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PARAMETRIC SURFACES WITH PRESCRIBED
MEAN CURVATURE

Abstract. This article contains an overview on some old and new prob-
lems concerning two-dimensional parametric surface®3nwith pre-
scribed mean curvature. Part of this exposition has comstitthe subject

of a series of lectures held by the first author at the DepartimeMath-
ematics of the University of Torino, during the Third Turiorfight on
Nonlinear Analysis (September 23-28, 2001).

1. Introduction

The main focus of this article is the following problem: giv&smooth, real functioH
in R3, find surfacesVl having exactly mean curvatuké(p) at any pointp belonging
to M.

In order to get some intuition in the geometric and analytispects of this ques-
tion, we believe that it might be of interest to consider fitstwo dimensional analog,
where most concepts become rather elementary. Therafdhgsiintroductory part we
will first discuss the following questions:

(Qo) Given a smooth, real function on the planeR?, find a closed curve&, such
that for any pointp in C the curvature of the curve at this point is exaalyp)
(we may possibly impose furthermore titahas no self intersectiorC is then
topologically a circle).

(Q1) [Planar Plateau probleinGiven two pointsa andb in the plane, and a smooth,
real functionk onRR2, find a curveC with dC = {a, b}, such that for any point
p in C the curvature of the curve atis exactlyx (p).

1.1. Parametrization

In order to provide an analytical formulation of these peshs, the most natural ap-
proach is to introduce a parametrization of the cutyée., a mapu: | — R?, such
that|u| = 1,u(l) = C, wherel represents some compact intervalgfand the nota-
tionu = % is used. Notice that, nevertheless there are possibl@attee approaches

to parametrization: we will discuss this for surfaces inrle&t sections.

*The second author is supported by M.U.R.S.T. progetto drci “Metodi Variazionali ed Equazioni
Differenziali Nonlineari” (cofin. 2001/2002).
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Then, questionsQgp) and(Q1) can be formulated in terms of ordinary differential
equations. More precisely, the fact tiahas curvature (u(s)) at every pointu(s)
belonging taC reads

1) U=ikuu onl,

wherei denotes the rotation b%. Note that the sign of the term of the r.h.s. depends
on a choice of orientation, and the curvature might theeefake negative values.

The constraintu] = 1 might raise difficulties in order to find solutions Qo)
and(Q1). It implies in particular thatl | = length ofC, and this quantity is not know
a priori. This difficulty can be removed if we consider instezf (1) the following
equivalent formulation

1
HE

——————l=ixu onl.
(/; lu|2ds)2

(2)

To see that (2) is an equivalent formulation of (1), note finstt any solutioru to (2)
verifies
(a2 d9?
Ik

so thatju] = Cp = const and, introducing the new parametrizatiogs) = u(s/Co),
we see thaty| = 1, andv solves (1).

Hence, an important advantage of formulation (2) is that weat have to impose
any auxiliary condition on the parametrization since eique?) is independent of the
interval | . Thus, we may choose= [0, 1] and (2) reduces to

dis(llllz)=l'l-l] k(Wiu-u=0,

NI =

) U=iL(ux(uu on]0 1],

1
L(u) == </|U|2ds)2 )
|

Each of the question®)p) and(Q1) has then to be supplemented with appropriate
boundary conditions:

where

u(0) = u(d), u0) = u() for (Qo)
(or alternatively, to consideR/Z instead of [0 1]), and

4) u0) =a, u(l) =b, for (Qq).

1.2. The case of constant curvature

We begin the discussion of these two questions with the sistglase, namely when
the function« is a constankg > 0. It is then easily seen that tlomly solutions to
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equations (1) (or (3)) are portions of circles of radRis= K—lo Therefore, for Qp) we
obtain the simple answer: the solutions are circles of madlidg.

For question Q1) a short discussion is necessary: we have to compare tlaadést
lo := |a — b| with the diameteDg = 2Ry. Three different possibilities may occur:

(i) lo > Do, i.e., %ono > 1. In this case there is no circle of diamey containing
simultaneously andb, and therefore problent):) has no solution.

(i) lo = Do, i.e., %ono = 1. There is exactlpnecircle of diameterDg containing
simultaneousha andb. Therefore Q1) has exactlytwo solutions, each of the
half-circles joininga to b.

(iii) 1o < Do, i.e.,%lo/co < 1. There are exacthyvo circles of diameteDg containing
simultaneouslya andb. These circles are actually symmetric with respect to
the axisab. Therefore Q1) has exactlyfour solutions: twosmall solutions,
symmetric with respect to the axad, which are arcs of circles of angle strictly
smaller thanr, and twolarge solutions, symmetric with respect to the aais,
which are arcs of circles of angle strictly larger than Notice that the length
of the small solutions is 2arcc(3§lo/<o));cgl, whereas the length of the large

solutions is 27 — aI’CCO$%|oKo))K61, so that the sum is the length of the circle
of radiusRy.

As the above discussion shows, the problem can be settlad usiy elementary
arguments of geometric nature.

We end this subsection with a few remarks concerning thenpetréc formulation,
and its analytical background: these remarks will be usehén we will turn to the
general case.

Firstly, we observe that equation (3) in the case «g is variational: its solutions
are critical points of the functional

Feoo(v) = L(v) — xoS(v)

wherel (v) has been defined above and

1 1
S(v) = 5/0 iv-vds.
The functional space foiQp) is the Hilbert space
Hper := (v € HY([0, 1, R?) | v(0) = v(1)} ,
whereas the functional space f@4) is the affine space
Hap = (v € HY([0, 1], R?) | v(0) = &, v(1) = b}.

The functionalS(v) have a nice geometric interpretation. Indeed,fdrelonging to
the spaceHper, S(v) represents the (signedjeaof the (inner) domain bounded by the
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curveC(v) = v([0, 1]). Whereas, fow in Hper Or Ha b, the quantityl (v) is less or
equal to the length af (v) and equality holds if and only)| is constant. In particular,
for v in Hper, we have the inequality

47|S(v)| < L%(v),

which is the analytical form of the isoperimetric inequalit dimension two. There-
fore solutions of Qp), with x = kg are also solutions to the isoperimetric problem

SUPS() | v € Hper, L(v) = 2Ky} .

This, of course, is a well known fact.

Finally, we notice that the small solutions tQ(), in case (iii) are local min-
imizers of F. More precisely, it can be proved that they minimigeon the set
{fveHapl| lIvlew < Ko_l} (in this definition, the origin is taken as the middle point
of ab). In this context, the large solution can then also be amayand obtained)
variationally, as a mountain pass solution. We will not gm idetails, since the argu-
ments will be developed in the frame Bif-surfaces (here however they are somewhat
simpler, since we have less troubles with the Palais-Snualdition).

1.3. The general case of variable curvature

In the general case when the prescribed curvatgp depends on the poim, there
are presumably no elementary geometric arguments whichl ¢é@ad directly to the
solution of Qo) and Q1). In that situation, the parametric formulation offers é&mal
approach to the problems.

In this subsection we will leave asid®¢), since it is probably more involved and
we will concentrate on questior)q). We will see in particular, that we are able to
extend (at least partially) some of the results of the previsubsection to the case
considered here using analytical tools.

We begin with the important remark that (3) is variationakmein the nonconstant
case: solutions of (3) and (4) are critical pointstégy, of the functional

Fc() =Lw) — S (v),
where

1
s(<v)=/0 QW) -0 ds

for any vector fieldQ: R?2 — R? verifying the relation divQ(w) = « (w) for w =
(w1, wa) € R2. A possible choice for such as a vector field is

w2

1 [w
Q(w1, w2) = 5(/ Kk (S, wp) d&/ k(wy,s) ds) .
0 0

Notice that in the case = kg is constant, the previous choice@fyields Q(w) = %w,
and we recover the functiongl,, as written in the previous subsection.
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The existence of “small” solutions t@);) can be established as follows.

PROPOSITIONL. Assume thapl> 0and«x e C1(R?) verify the condition

K < 1.
2 0 o0

. -1
Mo :={v € Hap | lvllc = [Ikllos'} -

In the context ofH -surfaces, this type of result has been established first.by S
Hildebrandt [30], and we will explain in details his proof $ection 4. The proof of
Proposition 1 is essentially the same and therefore we wilt @. Note that, in view
of the corresponding results for the constant case, i.ge, @#) of the discussion in the
previous subsection, Proposition 1 seems rather optimal.

We next turn to the existence problem for “large” solutioligs presumably more
difficult to obtain a general existence result, in the saniit &3 in the previous propo-
sition (i.e., involving only some norms of the functie). We leave to the reader to
figure out some possible counterexamples. We believe thdidhkt one should be able
to prove is a perturbative result, i.e., to prove existerfab® large solution for func-
tionsk that are close, in some norm, to a constant. In this directi@may prove the
following result.

PROPOSITION2. Letlg, kg > 0, and assume that
—I 1
ko < 1.
2 0K0

Then, there exists > 0 (depending only on the numbeyb), such that, for every
functionk € C1(R?) verifying

Ik —Kollcr < &,

equation(3) has four different solutionsy u,, Uy andty, where one of the small
solutions_y and u, corresponds to the minimal solution given by proposition 1.

The new solutiongl; and Uz provided by proposition 2 correspond to the large
solutions of the problem: one can actually prove that theywerye, aglx — «ollct
goes to zero, to the large portion of the two circles of radipﬁ joining a to b, given
in case (iii) of the previous subsection.

Proof. A simple proof of Proposition 2 can be provided using the ioipfunction
theorem. Indeed, consider the affine space

CZp = {v e CX([0,1], R | v(0) = a, v(1) = b},
and the mapb: C3, x R — C?:= C%([0, 1], R?) defined by
d(v,t) = —b +i (ko + Lk (v) — k) L(V)D .
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Clearly @ is of classC! and forw € C&O one has:
QP Dw) = —i+il ) (ko + 1tk @) — ko)) + tk'(v) - w)
1
+i (ko + t(k (V) —KO))L(U)*lof v-wds.
0

Let ug be one of the four solutions fafp. Notice that for an appropriate choice of
orthonormal coordinates in the plang,is given by the explicit formula

Uo(s) = Ko_l exp(i L gkoS),

whereLg = L(up) (recall thatLg = 2/(0_1 arcco$%loxo)) for small solutions, oL.g =

2/(0_1(71 — arccos%loxo)) for large solutions). We compute the derivative at the point
(Uo, 0):

1
9y ® (Ug, 0)(w) = —w + i Lokow + iKoLaluof Up-wds,
0

It remains merely to prove that ® (uo, 0) is invertible, i.e., by Fredholm theory, that
ker a9, ®(ug, 0) = {0}. If w € kerd, ®(ug, 0), then

(5) W = iLokow — a(w)Lokoexpl(iL okos),

wherea(w) = Lal fol Uo - w ds. Takinga as a parameter, equation (5) can be solved
explicitly and its solution is given by:

w(X) = C1 + Coexp(i Lokos) + i s expi L gkos)

whereC; and C; are some (complex-valued) constants. The boundary conditi
w(0) = w(l) = 0 determineC, andC» as functions ofx. In view of the defini-
tion of «, one deduces an equation farAfter computations, sincélo/co < 1,itturns
out that the only solution i& = 0, and therw = 0. Thus the result follows by an
application of the implicit function theorem. O

The result stated in proposition 2 can be improved if one irstead a variational
approach based on the mountain pass theorem. More pre@selynay replace the
C! norm there, by th&.> norm, i.e., prove that if, for some small> 0, depending
only on the valuégxg one has

Il — kolleo < &,

then a large solution exists, for the proble@q{ corresponding to the curvature func-
tion x. The analog of this result for surfaces will be discusseddati®n 6, and it is
one of the important aspects of the question we want to stress

At this point, we will leave the planar problem for curvesgare turn to its version
for surfaces in the three dimensional sp&Se It is of course only for one dimensional
objects that the curvature could be expressed by a simgder $eaction. For higher di-
mensional submanifolds, one needs to make use of a tendbe(aontext of surfaces,
the second fundamental form). However, some “curvaturatfions, deduced from
this tensor are of great geometric interest. For surfac&’ithe Gaussian curvature
and the mean curvature in particular are involved in mangtioes.
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2. Some geometric aspects of the mean curvature

In this section, we will introduce the main definitions anangonatural problems in-
volving the notion ofcurvature Although this notion is important in arbitrary dimen-
sion and arbitrary codimension, we will mainly restrict selves tatwo-dimensional
surfaces embedded®®. More precisely, our main goal is to introduce some problems
of prescribed mean curvaturand their links tasoperimetric problems

We remark that mean curvature concerns problenexfrinsicgeometry, since it
deals with the way objects are embedded in the ambient spacentrast, problems
in intrinsic geometry do not depend on the embedding and for this kind aflems
one considers the Gaussian curvature.

Let us start by recalling some geometric background.

2.1. Basic definitions

Let M be a two-dimensional regular surfaceRA. Fixed pg € M, let us consider near
po a parametrization o, that is a mamu: O — M with O open neighborhood of 0
in R?, u(0) = po, andu diffeomorphism of® onto an open neighborhood pf in M.
Note that, denoting by the exterior product ifR3, one hasix A uy #0on0O, and

_ Uxnuy
[Ux A Uy|

(6)

(evaluated atx, y) € O) defines a unit normal vector atx, y).
The metric onN is given by thefirst fundamental form

gij du'dul = E (dx)? + 2F dx dy+ G (dy)?
where
E=|ul>. F=ux-uy, G=]uy

The notion of curvature can be expressed in terms of the seftordamental form.
More precisely, lety: (—1,1) — M be a parametric curve ov of the formy (t) =
u(x(t), y(t)), with x(0) = y(0) = 0. Thusy (0) = po.

Since%—‘t’ and T are orthogonal, one has

d2y dx\? dxdy dy\?
(7) WﬁZUXxﬁ<a> +2UXyﬁaa+Uyyﬁ<a) .

Setting
LZUXx'ﬁ, MZUXy'ﬁ, NZUyyﬁ,

the right hand side of (7), evaluated@t y) = (0, 0),

L (dx)?+2M dx dy+ N (dy)?
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defines thesecond fundamental form By standard linear algebra, there is a basis
(e1, &) in R? (depending orpo) such that the quadratic forms

E F L M
A=< F G ) ’ Qz( M N )
can be simultaneously diagonalized; in particidare;) anddu(ey) are orthogonal.

The unit vectors
du(er) du(ez)

= . ])2 =
ldu(ey)] |du(ez)|
are calledprincipal directions at pp, while the principal curvatures at pp are the

values
d?y, d?y,
K1:<W’ﬁ> s K2=<W,W
for curvesy; : (=1, 1) — M such that; (0) = po andy/(0) = vi (i =1, 2).
Themean curvature at pg is defined by

V1

H = 3(c1 +k2)

(homogeneous to the inverse of a length), wherea&thessian curvatureis
K = k1k2.

Notice thatH andK do not dependn the choice of the parametrization.
In terms of the first and second fundamental forms, we have

(8) 2H = =55 (GL-2FM + EN) =tr (A1Q) .

REMARK 1. Suppose thatl can be represented ageph i.e. M has a parame-
trization of the form

ux, y) = x,y, f(x,y))
with f € C1(O, R). Using the formula (8) foH, a computation shows that

\Ai
9) 2H =div| ——— ),
V1I+|VE2
whereas the Gaussian curvature is
_ hadyy — 15
14+ |VF|2

Let us note that every regular surface admits locally a patamation as a graph. More-
over, if po = (Xo, Yo, f (X0, Y0)), by a suitable choice of orthonormal coordinates one
may also impose that f (xg, Yo) = 0.
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2.2. Conformal parametrizations and theH -system

In problems concerning mean curvature, it is convenienswaonformal parametri-
zations, since this leads to an equation for the mean cuev#ttat can be handle with
powerful tools in functional analysis.

DEFINITION 1. LetM be a two-dimensional regular surfacefid and letu: O —
M be a (local) parametrizatiod) being a connected open setRA. The parametriza-
tion u is said to beconformal if and only if for everyz € O the linear map
du(z): R?2 —» TuizM preserves angles (and consequently multiplies lengthscoya
stant factor), that is there exist$z) > 0 such that

(20) (du(2)h, du(2)k)ps = A(2)(h, k)g2 for everyh,k RZ.

In other wordsyu is conformal if and only if for everg € O du(2) is the product
of an isometry and a homothety fro? into R3. Note also that the condition of
conformality (10) can be equivalently written as:

(11) |ux|® — Juy|® = 0 = ux - uy

at every pointz € O. In what will follow, an important role is played by théopf
differential which is the complex-valued function:

In particular,u is conformal if and only ifv = 0.

REMARK 2. If the target space of a conformal maphas dimension two, then
u is analytical. This follows by the fact that, given a domdnin R?, a mapping
u € C1(0, R?) is conformal if and only ifu is holomorphic or anti-holomorphic (we
identify R2 with the complex fieldC). However for conformal maps: © — RK with
k > 3 there is no such as regularity result.

We turn now to the expression bf for conformal parametrizations. Ufis confor-
mal, then
E=|u? = |uy|2 =G
F=ux-uy=0,
so that

(12) Hw=24T oo,

|ux|?
On the other hand, deriving conformality conditions (11}haiespect toc andy, we
can deduce thatu is orthogonal both to, and touy. Hence, recalling the expression
(6) of the normal vectoirt, we infer thatAu and# are parallel. Moreover, by (11),
lux A Uy| = |ux|2 = Juy|?, and then, from (12) it follows that

(13) ‘Au:ZH(u)uXAuy onO.‘




184 F. Bethuel - P. Caldiroli - M. Guida

Let us emphasize that (13) is a system of equations, oftéedddlsystem or alsoH -
equation, and for this system the scalar coeffici¢htu) has the geometric meaning
of mean curvature for the surfad& parametrized by at the pointu(z) provided that
u is conformal andi(z) is a regular point, i.elx(z) A uy(z) # 0.

2.3. Some geometric problems involving thé-equation

Equation (13) is the main focus of this article. In order tstify its importance let us
list some related geometric problems.

It is useful to recall that the area of a two-dimensional fegwsurface M
parametrized by some mappiong © — R2 is given by the integral

A(u):/ [Ux A Uyl .
o

In particular, ifu is conformal, the area functional equals the Dirichletgnad:
1 2

(14) Eo(u) = 5 | VU
2 Jo

One of the most famous geometric problems is thahisimal surfaces

DEFINITION 2. A two-dimensional regular surface R? is said to be minimal if
and only if it admits a parametrizatienwhich is a critical point for the area functional,
that is, 92 (u + sp)|,_, = O for everyp € C(O, R).

An important fact about minimal surfaces is given by thedaihg statement.

PROPOSITION3. A two-dimensional regular surface M iR® is minimal if and
only if H=0on M.

Proof. Fixing a pointpg in the interior ofM, without loss of generality, we may assume
that a neighborhooMlp of pg in M is parametrized as a graph, namely there exist a
neighborhood of 0 in R2 and a functionf € C1(©, R) such thatMg is the image of
ux,y) = (x,y, f(x,y)) as(x,y) € O. Interms of f, the area functional (restricted

to Mo) is given by
Ag(f) :/ V1+|Vi2
o

and then

dAo
E(f+51/f)

v f
=— [ dv| — | v
s=0 ~/;9 (\/1+|Vf|2)
for everyy € C° (O, R). Hence, keeping into account of (9), the thesis followd.]

Another famous geometric problem is given by the so-caegerimetric prob-
lem that we state in the following form. Given any two-dimensibregularcompact
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surfaceM without boundarylet V(M) be the volume enclosed dyl. The general
principle says that:

Surfaces which are critical for the area, among surfaceslasiacg
a prescribed volume, (i.e., solutions of isoperimetric pems) verify
H = const.

REMARK 3. Consider for instance the standard isoperimetric proble

Fixing A > 0, minimize the area of M among compact surfaces M without
boundary such that W) = A.

Itis well known that this problem admits a unique solutioorresponding to the sphere

of radius J 3

7. This result agrees with the previous general principleesihe sphere
has constant mean curvature. Nevertheless, there are ragagtg for the isoperimet-
ric problem, in which one may add some constrains (on thelogal type of the

surfaces, or boundary conditions, etc.).

In general, the isoperimetric problem can be phrased irytioal language as fol-
lows: consider any surfackl admitting a conformal parametrizatian © — R3,
whereQ is a standard reference surface, determined by the topalldgjpe ofM (for
instance the sphe®?, the torusT?, etc.). For the sake of simplicity, suppose tNais
parametrized by the sphegé that can be identified with the (compactified) plake
through stereographic projection. HenceyifR? — R2 is a conformal parametriza-
tion of M, the area oM is given by (14), whereas the (algebraic) volumdbfs given

by
V(u)—1/ U-ux AU
_3 R2 X v

In this way, the above isoperimetric problem can be writtefolows:

Fixing 2 > 0, minimize [ |Vu|? with respect to the class of conformal
mappings u R? — R3 such thatfg, U - ux A Uy = 31.

One can recognize that if solves this minimization problem, or alsouifis a critical
point for the Dirichlet integral satisfying the volume ctnagnt, then, by the Lagrange
multipliers Theoremuy solves arH -equation withH constant.

As a last remarkable example, let us considerpghescribed mean curvature
problem: given a mappingH : R® — R study existence and possibly multiplicity
of two-dimensional surface8! such that for allp € M the mean curvature gb at
M equalsH (p). Usually the surfacéM is asked to satisfy also some geometric or
topological side conditions.

This kind of problem is a generalization of the previous csxed it appears in var-
ious physical and geometric contexts. For instance, it aknthat in some evolution
problems, interfaces surfaces move according to mean tcueviaw. Again, noncon-
stant mean curvature arises in capillarity theory.
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3. The Plateau problem: the method of Douglas-Raal

In this section we consider the classi€aateau problenfor minimal surfaces. Ley
be a Jordan curve iR3, that isy is the support of a smooth mappigg St — R3 with
no self-intersection. The question is:

Is there any surface M minimizing (or critical for
the area, among all surfaces with boundary

In view of our previous discussions, the Plateau problenoires:

Find a surface M such th&M = y and having

P .
(Fo) zero mean curvature at all points.

Note that in general, this problem may admit more than ongisal.

We will discuss this problem by following the method of DoagiRado6, but we
point out that many methods have been successfully propsedive the Plateau
problem. Here is a nonexhaustive list of some of them.

1. Wheny is agraph, try to find M as a graph. More precisely suppaséo be
close to a plane curvey. Note that foryg the obvious solution is the planar
region bounded byy itself. Letg: S — R be such thay = g(St) where
g = (z,9(2)) asz = (x,y) € S. If g is “small’, we may useerturbation
techniguegSchauder method) to solve thenlinearproblem

: v f _ . 2
dlv<7\/1+—vn2)_0 in D
f=g on dD? =t

whereD? is the open unit disc if®? (compare with (9), being now = 0).

2. Given a Jordan curvg, find a surfaceM spanningy, with M parametrized in
conformal coordinates. This is the Douglas-Rad6 methatwre will develop
in more details. Here we just note that, differently from girevious case, now
the conformal parametrizatianof M solves thdinear equationAu = 0.

3. Use the tools frongeometric measure theofj21], [39], [40]), especially de-
signed for that purpose. The advantage of this method isith&tfree from
conformality equations, and it is very good for minimizatiproblems, but it
needs a lot of work to recover regularity of the solutionstuadly, this method
is not very useful to handle with saddle critical points.

4. Usesingular limit problems

1 1 2
Ee(u)=§/|Vu|2+8—2/(1—|u|2) .

As the previous one, this method does not use any parantg&riza
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Let us turn now to the Douglas-Radé method. Looking for a&aonal parametri-
zation ofM, by (13), the Plateau problem is reduced to the followingrfor

Findu e C° (ﬁ R3> N C2(D?, R®) such that
Au=0 in D?
lux|? — Juy|> = 0= ux - uy in D2
U‘BDZ monotone parametrization gf .

(Po)

On one hand the Laplace equation is completely standard. h®mther hand, the
boundary condition is less usual than the Dirichlet one &medjdes, one has to deal
with the conformality conditions.

The first step in the Douglas-Rad6 approach consists islaing problem(Py)
into a minimization problem. To this aim let us introduce ®@bolev spacéi! =
H1(D2, R3) and the set

(15) W={veH!: ”|3D2 continuous monotone parametrization of }

and for everyv € W let us denote byEg(v) the Dirichlet integral ofv on D2, as in
(14). Recall that iy is conformal therEg(v) gives the area of the surface parametrized
by v.

LEMMA 1. If u € W minimizes & on W, then u is a solution of the Plateau
problem(Pg).

The most surprising result in this statement is that thea@wnélity conditions come
out as part of the Euler-Lagrange equation.

Proof. Sinceu minimizes the Dirichlet integral for aH 1 maps with the same bound-
ary value,u is a weak solution toAu = 0 in D2. In fact, from regularity theory,
u e C*. Now, let
o = |ux|? — uy|? — 2iuy - uy
be the Hopf differential associateduo Sinceu solves the Laplace equation, it is easy
to verify that‘;—‘; = 0, and therw is constant. In order to prove that= 0, i.e.,u is
conformal, the idea is to useriations of the domainMore precisely, letX be an
. . v

arbitrary vector field orD? such thatX - T = 0 ondD?, and let¢ (t, z) be the flow

— .
generated byX , i.e.

845_—)
ﬁ—x(qﬁ)
¢0,2=2z.

Theno(t,z) = 2+t X (2) + 0 (t?) and¢y := ¢(t,-): D? - D?is a diffeomorphism
for everyt > 0. If we setu; = u o ¢ thenu € W impliesu; € W for everyt > 0 and
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therefore, by the minimality af,

%EO(Ut) =0,
ie.
(16) %/DZ‘VU <z+t7(>(z)>‘2:0.

After few computations, (16) can be rewritten as

aX
/ w-—=0
D2 82

which holds true for evenX e C® (D2, R?) such thatX - B = 0 onaD2 This
impliesw = 0, that is the thesis.
[l

Thanks to Lemma 1, a solution to problai®y) can be found by solving the fol-
lowing minimization problem:

(Qo) Find u € W such that g(u) = in&/ Eo(v)
ve

whereEg(v) is the Dirichlet integral ob andW is defined in (15).

Conformal invariance

The greatest difficulty in the study of problef®p) is that minimizing sequences are
not necessarily compact W, because of theonformal invarianceof the problem.
Let us consider the grou of all conformal diffeomorphisms db?:

G ={p € CY(D? D? : ¢ onetoone and orientation preserving
|6x1? — 1dy|® = 0= ¢x - py}.

Itis easy to verify that, given any € W and¢ € G one hagV (v o ¢)| = A|(Vv) o ¢|
wherel = |¢x| = |pyl. Sincex? = |Jacg|, one obtains

/|V(vo¢>|2=/ |Vv|?
D2 D2

Eo(v o ¢) = Eo(v),

the energy is invariant under a conformal changé®dnNote also that

that is

ueW, 9 G = UopeW

because iy € G theng|,,,: 9D? — dD? is monotone.
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As a consequence of conformal invariance, we are going tdhsg®V is not se-
quentially weakly closeth H2. In order to do that, let us first descrie As already
mentioned in remark 2, conformal magpss G are holomorphic or antiholomorphic;
by a choice of orientation, we can restrict ourselves to imaligphic diffeomorphisms.
It is then a (not so easy) exercise in complex analysis toetioat

G= {qb eCYD2C):JacC, |aj<1, 30 [0,27)st. ¢ = ¢9,a}

where

_Z+a g, 2
$0.a(2) = 1—éze (ze D )

HenceG is parametrized bp? x S, a noncompact three-dimensional manifold with
boundary.

Note now that, given € W N C(D2, R3) and(a,) c D2, if a, — a € D2 then
v o ¢o.a, — v(a) pointwise and weakly itH* (but not strongly), and the weak limit in
general does not belong W which does not contain any constant.

The three points condition

In order to remove conformal invariance, we have to “fix a gdughoosing for every
v € W aspecial elementin the orljit o ¢} .. For this purpose, let us fix a monotone

parametrizationy € C(S%, y) of y and then, let us introduce the class
W* = [v eW : v(e2i¥) = g(e%), k=12, 3].

SinceW* C W and for everyw € W there existg € G such that o ¢ € W*, one has
that:

LEMMA 2. inf,ew+ Eo(v) = infy,ew Eo(v).

Hence, in order to find a solution to the Plateau prob{é), it is sufficient to
solve the minimization problem defined by jafy« Eo(v). This can be accomplished
by using the following result.

LEMMA 3 (COURANT-LEBESGUB. W* is sequentially weakly closed in'H

Proof. We limit ourselves to sketch the proof. To every W*, one associates (in a
unigue way) a continuous mappigg [0, 27] — [0, 2] such that

(17) v(€?) = g(€*?), ¢0) =0.

The functiong turns out to be increasing and satisfying
2k 2k

(18) w(Tﬂ):Tﬂfork:O,...,S.

Take a sequencén) C W* converging to some weakly in HL. Let (gn) €
C([0, 27]) be the corresponding sequence, defined according to (1173e 8iverypn
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is increasing and satisfies (18), for a subsequepcey> ¢ almost everywhere, being
@ an increasing function on [@r] satisfying (18). One can show thatis continuous
on [0, 2], this is the hard step in the proof. Then, from monotonijeity — ¢ uni-
formly on [0, 27]. By continuity of g, from (17) it follows thaiu\aD2 is a continuous
monotone parametrization pfand theru belongs ton*.

O

Hence, apart from regularity at the boundary, we provedtti@aPlateau problem
(Po) admits at least a solution, characterized as a minimum.
4. The Plateau problem forH -surfaces (the small solution)

A natural extension of the previous Plateau probld) is to look for surfaces with
prescribed mean curvature bounding a given Jordan gurtleat is

Find a surface M such th&M = y and the mean

(PH) curvature of M at p equals Kp), for all p € M.

whereH : R3 — R is a given function (take for instance a constant).

Some restrictions on the functidf or ony are rather natural. This can be seen
even for the equivalent version of probldiy) in lower dimension. Indeed, a curve
in the plane with constant curvatukg) > 0O is a portion of a circle with radiuRy =
1/Ko. Therefore, fixing the end poings b € R?, such as a curve joiningandb exists
provided thata — b| < 2Ry. Choosing the origin in the middle of the segmabt this
condition becomes sdfa|, |b|}Ko < 1.

The necessity of some smallness conditiontbior ony is confirmed by the fol-
lowing nonexistence resutiroved by E. Heinz in 1969 [26]:

THEOREM 1. Lety be a circle inR2 of radius R. If i > 1/R then there exists
no surface of constant mean curvature bbundingy .

Hence we are led to assume a condition lik¢| |yl < 1. Under this condi-

tion, in 1969 S. Hildebrandt [30] proved the nexiistence result

THEOREM?2. Lety be a Jordan curve iiR® and let H: R® — R be such that

Hllooll¥ loo < 1.

Then there exists a surface of prescribed mean curvatureodndingy .

We will give some ideas of the proof of the Hildebrandt theor&irstly, by virtue
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of what discussed in section 2, probléR®y ) can be expressed analytically as follows:

Find a (regular) u: D2 — R3such that
AU = 2H (U)ux A Uy in D2
lux|? — Juy|> = 0= ux - uy in D2
u|aD2 monotone parametrization of .

(PH)

The partial differential equation far is nownonlinearand this is of course the main
difference with the Plateau proble(®) for minimal surfaces. The solution ¢P)
found by Hildebrandt is characterized as a minimum, and dffen calledsmall so-
lution. In fact, under suitable assumptions, one can find also angesolution to
(Pn) which does not correspond to a minimum point but to a saddtieairpoint, the
so-calledarge solution (see section 6).

The conformality condition can be handled as in the Dou§ladé approach
(three-point condition). In doing that, we are led to coesitthe more standard Dirich-
let problem

!Au =2H(u)ux Auy in D?
(DH) 2
u=g on oD~

whereg is a fixed continuous, monotone parametrizatiop of

The main point in Hildebrandt’s proof is the existence olioins to the problem
(Dp), thatis:

THEOREM3. Letge HY2(ST, R3) N CYand let H: R — R be such that

19Nl IH loo < 1.

Then problem(Dy ) admits a solution.

Proof. Let us show this result in case the strict inequalify~ ||H || < 1 holds. We
will split the proof in some steps.

Step 1: Variational formulation of probleiDy).

Problem(Dy) is variational, that is, solutions {® ) can be detected as critical points
of a suitable energy functional, defined as follows. Qgt : R® — R be a vector field
such that

div Qu(u) = H(u) forallu € R3.

For instance, take

1 Uy uz us
Qu) = 3 </ H (t, up, uz) dt, / H (ug, t, ug) dt, / H (ug, uz, t) dt) .
0 0 0

Then, denote

Hy = {ue HY(D? R?) :ul,. = g}
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and

1
EH(u)=E/D2|Vu|2+2/D2QH(u)-uXAuy.

Note that in case of constant mean curvatdi@) = Hp one can tak&,(u) = %Hou
andEy turns out to be the sum of the Dirichlet integral with the vokiintegral.

One can check that critical points &4 on Hgl correspond to (weak) solutions to
problem(Dp). Actually, as far as concerns the regularitygyf on the spacde-lg1 some

assumptions o are needed. For instancEy is of classC! if H € CO(R®) and
H (u) is constant fofu| large. A reduction to this case will be done in the next step.

Step 2: Truncation on H and study of a minimization problem.

By scaling, we may assunte= ||H |- < 1 and||g|lc < 1. Then,leth’ € (h, 1) and
H: R3 — R be a smooth function such that

Hu) asul <1,

Aw =
“=1o as|ul >4,

and with || Hlls < h. Let us denote b7 andEjy the functions corresponding to
H. Since|Qpy(u)| < 1 for allu € R®, we obtain

1 5
éEo(u) < Efu) < éEo(u) forallu e Hy .

Moreover,E turns out to be weakly lower semicontinuousldé. Therefore

inf Fg(v
veHéL H()

is achieved by some functiane Hgl. By standard arguments,is a critical point of
Eg and thus, a (weak) solution of

Au=2H(Uux Auy in D?
(D) 2
u=g on oD~.

Step 3: Application of the maximum principle.

In order to prove thati is solution to the original probleniDy), one shows that
lullo < 1. One has that (in a weak sense)

—AUPR =2 (|Vu|2+ u- Au) < —2|VulA(1—Jul|AwW)]) <.
Hence|u|? is subharmonic and the maximum principle yields
Ul op2) < UllLemp2 = I9lle < 1.

SinceI:f(u) = H(u) as|u| < 1,uturns out to solvéDp).
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REMARK 4. 1.The implementation of the Douglas-Radé method pg$sim the
Dirichlet problem(Dy) to the Plateau probleriP ) is made possible by the fact that
the functionalEy is conformally invariant. Actually, note that the volumenitional

VH(U):fDZQH(U)'Ux/\Uy

is invariant with respect to the (larger) group of the oréiain preserving diffeomor-
phisms ofD? into itself.

2. WhenH is constant (e.gH = 1) andu € HZ} is regular, the functiona¥y (u) has

a natural geometric interpretation as a (signed) voluméefrégion bounded by the
surface parametrized hyand a fixed surface given by the portion of cone with vertex
at the origin and spanning. WhenH is nonconstant a similar interpretation holds,
consideringR3 endowed with arH -weighted metric (see Steffen [39]).

3. Although the conditioniy |l ||H lloo < 1 is natural and sufficient for existence of
solutions to probleniPy), it is not necessary. Think for instance of long and narrow
“strips”. In this direction there are some existence reas{idy Heinz [25], Wente [47],
and K. Steffen [40]) both for the Dirichlet proble®) and for the Plateau problem
(Pn) where a solution characterized as a minimum is found asguthat

Hllooy/ Ay = Co

whereA, denotes the minimal area boundipgaindCop is some explicit positive con-
stant.

4. In case of constant mean curvatttéu) = Hg > 0, if y is a curve lying on a sphere
of radiusRy = 1/Ho, the solution given by the above Hildebrandt theorem cpoeds
to the smaller part of the sphere spannjn@gsmall solution. In this special case, the
larger part of the sphere is also a solution(Ry), thelarge solution We will see
below that this kind of multiplicity result holds true for megeneral andH, but it
does not happen, in general, for minimal surfaces.

5. There are also conformal solutions of tHeequation which define compact surfaces
(this is impossible for minimal surfaces). A typical examjs the spher&2. More
surprisingly, Wente in [49] constructed also immerseddbdonstant mean curvature.

5. Analytical aspects of theH -equation

In this section we will study properties of solutions of theequation (13). More
precisely, we will study:

(i) theregularity theoryas well as some aspects of the energy functi@al\Wente's
result [47] and its extensions by Heinz [27], [28], Bethuad &hidaglia [8], [9],
Bethuel [7]),

(ii) a priori boundsof solutions of problentPy) (or also(Dp)),

(i) isoperimetric inequalities
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Clearly, questions (i) and (ii) are elementary for the miaisurface equationu = 0.
For theH -equation (13), they are rather involved, because the meatity is “critical”.

5.1. Regularity theory

Here we consideweak solution®f the equation
(29) AU = 2H (u)ux A uy on O

where® is any domain irfR2. Owing to the nonlinearity B (u)uy A uy as well as to
the variational formulation discussed in the previousieecit is natural to consider
solutions of (19) which are in the spatg' (O, R3).

The first regularity result for (19) was given by H. Wente [46f H constant.

THEOREMA4. If H is constant, then any & H1(O, R3) solution of(19)is smooth,
i.e., ue C*®(0).

Nowadays, this result is a special case of a more generaldine(see Theorem 5
below) that will be discussed in the sequel. In any case, vi pat that the proof of
Theorem 4 relies on the special structure of the nonlingarit

uzud — udug {u?, ud)
ux Aty = | ufuy—ugud [ =1 {udul}
uxug — uzuy {ut, u?}

Here we have made use of the notation

{f,a} = fxgy - fygx

which represents the Jacobian of the ntapy) — (f (X, y), g(X, y)). Thus, consid-
ering the equation (19) witkl constant, we are led to study the more genkmnalar
equation

A¢p ={f,g}inO
wheref, g satisfy [, [V f|2 < +oo and [, |Vg|? < +oo. Obviously{ f, g} € L1(0)
but, in dimension twoA¢ € L1(O) implies¢ e V\/lfj’cp(O) only for p < 2, while the
embeddingW-P < L holds true only ap > 2. However{f, g} has a special
structure of divergence form, and precisely

0 d
{f.g} = a—x(fgy)— @(fgx),

and this can be employed to prove what stated in the followdngmata, which have
been used in various forms since the pioneering work by WeiTie

LEMMA 4. Letg € W-2(R) be the solution of

—A¢p ={f, g} onR2
$(2— 0 as |z] - +oo.
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Then
ol + Vel 2 < CIV T2Vl 2.

Proof. Let—% In |z| be the fundamental solution efA. Since the problem is invari-
ant under translations, it suffices to estimat@). We have

1
#(0) =—2—f Iniz| {f, g} dz
T JR2

In polar coordinates, one has

190 0
{f.g} = F@(fgr)—ﬁ(fge)'

Hence, integrating by parts, we obtain

1 1

— —fgp d
2 /Rz r % €2

1 [T®dr (/ >
— — fge do ).
21 /c; r \Jiz=r %

f do, then, using Cauchy-Schwartz and Poincaré inequality,

f|z=r (f =)o de‘

([ 1= 0) ([ wiw)
c (/ZIzr |f6|2 d6>% (KZ=r |99|2 d@)
Cr? <f|z=r |V |2d9> <f|z=r |Vg|2d9>% .

Going back tap (0), using again Cauchy-Schwartz inequality, we have

#(0)

Settingf = 51~ |

|z|=r

/I fggde‘
|z|=r

IA

IA
Nl

IA
NI

o0 2 2
lp(0) < C/ <r/ |Vf|2d9) <r/ |Vg|2d9) dr
0 |z|=r |z|=r
1 1
+oo 2 +00 3
< c<f f |Vf|2d9rdr> <f f |Vg|2d9rdr>
0 |z|=r 0 |z|=r
= CIV i 2lVdl_z.
Hence

[@llLe = CIV Fll2IVllL2 -
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Finally, multiplying the equation-A¢ = {f, g} by ¢ and integrating oveR?, we

obtain
/ IVo|?
RZ

IA

I{f. gHliali@lle

2 pliL< IV Fll 21Vgll 2
CIVI%,Ival?, .

IATA

O

Using the maximum principle, it is possible to derive similgas obtained by H.
Brezis and J.M. Coron [13]) the following analogous result:

LEMMA 5. Assume fg € H1(D? R) and letg W&’l(Dz, R) be the solution of

—A¢p ={f,g} onD?
$=0 onaD2.

Then
[pliLe + IVolL2 < CIV L2Vl 2.

Another proof of the above lemmas can be obtained by usinlg tmcharmonic
analysis. It has been proved (Coifman-Lions-Meyer-Semfh@} that if f,g <
H1(R?) then{ f, g} belongs to the Hardy spad¢l(R?), a strict subspace df!(R?),
defined as follows:

HYR?) = {ue LYR?) :Kjue Llforj =1,2)

where Kj = 3/8xj(—A)Y2. As a consequence, since any Riesz transfofm=R
3/0xj (—A)~Y2 mapsH1(R?) into itself, one has that - A¢ = { f, g} onR2? then

92¢

_Bxiaxj =RiRj(-A¢p) € HYR?) fori,j=1,2

and hencep € W21(R?) ¢ L*®(R?). This argument holds similarly true in the sit-
uation of lemma 5 and can be pushed further to obtain theatksistimate, exploit-
ing the fact that the fundamental solution (8A) to the Laplace equation belongs to
BMO(R?), the dual ofH(R?).

We now turn to the case of variabite. Regularity of (weakH 1-solutions has been
established under various assumptions on the funé¢tioRor instanceH € C*®(RR3)
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and
SURer3 IHWMIA+ YD) =a <1 (Heinz, [27))
IHllo < +00, H(Y) = H(y1, ¥2) (Bethuel-Ghidaglia, [8])
[Hlloe < +00, supers [VH(Y)I(1+1yD) < +oo  (Heinz, [28])
IH[[L < +00, SUR.cps SR (L +ys)) < C (Bethuel-Ghidaglia, [9]).

However we will describe another regularity theorem, dui. tBethuel [7].
THEOREMS. If H € C®(R3) satisfies
(20) [Hl[Le + IVH]lLe < +00

then any solution ue H1(D?, R%) to Au = 2H (u)ux A uy on D? is smooth, i.e.,
u e C®(D?).

The proof of this theorem involves the use of Lorentz spagbgh are borderline
for Sobolev injections, and relies on some preliminary itesurhus we are going to
recall some background on the subject, noting that thedstdor Lorentz spaces, in
our context, was pointed out by F. Hélein [29], who used thesfore for harmonic
maps.

If ©is a domain inRN andu denotes the Lebesgue measure, we ddffie® ()
as the set of all measurable functiohs2 — R such that theveak [>°°-norm

Il 2 = SUpitZu({x € Q: () > t})}
t>0

is finite. If L21($2) denotes the dual space bf>°(2), one had 23(Q) c L%(Q) C
L2°°(), the last inclusion being strict since, for instanca, & L2°(D?) but 1/r ¢
L2(D?). Moreover, if$2 is bounded, theh2>°(Q) c LP(R) for everyp < 2. See
[50] for thorough details.

Denoting byB; = By (z9) the disc of radius > 0 and centezg € R?, let now
¢ e Wg’l(Br) be the solution of

-A¢ ={f,g} in B
¢=0 on dB;

wheref,ge H 1(B); recalling lemma 5, one has
(21) 1Bl + IVllLz + IVl 21, ,) < CIV Fll 2l VGl 2.

The estimate ol.21-norm of the gradient was obtained by L. Tartar [45] using in-
terpolation methods, but can also be recovered as a consazjoé the embedding
WLl < 21 due to H. Brezis (since, as we have already mentioned, thetat
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{f, g} belongs to the Hardy spad¢’ implies thatp € W?1). Moreover, ifg is con-
stant ond By, then it can be proved (see [7]) that

(22) IVlLz = CIV 21Vl 200

Finally, we recall the following classical result: if ¢ L1(B;), then the solution
¢ € Wy '(Br) to

=0 on d0B
verifies
(23) IVl 2 (g, 5 < ClIlI 1.

Proof of Theorem 5At first we note that the hypothesis (20) grants thaH (u)| <
C|Vu| andH (u) € HL. The proof is then divided in some steps.

Step 1: Rewriting equatiofi9).
Let Bar (zo) € D? and{H (u), u} = ({H (u), ul}, {H(u), u?}, {H(u), u?}). The ideais
to introduce a (Hodge) decomposition dfi2u)Vu in By :

0 0
2HWVu=VA+V8  wherevt = <— ——) )
ay  IX

Since 5 )
a_x(ZH (Wuy) + a_y(_ZH (Wuy) = 2{H (u), u},

the solutiong € W&’l(BZr, R3) to

—AB={H(U),u} in By
B=0 on 0By

belongs, by lemma 5, tbl 1(By, R3) and satisfies
i(2H (Wuy + Bx) + i(—2H (Wux + By) = 0.
aX ay
Hence, there exist8 € H1(By, R3) such that
(24) Ay =2H(Wux — By, Ay =2H (W)uy + Bx
and equation (19), 0By, rewrites:
(25) AU = Ax A Uy + By A Uy.

Step 2: “Morrey type” inequality for the &> norm.
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Since regularity is a local property, as we may reduce thausadwe can assume
without loss of generality thatVul| 25, < ¢ < 1. We are now going to show that
there exist® < (0, 1) such that

1
(26) IVUll 200 (B, < > IVUull 2.0 g,)-

This is the main step of the proof. Let us consi@gy C B/, and letl be the har-
monic extension tdBy, of u,,, . Note that the radiusy can be chosen such that

||VG||L2(Br0) < ClIVUll 200 (B,) (Osee [7] for details). IrBy,, using (25), we may write
U=U0+v1+v2+y3
where the functiongr, ¥, ¥3 are defined by

AI/f1=Ax/\(U—ﬁ)y, AI/12=Ax/\ﬁy, AYz =By AUy in By
Y1=v2=1%3=0 0noBy,.

Note that, using (24), (21), (20) and the fact that 1, computations give
IVAIL2,) < ClIVUll 2(g,)-

By (22), we have

IA

IVl L2(By,) CIVAIl L2 IV(u— ol L2 (Byy)

(27) ClIVull 2, IVUll 20 (g,) < Cell VUl 28,

IA

and, using (21), we obtain

A

IV¥2llize,, = CIVAIL2@E ) IVUlL2@,)
ClVullL2g) IVUll 2B, ) < CellVUll 200 g,)-

IA

(28)
Using the duality ofL?! andL2>, (23) and (21) yield

||VW3|||_2,00(Br0/2) = C||V,3|||_2»l(|3,/2)||vu||LZ»M(B,/Z)
(29)

IA

C82||Vu||L2,OO(Br) < CS”VU“LZ,C)O(B,_).
By the properties of harmonic functions, one has that
(30) VC( S (0, 1) ”VU”LZ(BM()) 5 C“”VGHLZ(BrO) 5 Ca”vu”LZC)O(Br)

Combining (27)—(30) and recalling the decompositioruan By,, we finally deduce
that
Vo € (O, 1) ||VU||L2.00(BMO) < C(8 + OI)HVU”LZ.OO(Br)

and, by a suitable choice efand«, (26) follows.

Step 3: Hlder continuity.
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From the last result, by iteration, we deduce that theretexise (0, 1) such that
VUl 200 (B, (z9)) < Cr* for every discBy (z0) C D2 and, thanks to a theorem of C.
Morrey (see [22] for example), this yields thate C% for everya e (0, ). Higher
regularity can be derived by standard arguments.

O

As a first consequence of regularity, we will now prove a restlich shows that,
for solutions not supposed to be a priori conformal, how#vedefect of conformality
can be “controlled”.

THEOREM 6. If u € HZ(O, R®) is a solution to(19), then its Hopf differential
o = (lux|? — Juy|?) — 2iuy - uy satisfies (in the weak sens& = 0in O.

Proof. Let X € CZ°(O, R?) be a vector field or0 and letp = Xiuy + Xauy. Since
we have assumed thate H?, we deduce thap € HOl and therefore we may takeas
atest function for (19). Beingl (u)ux A uy - ¢ = 0, one has

0= Au- ¢ = X1(Uxx - Ux + Uyy - Ux) + X2(Uxx - Uy + Uyy - Uy)

which yields directly the result.
O

REMARK 5. Note that the argument would fail fét 1-solutions, but it holds still
true for smooth solutions and, moreowerurns out to be holomorphic.

5.2. L°°-bounds for the H-equation

The a priori bounds on solutions to thE-equation we are going to describe are basic
in the context of the analytical approach to the followinggetric problem. Let us
consider a Jordan curyein R3 and a surfacé c R3 of mean curvaturél and such
thatoM = y. The question is:

Is it possible to bounduppe,\,I [H(p)|
by a function of|y ||~ and the area of M?

Although a direct approach to this problem is probably guesithe analytical one
(based on ideas of M. Griter [23] and rephrased by F. Betm@lO. Rey [11]) relies
on the following estimates, which play a central role alsthia variational setting of
the H-problem.

THEOREM 7. Let u be a smooth solution to problei@y). Assume u conformal
and H bounded. Then

1
2
(31) llull e §C<||9||L°0+||H||L°°/ |Vu|2+<f |Vu|2) )
D2 D2
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Proof. The proof is based on the introduction, fay € D2 andr > O such that
dist(u(zo), y) > r, of the following sets and functions:

W(r) = u (B (u(z0))), V(r)=2aW()
) 3ul

¢>(r)=/ [Vul®, () =/ o
W(r) vy | v

wherev is the outward normal t& (r). Obviously, B, (u(zg)) Ny = @. We limit
ourselves to describe briefly the steps which lead to thelasion.

Step 1.Using the conformality condition, we have

d
(32) PO =20
In fact, assuming (without loss of generality)zo) = 0 and noting that
2 2
vup =2|2) 5 2|2
av av
we obtain
d d dull> _d )
o0 =25 /W(r) oo =2 L, P =200

where the last equality can be deduced from the coarea farafitiederer [21].

Step 2.Again by conformality, it is possible to prove that
) o(r) :
(33) lim sup,wﬁor—2 > 27, assumingVu(zp)| # 0.

The idea is the following. As — 0, the image ofi becomes locally flat, so that the
areaA, of the image o1 in B; (u(zp)) is close tarr2. On the other hands(r) = 2A;.

Step 3.Using theH -equation and (32), we have

d
(34) 2p(r) —raqﬁ(r) < 2Hor ¢ (r).

In fact, integrating by parts, we obtain

2 au
o) = |Vul2 = —AU-U+ u-—
W(r) W(r) v o 9v

0
< Ho/ ul |Vu|2+rf Al
wW(r) vy | v
< Ho/ Ul VU + 19 (r)
W(r)
< Horom + 2r Lo
- 0 2 dr ’
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Step 4.Combining (32), (33) and (34), it is possible to prove that
2
(35) p(r) = grz

1
foreveryO<r < 2

Step 5.Combining the estimate (35) with a covering argument, thefof the theorem
can be completed.
O

A relevant fact is that the conformality assumption of tleenr7 can be removed.
More precisely, we have:

THEOREMS8. Let u be a smooth solution to the probl¢by). If H is smooth and
bounded, then

(36) lulle sc(||g||Loo+||H||Loo (”/DZ'V“'Z))'

Proof. Let us note that, iy were conformal, for the theorem 7 it would satisfy the
inequality (31), which would directly yield (36). Whenis not conformal, an adapta-
tion of an argument of R. Shoen [38] allows a reduction to thiefarmal case. This
procedure is based on the following construction. It is fidsdo determine a function
¥ : D2 — C such that

oy

] 1
_KU =——w and — =0
0z 4 0Z

(37)
whereo = |ux|? — |uy|? — 2iu - uy is holomorphic (see remark 5). Then, defining
(38) v=v1+tiv=Z2+¢y +a«a

where the constant € C is to be chosen later, we have

and
1 v dv 1 2 2
(40) —2¢9= <E E>(C =3 (val — Jvy|® — 2i Ne(vy, vy)(c> .

If we set
U :(u,vl,vz)eR3xRxR,

then, by (37) and (40), we hayey|?> — |Uy|? — 2iUx - Uy = 0 and, by (39) and thl -
equation, we obtaimAU | < Ho|VU |2. Now, one may apply tt) a generalized version
of theorem 7, the proof being essentially the same. See §tthbrough details.

O
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Turning back to the geometric problem mentioned at the méggnof this sub-
section and as an application of the previous estimates,usdhe following result,
again from [11].

THEOREMO. Let M be a compact surface &3, diffeomorphic t? and of mean
curvature H. Then _
diam(M)

f’Pef%AXIH(p)I =C areaM)

wherediam(M) = maxp gem | P — Q|-

5.3. Isoperimetric inequalities

We conclude this section recalling some central resulthefvwork of Wente [48].
Considering the Plateau problem fbr-surfaces in the case of constantunder a
variational point of view, he observed that the volume fiorl

1
V) == :
(u) 3/02“ Ux A Uy,

whose existence needshounded, could instead be well defined by continuous exten-
sion for anyu € H* with bounded tracel, ,. To define this extension, he used the
decompositioru = h + ¢ where¢ < HO1 andh is the bounded harmonic part of
(i.e., the minimizer for Dirichlet integral on + Hol). Then, the classical isoperimetric
inequality can be applied t¢ provided that it is regular enough and, since the area
functional A(¢) does not exceed the Dirichlet integiad(¢) = %sz |Vul|2, one has
that |V (¢)| < (1/v/36m)A(¢)¥? < (1/+/36m)Eo(¢)%/? (see Bononcini [12]). From
the factV (¢) is a cubic form inp, Wente deduced th&t can be continuously extended
on H} with the same inequality:

THEOREM10. Letue H3(D? R3). Then

1 , 3/2
U-ux AU Vu .
/Dz SRS By, = </Dz| | )

Moving from this result and in order to achieve the extensmwhole H?, Wente
also obtained that, for any e H! with bounded trace, the integral

D2

defines a continuous functional of € Hol. This fact is of great importance in the
variational setting of théd -problem, for constanti .

=

As far as the case of variablté is concerned, we just note that K. Steffen in [39]
pointed out the intimate connection between isoperimetdqualities and the Plateau
problem with prescribed mean curvature. In particularngighe theory of integer
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currents, he proved the following version of isoperimetrexjuality for the generalized
volume functional

Vh(U) Z/DZ QH(U) - ux AUy,
whereQy : R® — R3is such that divQy = H.

THEOREM11. If H € L>(R®), then there exists a constanqdepending only
on ||H ||so) such that

3/2
[VH (W] < Ch </ |Vu|2) for every ue HF N L™ .
D2

Moreover the functional \f admits a unique continuous extension o(:}n, End it satis-
fies the above inequality for everyeuHol.

6. The large solution to theH -problem (Rellich’s conjecture)

As we noticed in section 4, remark 4, lfp > 0 andy is a perfect circle lying on
a sphere of radiu®y = 1/Ho, the solution given by the Hildebrandt's theorem 2
corresponds to the smaller part of the sphere spannijtige small solution. However
also the larger part of the sphere is a solution to the santedRiproblem, the so-called
large solution.

This example has lead to conjecture that in case of consteantcurvaturéiy £ 0,
if ¢ is Jordan curve such th@iy’ || |Ho| < 1, then there exists a pair of parametric
surfaces spanning (Rellich’s conjecturi

In 1984 H. Brezis and J.-M. Coron [13] proved this conjectimdependently, also
M. Struwe [42] obtained essentially the same result.

Technically, the main difficulty in showing the Rellich’sigecture is to prove that
the Dirichlet problem

Au = 2Hgux Auy in D?

D
(Bro) u=g on 9D?

admits two different solutions. Herg St — y is a regular, monotone parametrization
of y. In this section we will discuss the following multiplicitgsult, proved by Brezis
and Coroniin [13].

THEOREM12. Let ge HY2n C%HD?, R3) and let H) # 0 be such that
l9llL=|Hol < 1.

If g is nonconstant, then the problei,) admits at least two solutions.

The existence of a first solutiom (the small solution) is assured by theorem 2.
Brezis and Coron proved the existence of a second solUtigru. As a consequence,
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even the corresponding Plateau problem has a second sphgowill not discuss this
matter, we just limit ourselves to say that the proof can uded from the Dirichlet
problem, using the usual tools (e.g. the three points cmmjitliscussed in section 3.

We prefer to focus the discussion on the proof of a secondisolto (D), in
which the main difficulty is the behavior of the Palais-Smsdggjuences of the func-
tional involved in its variational formulation. It is a tygl example of a variational
problem withlack of compactnesthe overcoming of which moved on from the break-
through analysis of Sacks and Uhlenbeck [37], and Aubin [} us notice that this
kind of matters appears in many conformally invariant peots, such as harmonic
maps (in dimension 2), Yamabe problem and prescribed scataature problem, el-
liptic problems with critical exponent, Yang-Mills equatis.

In the next subsections 6.1, 6.2 and 6.4 we will give an oeittifithe proof of the-
orem 12. We always assume all the hypotheses given in trersat of the theorem.
Moreover, we will denote by the small solution tgDn,) given by theorem 2.

6.1. The mountain-pass structure

Let us recall that the probleDn,) has a variational structure (see the proof of theo-
rem 2), i.e. its (weak) solutions are critical points of thadtional

1 2Ho
(41) EHO(U)=5/D2|Vu|2+?/Dzu-ux/\uy

on
1 1,2 w3y -
Hg = {ue HY(D% R :ul, ;. = g}.

Now, we are going to point out that the functiorf&l, has, essentially, a mountain pass
geometry. Let us first recall the classical mountain passianstated by A. Ambrosetti
and P. Rabinowitz in 1973 [4].

THEOREM 13 (MOUNTAIN PASS LEMMA). Let X be a real Banach space and let
F: X — R be a functional of class € Assume that

(mpy) there existg > 0such thatnf)y =, F(x) > F(0),
(mp2) there exists xe X such that|x1|| > p and F(x1) < F(0).
Then, setting? = {p € C°([0, 1], X) : p(0) = 0, p(1) = x1}, the value

42 — inf F
(42) c AQPSETQT] (p(s))

is a generalized critical value, i.e., there exists a se@e€xy,) in X such that Kx,) —
canddRxn) — 0in X'.

REMARK 6. 1. In the situation of the theorem 13, sirjee|| > p, by the hypothe-
sis(mpy), itis clearly maxco,1) F (p(s)) > « forall p € P, beinga = infjx =, F(x).
Hencec > o > F(0).
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2. A sequencéx,) C X satisfyingF (xn) — canddF(x,) — 0in X’ is known as a
Palais-Smale sequence for the functioRalt levelc.

3. Recall that a functiondf € C1(X, R) is said to satisfy the Palais-Smale condition
if any Palais-Smale sequence fBris relatively compact, i.e., it admits a strongly
convergent subsequence. Hence, if in the above theorerurtbonal F satisfies the
Palais-Smale condition (at leve) then it admits a critical point at level i.e,cis a
critical value.

Coming back to our functiondtn,, the possibility to apply the mountain-pass
lemma is granted by the following properties.

LEMMA 6. The functional , is of class € on Hg1 andforallue Hg1 one has
(43) dEny(Uu) = —Au + 2Houx A uy.

Here the fact thatix A uy € H~L, which is implied by Wente’s result given in
theorem 10, is of fundamental importance, since it cleaydgd Ep,(u) € H 1 for
anyu e Hg1 and hence thaEn, is differentiable. We also remark that for variathie

it is no longer clear and rather presumably false tH&t)ux A uy € H ~1 for every
ueHL
g

LEMMA 7. The second derivative of g at u is coercive, i.e., there exisés> 0
such that

d?En, (W) (@, 9) :/2<|V¢|2+4H09’¢X/\(py> 28/2|V¢|2
D D
forall ¢ € H}(D?, R3).

A proof of this lemma is given in [13].

Finally, since the volume teriy,(u) = 2—20 Jp2U - ux A uy is cubic, whereas the
Dirichlet integral is quadratic, the next result immedigfellows.

LEMMA 8. infueHgl EHo(U) = —oo0.

Proof. Letv € HO1 be such thaVh,(v) # 0. Taking—v instead ofv, if necessary, we
may assum&y,(v) < 0. The thesis follows by noting that

Eno(tv + U) = 2t3Vi,(v) + O(t?)

ast — +o0.
O

Now we apply the mountain pass lemma to the functidﬁaHol — R defined by

(44) F(v) = En(v + W) — Enxp(U) .
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The regularity ofF is assured by lemma 6, singes Hg1 =u+ HOl and
(45) dF() =dEx,(v+u) .

The condition(mp;) is granted by lemma 7. The conditiégmp,) follows immediately
from lemma 8. Hence, by theorem 13, the functidha@dmits a Palais-Smale sequence
(vn) C HO1 at a levelc > 0. By (44) and (45), setting, = vy + U, we obtain a Palais-
Smale sequence i||=lg1 for the functionalEn, at levelc 4+ En,(u).

Owing to the conformal invariance of the problem, the fumatil En, is not ex-
pected to verify the Palais-Smale condition, and a deepaysis of the Palais-Smale
sequences foEn, is needed.

6.2. Palais-Smale sequences f@,

Recalling remark 6, by (41) and (43), a Palais-Smale sequfem¢he functionaEn,
is a sequenca") C Hg1 such that

(46) Eo(Un) — €
(47) AU" = 2Hou A uj + fqin D?, with fy — OinH™!

for somec € R.
As a first fact, we have the following result.

LEMMA 9. Any Palais-Smale sequenag,) C Hg for Ep, is bounded in H.

Proof. Since(un) C Hg1 it is enough to prove that sufyunll2 < +oo. Settingpn =
un — U, and keeping into account th&En, (u) = 0, one has

1
Eno(Un) = EHO(H)‘FEdZEHo(H)((ﬂnv‘Pn)+2VH0((Pn)
dEny(Un)gn = d%Eng(U)(¢n, ¢n) + 6Vig(¢n).

Hence, subtracting, one obtains
1o
3EH,(Un) = Enxy(u) + Ed Eho (W (@n, ¢n) + d Eng(Un)en.

Using Lemma 7, one gets

SIIVenll3 < d?Eny(U)(@n. ¢n)
G(EHO(Un) - EHO(H)) —2d EHO(Un)(ﬂn
< CH+|ldEnyun)ll Venll2-

By (46) and (47) one infers th&py) is bounded irH(} and then the thesis follows.
O
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In the case of variabl#l, it is not clear whether the lemma holds or not. A method
to overcome this kind of difficulty can be found in Struwe [42]

From the previous lemma we can deduce that all Palais-Sregleesces foEn,
are relatively weakly compact. The next result states thatiteak limit is a solution
to (Dhy).

LEMMA 10. Let (uy) C Hgl be a Palais-Smale sequence foyEconverging
weakly in H' to someli € Hg. Then dE,(0) = 0, i.e., U is a (weak) solution to
(DHO)'

Proof. Fix an arbitraryy € C°(D?, R®). By (47), one has

|, Vun- Vo + 2Hol (un. ) - 0
D2
where we set
D2
By weak convergencé,, Vun - Vo — (2 Vi - Vo. Moreover, using the divergence
expression @x A Uy = (U A Uy)x + (Ux A U)y, one has that

2L(u,<p)=—/2(<px~UAuy+<py-uxAu).
D

HenceL (un, ¢) — L(Q, ¢), sinceu, — 0 strongly in L2 and weakly inH™. In
conclusion, one gets

D2 D2

that is the thesis.
O

However, the Palais-Smale sequences [y, are not necessarily relatively
strongly compact irH®. In the spirit of Aubin [5] and Sacks-Uhlenbeck [37], and
inspired by the concentration-compactness principle Hy. Rions [35], Brezis and
Coron in [14] have precisely analyzed the possible defestrohg convergence, as the
following theorem states.

THEOREM 14. Suppose thatun) € Hg1 is a Palais-Smale sequence fopf Then
there exist

(i) T e Hg solvingAT = 2Holx A Ty in D?,

(i) a finite number pe N U {0} of nonconstant solutions®, ..., vP to Au =
2Houx A uy ONR2,

(iiiy p sequenceg@l), ..., (a}) in D?
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(iv) psequence&}), ..., (X)) in Ry with limp_ 400 g'=0foranyi=1,...,p

such that, up to a subsequence, we have

un—U—ivi <;a,'1)

i=1 n

-0

H1

p
f |Vun|2=f |VU|2+Z/ Vo' % 4 0(1)
D2 D2 i—; JR2

p .
Eno(Un) = Eng(@ + Y Eny @) +0(1)
i=1

where in generaEp, (v) = 3 fz2 V|2 + 2—20 Jg2 v - vx A vy. Incase p= 0any sum
P, iszeroandy — @ strongly in H.

REMARK 7. The conformal invariance is reflected in the concentrategps
vl (%a—"") This theorem also emphasizes the role of solutions oHf®quation on
n
wholeR?, which are completely known (see below).

6.3. Characterization of solutions onR?

The solutions to théHg-equation on the whole plarig? are completely classified in
the next theorem. It basically asserts that all solutiorth@fproblem

Au = 2Houx AUy on R?

(48) {fR2|VU|2 < 400

are conformal parametrizations of the sphere of raéigis= 1/|Ho|.

Note first that, ifu is a solution to (48), defining = |ux|2 — |uy|?> — 2iux - Uy
the usual defect of conformality far, it holds that%—‘*z’ = 0 (by the equation), and
Jgzlwl < 400 (by the summability condition oi¥u). Hencew = 0, that is,u is
conformal.

Pushing a little further the analysis, Brezis and Coroniokththe following result
(see [14)).

THEOREM15. Letu € L} (R? R®) be a solution tq48) with Ho # 0. Then u
has the form
1 P(2)
uzy =—I1 <—> +C,
Ho Q2

where C is a constant vector iR3, P and Q are (irreducible) polynomials (in the
complex variable = (x, y) = x+iy) andIl: C — S?is the stereographic projection.
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Moreover
8k
/ vu? = 22
R2 HO
- 47k
Ep,(w) = 3702,

where k = maxdegP, degQ} is the number of coverings of the sph&®by the
parametrization u.

We point out that problem (48) is invariant with respect te tonformal group.
For instance, if1 is a solution to (48), then, (z) = u(12) is also a solution. Note that
u, — constasi — +o00, orasi — 0.

6.4. Existence of the large solution

In this subsection, taking advantage from the resultsaiatthe previous subsections,
we will sketch the conclusion of the proof of theorem 12.

Let us recall that the function& defined by (44) admits a mountain pass level
¢ > 0. In view of the result on the Palais-Smale sequences stafBaeorem 14, it is
useful also an upper bound forand precisely:

4
LEMMA 11. c < Iz
This estimate is obtained by evaluating the functidag] along an explicit moun-
tain pass path which, roughly speaking, is constructedtaglaing in a suitable way a
sphere to the small solution.

Let now (u,) C Hgl be the Palais-Smale sequence Hy, introduced at the end
of the subsection 6.1. We have already seen that, up to acudrsee(u,) converges
weakly to a solutiorti to (D). If up — G strongly inH ! then

(49) Ero(U) = Enp(W) + € > Epy (L)

because > 0.

On the contrary, if no subsequence (©f,) converges strongly irH1, then we
use theorem 14 on the characterization of Palais smale seggleln particular, with
the same notation of theorem 14, we have> 1 and, denoting bys the set of all
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nonconstant solutions to (48),

p
Ero@@ = Engw)+Cc— ) Eng(ui)
i=1

EHO(H) +Cc—p inf EH()(v)
veS

IA

IA

Eno(U) + ¢ — inf Epy(w)
weS

< En,(u)+c A
= THl= 3H2

(50) < EnW)

according to (46), theorem 15 and lemma 11.

Thus, either from (49) or from (50), it follows that = u and the conclusion of
theorem 12 is achieved.

6.5. The second solution for variableH

In the previous sections, we have seen how Brezis and Coowegthe existence of
a second solution (different from the small one) to the pgob{Dy), for constant
H. Unfortunately, in the attempt of extending their proof e ttase of variabléd,
lot of the main arguments fail. In view to overcome such otdsteStruwe introduced
in [44] a perturbed functional, which brings some compagsriato the problem, and
he succeeded to prove existence of a large solution for & ofasurvature functions
H, which is a dense subset in a small neighborhood of a nhonzerstant, for some
strong norm involving, in particular, a weight€ norm. His results were then slightly
improved by Wang in [46].

Here we present a result by Bethuel and Rey [11] (see als9,[d@]re general
than the above mentioned results by Struwe and Wang, whieimés theorem 12 for
variableH, in a perturbative setting. A similar result is contained38] (see also
[34)).

THEOREM16. Let g € HY2n C%9 D2, R®) be nonconstant and letd+~ 0 be
such that||g|lL~|Ho| < 1. Then there exists > 0 such that for any He C1(R3)
satisfying

IH — HollLe < «
the problem(Dy) admits at least two solutions.

The proof is developed by a direct variational approach [$&B. Fundamental
tools in the proof are: a careful analysis of the Palais-8matjuences (which is more
delicate than in the case of consta&hy; thea priori bound on solutions given in the-
orem 7, which permits the truncation ¢h outside a suitable ball. Indeed, replacing
the originalH by a functionH such thatH (u) = H(u) as|u] < R, H(u) = Hg as
|ul > 2R, and solving the problem withi, thea priori bound yields that the solution
found to the truncated problem is also a solution to the palgproblem.
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7. H-bubbles

In this section we deal witB2-type parametric surfaces 3 with prescribed mean
curvatureH, briefly H-bubbles On this subject, which might have some applications
to physical problems (e.g., capillarity phenomena, sed)[2de discuss here some
very recent results obtained in a series of papers by P. Ghldhd R. Musina (see
[15]-[18]).

Let us make some preliminary remarks, useful in the sequrst, e observe that
the “H-bubble problem”:

Given a (smooth) function HR® — R, find anS?-type surface M such
that the mean curvature of M at p equalg p), forall p € M,

after the identification o§? with the compactified plan&? U {co}, via stereographic
projection, and using conformal coordinates, admits tieviang analytical formula-
tion:

Find a nonconstant, conformal function ®? — R2, smooth as a map
on S?, satisfying

Au = 2H (U)ux AUy on R?

B)n 2 IVU[? < +o0.

In principle, the two formulations of thE -bubble problem are not exactly equiva-
lent, since in the analytical version one cannot excludeaighe presence of branch
points (i.e., self-intersection points, or poinis= u(z) whereVu(z) = 0). We do
not enter in this aspect of geometric regularity and, from mm, we just study the
analytical versior{B)y of the H-bubble problem.

Observe that iH = 0, clearly the only solutions aB)y are the constants. More-
over, as we saw in the previous section, when the prescriteghnourvature is a
nonzero constarit (u) = Ho, Brezis and Coron in [14] completely characterized the
set of solutions ofBy) (see Theorem 15).

REMARK 8. 1. We point out that it is enough to look for weak solutiohgB) .
Indeed, by regularity theory fdf -systems (see Section 5),Hf is smooth, then also
any solution of(B)y is so. In particular, iH € C1, then any solution ofB)y turns
out to be of clas€3.

2. If u solves(B)n, thenu is conformal for free. Indeed, by Theorem 6, its Hopf
differential is constant of2, and actually, by the summability conditigi. |Vu|? <

400, it is zero, namelyu is conformal. The deep reason of this rests on the fact that
problem(B)y contains no boundary condition and it is invariant underabion of

the conformal group 082 ~ R? U {oo}. This invariance means that in fact we deal
with a problem on the image of the unknowprather than on the mappingitself.
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Problem(B)y can be tackled by using variational methods. In particaae can
detect solutions ofBy) as critical points of the energy functional

1
EH(u)=E/H;Z|Vu|2+2/ﬂéZQH(u)-uxAuy,

where Qn : R® — R3 is any vector field such that diQy = H. We can write
Enx (U) = Ep(u) + 2V (u), whereEg(u) = %fRZ |Vu|? is the Dirichlet integral, and

Vi (u) =/ QH(U) - ux AUy
RZ
is the so-calledH -volume functional.

REMARK 9. This name for the functionaly is motivated by the fact that i
is a regular parametrization of sorfé-type surfaceM, thenVy (u) equals theH -
weighted algebraic volume of the bounded region enclosetflbyAs a remarkable
example, consider the mappiag R? — R3 defined by

WX
(51) w@=| ny s n=p@) = ——s,

1-p 1+ |z)2
where, as usuat, = (x, y) € R2. Notice thaiw is a (1-degree) conformal parametriza-
tion of the unit spher&2 centered at the origin. Indeesisolves(B)y with H = 1.
One has thaEg(w) = 47 = area of the unit spher®?, and, by the Gauss-Green
theorem,

(52) Vit (@) =—/B H(q) dg.
1

where B; denotes the unit ball ifR3. Notice also that for everp € Z \ {0} the
mapping»"(z) = w(z") (in complex notation) is a-degree parametrization ¢ and
VH(0") = NVH ().

Keeping into account of the shape of the functidBgl, the natural functional space
to be considered as a domainkf; seems to be the Sobolev space

Hl:= (vow|ve HYS? R3)

wherew: R?2 — S2, defined in (51), is the inverse of the stereographic prigjact
Clearly,H' is a Hilbert space, endowed with the norm

ul?,, = /Rz(wmzwzwﬁ) :

it is isomorphic toH1(S? R®), and it can also be defined as the completion of
C°(R?, R3) with respect to the Dirichlet norm.
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REMARK 10. 1. Since in generaQy is not bounded (e.g., iH = 1, then
Qn(u) = %u), the H-volume functionaMy as well as the energlgy turn out to be
well defined only fou € H1 N L. But we can take advantage from the generalized
isoperimetric inequality, due to Steffen [39] and statedlieorem 11 for functions in
H(D?,R3). In fact, using the conformal invariance, the same ineguablds true
also for functions inH® and, in this more general version, it guarantees Yhaand
En can be extended on the whole sp&t&in a continuous way.

2. The functional®/y andEy are of clasCl onH1 only in some special cases, like,
for instance, wherH is constant far out. For an arbitrary functi¢h (smooth and
bounded), we can just consider the derivatives along dinestin a (dense) subspace
of H1: for everyu € H! and for everyy € H1 N L there exists

(53) a(pEH(u)zf Vu~ch+2/ H(We - ux Auy.
R2 R2

In particular, from (53) one can recognize thatiife H?! is a critical point ofEn,
namelyd,Eq(u) = O forall ¢ € H1N L>, thenu is a weak solution ofB)y. In
addition, by (53) one can see that thevolume functional does not depend on the
choice of the vector fiel@Qy.

REMARK 11. The functionalEy inherits all the invariances of probleiB)y,
and in particularEy (u o g) = Ep (u) for every conformal diffeomorphism @&? ~
R? U {o0}. Since the conformal group 6 is noncompact, this reflects into a lack of
compactness in the variational problem associatgd)@;, similarly to what we saw
for the Plateau problem.

For several reasons, it is often meaningful to investigagekistence ofl -bubbles
having further properties concerning their energy or thatation. Here is a list of
some problems that will be discussed in the next subsections

(i) Calling By the set ofH -bubbles and assuming thag is nonempty (as it happens,
for instance ifH is constant, with a nonzero value, far away), is it true that
infues, EH(U) > —00 ?

(if) Assuming By nonempty andey = infyep, EH(U) > —oo, is uy attained in
Bu?

(iii) Find conditions onH ensuring the existence of an-bubbleu, possibly with
minimal energy, that is, witley (U) = uy.

(iv) Study the H-bubble problem in some perturbative setting, like for amste,
H(u) = Ho + eH1(u), with Hg € R\ {0}, H1 smooth real function ofR3,
and|e| small.
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7.1. On the minimal energy level forH-bubbles

Here we takeH e CY(R3) N L* and, denoting by3y the set ofH-bubbles and
assumingsy # @, we set

(54) uH = inf Eq(u).
UEBH

In this subsection we will make some considerations abaintmimal energy level
un and about the corresponding minimization problem (54). fdsalts presented
here are contained in [16].

To begin, we notice that iH is constant and nonzero, i.¢1,(u) = Hp € R\ {0},
then by Theorem 15,° := F-w belongs o3k, andEp, (0°) = 325 = wHo-
0

REMARK 12. In case of a variablél, it is easy to see that in general it can be
By # ¥ anduy = —oo. Indeed, if there exists € By with Ey (u) < 0 then, setting
u"(2) = u(@"), for anyn € N the functionu™ solves(B)y, namelyu" € By, and
En (U™ = nEyx(u). Consequentlyty = —oo. One can easily construct examples of
functionsH e CL(R3) N L for which there exisH-bubbles with negative energy.
For instance, suppose thidt(u) = 1 as|u| = 1, so that the mapping defined in (51)
is anH -bubble. By (52) En (w) = 47 — fBl H (g) dg. Hence, for a suitable definition
of H in the unit ballB1, one getEH (w) < 0.

The previous remark shows that in order that is finite, noH -bubbles with neg-
ative energy must exist. In particular, one needs some tondihich preventdd to

have too large variations. To this extent, in the definitibthe vector fieldQy such
that divQy = H, it seems convenient to choose

1
QuU) =myWu, myU) = / H(sus?ds.
0

Taking any H-bubbleu, sinced,En(u) = 0, and using the identity By (u) +
Vmy (u) - u = H(u), one has

1
Enu) = EH(U)—éauEH(U)
= 1/ |Vul? ZfVm(U)UUU/\U
6 Jre 3 Jr2 H X y

.l \Y
<6 3 ) R2| U|

My = sup |Vmy(u) - u ul.
ueR3

(55)

where

Hence, ifMy < 3, thenuy > 0.
Now, let us focus on the simplest case in whidhis assumed to be constant far
out. This hypothesis immediately implies thag is nonempty and the minimization
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problem defined by (54) reduces to investigate the semiwoityiof the energy func-
tional Eq along a sequence dfi-bubbles. As shown by Wente in [47], in general
En is not globally semicontinuous with respect to weak coneaog, even ifH is
constant. However, as we will see in the next result, underctnditionMy < %
semicontinuity holds true at least along a sequence ofieaidf (B) .

THEOREM17. Let H € C1(R3) satisfy
(h1) H@u) = Hy € R\ {0} as|u| > R, for some R> 0,
(hy) My < %

Then there exist® € By such that y(w) = uy. Moreoveruy < 34—”2.

Proof. First, we observe that bghy), By # @, since the spheres of radijid|~*

placed in the regiotu| > RareH-bubbles. In particular, this implies thaty < 3‘%.

Now, take a sequenc@™) C By with E4 (U™ — uy. Since the problenQBfoH
is invariant with respect to the conformal group, we may assuhat||Vu"|, =
|Vu"(0)| = 1 (normalization conditions).

Step 1 (Uniform global estimatesje may assume
sup||Vu"||2 < 400 and suglu™ e < 400 .

The first bound follows by (55), byh,), and by the fact thatu") is a minimizing
sequence for the energy By. As regards the second estimate, first we observe that
using Theorem 7 one can prove that

sup diamu” =: p < 400,
n

If Ju"looc > R+ p, then by the assumptiatin;), u" solvesAu = 2HUx A Uy. Let
pn € rangeu” be such thatpp| = |JU"||0. Setgn = ( — %) pn andd" = u" —qp.
Then|i"|. < R+ p, and|i"(2)] > R for everyz € R2. Hence, alsai" € By,

and Ex (") = Ep, (") = En@u™). Therefore(@") is a minimizing sequence of
H-bubbles satisfying the required uniform estimates.

where, in general, diam = sup, ;g2 |U(2) —u(Z)|. If [u"[|c < R+ p, setd" = u".

Step 2 (Local ¢-regularity” estimates):there exist > 0 and, for everng € (1, +00)
a constanCs > 0 (depending only ofiH ||»), such that ifu is a weak solution of
(B)y, then

IVUllL2(ppz)y =& = [IVUllHLs(DR @) = CsllVUllL2(DR(2))

for everyR € (0, 1] and for everyz € R?.

Theses-regularity estimates are an adaptation of a similar reshitiined by Sacks and
Uhlenbeck in their celebrated paper [37]. We omit the q@tdnhical proof of this step
and we refer to [15] for the details.
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Step 3 (Passing to the limitjhere existsi € HX N C1(R?, R3) such that, for a subse-
quencep” — uweakly inH® and strongly irCL (R?, R®).

By the uniform estimates stated in the step 1, we may assuahéhénsequenog”) is
bounded inH1. Hence, there exists € H such that, for a subsequence, still denoted
(u"), one has that" — u weakly in HL. Now, fix a compact seK in R2. Since
[Vo"|loo = 1, there existR > 0 and a finite coveringDr/2(zi)}ie| of K such that
VUl 2(pr(z)) < ¢ foreveryn e Nandi e I. Using thes-regularity estimates stated

in the step 2, and sina@") is bounded in_>°, we have thatju"|| H25(DRj2(z)) = CsR

for some constan€s g > 0 independent of € | andn € N. Then the sequence
(u") is bounded inHZP(K,R3). Fors > 2 the spaceH25(K,R3) is compactly

embedded int€C1(K, R3). Henceu" — u strongly inC1(K, R3). By a standard

diagonal argument, one concludes tht—> u strongly inCl .(R?, R3).

Step 4: uis anH-bubble.
For everyn € N one has that ip € C°(R?, R®) then

/RZVU”.WJFZ/RZH(u”)<p~u2/\u3=0.

By step 3, passing to the limit, one immediately infers thigta weak solution ofB) .
According to Remark 8y is a classical, conformal solution 6B) . In addition,u is
nonconstant, since/u(0)| = lim [Vu"(0)| = 1. Henceu € By.

Step 5 (Semicontinuity inequality):£u) < liminf Ey (u").

By the strong convergence @ (R2, R3), for everyR > 0, one has
(56) En(u", DR) — En(u, DRr)
where we denoted
n 1 n2 Ny, N n n
EHW, =</ |VU|"4+2 | my@UHU -uy AU
2 Jg Q y
(and similarly forEy (u, €2)). Now, fixinge > 0, letR > 0 be such that

(57) En(u,R?\ DR) < ¢

(58) / [Vul? <e.
R?\Dr

By (57) and (56) we have

En (u)

IA

En(u,DRr) +¢€
En(u", DR) + € + 0(1)
(59) = Enu") — E4(u",R?\ DR) + € +0(1)
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with o(1) — 0 asn — +o0. Since every" is an H-bubble, using the divergence
theorem, for anyR > 0 one has

1 aun

—/ IVU"? = 3En(u",R?\ DR) —/ u - —

2 RZ\DR 9DR v

+2/ (HU™ = 3myuM)u” - uj A ug )
R2\Dgr

We can estimate the last term as in (55), obtaining that

1 au" 1 My
—Enu",R?\Dr) < -—/1 u“-——--(—-———)/n [vu"?
\ 3 9dDR Jv 6 3 RZ\DR

1 ou"
(60) < ——/’ un S
3 9DR av

because of the assumptidm). Using again th@&m convergence ofi” to u, as well
as the fact that is anH -bubble, we obtain that

/ n ou” / au
u'. — — u. —
DR Jv 9DR Jv
= / (u AU+ |Vu|2)
R?\Dr

= f (2H(u)u-ux/\uy+|Vu|2>
R2\Dgr

<||u||oo||H||oo+1)/ |Vul?
R?\Dr

A

lim
n— 400

IA

(61)

IA

(IulleollH loo + 1) €
thanks to (58). Finally, (59), (60) and (61) imply
Eq(U) < EHU™ 4+ Ce +0(1)

for some positive consta independent of andn. Hence, the conclusion follows.
O

7.2. Existence of minimalH -bubbles

Here we study the case of a prescribed mean curvature fardtia C1(R3) asymp-
totic to a constant at infinity and, in particular, we discasgesult obtained in [15]
about the existence dfl -bubbles with minimal energy, under global assumptions on
the prescribed mean curvature

Before stating this result, we need some preliminariesstfive observe that, by
the generalized isoperimetric inequality stated in Theoté and sinc&y is invariant
under dilation, for a nonzero, bounded functidnthe volume functional/y turns out
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to be essentially cubic andl = 0 is a strict local minimum folEy in the space of
smooth function<<Z® (R2, R®). Moreover, ifH is nonzero on a sufficiently large set
(as it happens iH is asymptotic to a nonzero constant at infinit§y, (v) < 0 for
somev € CgO(RZ, R3). HenceEy has a mountain pass geometry@@P(Rz, R3).
Let us introduce the value

CH = inf sup Ex(su),
ueCF(R?,R%) s>0
u£0

which represents the mountain pass level along radial patlesv, the existence of
minimal H -bubbles can be stated as follows.

THEOREM18. Let H € C1(R3) satisfy
(h3) H(Uu) - Hy as|u] — oo, forsome H, € R,
(hg) supegrs IVHU) -uul =My <1,
(hs) cy < ;4—”30
Then there exists an H-bublilewith Ey (0) = cy = infuep,, En(U).

The assumptiorths) is a stronger version of the conditighy) (indeed My <
My ), and it essentially guarantees that the valyds an admissible minimax level.

The assumptiotihs) is variational in nature, and it yields a comparison between
the radial mountain pass lewa}, for the energy functiongEy and the corresponding
level for the problem at infinity, in the spirit of concenimat-compactness principle by
P.-L. Lions [35]. Indeed, the problem at infinity correspsiid the constant curvature

Ho and, in this case, one can evaluatg, = 33‘4—”2.
o0

The hypothesighs) can be checked in terms ¢f in some cases. For instance,
(hs) holds true wherfH (u)| > |Heo| > Oforallu € R butH # Hy, or when
|[H(Uu)| > |He| > O for |u] large, or whenH,, = 0 andEn(v) < O for some
v € C(R?, R3). On the other hand, one can show thatlife C1(R®) satisfies(hs),
(hs), and|H (u)| < |Ho| for all u € R3, then(hs) fails and, in this case, Theorem 18
gives no information about the existencetbfbubbles.

As a preliminary result, we state some properties aboutahgeeey , which make
clearer the role of the assumptigm).

LEMMA 12. Let H € CL(R®) be such that M < 1. The following properties
hold:

(i) ifu € By then By (u) > cy;
(iiy if » € (0,1]thengy > cH;

(iii) if (Hn) ¢ CY(R3) is a sequence converging uniformly to H angM< 1 for all
n € N, thenlim supcy, < CH.
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Proof. (i) Let u € By and consider the mappimsy— f(s) ;= Ex(su) fors > 0. We
know thats = 1 is a stationary point fof sinceu is a critical point ofEy. Moreover,
if 3> 0is a stationary point fof , then

0= f’(é):é/ |Vu|2+2§2f H (Su)u - ux A uy
R2 R2
and consequently
(5 = / |Vu|2+4§/ H(gu)u.uxx\uy+2§2/ VH(SU) -U U- Ux A Uy
R2 R2 R2
= —/ |Vu|2+2/ VH(SU) - SuSu- uy A uy
R2 R2
< —a-Mw [ Vo,
R2

Hence, there exists only one stationary pa@nt- 0 for f andSs = 1. Moreover
max>o Ex(SU) = Ep(u). SinceC(R? R3) is dense inH! with respect to the
Dirichlet norm, for everye > O there existy € C°(R?, R?) such that Ey (sv) —
En(su)| < € forall s > 0 in a compact interval. This is enough to obtain the desired
estimate.

The statements (ii) and (iii) follow by the definition of;, and by using arguments

similar to the proof of (i).
O

Proof of Theorem 18. We just give an outline of the proof and we refer to [15] fdr al
the details.

First part: The case H constant far aut

Firstly one proves the result under the additional conditin ). SinceMy < %MH <

% one can apply Theorem 17 to infer the existence dflabubble at the minimal level
uH. Then one has to show that = wH, which is an essential information in order
to give up the extra assumptigh), performing an approximation procedure on the
prescribed mean curvature functih From Lemma 12, part (i), one getsy > cH.
The opposite inequality needs more work and its proof isinbthin few steps.

Step 1: Approximating compact problems.
Let us introduce the family of Dirichlet problems given by

(D)H,a

div((1 + [Vu?*~1Vu) = 2H (u)ux Auy in D2
u=0 on 9D?,

wherea > 1, o close to 1. This kind of approximation is in essence the sasria a
a well known paper by Sacks and Uhlenbeck [37] and it turnst@ine particularly
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helpful in order to get uniform estimates. Solutions(@)y , can be obtained as
critical points of the functional

5w = 5 [ @+ VU~ 1+ 2V

defined onH)?* := Hy®*(D?,R3). SinceH,* is continuously embedded into
HE& N L™, the functionalEY, is of classC! on H}'?*. Moreover, fora > 1, « close
to 1, Ef, admits a mountain pass geometry at a lesfel > 0, and it satisfies the
Palais-Smale condition, because the embeddirh@éoq“ into L°° is compact. Then, an
application of the mountain pass lemma (Theorem 13) givegxiistence of a critical
pointu* e Hé’z"‘ for E}; at levelct;, namely a nontrivial weak solution (®)H ¢ .

Step 2: Uniform estimates orf uThe family of solutiongu®) turn out to satisfy the
following uniform estimates:

(62) limsupE (u*) <cn ,

a—1
(63) Co < [|[Vu%||2 < Cy for some O< Cg < C1 < 400,
(64) supllu®|le < 400 .

o

The inequality (62) is proved by showing that lim gup, ¢, < cy, which can be
obtained usinghs), the definitions ot}, andcy, and the fact thakEf, (u) — Ep(u)
asa — 1 foreveryu e ch(DZ, RR3). As regards (63), the upper bound follows by an
estimate similar to (55), whereas the lower bound is a carssee of the generalized
isoperimetric inequality. In both the estimates one usebthundMy < % Finally,
(64) is proved with the aid of a nice result by Bethuel and @yl [8] which needs
the condition thatd is constant far out (here we use the additional assumgtiox).
Now, taking advantage from the previous uniform estimateg, can pass to the limit
asa — 1 and one finds that the weak limitof (u¥) is a solution of

(D)n

Au=2H(Uux AUy in D?
u=0 on dDZ? .

A nonexistence result by Wente [48] implies thia= 0. Hence a lack of compactness
occurs by a blow up phenomenon.

Step 3: Blow-up.
Let us define
v¥(2) = U*(Zy + €4 2)
with z, € R? ande, > 0 chosen in order thdtVv® | = |Vv¥(0)| = 1. Notice that

€w — Oandthe set®, := {z€ R? : |z, + €42| < 1} are discs which become larger
and larger az — 1. Moreoven® € C.(R?, R%) N H1is a weak solution to

2(a—1) o
a _ __2a=1) 2.« o o 2¢q H@Y) o a i
Av* = e§+wva\2(v v¥, V) V% 4 @ Vet X Avy N Dgy

v=0 on aD, ,
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satisfying the same uniform estimateauédor the Dirichlet and_*>° norms, as well as
the previous normalization conditions on its gradient.ndsa refined version (adapted
to the above system) of theregularity estimates similar to the step 2 in the proof of
Theorem 17, one can show that there exists H* such that® — u weakly inH?!

and strongly irCt .(R?, R®), andu is aiH-bubble for some. € (0, 1]. Here the value

A comes out as limit oég(“_l) whena — 1. It remains to show that actually= 1.
Indeed, one can show th&y (u) < Aliminf EY (u¥). Using (62) and Lemma 12,
parts (i) and (ii), one infers thayy < cyy < Ex(U) < AcH. Thereforer = 1 andu is
an H-bubble, withEy (u) = cy. In particularuy < cy and actually, by Lemma 12,
part (i), .n = cH, which was our goal.

Second part: Removing the extra assumptior).

It is possible to construct a sequeri¢t,) ¢ CL(R3) converging uniformly toH and
satisfying(h1) andMp, < My. By the first part of the proof, for eveny € N there
exists anHp-bubbleu” with En, (U") = un, = CH,. SinceMy, < My < 1, by
an estimate similar to (55), one deduces that the sequefigés uniformly bounded
with respect to the Dirichlet norm. Moreover one has that timsupEn,(u") =
lim supch, < cH, because of Lemma 12, part (iii). In order to get also a unifar®
bound, one argues by contradiction. Suppose thdt is unbounded in.*°. Using
Theorem 7, one can prove that the sequence of values aiasmbounded. Conse-
guently, the sequena@™) moves at infinity and, roughly speaking, it accumulates on
a solutionu®> of the problem at infinity, that is on aHy-bubble. In addition, as in
the proof of Theorem 17, the semicontinuity inequality IiThEn, (U™) > Epn  (U>)
holds true. Since the problem at infinity corresponds to astzomt mean curvature

Hwo, by Theorem 15, one has thii, (U*) > up, = ;4—”2. On the other hand,
En, (U™ = cn,, and thercy > lim supcy, > ;‘T”z, in contradiction with the assump-
tion (hs). Therefore(u™) satisfies the uniform bounds

sup||[Vu"|lz < +oo, supflu”le < +00 .

Now one can repeat essentially the same argument of the pfodheorem 17
to conclude that, after normalization? converges weakly irH! and strongly in
Cl.(R?, R3) to anH-bubbled. Moreover

En(0) < liminf Ey(u™) = liminfcy, <cn .

SinceEy (0) > cy (see Lemma 12, (i)), the conclusion follows.
O

In [17] it is proved that the existence result about miniraedbubbles stated in
Theorem 18 is stable under small perturbations of the ptesticurvature function.
More precisely, the following result holds.

THEOREM 19. Let H € CL(R®) satisfy(hz)—(hs), and let H € C1(R3). Then
there ise > 0 such that for every e (—¢, &) there exists arfH + e¢Hz1)-bubble 4.
Furthermore, ag — 0, U¢ converges to some minimal H-bubble u ikGS?, R3).
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We remark that the energy of is close to the (unperturbed) minimal energy of
H-bubbles. However in general we cannot say ttias a minimal(H + ¢ H1)-bubble.

Finally, we notice that Theorem 19 cannot be applied whemtiperturbed curva-
ture H is a constant, since assumptign) is not satisfied. That case is studied in the
next subsection.

7.3. H-bubbles in a perturbative setting

Here we study thed -bubble problem when the prescribed mean curvature is a per-
turbation of a nonzero constant. More precisely we invastighe existence and the
location of nonconstant solutions to the problem

Au = 2H,(u)ux Auy on R?

(B)H,
Jg2 IVU|? < +o0.

where
H:(u) = Ho + eH1(u)

beingHp € R\ {0}, H; € C%(R®) ande € R, with |¢| small. All the results of this
subsection are taken from [18].

To begin, we observe that the unperturbed proliBim, is invariant under transla-
tions on the image, since the mean curvature is the condtaint admits a fundamental
solution
o_1

= e

(with  defined by (51)), and a corresponding family of solutionefformw®og+ p
whereg is any conformal diffeomorphism @2 U {oc} and p runs inR3.

Notice that the translation invariance on the image is bndke s # 0, when the
perturbatiorH is switched on, but problefB) 4, maintains the conformal invariance
for everys.

An important role for the existence dfi;-bubbles is played by the following
Poincaré-Melnikov function:

w

I'(p) = —/ H1(q) dq
B1//HgI (P)
which measures thel;-weighted volume of a ball centered at an arbitrprg R3 and
with radius ¥|Hg|. For future convenience, we point out that:
(65) L(p) = Vi (@° + p) ,
(66) v = [ Hae? + prof A af.
R2
The first equality is like (52), the second one can be obtainedsimilar way, noting

that div(H1(- + p)g) = 9 H; (- + p) (e1, e, e3 denotes that canonical basisRA, o;
means differentiation with respect to th¢h component).
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The next result yields a necessary condition, expressegtinstofl", in order to
have the existence d¢i.-bubbles approaching a spheregas- 0.

PropPoOsITION4. Assume that there exists a sequengeaf H,, -bubbles, with
ek — 0, and a point pe R3 such that

lu* — (@° + P)licrgzrs — 0 ask— oo.
Then p is a stationary point fdr.

Proof. The mapsifk solve Autk = 2HoUy* A Uy + e H1 (UK U A uyF. Testing with
the constant functiong (i = 1, 2, 3) and passing to the limit, we get

o=f Hi(u™)e - us A usk :o(l)+/ Hi(@°+ p)& - of Aoy = 0o(1)+ 4T (p),
R2 R2

thanks to (66). Then the Proposition is readily proved.
([l

In the next result we consider the case in whithdmits nondegenerate stationary
points.

THEOREM 20. If p € R® is a nondegenerate stationary point fbt then there
exists a curve — U of class G from a neighborhood I R of 0 into C1(S2, R3)
such that§ = %+ p and, for every € |, u? is an H.-bubble, without branch points.

In the case of extremal points for, we can weaken the nondegeneracy condition.
More precisely, we have the following result.

THEOREM21. If there exists a nonempty compact setkR3 such that

r r in inT
maxT'(p) < maxI'(p) or min I'(p) > min'(p).

then for|e| small enough there exists anHdubble W, without branch points, and such
that
Iu® — (@° + Pe)llces2 g3 — 0 ase — 0,

where p € K is such thaf"(p,) — max I', or I'(p;) — mink ', respectively.

To prove Theorems 20 and 21 we adopt a variational-pertuebatethod intro-
duced by Ambrosetti and Badiale in [1] and subsequently wg#d success to get
existence and multiplicity results for a wide class of vawiaal problems in some per-
turbative setting (see, e.g., [2] and [3]).

Firstly, we observe that solutions to problgm)H, can be obtained as critical
points of the energy functional

En, (U) = Enxy(U) + 26V, (U) .
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Notice thatEn, is the energy functional corresponding to the unperturlyetipm
(B)H,- Since in our argument we will need enough regularityiey, a first (technical)
difficulty concerns the functional setting (see Remark 10,\®e can overcome this
problem, either multiplyindH; by a suitable cut-off function and proving some a priori
estimates on the solutions we will find, or taking as a doméig«g a Sobolev space
smaller tharH 1, like for instance the space

WS =(vow : veWHSS? R3)

with s > 2 fixed. Let us follow this second strategy, taking for simjpyis = 3. Hence
En, is of classC? on W3, sinceH; € C? andW?2 is compactly embedded into™.

Secondly, we point out that the unperturbed energy funatidy, admits a mani-
fold Z of critical points that can be parametrized®yx R3, whereG is the conformal
group ofS? ~ R? U {oc}, having dimension 6, anBl® keeps into account of the trans-
lation invariance on the image.

Thanks to some key results already known in the literatuee,esg. [32],Z is a
nondegenerate manifold, that is

TuZ = ker Eﬁo(u) for everyu € Z ,

whereT, Z denotes the tangent spacedétu, whereas kekEy, (u) is the kernel of the
second differential oEn, atu. This allows us to apply the implicit function theorem
to get, taking account also of ti&-invariance ofEn,, for |¢| small, a 3-dimensional
manifold Z, close toZ, constituting a natural constraint for the perturbed figrl
EH,. More precisely, defining

(T,oZ)t :={veH? f Vv-Vu=0 YueTyZ},
R2
we can prove the following result.

LEMMA 13. Let R> 0be fixed. Then there exist> 0, and a map;®(p) € W3
defined and of class¥on (=&, £) x Br R x R3, such that;°(p) = 0and

Eh,(w+p+n°(p) € TpZ
n°(p) € (Tpo2)*

/ne(p) = 0
SZ

Moreover, for every fixed € (—z, &) the setZR := {0+ p+n°(p) | |p| < R} is
a natural constraint for E,, that is, if u € ZR is such that d g, |ZR(U) = 0, then

Ehs(u) =0.

We refer to [18] for the proof of Lemma 13. Now, the problemdsluced to look
for critical points of the functiorf.: Br — R defined by

(67) fe(p) = En,(@®+ p+1°(p)) (peBRr).
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This step gives the finite dimensional reduction of the peobl The proofs of Theo-
rems 20 and 21 can be completed as follows.

Proof of Theorem 20Let p € R3 be a nondegenerate critical pointlofand letR >
| pl. One can show that the functidi defined in (67) satisfies:

(68) Vi.(p) = 2eG(e, p)

where
G, ) = [ HaloP 4 P+ 1" (6P 1 (P A @0+ (P

By (66), one has thaG(0, p) = VI'(p) and, in addition,d; Gk(0, p) = aﬁ(r(p).
HenceG(0, p) = 0, because is a stationary point of. Moreover, sinced is non-
degenerateypG(0, p) is invertible. Therefore by the implicit function theorethere
exists a neighborhoot of 0 (in R) and aC' mappinge — p? € R3 defined onl,
such thatp® = pandG(e, p?) = O foralle € |. Hence, by (67), (68) and by Lemma
13, we obtain that the function

e U =0+ p° +0°(p°) (eel)

defines &C* curve froml into W13 of H,-bubbles, passing througi?+ p whens = 0.
It remains to prove that the curge— ¢ is of classC! from | into C1#(S?, R3). This
can be obtained by a boot-strap argument. IndéesblvesAu? = F¢ onRZ, where

F¢ = 2H.(U*)u§ A U§. Sinces — u° is of classC! from | into W13 we have

thate — F¢ is of classC! from | into L3/2. Now, regularity theory yields that the
mappings — U turns out of clas€?! from | into W2/2, This implies that +— du
is C1 from | into L8, by Sobolev embedding. Henee— F¢ belongs toC1(I, L3).
Consequently, again by regularity theary— u? is of classC! from | into W23, By
the embedding oiv?2 into C1-%(S?, R3), the conclusion follows. Lastly, we point out
thatu® has no branch points because— «° + pin C1%(S? R3) ase — 0, andw®
is conformal oriR?.

O

Proof of Theorem 21Sincen®(p) is of classC! with respect to the paite, p), and
n%(p) = 0, we have that

(69) 7% (P)llwzs = O(e) uniformly for p € Br, ase — 0.
Now we show that
(70)  fo(p) = Epp(@®) + 2¢T(p) + O(e?) ase — 0, uniformly for p € Br .
Indeed, set
RE(P) = fe(p) — Enp(@®) — 2¢T(p)
= Enp(@®+n°(p)) — Eny(0°)
+28 (Vi (0° + p+ 1°(P) = Vey (@ + )
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Using Eho (0% = 0andthe decompositiory, (U+v) = VHy(U)+VH,(v)+Ho fRZ u-
vx A vy + Ho [g2 v - Ux A Uy we compute

Eno(@® +7°(P) — Eng(@®) = En(m°(P)) + 2Vie(n° (P))
+2H0/ - 0 (P A 1 (P)y
RZ
= O(ldn*(P)II3)

Therefore, using also (69), we infer that

RE(p)e 2

O(ldn* (P31 +2 (Vi (@° + p+ 1 (p)) = Vi (@° + p)) 72
= O(1) + 2(dVi, (@° + Pnf(p) + I (P)lwr3o(1)e ™t = O(D),

and (70) follows. Now, leK be given according to the assumption and t&ke-
0 so large thak c Bgr. The hypothesis oK and (70) imply that forie| small,
there existsp; € K such thau® := ® + p, + n°(p.) is a stationary point foEp,
constrained toZeR. According to Lemma 13E;_,8(u5) = 0, namelyu? is an H,-
bubble. Moreover™(p;) — maxc I" (or I'(p:) — mink I') ase — 0. To prove that
lu® — (pe + (,()O)Hcl,a(SZ’R?,) — 0 ase — 0 one can follow a boot-strap argument, as
in the last part of the proof of Theorem 20.

O

The assumptions of in Theorems 20 and 21 can be made explicit in termd pf
when|Hp| is large. In particular, as a first consequence of the abastesxce theorems
we obtain the following result, which says that nondegeteecdtical points as well
as topologically stable extremal points of the perturbaterm H; are concentration
points of H.-bubbles, in the double limi — 0 and|Hg| — oo.

THEOREM22. Assume that one of the following conditions is satisfied:
(i) there exists a nondegenerate stationary pqirt RS for Hy;

(i) there exists a nonempty compact set & R3 such thatmaxpesk Hi(p) <
mMaxpek H1(p) or Minpesk Hi(p) > Minpek Hi(p).

Then, for every i € R with [Hg| large, there existgn, > O such that for every
& € [—eHy, €H,] there is a smooth Hbubble uto-¢ without branch points. Moreover

i i Ho.e —
e

where p = pif (i) holds, or p € R3is such that p € K and Hy(p;) — max Hi,
or Hi(p:) — mink Hy if (i) holds. In addition, under the conditiofi), the map
¢ > uto£ defines a & curve in G- (S2, R3).
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As a further application of Theorem 21, we consider a pedtiob H1 having some
decay at infinity.

THEOREM 23. If H1 € LY(R3) + L2(R3), then for|e| small enough there exist
p. € R3 and a smooth Ebubble 4, without branch points, such th#t® — («° +
Pe)llcre(s2 g3y — 0ase — 0, and(p,) is uniformly bounded with respect ¢o

We refer to [18] for the proofs of Theorems 22 and 23.
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