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RANDOM VARIABLES RELATED TO DISTRIBUTIONS OF
SUMS MODULO AN INTEGER

Abstract. Starting from known results concerning distributions ofnsu
modulo an integer, we build two random variablgs, ) (with ¥ # E C

P, v e N, v > 3, P denoting the set of prime numbers) ang ., (with
@+ E CP\{2}, ve N, v > 2)and find upper bounds for their expected
values; the probability functions related to such randonetées are also
shown.

1. The functionsé¢g and Lg (E C P, E # 0)

There is a wide literature about congruence equationsf@eexample, [1]) and in the
last twenty years interesting related formulas and funstizave been derived: among
these, expressions giving the number of solutions of limeergruences. Counting
such solutions has also nice relations with statistic antabilistic problems like the
distribution of the values taken by particular sumin(r € N), as we are going to
see.

Two arithmetic functiongeg andLg, labelled by a generic non-empty subgedf
the setP of prime numbers, are known (see [4]; for a detailed discussf the partic-
ular caseE = P\ {2} see [3]) with the following properties. For given positivedgers
k andr, with all prime divisors of lying in E, we setD = {d € N : d|r}, consider
two generic elementd = (dy, da, ..., d¢) € DX andH = (hy, ho, ..., hy) € (Z)K
and define the function

S= r(";’A): D1 xDox..xDx —Z
(X1, X2, .oy Xk) = Zllehjxj (modr) ’
with Dj = {x e Zr : (X, r) =dj}for j =1, 2, ..., k. For any fixed positive integer
v we denote byS, the set of functionsS (each of which corresponds to a particular
choice ofr, k, H, A) such that for every prim@ € D we havet({j, 1 < j <k
pfhjdj}) = v. ForanyS € S, anda e Z, the integeNs 5 denotes the number

of solutions of the congruence equatiStxi, xo, ..., Xx) = a (mod r) (formulas for
Ns 4 in particular cases can be found in [2], [5] and [6]), while &machS we pose

- 1
Ns = - Z Ns a. The numberge = £e(v) andLg = Le(v) are then defined as

acZy

N
the lower and the upper bounds, respectively, of the mﬁeﬁl for S ranging oversS,
S
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anda overZ; . The following equalities have been proven in [4]:
Le(v) = | | [1 _ } L) = | | [1+71 }
- T (p=1)sW |’ - — Dt |°
el (p-Ds el (PO

where, for each, s(v) andt(v) are, respectively, the greatest even integer and the
greatest odd integer not higher than

2. The random variable&e ) @ #E CP,veN, v>23)

After fixing a non-empty subset of P and an integev > 3, for eachp € E we can

1
consider the numbetp) (v) =1+ oD and define the function

{ %'(E,U)Z E —- R
p l—>[|n L‘,{p}(v)]/[ln EE(v)]

The following property holds.
ProPOSITIONL. Thefunction &k . isarandomvariable over the set E.

Proof. For anyp € E we havelg(v) > Lip(v) > 1, it follows thatVp e
E, &E,0)(pP) = [In L{py()]/[In Le(v)] > 0. Furthermore, the following equalities
are verified:

peE

_ PeE _
F;”&(E’”)(p)_ InCe(wv)  INLe()

Yo InLip@) In {]_[ L{p}(u)}

Theng . is a random variable ovet.
|

A function Pr g ., related tc€g ., can be defined with range equal to the set of
all subsets oE, by posing

VI CE, Preen() =Y &eun,
pel

where the empty sum is considered equal to 0. The followitedioams are satisfied:
1. VI CE, Pr(S,E,v)(I) >0;
2.V, JC EwithlNJ =46, Pr(g’E,v)(| uld) = Pr(g_’E,v)(”—i- Pr(g’E,v)(J);

3. Pr(s,E,v)(E) =1.
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Then the functiorPr ¢ g ,) is a probability over the sdf.

ExAMPLE 1. LetustakeE = {2, 3, 5, 7} andv = 3. We have:

9

LinB) =14+ —— =2 L) =1+ —" =
23 + 2_1° . 33 + (3_11)3 217
51(3) + 5_1° 64 ) + 717~ 216

9 65 217 14105
Le@ =[] Lip@ =25 =
peE
From such equalities we deduce that:

In2 In(9/8)

€@ = h 11056144~ C8 §€3O = 1056148 ~ 01T
In(65/64) In(217/216)
€30 IN(141056144 0.0187 &E 3 (7 In(141056144 0.0056

The related probability functioRr ¢ g 3 is defined as follows:

Pre. g3 @) =0;

Pree3({2) = &€&, 3(2) ~ 0.834%

Pre.e3({3) =£E,3 (3 ~ 0.1417

Pr e,3({5) = &E,3(5) ~ 0.0187

Pre g3 (7)) = &€, 3 (7) ~ 0.0056

Pre g3 ({2, 3) = £E.3)(2) + &E,3(3) ~ 0.9758

Pre g3 ({2, 5) = &E.3)(2) + &E,3)(5) ~ 0.8527.

Priee3 (2, 7)) = &E,3(2) + &E,3(7) ~ 0.8396

Pri.e3 (3, 5} =&E,3(3) +&E,3 (5 ~ 0.1604

Prie a3, 7)) =&E,3(3) +&E,3(7) = 0.1473

Pree3 ({5 7)) = &E.3)(5) + &E,3)(7) ~ 0.0242

Pree3({2, 3, 5) = &E.3(2 + &3 +&E, 3 (5 ~ 0.9944
Priees2 3, 7)) = &€E.3(D +£E3 Q) +&E3(7) ~ 09813
Pre e 32, 5 7)) = &€ 32 +£E 35 +£E3(7) ~ 08583
Priee a3, 5 7)) =&E,3(3) +£E,3 (B + &E,3(7) ~ 0.1659
Priees(2 3,5 7)) =§E3 ) +&E3E) +éE3O) +EE3((7) =1

In Example 1, the valudr ¢ g 3)({2}) is much larger tharPr ¢ g 3)({3, 5, 7}).
This is a particular case of a general characteristic of trabability functions
Pr gv): from the definitions o,y and Pr g .), one can easily deduce that the
valuest e ,)(p) decrease fast gsgrows.
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3. The expected value ok )

E andv being fixed, the real numbet (£ ,)) = Z[p - &, (p)] is called expected
peE
value of the random variablge ,y. For anyE andv we have

In (1+ ! nf(1+ —— p
B W) _ [( W) }
H(s(E,v)) = DGZE p- |n£E(U) - peZE In £E(U)

()] [ () )]

=2 InLg(v)

1 p-1
n (H e 1)t(v>>

s In Le(v)
—1)t)
n (pl)l(v)\]/<l+ 1 t )[(p D]
=1+ (p- 1
re In LE(v) '
Then ot
In "2 In (P-0'"" Y8
1+ — Y2 o H <1+y =¥
‘; In Le (v) G F; In Le (v)
i.e.
1 1
Z ( _ 1)t(v)fl -In2 Z — DHtw-1
(1) 14 PE P < H(EEr) p 2E P
In L (v) = HGeEw) < nCe(w)
In particular
¢t(w) -1
2 HEg,)) <1422~
(2 (EEw) <1+ nCe()

¢ denoting Riemann’s function. Relation (2) implies thatdos choice ofE andv the
valueH (¢ ,v)) is finite.

EXAMPLE 2. Let us takeE = {2, 3, 5, 7} andv = 3. By using appropriate
approximations of the values taken f¥ 3), we can writeH (§g 3)) = 2- £E,3)(2) +
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3-£E,3)(3+5-£E,3(5) +7 &k 3 (7) ~ 2.2255. This result agrees with inequalities

. 193/144
1), which tell thatH 14— . In2 2.1178 and that
(1), which tell us thatH (e 3) > 1+ IN(14105/6142 >
193/144 . . .
H 1+ —————— < 2.6128. In this case, since the primesofare
Ges) < 1+ Tatog6148 = P

small, the valueH (§g 3)) is much closer to the lower bound established by (1) than to
the corresponding upper bound.

If E is fixed with 2e E, we can observe that for any> 3 we haveL;(v) = 2
and, if E # {2}, LE(v) = Lij(v) - LE\(23(v) = 2- LE\(2)(v) > 2. Therefore, from
inequality (2) we deduce

{(tw) -1

7 VveN, v>3.

3) HEEw) <1+
For the particular case= 3 we obtainH (£ 3)) < 1+i2) < 3.3732. For generio,
if we cannot calculate a sufficiently good approximalt?ozrqaf(v) — 1), we can utilise
the inequalityz (r) < rrTl (holding for anyr € R, r > 1), and from inequalities (3)
we derive the weaker relations

tv) — 1

HEEw) <1+ G0 —2mn2

Now let us fixv € N, v > 3 and a generi€ with ¥ # E C P\{2}; let us pose
m(E) = min(E). SinceLe(v) > Lim)(v), from the second of inegs. (1) we can
obtain

1 = 1
Z (p— Dtw-1 Z nt—1
(@) HEEw <1425 S T
(E.v) In LE(v) InL{m(E)}(v)
+00
/ X1t gy
m(E)—2 1

—14 .
IN Lim(); (v) (t() —2) - (M(E) — 2'™=2.In Limeg) (v)

1
Moreover, we recall the relati =1+——————— and observe that,
0fym(E) (v) +(m(E) T

: . X . e .
since for any positivex € R the inequality Il + x) > T x is verified, replacing

by W gives rise to the relation lm), (v) > e~ DO 1 This
fact, together with relations (4), implies that

(M(E) — '™ 41
(t(v) — 2)(M(E) — 2)t)—2"

HEE») <1+



162 G. Sburlati

4. The random variablene,,y @ # E CP\{2}, ve N, v > 2)

For E andv fixed with@ # E € P\{2} andv € N, v > 2, we can also define a
functionn ) : E — R related to the value&p, (v) with p € E. Let us set, for each
primep € E,

1(E.v)(P) = [In £py()]/[In €& (v)].

Foranyp € E, sincelg(v) < £(p}(v) < 1, we have Ifg(v) < Inf;p(v) < 0, which
implies O< n(g,»)(pP) < 1. Moreover, we can write

peE

Y nEn(P = peE =
~ (E.v) InCe(v) In e (v)

>INt I {]‘[ z{p}(v)}
=1

We have so proven thatg . is a random variable over the get
A function Pr, g .y, defined on the set of all subsetsfis obtained fromyg ,)
by posing

VI CE, Proen() =) neuyp:
pel

Pr,.E,v is easily verified to be a probability ovér.

ExAamMPLE 3. LetustakeE = {3, 5, 7, 11} andv = 2. We have:

1 3 1 15
e =1 —— =2 @ =1-—— ==
@ G- 1?4 5@ (6-12" 16,
™ -2 36 ‘(1@ (11— 12 _ 100

3 15 35 99 693

e@=[]tw@ =7 15 35 100~ 1022

peE

Such equalities imply that:

@4 _In(15/16) _
1€2®) = Gez102g - O 7308 ME2O) = HEee 100 ~ 01653
_In(35/36) _In(99/100 _
ne2 D = In(693/1024 00722 ne2 1D = In(693/1024 0.0257
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From all this we deduce that:

Pro.e.2 (@) =0

Pra.e.2({3) = nE.2(3) ~ 0.7368

Pr,.e.2({5) = n(E,2)(5) ~ 0.1653

Pra.e2 (7)) = nE,2(7) ~ 0.0722

Pra.e.2({11) = nE,2(11) ~ 0.0257

Pr(,.e.2 (3, 5) = ne 23 +nE 2 (5) ~ 0.902%

Prine2 (3. 7D = nE,2 (3 + nE 2 (7) ~ 0.809Q

Pro,e2 (3, 11) = (e 2(3) + n(g,2)(11) ~ 0.7626

Pro.e2 (5, 7)) = nE 25 + nE.2(7) ~ 0.2374

Pre,e,2 ({5, 11) = (e 2(5) + n(g,2(11) ~ 0.191Q

Pro.e2 (7, 11}) = nE.2(7) + nE.2)(11) ~ 0.0979

Pro.ead3, 5 7) = nE.2 @) +nE2®) +1E2(7) ~ 09743
Proe2 (3, 5, 11) = nE 2 3) + nE.2) () + nE.2(11) ~ 0.9278
Pri,e2 3, 7, 11) = nE,2(3) + 0.2 (7) + ne 2 (11) ~ 0.8347
Pry.e2 5, 7. 11) = nE.2(5) + nE.2)(7) + nE,2(11) ~ 0.2632
Pro.e 23,5, 7, 11) = nE 23 + nE,2 O +nE,2 (7 +neE,2 (1D =1

Similarly with respect to example 1, the val&e, e 2 ({3}) found in example 3
is much larger thar, g 2 ({5, 7, 11}), and in general the valuege .)(p) decrease
fast whenp grows.

5. The expected value ofyg )

After fixing E andv, let us consider the expected valuengf ., i.e. the real number
HmEw) = Z[p- 1N(E.v(P)]. We have

peE
p
H "(Gogm) |l o) ]
MEv) = pGZE p- In¢g(v) - F;E Infe(v)

) [ ) )]

=2 In¢g (v)

peE
1 p-1
n (1_ (p—l)S(v>>

In[¢e (v)~2]

=1+)_

peE



164 G. Sburlati

In (p-1s-1 1 1 [(p—1=]
(p— D5V

In[ee(v)~?]

=1+)

Then

1 1
2, (p—Dsw-1 AN (Z (p- 1)s<v>_—1)

peE peE
H <1
e~ E0)=1E

In particular forv > 4 we have

) 1+ Ntz () 1

4In(4/3) - [¢(s(v) — 1) — 1]
In[¢e (v)~1]

Inequality (6) (or, equivalently, the second of inegs. (BYves that for any paiiE, v)
with v > 4 the valueH (n(,v)) is finite. For any(E, v) with v < 3, from relations

(6) HmeEw) <1+

is

(5) it follows thatH (n(g,)) is finite if and only if the value of the seriez 0
peE

finite.

EXAMPLE 4. ForE = {3, 5, 7, 11}, let us calculate the valull (nE 2). We
obtain:H (nE,2) = 3:n(E,2)(3)+51E&,2 (5 +7-nE,2 (7 +11-nE, 2 (11 ~ 3.8251.
This result agrees with inegs. (5), which tell us thet e 2) > 1

41n(4/3) - (61/60)
36038 andH (e 2)) = 1+ — 7507 eo2

E are small and hence the valtan e 2)) is closer to the upper bound established by
(5) than to the corresponding lower bound.

tin(1024693 ~

< 3.9964. In this case, the primes of

For any pair(E, v) with v > 4, starting from the second of inegs. (5) and using a
method like the one at the end of section 3, we can deduce that
4In(4/3) - (M(E) — 1))
(S(v) = 2)(M(E) — 2)s)=2’

HmE») <1+

wherem(E) = min(E).
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