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DIFFERENTIAL EQUATIONS WITH INDEFINITE WEIGHT:
BOUNDARY VALUE PROBLEMS AND QUALITATIVE
PROPERTIES OF THE SOLUTIONS

Abstract. We describe the qualitative properties of the solutionshef t
second order scalar equatiéint q(t)g(x) = 0, whereq is a changing
sign function, and consider the problem of existence andipfiglty of
solutions which satisfy various different boundary coiaais. In partic-
ular we outline some difficulties which arise in the use of gheoting
approach.

1. Introduction

We discuss the second-order scalar nonlinear ordinargrdiftial equation:
1) X+qt)gx) =0,
where:

e g: R — Riscontinuous (maybe locally Lipschitz continuousi®or onR\ {0})
and such thag(s) - s > 0 for everys # 0

e the “weight’q : R — R is continuous (sometimes more stronger regularity as-
sumptions will be needed and, in some applications, likewloepoint boundary
value problem, it will be enough thgtis defined in an interval).

ExampLE 1. A simple case of (1) is the nonlinear Hill's equation:
) X+q®[x]”Ix=0, y>0
(recall that the classical Hill's equation is the one wjith= 1).

The expression “indefinite weight” means that the functjahanges sign.

Waltman [86] in a paper of 1965 studied the oscillating Soha of

X4+qt)x"1=0 neN,
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when the weighty is allowed to change sign. Many authors studied the oszilfat
properties of equations like (1): Bhatia [16], Bobisud [1Blitler [19, 20], Kiguradze
[52], Kwong and Wong [54], Onose [68], Wong [94, 95, 96].

The existence of periodic solutions for a large class of #qgns (including (2))
was considered by Butler: in the superlinear cgse~( 1) he found infinitely many
“large solutions” [22] while in the sublinear ong (< 1) he found infinitely many
“small solutions” [23]. In both cases there are periodiawsohs with an arbitrarily
large number of zeros and Butler’s results, which are vaitt vespect to a quite wide
class of nonlinearities, have been improved in the supgalinase by Papiniin [69, 70]
and in the sublinear case by Bandle Pozio and Tesei [12] hfoekistence of small
solutions, and by Liu and Zanolin [59] for what concerns éasglutions.

Recently, many authors considered generalizations of ¢ft) im the direction of
Hamiltonian systems (with respect to the problem of findiagqdic or homoclinic so-
lutions) and elliptic partial differential equations witlirichlet boundary conditions. In
particular Hamiltonian systems with changing sign weigtese studied by Lassoued
[55, 56], Avila and Felmer [10], Antonacci and Magrone [9gBNaoum, Troestler
and Willem [13], Caldiroli and Montecchiari [25], Fei [3ping and Girardi [33], Gi-
rardi and Matzeu [41], Le and Schmitt [57], Liu [58], Schnatid Wang [76], Felmer
and Silva [39], Felmer [38], Ambrosetti and Badiale [8],nid50]. On the other hand,
the partial differential case was developed by Alama and Peb [1], Alama and
Tarantello [2, 3], Amann and Lopez-Gomez [7], Badiale aradbdha [11], Berestycki,
Capuzzo-Dolcetta and Nirenberg [14, 15], Khanfir and LasddB1], Le and Schmitt
[57], Ramos, Terracini and Troestler [74]. Equations offtren:

% 4+ q)x>" = mt)x + h(t),

with a changing sigmg, were considered by Terracini and Verzini in [85] paired with
either Dirichlet or periodic boundary conditions. They bgqb a suitable version of
the Nehari method [67] in order to find solutions of the bougdelue problem with
prescribed nodal behavior. More precisely, if the domainT[Oof q is decomposed
into the union of consecutive and adjacent closed interMalsl; , 17, 15, ..., 1
such that:

g>0,g#£0 inl¥ and q<0,gq#0 inl",

then they found natural numberm, ..., mg, one for each interval of positivity;*,
in such a way that, for every choice kihatural numbersny, ..., mg, with m; > mf
foralli =1,..., Kk, there are two solutions of the boundary value problem whateh
exactlym; zeros inl.* and one zero in,”.

An analogous situation was considered in [70, 71, 72] whéeea shooting ap-
proach, boundary value problems associated to (1) weréeestudlith a general nonlin-
earityg which has to be superlinear at infinity in some sense. In @sg cafter having
arbitrarily chosen the natural numberg > m* and a(k — 1)-tuple (81, ..., ék-1),
with §; € {0, 1}, we found two solutions witlm; zeros inIiJr ands; zeros inl;”~.

On the other hand Capietto, Dambrosio and Papini [26] fattiseir attention on
the existence of globally defined solutions of (1) with prédsed nodal behavior again
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in the case ofy superlinear at infinity and) changing sign. They showed that the
Poincaré map associated to (1) exhibits chaotic features.

It is the aim of these lectures to discuss some qualitativpgaties of the solutions
and some difficulties which arise in the use of the shootimyagch.

2. The shooting method

Equation (1) can be written as a first order system in the pplase:

3) X=y
y=—-q®)gx)

If we assume that the uniqueness for the Cauchy problems8¥dralds, then we de-
note byz(t; tg, p) = (X(t; to, p), Y(t; to, p)) the solution of (3) withz(tp; to, p) =

p = (X0, Yo) € R2. The shooting method is based on the theorem on the continuous
dependence of the solutions with respect to the initial:datat; to, p) is defined on

an interval f, 8] > to for sometp € R and somep € R2, thenz(t; to, p1) is defined

on [«, B] for eachp; “near” p and we have that(-; to, p1) — z(-; to, p) uniformly on

[, Blasp1 — p.

Therefore there is a couple of problems if we wish to applg thiethod for the
study of boundary value problems associated to (1) and (®.fifst one is about the
uniqueness, which is granted wheneyés locally integrable and is locally Lipschitz
continuous: in particular, i behaves likex|” ~x near zero and & y < 1, we might
loose the uniqueness at zero.

The second problem is the global existence of the solutginse the sole continu-
ity of g does not imply that all the maximal solutions of (1) are glbobdefined, even if
g is assumed to be greater than a positive constant, as sho@oftogan and Ullrich in
[28]. Indeed they produce a weightt) = 1+ 5(t), with a functions : [0, +oo[ — R
which is positive and continuous, but has unbounded variati every left neighbor-
hood of somd > 0, and they show that the equation:

K4+ 1+8t)x3=0

has a solution which starts frots = 0 and blows up astends tof from the left. On
the other hand they prove that,gfis positive, continuous and has bounded variation
in an interval f, b], then every solution of:

has B, b] as maximal interval of definition. If we consider a positiveightg which is
continuously differentiable ora[ b] and a functiorg such thag(x) - x > 0forx # 0,

it is not difficult to show that the same conclusion holds fbr (ndeed, let us consider
a solutionx of (1) starting fromt = a and define the auxiliary function:

1
() = Exz(t) +q@t)G(x(1)),
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whereG(x) = f(;( g(s)dsis nonnegative by the sign assumptiongrhe functionv
is surely defined in an intervdl C [a, b] with a as left end-point. For evettyin J we
have:

u(t) = XOX(®) + qd)gx®)x(t) + qt)G(x(1))
aOGx(1).

Sinceq is strictly positive and is continuous ond, b] there is a constaritl > 1 such
that:
qt) <Mq@)  Vtela b,

so that we obtain:
(1) < Mqt)G(x(t)) < Mu(t) Vted.
Hencev satisfies the inequality:
v(t) < MeM=a vyt e

and turns out to be bounded ih This implies thatx(t)| and, therefore|x(t)| are
bounded, too, and, thus,must be defined up to.

The argument just employed can be modified in order to coger sdme cases in
which g is nonnegative and vanishes somewhere. Indeed Butlervaus#rat if one
starts fromt = a then the solution is defined up to (and including) the firsbzgr- a
of q provided thatj < 0 (or, more generally is decreasing) in a left neighborhood of
to. Then the solution surely proceeds furtigsimply by Peano’s theorem about local
existence. Similarly, if one looks for backward contindigni every solution starting
fromt = b reaches the first zettg < b of g provided thafj is monotone increasing in
a right neighborhood df,. Therefore, if every interval, b] in which q is nonnegative
can be expressed as the union of a finite number of closed@gpossibly degener-
ating to a single point) wherg vanishes and of a finite number of open sub-intervals
Jto, t1] , such thaq is strictly positive in such intervals and is monotone igiag in a
right neighborhood aoffy and decreasing in a left neighborhoodgfthen the argument
above can be repeated a finite number of times in order torotitaicontinuability of
the solutions across] b].

EXAMPLE 2. Let us see how the shooting method can be used to solvechDiri
let boundary value problem associated to a superlineastdijuation like (2) with a
nonnegative weight. To be precise we look for solutions of:

X=y
y = —qb)Ix]”x telo.Tl
X(0)=x(T)=0

assuming thay > 1 and thaig is a nonnegative continuous function in [0] which
also satisfies the regularity assumptions discussed almosach a way that all the
solutions of the differential equation are continuablenglthe interval [QT].
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The idea is to consider all the solutions which have value®sopek € R for
t = 0, thatisz(-; 0, (0, k)) with the notation previously introduced, and to determine
for which values ok we havex(T; 0, (0, k)) = 0. In other words, we are considering
the set of the solutions which starttat= 0 from they-axis of the phase plane and
we wish to select those which come back to jhaxis att = T. One way to do this
is to measure the angle spanned in the phase plane by thmsalettorz(t; O, p) as
t runsin [Q T]; indeed, if p lies on they-axis, thenz(T; O, p) is again on the-axis
if and only if the angle spanned kg(t; 0, p) on [0, T] is an integer multiple ofr.
Now, if z(t) = (x(1), y(t)) is a nontrivial solution of the differential equation, then
z(t) # (0, 0) for everyt € [0, 1] by the uniqueness of the constant solut{@n0);
hence we can define an angular functigt) such that:

X(t) = |z(t)| coso(t) and y(t) = |z(t)| sind(t)
and it is easy to see that it satisfies:

y2(t) +q(t)[x(t)[r 1
Y2(t) + X2(t)

Therefore the measure of the angle spanner(bycan be obtained by integrating the
last expression and it is given by:

—6(t) =

1 [T y2(t; 0, p) + qd)|x(t; 0, p)[7+?
rot(p) = = y<( - P) q] 2( : 9]
7 Jo y4(t; 0, p) + x=(t; 0, p)
Thusz(-; 0, (0, k)) is a solution of the Dirichlet boundary value problem if andyoif

rot((0, k)) € Z. Now, rot(p) is clearly a continuous function gf and in this case it
can be proved that:

rot(p) — +oo as |p| = 400,

therefore, by the intermediate values theorem, our boyndgalue problem has in-
finitely many solutions. Moreover, the value ¢pj clearly gives information about
how many times the curva(t; 0, p) crosses theg/-axis in the phase plane asuns
from0toT and, more precisely, we have that if ¢@, k)) = j € Nthenx(:; 0, (0, k))
has exactlyj zerosin [QT][.

The same technique can be used to solve Sturm-Liouvilledenyrvalue problems
like the following one:

X=y

. te[0,T]
y = —a®Ix|” x
aix(0) + b1y(0) =0
ax(T) +byy(T) =0
whereai2 + bi2 # 0,1 = 1, 2, since the boundary conditions just mean that one looks

for solutions which start @t = 0 on the straight lin@;x + b1y = 0 in the phase plane
and end at = T on the straight linepx + bpy = 0.



270 D. Papini - F. Zanolin

On the other hand other boundary value problems, like thiegierone, are more
difficult to be solved by the shooting method, as one has tdassetrivial fixed points
theorems.

What about if we do not have the continuability of the solog® Hartman [44]
avoids the use of the global continuability for an equatibthe form:

fit
R+ f(t.x)=0  with jim (&%)

X— =300 X

= 400 uniformly w.r.t.t,

by assuming that:

ft,00=0 and that

f(t); X) is bounded in a neighborhood wf= 0.

The idea is that, if, on one hand, small solutions (that aocsdhstarting at a point
suitably near to the origin of the phase plane) are contileuapto T by the theorem
on continuous dependence on initial data, on the other, dfatisn blows up before
t = T, then it oscillates infinitely many times. Therefore(imt can be defined at least
in a neighborhood op = (0, 0), and it becomes unbounded either ps — +oc0o for
the superlinearity assumption dnor for thosep’s nearby some blowing up solution
and, thus, the shooting argument can be still used.

Now we come to the general situation of (1). We denotedgy) = fOX g(s)ds
the primitive of the nonlinearity and we assume th&(x) — +o0o ass — =+oo.
Leth1 . [0, +00[ — ]—00, 0] andG; 2 : [0, +-00[ — [0, +oc[ be, respectively, the
left and the right inverse functions @&. We describe the phase plane portrait of two
autonomous equations which model the situatiog ef 0 andq < 0, respectively.

Consider a constant weigft= 1; then equation (1) becomes:

X4+9x)=0
or, equivalently:

X=yYy
4
@ {S/ =-9(x)

Each non trivial solutiorix, y) of (4) satisfies:
15
for some constart > 0. Since the level sets of the functidr, y) — %yz + G(x) are

closed curves around the origin, every solution of (4) isquic with a periodr (c)
which depends only on the “energg’bf the solution and can be explicitly evaluated:

. s Glo (s
) = V2 / — __ ¢>0.
Gl vC—G(9)
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Figure 1: The phase portrait for (5)
with e = |c|.

It is well known that the following facts hold:

. S .
lim 9e =+400= Ilim t7(c)=0;
s—+o0c0 S Cc—+00

o if the ratio g(s)/s monotonically increase® +oo ass — oo thent™(c)
monotonically decreasds 0 asc — +oc.

On the other hand, if we take a constant weight —1, then (1) becomes:

X—g(x)=0
or, equivalently:

X=y
5
© :y=ga)

and each solutiorx, y) of (5) satisfies:
1
SV -Gy =c Vvt

for some real constat

The phase portrait is that of a saddle (see Figure 1) in wiiiehfaur nontrivial
and unbounded trajectories with “energy’= 0 correspond to the stable (Il and IV
guadrants) and to the unstable (I and Il quadrants) matsfeiith respect to the only
critical point (0, 0). For each negative valuethere are two unbounded trajectories
with energyc : one of them lies in the half plane > 0, crosses the positive-axis
at (Gr‘l(—c), 0) and corresponds to convex and positive solutiorand the other lies
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in X < 0, crosses the negatiweaxis at(Gl_l(—c), 0) and corresponds to concave and
negative solutiong. On the other hand, for each positigghere are two unbounded
trajectories with energg : one of them lies iny > 0, crosses the positivg-axis

at (0, v/2c) and corresponds to solutiomswhich are monotone increasing and have
exactly one zero, while the other liesyn< 0, crosses the negatiyeaxis at(0, —/2c)

and corresponds to solutiomswhich are monotone decreasing and have exactly one
zero.

In this case we do not have any nontrivial periodic solutiod,aherefore, any
period to evaluate; however, whengrows in a superlinear way towards infinigl|
solutions with nonzero energy have a blow-up in finite timathbin the future and in the
past (see [18]). Then we can compute the length of the madntexlval of existence
of each trajectory and it turns out to be a function of the gyef the trajectory itself.
Indeed, in the case of each of the two trajectories with peséinergyc, that length is:

1 /+°° ds
V2 ) s VE+GE)
while for the trajectories with negative energy we have giidguish between that on
x > 0, whose maximal interval length is:

+00 ds
T e
Grl—o) VC+ G(s)
and the other om < 0, for which the length is:
-
o0 c+ G(s)

If for every nonzerac we sum the length of the maximal intervals of the two corre-
sponding trajectories, we obtain the following function:

+oo ds .
- 2[ e fe=0
T (©= ﬁ Gfl(—c) ds ﬁ +o0 ds . 0
/700 Jc+ G(s) + /Grl(c) Jc+ G(s) hes

which, like t T, is infinitesimal forc — 4o in the superlinear case:

/ioo ds G(ks)
G(s)

9 _ 1= lim t7(¢)=0
) c—>+00
(k is some constant larger than 1).

lim —= = 400,

< 400, liminf
s—>+o0 S

S— 400

ExamMPLE 3. Consider again Hill's equation (2) with exponent- 1 and a piece-
wise constant weight functioswhich changes sign:

+1 ifo<t <ty
qt) = _
-1 ifto<t<T
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for sometg € 10, T[. Let us consider the behavior on,[D] of the solutionxy such
thatxx(0) = 0 andxx(0) = k > 0 as the initial slopé increases. The problem is:
is xx defined on [0T] and which is its shape? Clearly a blow-up can appear only in
]Jto, T] and it depends on which trajectory of (5) the pairt(to), Xk (to)) belongs to.
Indeed we have that™(c) tends to zero, as tends totoo, for our g(s) = |s|” s
and, thus, all the orbits of (5) with an energyuch thatc| > 0 have a very small
maximal interval of existence and are not defined on the whgld]. On the other
hand, all the solutions of (5) passing sufficiently near the stable manifolds (that
are the trajectories of (5) with zero energy which lie in tke@d and in the fourth
guadrant) have a maximal interval of existence which isdathan fo, T].

Now, we observe that all the trajectories of (4) interseetstable manifolds of (5),
but for some values df the point(xk(to), Xk (tp)) will be near to the stable manifolds,
while for others it will lie far: it depends essentially oretivalue rog(0, k)), that is
on the measure of the angle spanned by the vegi@y, X(t)) ast goes from 0 tdyp.
Since rof(0, k)) tends to+oo together withk, it is possible to select a sequence of
successive and disjoint intervals:

lo=1[0,ko[, 1 =]1hy,Kka[,..., Ij =]hj,kj[,...
such that:

o if k € Ij then(xk(to), Xk(to)) lies near the stable manifolds of (5) and, henge,
is defined on [0T];

e initial slopes belonging to the sanhgdetermine solutions with the same number
of zeros in [Q tp], but such a number increases together wyith

Moreover, since the stable manifolds separates the tagjestof (5) with positive and
negative energy, it is possible to distinguish inside elgcthose initial slopes such
thatxy is monotone intp, T] and with exactly one zero therein, from those such that
Xk has constant sign and is convex/concavegnT]. A generalization of this example

is given by Lemma 4.

We remark that, wheg is superlinear at infinity and is an arbitrary function, the
blow-up always occurs in the intervals wheye< O at least for some “large” initial
conditions, no matter how muahandg are regular. This was shown by Burton and
Grimmer in [18]: they actually proved that, éf < O, the convergence of one of the
following two integrals:

/ ds and /+°° ds
oo /G5 VG(©)’

is a necessary and sufficient condition for the existence lebat one exploding solu-
tion of (1).
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3. Butler's theorems

In [21] Butler considers the problem of finding periodic ¢@us of equation (1), or of
its equivalent first order system (3), assuming that:

e g: R — Ris alocally Lipschitz continuous function such thgs) - s > 0 for
S#£0;

For example, a functiog satisfying the first condition and:
l9(s)| = kisllog” |s| ~ if s> 1,

for somek > 0 anda > 2, satisfies also the other two assumptions. With respect
to the weight functiorg, he supposes that it isB-periodic and continuous function
changing sign a finite number of times and that it is enoughleggn the intervals in
which it is nonnegative (e.gq is piecewise monotone), in such a way that in these
intervals the solutions cannot blow up; therefore, up toretshift, there arg zeros
ofq,0<ty <th <--- <tj <T, such that:

e g <0andq#0in][0,ty]andin ftj_1,tj];
e g>0andg#0in[tj, T];
e ( # 0 and eitheg > 0 orq < 0 in each other intervati[, tj +1].

Using the notation introduced at the beginning of Section@r&calling what has
been said in [18], the valur(t; to, p) is surely not defined for somp € R? if the
interval betweerty andt contains points in whicly is negative. Therefore Butler
introduces the following set of “good” initial conditionsitiv respect to a fixed time
interval:

Qg ={pe R? : z(t; a, p) is defined in the closed interval betwesandb}.

In general very little can be said about the shap@@t the theorem about the contin-
uous dependence on initial data implies that it is open amdssumptions guarantee
that it always contains the origin, since (1) admits the tamssolutionrx =0.1f g > 0
in [a, b], thenQEjl = IR?, of course, and in particular one has tm{; = Qg. Clearly,
if b lies betweera andc thenQ§ ¢ Qb.

One way to findT -periodic solutions of (1) or (3) is to write the-periodic bound-
ary conditionz(T) = z(0) in a way which puts in evidence the dependence on the
initial valuez(0) = p; indeed, we are essentially looking for initial conditions R?
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such thatz(T; 0, p) = p, that is we search points in the plane where the vector field
p — z(T; 0, p) — p vanishes. If we introduce the following two auxililary fumans:

o(p) = 11z(T; 0, p)ll — |pll
T ,,2
_ y2(t; 0, p) + q(H)g(x(t; 0, p)x(t; O, p)
vip = 0 y2(t; 0, p) + X2(t; 0, p) dt,

then the solution departing fromatt = 0 is T-periodic if and only if:

¢(p)=0
v(p) = 2k for somek € Z.

Before entering more in the details of Butler's technigeeuk fix some notation. If
r is a positive number, the®, will denote the circumferendg € R? : || p|| = r} with
radiusr ; if, moreover,R > r, then Alr, R] will be the closed annulus with boundary
Cr U Cr. By the word “continuum” we mean, as usual, a compact and aiadeset.

Here is a first lemma about what happens in any interval otipiigifor g.

LEMMA 1. Assume that = 0 and q # 0in [a, b]. Then for every M> 0 and
n € N there existr=r (M, n) and R= R(M, n), with0 < r < R, such that:

1. ||z(t; a, p)|| = M forallt € [a, b] and| p|| >T;

2.T > p — argz(b; a, p) is a n-fold covering of § for any continuunl™ C
A[r, R] which does not intersect both axes and satidfiesC; # ¢ = ' N CR.

Roughly speaking, the second statement just means thatahem> z(b; a, p)
transforms any continuum crossing the annulis R] into a continuum which turns
around the origin at leasttimes. Observe that it is required tHat'does not intersect
both axes”, that is it must be contained in one of the four-plhes generated by the
coordinate axes: this prevertdgtself from turning around the origin and escaping the
twisting effect of the map — z(b; a, p).

REMARK 1. If q is nonnegative ind, b], then the mappingp — z(b; a, p) and
p — z(a; b, p) are defined oiR?2, continuous and each one is the inverse of the other.
Thus they are homeomorphismsk#? onto itself and, in particular, map bounded sets
into bounded sets.

Even if little can be said in general about the structure oéla(g (it might be
disconnected and its boundary might not be a continuous Butler actually proved
the following, when &, b] is an interval of negativity foqg.

LEMMA 2. Assume that g< 0 and q % OonJa,b]. If 3 c R is any compact
interval, thenszg’l N J x R is non-empty and bounded.
The same holds faR.



276 D. Papini - F. Zanolin

This result is simple iff = —1, since in this case it turns out that, on one hand, the
setQ{?1 must contain the stable manifolgs= —./2G(x), for x > 0, andy = +/2G(x),
for x < 0, while, on the other, it cannot contain any point from thedctpriesy =
++2(c+ G(x)), if ¢ > 0is such that—(c) < b — a and this happens for every
sufficiently largec.

LEMMA 3. There arew < 0 < B and a continuous ar¢y = (y1, y2) : la, B[ —
Q¢ such that:

1. y(0) = (0, 0);

2. lim y1(8) = Iim ypa(s) = lim y1(S) = lim y»(s) = o0;
+ s—at s—B~ s—p~

S—a

3. llz(tj; 0, ¥ (9) Il and ||z(T; O, ¥ (s)) || are uniformly bounded for & Ja, A .

Proof. Let us consider just the cage= 1, in whichtj_; = 0 andt; = t;. The
intersection betweeﬁ?. and they-axis {0} x R determines, by Lemma 2, a bounded
and open (relatively to the topology of the straight line)whbich contains the origin.
Therefore there ar@ < 0 < 8 such that the segmef@d} x ]a, B[ is contained ir\Q?j
while its end-pointg0, o) and (0, 8) belong toaQ?j. By construction each solution
departing from(0} x ]Je, B[ at timet; is defined at least up ta Gence we can set:

v(s) =2(0;tj, (0, 9)) forse e, B[.

Sincey (s) is the value at time 0 of a solution defined ontd, we have that the support
of y liesin Qtj, which in turn coincides witmg because in the last interval [ T] g
is nonnegative and, therefore, solutions cannot blow ugethdy our assumptions on
g.

Clearly statement 1 is satisfied and Statement 2 follows frenfiact that the points
(0, @) and(0, B) do not belong t(ﬂ?j - hencez(t; tj, (0, @)) andz(t; tj, (0, B)) blow
up somewhere in [@;] and an argument based on the continuous dependence ah initi
data shows thag (s) is unbounded whesranges neax andg.

The definition ofy implies that:
z(tj; 0,y(s)) = (0,8)  forse]a, B[,

thus||z(tj; 0, y(s)) |l is bounded by m&x-«, B}. Finally, observe that(T; 0, ¥ (s)) =
z(T; tj, (0,s)) and thatq is nonnegative ont[, T]; then also Statement 3 holds by
Remark 1.

O

THEOREM 1. Equation(1) has infinitely many T -periodic solutions.

Proof. We start fixing some constants. By Lemma 2 the intersectidhneof-axis with

the se'ﬂzg’l is bounded by a constanig; therefore, ifz(tj; 0, p) lies on they-axis then
llz(tj; O, p)ll = 1y(tj; O, p)| < A1. Moreover, by Remark 1 the following constant:

Az =maxX|z(T; tj, p)ll : 1Pl < Ad}
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exists and is finite. In particular, jf is the curve given in Lemma 3, we have that:
lz(tj; 0, y(sHI <A1 and  z(T;0,y(s) < A2 forse]e, Bl.

Now let Az be any real number such thAg > A, and letL, be the vertical straight
line {As} x R. Let Q be the connected component@% which contains the support
of y. By Lemma 2 and the fact th& c Qg, we have that the sét; N Q is bounded

and we can define:

As=sug|pl:pelinQ} <+oo (= As> Ag).

Now takeM = 2A4 andany natural number mand consider the two radii=r (M, n+
1) andR = R(M, n+ 1) which are obtained applying Lemma 1 in the interta) T'].
We set:

As = max||z(T; tj, p)ll : Ipll < R}

and callL, the vertical straight lind Az + As} x R. Now, Statement 2 in Lemma 3
guarantees that crosses at least one of the two vertical strips,[Az + As] x R and
[—As — As, —A3z] x R : assume that it crosses the first one (if it crosses the otieer o
one can argue in a similar way) and calft_1, L»]. By Lemma 2, the intersection of
Q with the vertical stripS[L1, L2] is bounded, therefore:

As =sudlipll: pe QN[Az, Az + As] x R} < 4o0.

The curvey, passing from_1 to Lo, divides2 N §L1, L»] into two bounded regions.
If p e §Li, Lo] belongs to the support of, then||z(T; 0, p)|| < A2 < Az < |Ipll;
hence:

pey(o, B NYL1, L] = ¢(p) <O0.

On the other hand, ip lies in Q2 N L1, Lo] neara2, then| p|| remains bounded by
As, but ||z(T; 0, p)|| can be made arbitrarily large, singeis near “bad” points with
respect to the interval [O]; thus:

o(p) — +oo if p—9Q, pen gLy, L]

Therefore, on every curve contained in©2 N §L1, L] and such that it connects a
point of y with a point ofd$2, we can find a poinp in which¢ (p) = 0. This implies
(but it is not a trivial topological fact) that there exist€antinuumI'g contained in
QN gLj, Lo] and intersecting alsb1 andL; such that:

(6) pelo= [z(T;0, Pl =Ilpl.

The set:
Iy ={ztj;0,p): peTo}

is still a continuum since it is the image ©% through the continuous maspg
p — z(j;0, p). T'j does not intersect thg-axis, since, ifx(tj;0, p) =
then one hag|z(tj; 0, p)|| < Az, by the definition of A1, and ||z(T; 0, p)||

Swv



278 D. Papini - F. Zanolin

1z(T; tj, z(tj; O, pHIl < Az < Agz, by the definition ofA;, while ||z(T; 0, p)|| =
Ipll = Asif p € I'g. Moreover, fixp € L1 NT'gandg € L2 N T'p; we have:

1z(T; tj, z(tj; 0, Pl = 1z(T; 0, Pl = lIpll < Aa < M = |Iz(tj; O, p)I| <
by the definition ofA4 and Statement 1 in Lemma 1; and also:
12(T5 tj, z(t; 0, )| = 12(T; O, Il = Il = Az + As > As = ||z(tj; 0, 9)[ > R

by the definition ofAs. Thus, we have found one point Bf inside the ball of radius

and another point df'j outside that of radiu® and we can say that; is a continuum
crossing the annulug[r, R]. Hencerl'; fulfills all the requirements of Statement 2 in
Lemma 1. In particular we have that the mpp— argz(T; 0, p) coversS' at least

n + 1 times asp ranges inl'p. Let us see what it means in terms of angles and of the
functiony,. We can select a continuous angular coordifatg¢0, T] x I'o — R such
that:

1. zt;0,p) = (llz(t; 0, p)l cosA(t, p), llz(t; O, p)lI siné(t, p)) for (t,p) e
[0, T] x To;

2. _z < 60, p < % for p € I'g (recall thatl'g is contained in the right half-
plane).

With this choices, the functiotr can be written as:

v(p) =6(0, p) —6(T, p).

The fact that"g > p — argz(T; 0, p) coversS! at leasin + 1 times, means that the
image ofd (T, -) contains a th+ 1)z -long interval. Sinc® (0, -) is forced in ar-long
interval, we have thaf,(p) reaches at least successive integer multiples ofr2as
p ranges inlg. Therefore (1) has at least T-periodic solutions, witm arbitrarily
chosen.

O

We have seen that the superlinear growth at infinity of thdinear termg in (1)
leads to the blow-up of solutions in the intervals wheggdtains negative values. On the
other hand, ifg is sublinear around,Ghere is the possibility of solutions reaching the
origin in finite time, since the uniqueness of the zero sofuts no more guaranteed.
This case was studied by Butler in [23].

EXAMPLE 4. Let us consider the autonomous system (4) with a fungiamich
is sublinear in zero, that is:

The uniqueness of the solution of Cauchy problems is stiirgnteed, but, now,
smaller solutions oscillate more and more.
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On the other hand, if we look to the zero-energy solutionssyf Which satisfy
%)’(2 — G(x) = 0, we found that the time that they take to regohO) from the value
X = Xp > 0 is given by the integral:

/XO ds

0 V2G(s)

which isfinite wheng(s) is a sublinear function liks|s|? 1, with 0 < y < 1. There-
fore the uniqueness of the zero-solution holds no more.

In [48] Heidel gives conditions that prevent solutions gff¢bm reaching the origin
in finite time in the case of a nonnegative weightn particular assuming € C* and
g being piecewise monotone around its zeros turns out to lieisat to this aim and
is what Butler needs in [23]. Indeed, Butler proves thag i§ sublinear around the
origin andq is a T-periodic weight which changes sign and is enough reguien t
(1) has infinitely manyT -periodic solutions with an arbitrarily large number of dma
oscillations in the intervals of positivity @f.

On the other hand such solutions may be identically zero inessubintervals of
the intervals of negativity of]. Indeed, let us consider a weight such thag, = —1
in [0, 2[, e = € > 0in [2, 4] and which is 4-periodic. Then Butler shows tlatan
be chosen sufficiently small in such a way that every solutifon

>'<'+q€(t)x% =0

which is nowhere trivial must be strictly monotone (and,degsmonperiodic) on some
half line.

4. Another possible approach: generalized Sturm-Liouvik conditions

Let us consider a situation in which: [a, c] — R is such that:
g=>0in[a,b] and g<0infb,c],
and assume thatin (1) is superlinear at infinity in the sense that:

lim tt@)= lim 77 (c)=0.
C—+00 Cc—+o00

Let Ql = [07 +OO[ X [07 +OO[ ) Q2 = ]_OO, O] X [07 +OO[ ) Q3 = ]_OO, O] X]_OO, O]

andQ4 = [0, +oo[ x ]—o0, 0] be the four closed quadrants of the plane. Then we have

the following result.

LEMMA 4. There exists R> 0 (depending only on g and|@,c) such that, for
every R> Othere is a natural numbern= n} with the property that for every natural
numbers n> n* ands € {0, 1} and for any pathy : [«, B[ — [0, +00[ x R, with
ly(@| < R and|y(s)|| - +oco0 as s— B, we can select an interval & o, 8],
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with | = Jan, Bn], if 8 =0, and | = [Bn, an[, if § = 1, in such a way that for each
s € | we have:

e Z(C; a, y(9)) is defined

e X(+; &, y(s)) has exactly n zeros ifa, b[, § zeros in]b, c[ and exactlyl — §
changes of sign of the derivative]ip, c[

e the curveyn(s) = z(c; a, ¥(s)), s € |, satisfies|yn(Bn)ll < R*, [y ()| —
400 as s— ap and its support lies either in Q(if n + § is even) or in Q (if
n+ 4§ is odd).

The same holds when the support of the cyrlies in the left half plang—oo, 0] x R
by simply interchanging the role of Gnd Qs.

Let us see how to use Lemma 4 in order to find multiple solutafr(4) satisfying
the two-point boundary condition:

@) x(0) = x(T) = 0.

We assume that there afewithi = 0,...,2j + 1, suchthatO=1ty <t; < --- <
trj41 =T and:

q>0, q=#0inty_2, ta_1] and gq=<0, gq#0in[ty_1,1t],

fori =1,...,] + 1, soqis positive near both 0 and. Let us apply Lemma 4 in the
interval [0, t2] to the unbounded curvgy(s) = (0, s), for s > 0, which parametrizes
the positivey-axis in the phase plane: each solutioof (1)—(7) withx(0) > 0 should
start from the support ofp at timet = 0. Let R} > 0 andn] € N be respectively
the numbersR* andn}, given by Lemma 4 with an arbitrarily smaR > 0 (since
y0(0) = (0,0)) and fix anyn; > nj andé; € {0, 1} : then, we obtain an interval
1 = Jaa, B1[ C [0, +oco[ such that the solution of (1) starting fat= 0 from yp(s)
has nodal behavior in [@] prescribed by the coupléns, §1), as in Lemma 4, ifs
belongs tol1, and, moreover, the curvye (s) = z(t2; 0, yo(s)) is defined fors € 11,
is contained either in the first or the third quadrant, it ibounded whers tends to
one of the endpoints offy, while it lies inside a circle of radiu&; for s belonging
to a neighborhood of the other endpoint. Therefore we catydmimma 4 on the

successive intervat], t4] and to the curve; with the choiceR = R].

After j successive applications of Lemma 4 to the intervais §, toi], fori =
1,...,j,we getR]k > 0 andj positive integersy?, ..., n}* such that, for every-tuple
(N1,...,nj) € NI, with nj > n, and for everyj-tuple (81, ..., 8j) € {0, 1}/, there
is a final intervall j C [0, +oo[ with the following properties:

e the curvey(s) = z(tyj; 0, (0, 9)) is defined fors € |}, lies in the first or in the
third quadrant (it depends on the paritygf-61+- - - +nj +§j), itis unbounded
whens tends to one of the endpoints f, while it is inside the circle of radius
R}“ if s belongs to a neighborhood of the other endpoint;



Differential equations with indefinite weight 281

e ifse ljandi =1,...,j, the solutionx(t; 0, (0, s)) has a nodal behavior in
[t2i—2, toi] which is described by the coupie;, ;) as in Lemma 4.

It remains to find somsin the intervall j such that the solution startingtat= t; from
y (S) reaches thg-axis exactly at = T and this can be done by a result of Struwe
[83], since the weight| is nonnegative in the intervaly, T] (see Example 2 for an
idea of the argument).

Clearly another set of solutions can be found starting froenrtegativey-axis and
it is not difficult to obtain the same kind of resultdfis negative either near= 0 or
neart = T or both. However, a more important fact is perhaps that weadjurst the
technique explained above in order to find multiple solwtiohmore general boundary
value problems for (1), namely all those problems whose dannconditions can be
expressed by:

(x(0), X(0)) € T'o and X(T),x(T)) eI't,

whereT’p and 't are suitable subsets of the phase plane. They are calle@rgen
alized” Sturm-Liouville boundary conditions (see [83]hat they coincide with the
usual Sturm—Liouville conditions whdry andI't are two straight lines. In particular,
whenq is positive near 0 and, it is possible to adapt the technique to cover all the
cases in whichg andI't are two unbounded continua (i.e. connected, closed and un-
bounded sets) contained, for instance, in some half-plandact, by approximating
bounded portions of continua by means of supports of coatiagurves, it is possible

to prove a generalization of Lemma 4 which holds also whermp#tky is substituted

by an unbounded continuuthcontained either in the right half plane or in the left one.

4.1. Application to homoclinic solutions

Assume that:
qit) <0 Vt € ]—o0,a]Ulb, +oof

+00
[ o] 0

Then, using an argument similar to that employed by Conld29j, it is possible to
show that there are four unbounded contilifa ¢ Q1, 'y € Qs, I'l € Q4 and
I, C Q2 such that:

and that:

., lim z(t; a, p) = (0, 0) for everyp € Fgf;
——00

e lim zt;b, p) = (0,0) foreveryp e I'f
t—-+o0

(see Lemmas 5 and 7 in [72] for precise statements and prblo€refore the problem
of finding homoclinics solutions of (1) is reduced to that etefmining solutions of
(1) in [a, b] which satisfy the generalized Sturm—Liouville boundaoydition:

(x(@), %(@) € Iy (x(b), (b)) € T
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and this can be done in the superlinear case by the techrligagg explained in this
section (Lemma 4 plus Struwe’s result [83]).

4.2. Application to blow-up solutions

In [61] (see also [62]) the problem of finding solutions of {@)ich blow up at a precise
time was considered whanhas a superlinear growth at infinity and: 10, 1[ - R
is a continuous weight such thatis nonpositive in some neighborhood of 0 and of 1
and both 0 and 1 are accumulation points of the set in whiishstrictly negative. See
the paper [27] for recent results about the analogous prolide partial differential
equations.

To be precise, let us assume tlgds nonpositive in J0a] and in [b, 1[; then there
are two unbounded contindg andI'1 which are contained in the right half plane
X > 0 and moreover:

1. there areR > r > 0 ande > 0 such that:

FoN[O0,r] x RcC[0,r] x ]—o00, —€]
MoN[R, +oo] x R C [R, +o0[ x [€, +00[
N0, r] xR C[0,r] x [€, +oo]

I'1 N[R, +oo[ x R C [R, 400[ x ]—00, —¢]

2. tIirr?)x(t; a,p= tIimlx(t; b,q) =+oc0if pelgandqg e I'1.

If g < 0inthe whole ]01[, then we can choose= b = 1/2 and the localization
properties in statement 1 imply thBg N "1 # @ and this proves that there is a positive
solution which blows up at 0 and 1

On the other hand, ifj changes sign a finite number of times insidel]p, we can
consider the generalized Sturm—Liouville boundary valeditions:

(x(@), x(@)) € I'o (x(0), X(b)) € T'1

and apply the procedure previously explained in order togwidtions of (1) in J01[
which blows up at 0 and 1 and have a prescribed nodal behasigiei the interval.

5. Chaotic-like dynamics

The chaotic features of (1) were studied in the papers [88][26] wheng is super-
linear at infinity. Here we would like to give an interpretatiof chaos in the sense

of “coin-tossing”, as it is defined in [53] for the discreterdymical system generated

by the iterations of a continuous planar mapvhich is not required to be defined in
the whole plane (like the Poincaré map associated to owatimu(1l) wherg is super-
linear at infinity andg is somewhere negative). To be more precise, consider the set
X which is the union of two disjoint, nonempty and compact $g§andK;. We say
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that the discrete dynamical system generated by the iteddite continuous mapping
¥ is chaotic in the sense of coin-tossiififor every doubly infinite sequence of binary
digits (8 )iz € {0, 1}%Z, there is a doubly infinite sequen¢g ); <z, of points ofX such
that:

L ¥ (pi) = Pit1
2. Pi € K(si

for everyi € Z. The first condition states that the sequetpg;cz is anorbit of the
dynamical system generated ty the second one guarantees the possibility of finding
orbits which touch at each time the prescribed componeKt of

We remark that in this definitiott is not necessarily defined in the whofeand it
is not required to be 1-to-Actually we are interested in the case of planar maps, since
we wish to study the Poincaré map associated to (1), an@yticplar, we will consider
compact set¥; with a particular structure: we call aiented cella couple(A, A7)
whereA c R? is a two-dimensional cell (i.e., a subset of the plane hongephic to
the unit squar® = [—1, 1]%) and.A~ c 3.4 is the union of two disjoint compact arcs.
The two components ot~ will be denoted by4,” and.A;~ and conventionally called
the left and the right sides of. The order in which we make the choice of namig
andA; is immaterial in what follows.

If ¥ is a continuous mafk? > Dom(y) — R? and (A, A7), (B, B7) are two
oriented cells, we say thdt stretcheqg A, A7) to (B, B~) and write:

Vi (ALAT) < (B, BT,

e 1 is properon A, which means thaty(p)| — +oo whenever Dortwy) N A >
p — po € d Dom(y) N A;

e for any pathl’ C A such thatl" N A # ¢ andI' N A7 # ¢, there is a path
I ¢ T N Dom(yr) such that:

vy cB, yvIHNB #0, yvT)HNB #0.

THEOREM2. If ¢ : (A, A7) <~ (A, A7), thenyr has at least one fixed point in
A.

Sketch of the proofLet us consider just the case df = [0, 1] x [0, 1], with A =
{0} x [0,1] and A7 = {1} x [0, 1], and lety (X1, X2) = (Y1(X1, X2), Y2(X1, X2)).

If © c Ais a path joining the vertical sides of, let I’ c T" be the subpath such
that ¢ (I'’) is again a path ind which joins its vertical sides and, in particular, let
p = (p1, p2) andq = (qi1, g2) two points inT” such thaty(p) € {0} x [0, 1] and
¥(Q) € {1} x [0, 1]. Therefore we have:

Y1(p1, p2) — pr=—-p1 <0 and  Y1(Q1,02) — 1 =1—-01 > 0.
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Hence, every path il joining the vertical sides meets the closed set in whichuinef
tion 11(X1, X2) — X1 vanishes and this implies that actually there is a wholeinaotn
I'1 C Ajoining thehorizontalsides ofA such that/1(x1, X2) — X1 vanishes il and
¥ (1) C A (see the argument to firidp in (6)). Again, this implies that the function
Y2(X1, X2) — X2 changes sign of : there is a point i"1 where alsa/z(x1, X2) — X2
vanishes, and such a point is clearly a fixed poingof

O

THEOREM 3. Let (Ao, Ay) and (A, A7) be two oriented cells. If/ stretches
each of them to itself and to the other one:

Yo (AiL AT) < (Aj, A, for (i, j) € {0, 1}2,
theny shows a chaotic dynamics of coin-tossing type.

These results can be applied, for instance, to the followitugtion:
(8) X+ [ag™(®) - Bg~(O]gX) =0,

where « and B are positive constantsg®(t) = maxq(),0} and g~ (t) =
max{—q(t), O} are respectively the positive and the negative part of aimoatis and
periodic functiong which changes sign, arglis a nonlinear function such that:

0 < d'(0) < g'(c0).

The parametew regulates the twisting effect of the Poincaré map alongritervals

of positivity of q, while 8 controls the stretching of the arcs along the intervals of
negativity ofq. Assume, for simplicity, thad is T -periodic with exactly one change of
signint €]0, T[in such a way that:

g>0 in]O, [ and g<0 in]g, T[.

For every fixedh € N, using the theorems stated above, it is possible todind- 0
such that, for every > «p, there isg, > 0 such that for eacf > B, we have the
following results (see Theorem 2.1 in [30]):

1. for anym € N and anym-tuple of binary digits(5s, ..., ém) € {0, 1}™ such
thatmn+ 81 + - - - + 8m is an even number, there are at least twd-periodic
solutionsx™ andx~ of (8) which have exactly zerosin [i — DT, (i — D) T +1]
ands; zerosin[i — )T +,iT], foreachi = 1,..., m; moreovex™(0) > 0
andx—(0) < 0;

2. for any doubly infinite sequence of binary digits)icz € {0, 1)Z, there is at
least a globally defined solutionof (8) which has exactip zerosin [T, i T +17]
ands;j zerosin [T +7,( + 1)T], foralli € Z.
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6. Subharmonic solutions

Our aim here is to consider large solutions of equationglifkén which the nonlinear-
ity g is sublinear at infinity, as in Hill's equation (2) whenfy < 1. The results we
are going to present are contained in a joint work with B. 15@][and are valid also
for the forced version of (1):

X+ qt)gx) = e(t).
Throughout this section we assume tgatR — R is a continuous function such that:
e 9(0)=0;

e thereisRy > 0 such thag(s) - s > 0 andg’(s) > 0if |s| > Ry (= g(—o0) <
0 < g(+00));

lim @ =0.
s—>+o0 S

The third condition is the so-called condition of sublirigaat infinity. Moreover we
will suppose thaty is a continuous and -periodic function, even if continuity is not
necessary: local integrability would be enough.

THEOREM4. Besides the assumptions stated above, suppose that:

1 T
9 q= —/ q(t)dt > 0.
T Jo

Then for each integer p 1there is nf € N such that, for every m= m7 equation
(1) has at least one mT -periodic solutiofn s which has exactl@ j-zeros in[0, mT[ .
Moreover, for each n» 1 there is My > 0 such that any mT -periodic solution x of
(1) satisfies:

IXllct = Mm;

on the other hand, for every fixed> 1 we have:
mir[:oo(lxj,m(t)l + 1Xj,m®)]) = +o0,
uniformly with respect to £ R.
ExXAMPLE 5. Theorem 4 holds, for instance, for the following Hill'suedion:
% + [k + cogt +0)]x|” "Ix =0,

where 0< y < 1, k > 0 andd € R. The same is true if we substitupe|” ~1x with
another sublinear function like/(1 + |x|), for instance.
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We remark that condition (9) was already considered by ath#rors dealing with
the superlinear case (see for instance [76]). A partial ems®; with respect to this
assumption, holds in the case of Hill's equation (2) foxOy < 1; in this case, if
g < O, thereis a constar® > 0, such that every solution of (2) satisfying:

X0+ [x(0)| > B

is unbounded, that is:

SUP(IX ()] + [X(1)]) = +o0.
teR

REMARK 2. Inthe book [34, p. 129] it is pointed out that “the quest®whether
we can findfor each k> 2 a subharmonig [that is ak T-periodic solution] such that
the xi are pairwise distinct. No result is known in the subquadregise”. The same

question was pointed out by Cac and Lazer in [24]. Of coursadeal with a scalar
model, which is a very simple case of a Hamiltonian system.

The trick to study (1) is the introduction of the so-called¢€&ati integral equation”
associated to (1):

Xt X(s) _/t[ %(&) T/ g _/t .
ax®) ~ gx@®)  J Lax@)y | FEENE— | a@ds,

which is easily deduced recalling that:

XO__ —q(t)

gx®) ’

by equation (1). This integral equation was already useddopfe working in oscilla-
tion theory.

We use here a small variant of a notation already introdutferis a solution of
(3), we denote by r@g; t1, tp) the amplitude of the angle spanned by the veetor
ast varies fromt; to tp, measured in clockwise sense. Thus we do not normalize any
more by dividing by, as we did in the previous sections.

Sketch of the prooffor simplicity we assume the uniqueness property for theelau
problems associated to (1) and divide the proof into sevenainas.

1. The continuability of the solutionghe sublinear growth afj at infinity implies
that every maximal solution of (1) is defined Bn

2. There isv > 1/2 such that for every R> Ry there exists R> Rj such that, if
z(t) = (x(1), y(t)) is any solution of(3) satisfying||z(t1) || = Ru, [|z(t2)|| = R
(or [lz(t2)| = Ry, llz(ty)] = Re) and R < ||z(t)|| < Ry, forall t € [ta, tz], it
follows that:

rot(z; t1, to) > v2r.

This lemma can be proved by arguments similar to those uged |85, 32].
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3. Iteration of Step 2iet us writev = § + 1/2, so thats > 0; we fix Ry > Ryg and
apply Step 2 obtaining, > Rp; then we apply again Step 2 witR; in place
of Ry obtainingRs > R. Let z be a solution of (3) such thdiz(t1)|| = Rs,
lzt2)]l = Rrand Ry < ||lz(t)|| < Rsfort € [ti,t2], and consider the first
instants; and the last instarg, in [t1, to] such that||z(s)|| = R». Since the
trajectories of (3) cross the positiyeaxis from the left to the right hand side and
the negativey-axis from the right to the left one, it is easy to see that altfu
rot(z; s1, &) > —m, therefore we obtain:

rot(z; ty, t2) = rot(z; ty, S1) + rot(z; s1, S2) + rot(z; s, to)
1
> V27 — 7w +v21 = <§+28>271.

Therefore, for everyy > 0, it is possible to find sufficiently large annuli such
that every solution which crosses them must rotate aroumatigin at least]
times.

4. If Ais a sufficiently large annulus and z is a solution such that z A for all
t > to, then:
rot(z; to,t) —» +oo ast— +oo,

uniformly with respect topte [0, T].
5. Large solutions rotate littleusing the sublinear condition at infinity it is possible

to show that for every. > 0 there isEL > Rgpsuch that, if O< t; —t; < L and
zis any solution satisfyingz(t)|| > Ry forall t € [t1, to], then:

rot(z; t1, tp) < 2.

Now, let us fixj and, by Step 3, consid&®) < R; < Ry < Rz such that each solution
crossing eitheB[R2] \ B(Ry) or B[R3] \ B(Rp) turns at leasf + 1 times around the
origin. Let A = B[R3] \ B(R1). By Step 4, there isn*j‘ such that:

m > m]!‘ = rot(z;O,mT) > j2r if Ry < |zt)| < Rs Vte [0, mT].

Consider any solution withz(0)|| = Ry : eitherz(t) remains inA for all t € [0, mT]

or there is a first instaritin which the solutiore exits the annulusl. In the former case
we already know that rét; 0, mT) > j2x; in the latter one we can select an interval
[t1, t2] C [0, mT] such that:

e either|z(ty) || = Ry, [lz(t)| = RiandRy < [lz() || < Roforallt € [ty, t7]
e orz(ty)|l = Ry, [lz(t2)|l = Rz andR < [lz(t)|| < Rsforallt € [ty, to].

In both these situations we can conclude thatzdt, t2) > (j +1)27 by the choice of
R1, Rz andRs. Therefore, arguing as in Step 3, we conclude again thatrdtmT) >
j2r. We can summarize this by the following implication:

IzO)| =R = rot(z 0.mT) > j2r.
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Let us fix nowm > m}‘ and apply Step 5 with. = mT : we getS > R, such that
the conclusion of Step 5 holds|ikz(t)|| > S for all [0, mT]. By the continuability of
all the solutions of (3) (Step 1), itis possible to fisg> S such that|z(t)|| > S for
everyt € [0, mT], if ||z(0)|| = $. Hence:

1zO)|| =S = rot(z;0,mT) < 27.
Finally, consider thenT-Poincaré map:
B($)\ B[Rz] > p> z(mT; 0, p)

whose fixed points are th@T-periodic solutions of (3). It turns out that tmaT-
Poincaré map satisfies the Poincaré—Birkhoff fixed pdiebtem by the discussion
carried above, and, therefore, it has a fixed point such tiacorrespondingn T-
periodic solution rotate exactly times around the origin in [0nT] and, hence, has
exactly 2 zerosin [QmT][.

O

We remark that ifj andm are coprime numbers ands them T-periodic solution
of (1) given by Theorem 4 with these choices, then it turnstioatm T is actually the
minimal period ofx in the class of the integral multiples of
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