated sphere bundle #odbigical point

of the energy among all smooth unit sections. We apply thtergsn to
some particular cases whevkis parallelizable, for instandél = S’ or a
compact simple Lie grou@® with a bi-invariant metric, andt is the trivial
vector bundle with a connection induced by octonian muttgilon or an
irreducible real orthogonal representatior@frespectively. Generically,
these bundles have no parallel unit sections.

1. Introduction

Beginning with G. Wiegmink and C. M. Wood [5, 6], critical pr$ of the energy of

unit tangent fields have been extensively studied (see $taiiice in [1] the abundant
bibliography on the subject). We are interested in a nagealeralization, namely,
critical points of the energy of sections of sphere bundles.

Letr : E — M be a vector bundle with a metric connecti@nover an oriented
Riemannian manifold, that is, each fiber has an inner prodiejgending smoothly on
the base point and

Z{V, W) =(VzV,W) + (V, VZzW)
for all vector fieldsZ on M and all smooth sectiong, W of E.

On E one can define the canonical Sasaki metric associatedwithsuch a way

that the map

(drm, K)g : Te:E — TgM x Eq
is a linear isometry for each € E (hereq = 7 (¢§) andK is the connection operator
associated withv).

Letr : E — M be as before and denote By = {¢ € E | ||&|| = 1} the associated
sphere bundle. L\l be a relatively compact open subset\bfwith smooth (possibly
empty) boundary. Given a smooth sectddn M — E1, the total bending o¥ on N
is defined by

By (V):/N||W||2,

*Partially supported by foncyt, ciem (conicet) and secytjun
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where(VV), : TpM — Ey, IVV|? = tr (VV)* (VV) and integration is taken with
respect to the volume associated to the Riemannian metht. of

Consider onE the Sasaki metric. As in the case of vector fields, there exist
stantsc; andc,, depending only on the dimension and the volum&ptuch that the
energyén of the sectiorV, thought of as maly : N — E, is given by

EN(V)=cCc1+CBn (V).

In the following we refer to the energy of the section inste&the bending, since that
is a subject more commonly studied. In every example we \wilkbncerned with the
nonexistence of parallel unit sections, since they ar@tninima of the functional.

DEFINITION 1. A smooth section V¥ M — E! is said to be a harmonic sec-
tion if for every relatively compact open subset N of M witlosth (possibly empty)
boundary, V is a critical point of the functionBly (or equivalently, of the energin)
applied to smooth sections W of M satisfyind,;\W= V|;n-

Notice that a harmonic section may be not a harmonic map vbto E?* (see for
example [2, 3], wher& = T M).
The rough Laplaciar\ acts on smooth sections Bfas follows:

n

(AV) (p) =Y (V2iVZziV) (P),

i=1

where{Zi [i=1,..., nA} is any section of orthonormal frames on a neighborhood of
pin M satisfying(Vzi 2!) (p) = 0 for alli, j.

THEOREM1. Letw : E — M be a vector bundle with a metric connection over
an oriented Riemannian manifold and consider on E the aasetiSasaki metric. The
section V: M — E1is a harmonic section if and only if there is a smooth real fiorc
f on M such that

AV = fV.

ReEMARK 1. This condition was proved for the particular case wherés the
tangent bundle, by Wiegmink [5] and Wood [6] for compact nfialds and by Gil-
Medrano [1] for general (not necessarily compact) mang@ldith a different presen-
tation). Their proofs can be adapted to the present morergerese.

2. Applications

Let M be a parallelizable manifold with a fixed parallelizatipx?, ..., X"}. LetV
be a finite dimensional vector space with an inner productai the set of all skew-
symmetric endomorphisms of. Let E = M x V — M be the trivial vector bundle.
Forv e V, letL, : M — E be the “constant” sectioh, (p) = (p, v).
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PROPOSITIONL. Givenamap : {X,..., X"} — o (V), there exists a unique
connectioriv on E — M such that

(1) (VxiLu) (P) = Lo(xiy (P)
forallpe Mandalli=1,...,n. Moreover, the connection is metric.

Proof. Let{vy, ..., vn} be an orthonormal basis ®. Let X € T;M ando : M — E
be a smooth section. Then

m n

X=YaXx(p and o= fiL,
i=1 j=1

for some numbers; and smooth functiondj : M — R. A standard computation

shows that

m n
(Vx0) (1) = 0" ai (X} () Luy (0 + 150 (Logxiy, ) (P)

i=1j=1

defines a connection oB satisfying condition (1), which is metric sinase(xi) is
skew-symmetric for ali.
O

ExampPLE 1. The Levi-Civita connection of a Lie group with a left invariant
Riemannian metric may be obtained in this way: § & the Lie algebra & endowed
with an arbitrary inner product. L&t be the connection ok = G x g — G induced
by 6 : g — o(g) given by

1
6 (X)Y = (adkY — @)™ Y — (@dv)* X) ,

and any left invariant parallelization &, where* means transpose with respect to the
inner product at the identity. In this case the map

) F:E—TG, F(g,v)=dlg(v)

(£¢ denotes left multiplication byg) is an affine vector bundle isomorphism, and more-
over an isometry i€ andT G carry the corresponding Sasaki metrics.

ExAMPLE 2. A particular case of Example 1 is the following: If the nietsn G
is bi-invariant, or equivalently the inner product is £@)-invariant, we have

1
O0(X)Y = 5[X,Y].
EXAMPLE 3. LetG be acompactconnected Lie group &wd p) a real orthogonal

representation o6. Proposition 1 provides a connectihonE = G x V — G
induced by any left invariant parallelization afid= A dp, for somex € R.
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LetE = G x V — G asin Example 3. For € V, let R, the section oE defined
by

3) Ry (9) = (g, P (g’l) v) :

The sectiond., and R, are called left and right invariant, respectively, sinceha
particular case wherg = g, p = Ad they correspond to left and right invariant vector
fields, respectively, via the isomorphism (2).

REMARK 2. Although the vector bundlds — G of Example 3 are topologically
trivial (as for instance the tangent spaces of paralleleatanifolds are) in most cases
they are not geometrically trivial, as shown in (b) of thddwling Theorem.

THEOREM 2. Let G be a compact connected simple Lie group endowed with a
bi-invariant Riemannian metric. L&d/, p) be an irreducible real orthogonal repre-
sentation of G and let E= G x V with the Sasaki metric induced by the connection
associated to any left invariant parallelization of G afé= Adp, for some. € R. The
following assertions are true:

(a) The left and right invariant unit sections are harmonéctons of B — G.

(b) If x = 0orx = 1, then L, or Ry, respectively, are parallel sections for all
v e V. If0# X # 1, then the bundle E> G has no parallel unit sections.

REMARK 3. (a) The result is still valid if5 is semisimple and the metric & is a
negative multiple of the Killing form.
(b) If (V, p) = (g, Ad) andr = 1/2, we have the well-known fact that the unit left
invariant vector fields oG are harmonic sections @*G — G, since they are Killing
vector fields ands is Einstein [5] (see in [3, Section 4] the case where the \dilant
metric is not Einstein).

We need the following Lemma to prove the Theorem.

LEMMA 1. LetV be the connection on the bundle-& G as in the hypothesis of
Theorem 21If Z is a left invariant vector field on Gthen

(4) (V2VzR) (@ = (9.t = 12dp (2% p (g7) v)

forallg e G, v e V.

Proof. Let V be a smooth section & — G and suppose that (h) = (h, u (h)).
Denotew (h) = (d/dt)qu (hexp(tZ)) andy (t) = gexp(tZ) fort ~ 0. We may
assume thaZ £ 0, otherwise the assertion is trivial. A smooth sectirsuch that

W (y (1)) = (cost) Lyg) (v (1)) + (sint) Lu(g) (¥ (1))



Energy of sections 151

satisfiesW (g) = V(g) and (Woy) (0) = (Voy) (0). Hence, (VzV)(Q) =
(VzW) (9), which by (1) equals

Ly dp@u(g) (9) + Lu(g) () = (9, A dp (Z) u(9) + w (9)) .
Applying this procedure tov = R,, that is,u(h) = p(h*l)v and w (h) =
—dp (Z) p (h™1) v, one obtains

(5) (VzR) (@ = (9. G- =D dp @) p (7 v).

Finally, applying again the procedure to the secbra- Vz R,, one obtains (4).
O

Proof of Theorem 2(a) Let{Zy, ..., Zy} be an orthonormal basis gfand consider
on G the associated left invariant parallelization. Givea V, by (1) we compute
n n
ALY @ = > (V2Vzlo) @ =) L, z2, (@)
i=1

i=1
= (g, Azidp (Zi)2v> = (g, 22C, (U)> ,
i=1

whereC, is a multiple of the Casimir of the representatjgiinotice that the metric is
a negative multiple of the Killing form). Now, the Casimiraamultiple of the identity,
sincep is irreducible (a direct application of Schur's Lemma). dem\L, = uL, for
somey and soL, is a harmonic section & — G by Theorem 1. On the other hand,
a straightforward computation shows that

dp(2)p (97) = p(97) dp(Ad (@) 2)
forallg e GandZ e g. Hence, if we calll' = Ad (g) Z', we have by Lemma 1 that

> (0.0- 2% (573 o0 (v1)"0)

(AR (9)

(0.0 1%p (7Y ¢ ).

since{Ui [i=1,..., n} is an orthonormal basis @f(the metric orG is bi-invariant).
As before,C, is a multiplez of the identity, henceAR, = (A — 1)2 R,, which
implies by Theorem 1 thaR, is a harmonic section &&* — G.

(b) If A = 0, clearly L, is parallel by definition of the connection. Af= 1, thenR,
is parallel by (5). Suppose that a smooth unit sectionith V (e) = (e, v) is parallel.
Then, forX,Y e g the curvature

RX,Y)(ev) = (VxVyL, —VyVxL, — Vix.viLy) (&)
(ev [9 (X) B 0 (Y)] v—>0 [X’ Y] U)

(e, 32[dp (X), dp (V)] v — Adp [X, Y] v)
= (ex(A—1dp[X,Y]v)
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vanishes. IfG is semisimple, g, g] = g. Hence, O£ A # 1 implies thatdp (Z)v =0
for all Z € g. This contradicts the fact thatis irreducible.
O

Next we deal with an analogue of the particular case of The@e&vhen) = H is
the algebra of quaternion§, = S = {q € H | |q| = 1} andp (q) X = q.X (quater-
nion multiplication) forX e ImH = T;S3. (It is not a particular case of Theorem 2,
sinceS’ is not a Lie group.)

Let O = R8 denote the octonians with the canonical inner product and le
S’ = {q € O | |q| = 1} with the induced metric. The tangent spaceSbfat the iden-
tity may be identified with Inf), the purely imaginary octonians. Fix an orthonormal
basis{xi, ..., X7} of Im O and consider the parallelization sf consisting of the cor-
responding left invariant vector field$''s, that is, X' (q) = q.x' € g+ = TqS'. By
analogy with (3), givenv € O, we define the sectioR, of the trivial vector bundle
S"x 0 — S'by R, (@) = (@, qv).

THEOREM3. Let E= S’ x O — S’ be the trivial vector bundle with the connec-
tion V induced by

9:{X1,...,X7}—>o(©), O(Xi)vzkxiv,

with A € R, and consider on E the Sasaki metric inducedwvay The connection is
independent of the choice of the orthonormal basigwD. If v € O with |v| = 1, the
following assertions are true for the sectiong, IR, of the associated spherical bundle
El > &

() If A =0, then L, and R, are harmonic sections. K # 0, then L, is a harmonic
section and Ris a harmonic section if and only if = +1.

(b) 1f 0 # & # 1, then the bundle E— S’ has no parallel sections. The section
L, is parallel if and only ifA = 0, and R, is parallel if and only ifA = 1 and
v==+1

Before proving the theorem we recall from Chapter 6 of [4] edacts about the
octoniangD (also called Cayley numbers), which are a non-associativmed algebra
with identity, isomorphic taR® as an inner product vector space. The algebris
H x H, with the multiplication given by

(6) (a,b) (c,d) = (ac—db, da+ bc).
Setting 1= (1,0) ande = (0, 1), one writes(a,b) = a + be If u = a + x with
a € R.1 and(x, 1) = 0, the conjugate ofi isd = a — x and(u, v) = Re (uv) holds

forallu,v e Q. If x € Im O = 1+ with |x| = 1, then

(7) X2 = —xx=—|x]2=—-1.
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Moreover, if(u, v) = 0, then

(8) u(ww) = —v (0w)

for all w. From Lemma 6.11 of [4] and its proof we have that the assaciato
[u, v, w] = (W) w — U (vw)

is an alternating 3-linear form which vanishes either if ohéhe arguments is real or
if two consecutive arguments are conjugate. In particiflat,e Im O with |x| = 1,
we have by (7) that for alb,

9 X (Xv) = (Xz)v—[x,x, v] = —v+[X, X, v] = —v.

LEMMA 2. Let z= X; be an element of the basis bh O considered above and
denote Z= X,. Then for unit octonians and q one has

(10) (VZR)) (@) = (@ 22(@v) — @9 v)
and
(12) (V2VZR) (@ = — (14 42) R, (@) — 2@, 2(@) v)) .

Proof. The assertions follow proceeding as in the proof of Lemmatting o (q) X =
gXanddp (z) X = z X, taking into account thad is not associative and using (9)J

Proof of Theorem 3(a) First we show thab (Xi) is skew symmetric for ali =
1,...,7. Indeed, giverv € O, sincex; € ImQ, then

(Axiv, v) = A Re ((xiv) ) = A Re ([xi, v, 3] — X |v|2> —0,

by one of the properties of the associator mentioned aboveth® other hand, by
definition of the connection and (9), we compute

7 7
(ALY @ = Y (VxiVxily) (Q)ZZLAZXi(Xiv) Q) =

i=1 i=1
7
= ,— Zk%) = (Qs —7)»21)) = —7)\2|—v @-
i=1

By Theorem 1L, is a harmonic section di! — S’ for anya and using (11) and (9),
R, is a harmonic section if = 0 orv = +1. Now we consider the case# 0. If R,
is a harmonic section, by Theorem 1 and (11) there exists anionctionf on S’
such that

7
(12) D X (@) v) = () Go

(=1
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for all @ € S’. By Proposition 6.40 in [4], based on a theorem of Artin, we may
suppose without loss of generality that= a + bi, with a? + b% = 1. We must show
thatb = 0. TakeG = ¢ + dj with c2 + d2 = 1 and suppose thék, | ¢ =1,...,7}

is the canonical basis, J’ k, e ie, je, ke}. Now a straightforward computation using
(6) and (9) yields tha} ",_; X¢ ((X¢j) i) = —k. Settings = ac+ cbi + adj, equality
(12) becomes

—7¢& —dbk= f (c—dj) (£ —dbk).

Suppose thab # 0. If b = +1 (soa = 0), takingc = d # 0, one has
1=f(c—-dj)=-71fb# +1(soa # 0), takingc = 0,d = 1, one gets also
a contradiction. Thug) = 0 as desired.

(b) By definition of the connectiori,, is parallel if and only ifx = 0. Suppose that
0 # A # 1. Asin the proof of Theorem 2 (b), we show that for ang O, v # 0, there
exist an orthonormal s¢k, y} ¢ T1S’ = Im O such that the curvatuf (x, y) v # 0.
Let X, Y be the left invariant vector fields &/ corresponding ta andy, respectively.
By Proposition 6.40 of [4], based on a theorem of Artin, tharsid of {1, X, y, xy}isa
normed subalgebra isomorphic to the quaternions. Henescamthink ofX, Y as left
invariant vector fields on the Lie grol§ = HN S’. Therefore K, Y] (1) = xy— yx.
Using (8) we compute

Rx,y)v = (VxVyL, — VyVxL, — VixyiLy) (D)
= A2X(Yv) — A2y (Xv) — A (XY — YX) v
= 2.0xX(yv) — (xY)v)

20 (0.~ 1) (xy) v — A [%, ¥, v])

If v = %1, for any orthonormal s€ix, y} € ImQO one has clearly
RX, Y)v=222 (A — 1) xy#0.

If v £ 41, thenu := Im v # 0 and taking an orthonormal sgt, y} in ImQO, with
y = 0/ |u|, by the properties of the associator given after (8), oneRas y)v =
20 (A — 1) (xy) v # 0. Finally, by (10),R, is not parallel if» = 0, and if» = 1, then
(VzR) (q) = (9, — [z, G, v]) forallq € S/, Rez = 0. Similar arguments yield that
in this caseR, is parallel if and only ifv = 1. This concludes the proof of (b).

O
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