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MINIMAL PROJECTIONS IN TENSOR PRODUCT SPACES

Abstract. It is the object of this paper to study the existence and the
form of minimal projections in some spaces of tensor praglo€Banach
spaces. We answer a question of Franchetti and Cheney ftal¥iicio-
dimensional subspaces@(K) [1].

Introduction

The problem of the existence of minimal projections and thagutation of the norm
of the minimal projection is an important one [1], [5], [6].

The object of this paper is to present new results on theemdéstof minimal pro-
jections in some tensor products of Banach spaces, andadtgivform of the minimal
projection in certain Banach spaces. It should be rematachiot much is known on
the form of minimal projections.

For Banach spaceX andY , X Q% Y (X é Y) denotes the completed projec-
tive(injective)tensor product oK andY [5]. For1l < p < oo, we setLP(l, X)
denote the space of afi—Bochner integrable functions (classes) on the unit interva
I with values in the Banach spaée In caseX is the set of reals we write P(I).

For f € L2(l, X), | f o denotes the usugd—norm of f [5]. For p = oo, L*°(I, X)
denotes the essentially bounded functions filotm X, with the usual nornfj-||, . The
space?(X), and¢>(X) are the corresponding sequence space i a Banach
space X* denotes the dual of, andL (X, Y) the space of all bounded linear operators
from X to the Banach space.

Throughout this papefl (X, Y) denotes the set of all projections frafinto Y.

1. Existence of Minimal Projections

Let X be Banach space antibe a closed subspace ®f If Y is finite dimensional
then, a minimal projection fronX onto Y exists [2]. The problem of existence of
minimal projections in tensor product spaces was discuissgd, [2] and [4]. In this
section, we present some general facts on the existencenohaliprojections which
are not stated explicitly in the literature. We include thegd for completeness.

PrRoPOSITIONL. Let X be a dual space. Then for amy —closed complemented
subspace Y of X there exists a minimal projectiononto Y .
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Proof. Let K = {P € L(X, X) : Px = x for x € Y}. SinceX is a dual space, and
is w*- closed inX, it follows thatK is w*-closed. Consequently ififP| : P € K} is
attained at som®, and suchP is a projection. This ends the proof.

O

As a consequence we get

COROLLARY 1. Let G and H be finite dimensional subspaces &fll). Then there
exists a minimal projection fromA(l x 1) onto LP(l, H)+LP(I, G), for1 < p < oc.

Proof. From theory of tensor products, it is known [5], that

LP( x I) = Lp(l)%)Lp(l), LP(I, H) = Lp(l)%)H

and
LP(,G) =G ® LP(),
p

whereX ® Y is the p-nuclear tensor product of andY. SinceLP(l x I) is a dual

p
separable space, ahtlis finite dimensional, it follows from Proposition 1 abovedan
Proposition 11.2 in [5] that P(I, H) + LP(l, G) is a closed complemented subspace
of a reflexive space, and so itis*- closed. The result now follows.
O

COROLLARY 2. If G and H are finite dimensional subspaceihfthen thereis a
A AN
minimal projection o#! ® ¢ ontot! @ H + G ® ¢l

Proof. The proof follows from the above proposition and the ﬁéc@ H=/¢H) =
co(G), whereG* = H.
([l

Another similar result is

PROPOSITION2. Let X be a Banach space with separable dual .Then for every
complemented weakly sequentially complete subspace Wthed,exists a minimal
projection from X onto W

Proof. SinceW is complementednf{||Q| : Q € IT(X, W)} =, is finite. So there
exists a sequenck, € I1(X, W) such that||P,|| — r. Thus(P}) is a bounded

sequence i (X*, X*) = (X* <§> X*)* (whereT* is the adjoint of the operatar).

SinceX* is separableX is separable, and 90*@% X is separable. Hence, using Helly’s
selection theorem, we can assume {(Rit) converges in the weak operator topology.
DefineQ : X — W by < Qx,x* >=lim < x, Pix* > . SinceY is weakly
sequentially complete the@ is a projection oW, and||Q|| < lim H P H =r.SoQ
is a minimal projections. This ends the proof.

O
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PrRoPOSITION3. Let X be a Banach space and W be a complemented subspace
of X. If there is a contractive projection from *ibnto W, then there is a minimal
projection from X onto W.

Proof. Letr = inf{||P| : P € TI(X, W)}. Let (P;) be a net of projections onte¢/
such thatim [ | = r. Now P¥ € TI(X*, W*), s0P; € (X* ® X)*. So there s a

subnet that converges in the weak operator topology. We ssumze thaP* — U
in the operator topology. 99 is an element of 1(X*, W*), and

<Ux, x>=lim < P*x*, x >=lim < Px, x* >,

for all x € X andx* € X*.

Now, U* e TT(X**, W**), andU*x = x for all x € W. ButU*x need not be iw
for all x € X. For this, we define

P: X — W Px=JU*x,

for all x € X, whereJ is the contractive projection fro/** to W. ThenP is a
projection and

IPI < 131 U™ < |u*] <lim |PE] = lim IR =r.

HenceP is minimal. This ends the proof.

2. Existence of minimal projections in some function spaces

Let X andY be Banach spaces ,a@ H be subspaces of andY respectively. Let

W=X+Y,andV = X® H + G ® Y. BothV andW are subspaces of é Y for
any uniform cross norm on X ® Y . The existence of minimal projections &hand
W was discussed in [2] and [5] fot = LP(S, u) =Y, whereu is a finite( oro -finite)
measure orfSand 1< p < oo, and forX = Y = C(D), the space of continuous
functions on the compact spa€ein [3]. In [1], it was asked if there exits a minimal
projection fromC(Sx T) ontoC(S)®@H +G®C(T), with G andH finite dimensional.
In this section we answer this question férandH are finite co-dimensional. Some
other results are presented.

THEOREM1. Let S and T be finite measure spaces and X be any Banach space.
Then there is a minimal projection J fromPLS x T, X) onto LP(S, X) + LP(T, X).
Further || J| = 3.

n(p)
Proof. From the theory of tensor product [5], we have’(M, X) = LP ® X, for any
measure spaceéM, w), and any Banach spacg wheren(p) is the p—nuclear cross
product norm [5]on LP ® X. Hence,

n(p) n(p) n(p)
LPS X))+ LP(T, X)=LP @ X+LP @ X=[LP(S,n)+LPT, 9] ® X.
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Let P be a minimal projection fronh P(Sx T) ontoLP(S, ) + LP(T, #) [5]. Define
the projection

n(p)
J:LP(SxT,X) — [LP(S w) + LP(T, 9] @g X,

with J = P® |. We claimJ is minimal. Indeed, ifJ is not minimal then there
exists a projectiorQ such that| Q| < ||J|l. Letz € X andz* € X* such that
< 72,7 >=|z| = |z*|| = 1. Definef : L*(Sx T) — L*(S u) + L*(T, ),
F(f) =< Q(f ® 2,z > . ThenF is a projectionand F || < QI < I3l =IP].
This contradicts the minimality o. ThusJ is minimal. As for the norm ofl, we
(|31l =|IP]l. But||P|| = 3, [3]. This ends the proof.

O

We should remark that the same result holdssffis replaced byC(K), the space
of continuous functions on a compact sp&ceNow we prove

THEOREM 2. Let G be a finite dimensional subspace of=XC(T) (or L1(T)),
and P be a minimal projection onto G. Ther P is a minimal projection onto kéP).

Proof. Let H =ker(P), andr = inf{||Q] : Q € IT1(X, H)}.Then there is a sequence
of projectionsQy, in TI(X, H), such that| Qn|| — r. SoX = H & G;,. Putk, =

| — Qn. HenceH C ker(Py) for all n. DefineT, : X — X_“H by Th(x) = [PyX],
wheref] denotes the coset afin X, H. ThenT, is well defined. SinceX “H is
finite dimensional, it follows thak /H ~ (X /H)** ~ (H1)*, whereH' denotes
the annihilator ofH. Hence from theory of tensor products of Banach spacesw&]

getT, € (X (§> H-L)*. SinceX is separable an#fi* is finite dimensional, there is a
subsequence af, that converges in th@x-topology. Assume thak, itself converges
to T. Thus,< TpX,x* >—>< Tx,x* >, for all x in X andx* in HL. But <
[PaX], X* >=< Pyx,x* > for all x in X andx* in H+, since P,x is not in H.
Sincaker(Qn))*is isomorphic toH *, it follows that < P,x, x* > converges in the
weak operator topology. L& be the limit of Py, so< PyX, X* >— < PXx, x* > for
all x in X andx* in X*. SinceP, + Qn = I, it follows that Q, converges to som@®
in the weak operator topology. Furth&,+ Q = |. Since for eaclx in H, P,x = 0,
it follows that Qx = x for all x in H, andQ is a projection. Being the weak operator
limit of Qy , we have| Q| < lim ||Qpll = r. From the definition of we get||Q|| =,
andQ is minimal. From the Daugavit property 6fT) (and ofL1(T)), it follows that
P is minimal on ke¢Q). This ends the proof.

O

REMARK 1. The existence of the minimal projectiéhin Theorem 2 is indepen-
dent ofC(T) andL(T), since only separability of the spadewas used.

Now we are ready to answer the question of Cheney and Fran@h$tfor finite
co- dimensional subspaces.
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THEOREM 3. If G and H are finite co-dimensional subspaces afKg) and
C(K2) respectively, then there exists a minimal projection frofK€ x K2) onto

W = C(Ky) Qva H+G é C(K2). Further, the minimal projection onto W is a Boolean
sum of two minimal projections.

Proof. It follows from the proof of Theorem 2 that there exists firdimmensional sup-
plementsG andH of G andH respectively and minimal projectio®sandQ onG and
H such that — P is minimal ontoG andl — Q is minimal ontoH . From Theorem 3.1
of [4], P® Q is a minimal projection ont& ® H . NowC(K1 x K») = (G®H)®W.
FurtherW = ker(P ® Q). Again, by Theorem 2.2 ® | — P ® Q is minimal. But
Il —-PRQ=1Q@( —-—Q)+ (I —P)® Q— P® Q. This ends the proof.

[l

It should be remarked that Theorem 3 holds trué(K) is replaced by (S, «)
for some finitéor o —finite) measure spacs, 1).

3. The form of minimal

Let X andY be Banach spaces, a®landH be subspaces of andY respectively.

Not much is known in general about the form of the minimal pctipn of X é Y onto
any of the subspacé®¥; = X® H, Wo = G® Y andW; + W». In this section we will
discuss the form of minimal projections in certain clasddsmsor product spaces.

THEOREMA4. Let G be a closed subspace of a Banach space X . The followéng ar
equivalent:

(i) There is a uniqgue minimal projection P from X onto G .
(i) There is a unique minimal projection J from(X) onto¢}(G) and J= | ® P.

Proof. (i) = (ii). Let P be a minimal projection fronX onto G, and assum® is
unique. Consider the projectiah: ¢1(X) — ¢1(G), defined byl (f ®x) = f ® Px,

noting thatel(X) = ¢t ® X . Then||J|| = ||P]. If J is not minimal then there
is a projectionL onto ¢1(G) and||L| < ||J]|. DefineQ : X — G defined by,
Qx = P1L (81 ®X), wherePy is the first coordinate projection. TheQ,is a projection
XontoG and| Q| < |IL|l < |IJ]l = ||P|l. This contradicts the minimality d®. Hence
J is minimal. Furtherd is unique, for otherwisé>; J will be minimal projections on
G, contradicting uniqueness &f .

(ii) = (i). Let J be a unique minimal projection a@f(X) onto ¢X(G). Define
P: X — G,byP(X) =< J(§1®X), 81 > . ThenP is a projectionandP| < ||J]l .
If P were not minimal, there is a projectigp : X — G such that| Q|| < || P||. But
thenL = | ® Q is a projection o#1(X) onto¢1(G), with [L|| < [|QIl < [IPIl < |13,
which contradicts the minimality od. ThusP is minimal. Now, sinceP is minimal,
the projectiorL = | ® P is minimal. Sincel is unique, we gefl = L . This ends the
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proof.

We should remark that if uniqgueness is not assumed, then vee ha

THEOREMS. A projection J from E(S, X) onto L1(S, G) is minimal if and only
if the projection P: X — G, Px = J(f ®x), f* > is minimal, where fe L1(S, u)
and f* € L*°(S, u) and< f, f* >= 1, for anyo —finite measure spacg, u).

The proof follows the same line as that of Theorem 4 and wibirétted.
Now let X = €3 = {(X,y). (X, Il = x|+ lyl.x,y € R}, andG = [Z], the
span ofzin ¢3. Then

THEOREM6. Every minimal projection fronﬁ%(X) ontOE%(G) has the form J=
| ® P for some minimal projection P from X onto G.

Proof. Let us writeV for ¢3(G) andW for ¢3(X). The space? has a basi$s1, 62},
whered; = (1, 0), ands2 = (0, 1). ThenV has{§1 ® z, §2 ® z}. Hence any projection
fromW ontoV has the fornl. = ' ® (61 ® 2) + ;' ® (62 ® 2) wheref* e £5°(X),
and

1 ifi=j

0 ifi#j

Now, f* € £5°(¢5°). So fi* = 81 ® X' + 62 ® y;*, wherex*, andy;" are in£5°. It
follows from (1) that

(1) < fi*,8j®z>={

<Xj,z>=<y;,z>=1 and < yj,z>=<x3,z2>=0.
Thus
L=001®Z[+60a) @102+ (01085 +502) Q (52 2),

where< zf, z >= 1, anda* are in the annihilator 06, and|z‘| = 1. Now, ||L|| =
supl||Lex) | 1 x € X, x|l = 1,i = 1, 2}. If we calculate]| L (§1 ® x)|| we find :

ILEG1®X)I = [(<zf,x> 8+ <a3,x>8) 2z
(2) = |<Z,x>|+|<af x>

3

we are takingd|z|| = 1.

If z= (s,t) withs+t =1, ands # 0, t # 0, thenzis a smooth point of
B1(¢1(G)), and so there is only or& in B1(¢£°°(G*)) such that< z*, z >= 1. Thus
73 = 2. Further, since< af, z >= 0, then one of the two coordinatesajf must be
positive, say the first coordinate, which we denotexpy Now choosex = §1. Then
from (2) we get

ILG1® X > 1+ i1 > |Z].
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SollL|l > |z|. Similarly L]l > |z5|. Defined : ¢X(X) — ¢X(G), asJ =
(1®81+62086)®(Z; ®2) =1 ® P, whereP =2z ® z. Then sincd|z| = 1, it
follows that||J|| = |[Z|. Thus||J|l < lIL|l. This contradicts the minimality df. So
minimal projections orf*(G) are of the forml ® P. This ends the proof.

O

THEOREM7. Let G be a (closed) complemented subspace in the Banach¥pace
Let X be a Banach space such tha@)G is a closed subspace ofé(Y. Then if there

AN AN
is a minimal projection L from X® Y onto X® G, then there is a minimal projection
of the form I® P, for some minimal projection from Y onto G.

AN A
Proof. Let L be a minimal projection fronX ® Y ontoX ® G. Letx € X be a fixed
element inX. Choosep € X* such thatp(x) = |l¢|| = 1. Define:

T:Y — XQY TY)=xQYy.

n n
B:X®G— G, BQ_x®g)=) ¢
i=1 i=1
Using T andB we defineP : Y — G by P = BLT. Since||T| = ||B|| = 1, it
follows that||P|| < |IL||. Further, ifg € GthenP(g) = BLT(g) = BLX® Q) =
B(X ® g) = g. ThusP is a projection. Defind : X@ Y — X® G,byJ =1 P.
Then||J|| = ||P]l < |IL||. SincelL is minimal we havd|J| = ||L||, andJ is minimal.
That P is minimal is immediate. This ends the proof.
O

A consequence of Theorem 7 is

LEMMA 1. Let G be a finite dimensional subspace aff¢, with T a compact
metric space. If J is a minimal projection from(T x T) onto C(T) ® G, then
I =Jl=1+1J].

Proof. By Theorem 7, there is a minimal projectidtnonto C(T) ® G of the form
| ® P, for some minimal projectio® ontoG. Thusl — L = | ® (I — P). Since
G is finite dimensional ifC(T), it follows that||[| — P|| = 1+ ||P|.Thusl — L is
minimal. Hence,

) IM=3I=11-LI=1+ Pl =1+ LI =1+ 3]
But1+(|J|| = |Il — JJ. Itfollows from (3) above thafl — J|| = 1+ ||J||. This ends
the proof.

O

It should be remarked that Lemma 1 holds tru€{fl x T) is replaced by (T x
T).
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