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B. de M alafosse

ON THE SETS OF SEQUENCES THAT ARE STRONGLY
a—BOUNDED AND «—CONVERGENT TO NAUGHT WITH
INDEX p.

Abstract. In this paper we deal with sets of sequences generalizing the
well known spaces w& (1) = {X/C ) (IXIP) €lso} and Coo (V) =
(Woo (M) a(y- We consider the set (wd (A))A(m and the cases when the
operators C (1) and A (u) are replaced by their transposes. These results
generalize in a certain sense those given in [4, 10, 11, 13, 14, 16].

1. Notations and preliminary results.

For a given infinite matrix A = (anm)n.m>1 We define the operators An for any integer
n>1, by

o0
An (X) = Z anmXm
m=1

where X = (Xm)ms>1, and the series are assumed convergent for all n. So we are led to
the study of the infinite linear system

(1) An(X)=bp, n=12,..

where B = (bn)n>1 is a one-column matrix and X the unknown, see [1, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13]. Equation (1) can be written in the form AX = B, where AX =
(An (X))n>1. In this paper we shall also consider A as an operator from a sequence
space into another sequence space.

A Banach space E of complex sequences with the norm ||||g is a BK space if
each projection P, : X — PpX = Xy is continuous. A BK space E is said to have
AK, (see [17]), if for every B = (bm)m=1 € E, B = Y ;1 bmem, Where ey =
©,...,1,0,...), 1 being in the m-th position, i.e.

o
> bmem

m=N-+1

-0 (- o0).

E

s, Co, C, loo are the sets of all sequences, the set of sequences that converge to zero, that
are convergent and that are bounded respectively. cs and |1 are the sets of convergent
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and absolutely convergent series respectively. We shall use the set
U™ ={(Un)p>1 €5/ Un>0Vn}.

Using Wilansky’s notations [17], we define for any sequence o = (an)p>1 € U™* and
for any set of sequences E, the set

a*E:{(xn)nzles/ (2—”) eE}.
n/n

Writing
Sy If E = |0,
axE =1 s, if E=cy,
syifE =c,

we have for instance
a*Co=5,={(Xn)n=1 €S/ Xn=0(an) N — oo}.

Each of the spaces « * E, where E € {l, Co, ¢}, is a BK space normed by

@) IXls, = sup (M> ,

n>1\ ®n

and s,, has AK, see [10].

Now let & = (an)p>1 and B = (Bn)n=1 € UT*. By So,p We denote the set of
infinite matrices A = (anm)n,m>1 such that

o
(anm()lm)mzl (S I]_ foralln > 1and Z |anm| Om = 0] (ﬂn) (n —> OO) .
m=1

S«,p is @ Banach space with the norm

> o
IAls,, = sup (Z |anml ﬂ—m> :
n

v=1 \p=1

Let E and F be any subsets of s. When A maps E into F we shall write A € (E, F),
see [2]. So forevery X € E, AX € F, (AX € F will mean that for eachn > 1
the series defined by yn = Y mv_; @nmXm is convergent and (Yn),-1 € F). It has been
proved in [13] that A € (Sq. Sp) iff A € S, 5. So we can write that (Sq, Sg) = Sa.p-

When's,, = sg we obtain the Banach algebra with identity S, g = Sy, (see [1, 4, 5])
normed by [|Allg, = IAlls,,-

We also have A € (sq, Se) ifand only if A € S,. If |1 — A|lg, < 1, we shall say
that A € I'y. Since S, is a Banach algebra with identity, we have the useful result: if
A € T'y, Ais bijective from s, into itself.



On the sets of sequences 15

If & = (rMn>1, Ta, Su, Sa’ S, and ss are replaced by Iy, S, sr, s, ands? respec-
tively (see [1, 4, 5, 6, 7, 8]). Whenr = 1, we obtain s1 = |, s; =Cpands; =c, and
puttinge = (1, 1, ...) we have S1 = Se. It is well known, see [2] that

(s1,81) = (Co, 81) = (C, S1) = S1.
For any subset E of s, we put
AE={Y es/IXeE Y =AX]}.
If F is a subset of s, we shall denote
F(A)=Fa={Xes/Y =AX € F}.
We can see that F (A) = A~1F.

2. Some properties of the operators A (1), AT (1) and T relative to the sets s,
s, ands?.

Here we shall deal with the operators represented by C (1), C* (1), A (1) and AT (A).
LetU = {(Un)n=1 €5/ Un#0Vn}. We define C (1) = (Cam)nms1 for A =

(An)n=1 € U, by
1 .
— ifm<n,
Cnm={ A

0n otherwise.
So, we put C* () = C (). It can be proved that the matrix A (1) = (c/,) with

n,m>1

An ifm=n,
Chm=193 —tn-1 ifm=n—1landn>2,
0 otherwise,
is the inverse of C (1), see [13]. Similarly we put AT (1) = A (W)'. If A = e we get
the well known operator of first difference represented by A (e) = A and it is usually
written £ = C (e). Note that A = £~ and A and X belong to any given space Sgr
with R > 1. Writing D;. = (Andnm)n,m>1, (Where pm = 0 forn % m and épp = 1
otherwise), we have A* () = D;A™. So for any given o € U**, we see that if

A*—nl = 0 (1), then AT (1) = DyAT € <s<a),sa>. Since Ker A* (1) # 0,
n- I

on—1
an

we are led to define the set

[A] 2

se (AT (W) =54 (AT ) ﬂs( a) = {x = (Xn)n>1 € s(‘a_‘) / AT (W)X e sa} .
It can be easily seen that

SZW) (AT (o)) = SZﬁ) (AT) =s5 (AT ).

We obtain similar results with the set s,* (AT (1)) = s, (AT (V) s,

(%)
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2.1. Properties of the sequence C («) .

We shall use the following sets

_ 1 (&
C, = uts, —
1 = e /an(z

0)
I
Q
m
C
+
*
~
S
Slw
RS
=
[l =]
N
3
=
S—
SN—
>
\
AN
m
o
[ —

and

rt= {(x e U™ /Timhs oo (“”+1> < 1}.
o

n

Note that @ € '™ if and only if % € I'. We shall see in Proposition 1 that if o € Ci «
tends to infinity. On the other hand we see that A € T'y, implies « € T". We also have
« € I ifand only if there is an integer g > 1 such that

Yq (@) = sup <0ln—l> < 1.

n>q+1 \ ®n

1
We obtain the following results in which we put [C (@) «], = o (Z ak>.
n \k=1

PROPOSITION 1. Leto € UT*, Then

i) 21, gifand only if [C (@) a], — 1.
on
- . . On—1 1
ii) [C (@) ], — | implies that —-1- T
n

i) Ifa e C1 then there are K > 0 and y > lsuchthat an > Ky" for all n.

iv) « € T impliesthat o € C1 and there exist a real b > 0 and an integer g, such
that

+bx" forn>qg+1land x = yq () €]0, 1[.

[C () ]y < L
1-—x

. g
V) a € ' impliesa € C;".
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Proof. i), ii), iii) and iv) have been proved in [10].
Assertion v). If « € 't there are x’ €]0, 1[ and an integer g’ > 1 such that

(04
K<y fork > q.
k-1

Then we have for every n > q’
k—n—1 i 00
LE)-E@) e ST ()] Erermom
ken NN k=nt+1l i Yk=i-1

This gives the conclusion.

REMARK 1. Note that as a direct consequence of Proposition 2.1, we have
Ccrcc.

We also have C # T, see [4]. On the other hand we see that C1 (\Cf = T (T = ¢

2.2. The spaces w (1), wo’ (1) and weP (1) for p > 0.

In this subsection we recall some results on the sets that generalize the sets wl (),
w§ () and wP (1) for given real p > 0.

For any given real p > 0 and every sequence X = (Xp)n>1, We put | X|P = (|x |)n
and

wf () = {Xes/Cw(XIP) s},
wP () = [Xes/C(A)(|X|p)es;},
weP (h) = {Xes/X—Ietew;p()t) forsomeIeC}.

For instance we see that

1 n
wP () = {x = (Xn)n €5 / SUp(IAnIan Z'Xklp) < oo}.

n>1 k=1

If there exist A and B > 0, such that A < an < B for all n, we get the well known
spaces wP (1) = wl V), wa? (1) = wg (1) and wa® (1) = wP (1), see [14, 15]. |

the case when A = (n)p>1, the preV|ous sets have been introduced in [3] by Maddox
and it is wrltten w, (A) =wh, wo ) = wo and wP (L) = wP. Itis proved that each
of the sets wo and w, is a p—normed FK space for 0 < p < 1, (that is a complete
linear metric space in which each projection Py, is continuous), and a BK space for
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1 < p < oo with respect to the norm

2v+1_1
SUp, =1 (Zi ( 22 |xn|F’)) ifo<p<1,
" 1
p

2v+1_1
SUp, =1 (2—% ( 22 |xn|p)> ifl<p<oo.
n=2v

wg’ has the property AK, and every sequence X = (Xn)p>1 € wP ((n)n) has a unique
representation

X1 =

o
X =1le'+ ) (xn— I epwherel e C is such that X — le' € wf,
n=1

When p = 1, we omit the index p and write w (1) = wa (1), we’ (1) = w, (1) and
weP (M) = wy (). It has been proved in [14], that if A is a strictly increasing sequence
of reals tending to infinity then wg (1) and w, (1) are BK spaces and wo (1) has AK,
with respect to the norm

1 n
IX1=1C ) (IXDIljee = sup (A_ Z |Xk|) .
n N
Recall the next results given in [10].

THEOREM 1. Let o and X be any sequences of U T,

i) Consider the following properties
a) =il 0;
b) sy (C (X)) =s3,.
c) ar € Cy;
d) Wo (L) = Sga;
&) w, () =S,
f) wy () =s,,.

We have a)=b), c)<-d) and c)=-¢) and f).

i) Ifax € C1, We ), w; (») and w}, (1) are BK spaces with respect to the norm

[Xnl
I Xlls,, = sup ( .
S nzl an)\n

and w,, (A) = wg (1) has AK.
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2.3. Properties of some new sets of sequences.

In this subsection we shall characterize the sets E (A (1)), E (AT (n)) for E €
{50, 50,52}, and the sets wl (1), wi® (1) and we TP (3).

In order to state some new results we need the following lemmas. First recall the
well known result.

LEMMA 1. A € (co, Co) if and only if

A e Sy,
limpapm =0 foreachm > 1.

The next result has been shown in [11].

LEMMA 2. If AT is bijective from s, into itself, then o € cs.

We also need to state the following elementary result.

LEMMA 3. We have

ST (ATX)=X V¥Xecop and AT (ZFX)=X VXecs.

Put now
wiP) = {Xes/Ctm)(IXIP) €sa},
wrP) = [x es/Ct)(IXIP) e s;} ,

see [11]. Letting B~ = (Bn—1)n=1, With Bo = 1, forany g = (Bn)n>1 € UT*, we can
state the following results.

THEOREM 2. Leta ¢ UT*, A, u € U and p > 0. We successively have
i) a) sy (A (w) = s<l) if and only if & € Cy;

I

b)s, (A (1) =s ) if and only if & € Cy;

o
[ul

(
€) S8 (A () = SZ ) if and only if o« € C.

ii) a) s, (A () = () if and only if % eCy

Tul

by I KN _ o (1) implies's, (At w)=s
On MUn-1 (ﬁ)
0  —

¢) — e Clifandonlyifs} (At =S/,\:

) L € yifsy (AT () ()

d) Ii e C{ ifandonlyifs;* (A* (w)) =

el
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iii) ) s, (Z*) = s, ifandonlyif e € C; and's, (3+) = ifand onlyif o € C;.
b)a e Cf ifandonlyif ws®()=s ,,
@nh P
)ifa € CF thenwy™P (1) =s° L
@) P

d) o |A| € Cy if and only if wd (1) =s

1-
(alrh P

e) Ifa|A| € Cy, then woP (1) = s°

I
(alx) P

Proof. Assertion i) has been proved in [10]. Throughout the proof of part ii) we shall
put g = ﬁ
Assertion ii) a). First we have s, (A" (1)) = sg (A™). Indeed,
X €8y (AT (n) & DuATX €5, & ATX esg & X esg(AT).

To get a), it is enough to show that 8 € Ci if and only if sg (A+) = sg—. We assume
that 8 € C1. From the inequality

[
— =0,
e (Z,Bk) 6]

k=1

we deduce that P-1

= O (1) and At € (sg-,Sg). Then for any given B € s the

n
solutions of the equation A™X = B are given by x; = —u and
n—-1
(3) —xn=u+2bk,forn22,
k=1

where u is an arbitrary scalar. So there exists a real K > 0, such that
n—1 n—-1
u+ > bkl ul+ K[> Bk
[Xnl k=1 k=1
= <
Bn-1 Bn-1 Bn-1

since iii) in Proposition 1 implies % = 0 (1). So X € s, and we conclude that A™

is surjective from sg- into sg. Then g = ﬁ eC implies

=0,

e (A1 (w) = s(i)—.

Tl
Conversely, assume that s, (A+ () = s( " )7. If we take B = B, we get x, =
Tul

n—1
X1 — Y Bk, where x1 is an arbitrary scalar and

k=1
no_ a1 (5 o)
,Bn—l_,Bn—l ,Bn—l k=1 “) = .
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Putting X, = 0, we conclude that g € Cj.

o1 _ o (1). Let us show that

i) b) First we have AT ¢ (s;_, sﬁ) because

n
AT is surjective from s;_ into s,. For this, let B = (bp)n>1 € Sz. The solutions

X = (Xn)n=1 Of the equation ATX = B are given by (3). We have

n—1
Xn ol Z b
,Bn 1 ( ) /3n l
Bn-1

because from Proposition 2.1, the condition = 0(1) implies 8 € C1 and B —

n
oo. Since B € s; there is a sequence v = (vn)p>1 € Co, Such that bn = Bnvn. Then we

have forareal M > 0

<

= 1
,Bn—l - ,Bn

n
(Z ,Bkvk> foralln > 2.
)

It remains to show that vy Z Bkvk = 0 (1). For this consider any given ¢ > 0. Since

B — oo thereisan mteger N such that

1 iﬁ - £
kvk| < =
-1 2
forn > N, and
&
sup  (Jukl) < .
k>N-+1 25upp=2 (IC (B) Bln-1)
n—1
Writing Ry = > Bkvk| forn > N + 2, we deduce that
n—1 |k=N+1

l\)l“'J

N+1<k<n-1

Rns( sup |Vk|)> [C B) Bln-1

Finally, we obtain

[Xn| 1
,Bn—l ,Bn 1 (Z 'Bkvk) * ,Bn—l

and X € s,_. Sowe have proved ii) b).

Z Bk || <Shn+Rn<e for n>N,
k=N+1
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. .. . o g .
Assertion ii) ¢). Necessity. Assume that 8 = T € Cf. Since we have
o

s (At (w) = S5 (AT) = sg, it is enough to show that A™ is bijective from sg to
sg. We can write that A™ € (sg, sg), since

(4) Pz L Y B)=0@1 (- o0).
P B \&=

Further, from sg C cs, we deduce using Lemma 3 that for any given B € sg,

o0 -

AT (STB) = B. On the other hand =*B = (Z bk> € sg, since B € Cf.
n>1

k=n
So A is surjective from sg into sg. Finally, A™ is injective because the equation

ATX =0

admits the unigue solution X = O insg, since Ker AT = {ue'/ u e C}ande' ¢ sg.

Sufficiency. For every B € sg the equation A™X = B admits a unique solution in
sg. Then from Lemma 2, 8 e cs and since sg C c¢s we deduce from Lemma 3 that
X = E7*B € sg is the unique solution of AT X = B. Taking B = 8, weget =8 € s,

thatis g € C;.

As above to prove ii) d)Ait is enough to verify that 8 = ﬁ € 6} if and only
if sg* (A1) = sg. If g € Cf, A™ s bijective from s, into itself. Indeed, we have
D%AJr Dg € (co, Co) from (4) and Lemma 1. Furthermore, since 8 € Cf we have
s;; C cs and for every B ¢ s;, AT (£*B) = B. From Lemma 1, we have =* ¢
(s;, s;), so the equation A*X = B admitsin s, the solution Xo = =+ B and we have
proved that A™ is surjective from s;; into itself. Finally, 8 € C/:fr implies that et ¢ s;,
so KerA™ N s; = {0} and we conclude that A™ is bijective from s; into itself.

—_—

iii) @) comes fromiii), since o € Cf if and only if A™ is bijective from s, into itself
and is also bijective from s, into itself, and

ST (ATX) = AT (EFX) =X forall X €s,.
b) Assume that o € C/:fr SinceCT (1) = E+D%, we have
wiP o) ={Xes/ (27D1) (IXIP) e s} = {X /D1 (1XIP) €50 (=)}

and since & € C; implies s, (X+) = s, we conclude that

wiP () ={Xes/ IX|P e Disa =Sap} =5

1-
(@ah P



On the sets of sequences 23

1
Conversely, we have (« [ADP €5, =wg " (). So
@nP

4 9P >\ ak | k]
C* () [@lrn?] —(Z o ) s
n=

k=n

ie e C/ﬁr and we have proved i). We get iii) ¢) reasoning as above.
iii) d) has been proved in [4]. iii) €) Assume that « |A| € Ci. Then

woP () = [x es/ IX|Pe A(A)s;}.

Since A (1) = AD;, we get A (A)s, = As,,;. Now, from i) b) we deduce that

a |1| € Cy implies that A is bijective from S;\AI into itself and wy (A) = §° We

1-
(afa)) P

get e) reasoning as above.
([l
As a direct consequence of Theorem 2 we obtain the following results given in [11].
COROLLARY 1. Letr > 0be any real. We get

r>les(A)=sos (A)=s &5 (A) =s.

We deduce from the previous section the following.

3. Sets of sequences that are strongly «—bounded and «—convergent to zero with
index p and generalizations.

In this section we deal with sets generalizing the well known sets of sequences that are
strongly bounded and convergent to zero.

First we recall some results given in [10].
3.1. Setscy (A, 1), C,, (A, ) and ¢ (A, j1).
If & = (an)n € U™ is a given sequence, we consider now for A € U, € s the space
Co (A ) = (Wa M)Ay ={X €8/ A () X € we (M)}
It is easy to see that
Co (A, ) ={X €5 /C ) (A (1) X]) €5a},
that is

1 n
Ca (A, ) = {X = (Xn)n €S/ sup ( Z [ kXK — Mk—lxk—l|> < 00] :

n>2 [Anlon k=2
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See [10, 11, 13]. Similarly we define the following sets

Co (A, )

[xes/cmanmwxnes).

S (hp) = {X es/X—letec, (r,u) forsomel e C}
Recall that if A = p it is written that co (1) = (wo (M) aq).
c(\) ={Xes/X—le' eco(r) forsomel e C},
and Coo (1) = (woeo (M) a(s.), S€€ [16]. It can be easily seen that
Co(A) = Cq (A, 1), Coo (M) = Ce (X, 2) and c (1) = €3 (A, 1) .

These sets are called sets of sequences that are strongly bounded, strongly convergent
to 0 and strongly convergent. If . € U™* is a sequence strictly increasing to infinity,
c (1) is a Banach space with respect to

1 n
X lles 2y = SUPR21 (r D huexk — xk_lxk_u)
N k=1

with the convention xo = 0. Each of the spaces cg (1), € (1) and €. (1) is a BK space,
with respect to the previous norm (see [14]). co () has AK and every X € ¢ (i) has a
unigue representation given by

(5) X =le'+) (xk — e,
k=1

where X — le' e co. The number | is called the strong ¢ (1)-limit of the sequence X.
We obtain the next result given in [10]:

THEOREM 3. Leta, A and u be sequences of U +*,
i) Consider the following properties

a) al € CAl;

b) ¢, (A, ) = sa%;

©) Gy (i) =S,

"

"

d) cg[()»,pt)z{Xes/X—Ietes;x for some | eC}.

We have a)<-b) and a)=-c) and d).



On the sets of sequences 25

i) Ifar € C1, then cq r, 0, c; (A, n) and cg (A, u) are BK spaces with respect

to the norm ol
Xn
X =su .
I “Saﬁ pnzl <Mnan)hn>

c; (A, w) has AK and every X € c3 (1, 1) has a unique representation given by
(5), where X —le € s;k.

We immediatly deduce the following:
COROLLARY 2. Assume that o, A and o € U,

i) Ifax € Cyand i € lo, then

(6) Ch ) =5,
m
i) heIT=xreC1=co() =s, and Co (1) = S;.

3.2. Generalization

In this subsection we consider spaces generalizing the well known spaces of sequences
Coo (A) and cp (1) that are strongly bounded and convergent to naught.

For given real p > 0, let us put

PO = (W) =1X/C0(1AWXP)esa},
PO = (W W) =1{X/CW (AT X]P) €se},
G Pw = (wiP M)y, =(X/CT0) (1AW XIP) €sa,
P = (wfP ) peg = (X /CT ) (|AT  X[P) e s}

When s, is replaced by s; in the previous definitions, we shall write ch x, w,
+p +p +p ; P +p +p

cOt ()\'1 H’)v cOt ()"7 M) and CO[ ()\'1 H’)! InStead Of CO[ ()\‘1 H’)v cOt ()"7 /“L)v cOt ()"7 /“L)

and ¢,/ P (A, w). For instance, it can be easily seen that

n
Cuer (A, @) = {X = (Xn)n=1 / SUPp>1 |:|)\nl|an (kz | kXK — Mk—lxk—1|p)i| < 00} )
=1

n

+

Ca " (k) = {X = (Xn)n=1 / SUPp>1 [ﬁ <k2 | kXk — Mk+1Xk+1|p>:| <00
-1

. o0
Ca P (b ) = {X = (Xn)n=1 / SUPp>1 [é kZ (Wlk| | akXk — Mk—lxk—1|p)i| <00
=n

[S——;

—_—~ o0
Ca ) = {X = (Xn)n=1 / liMno o0 [% kZ (ﬁ kX — Mk+1xk+l|p):| =0¢,

=N
with the convention xo = 0. We shall say that ¢ (1, ©) and ¢ (1, ) are the sets
of sequences that are strongly o«—bounded and «—convergent to 0 with index p. If
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A=p a=eand p=1 thench (A, n) = coo (A) and c¥ (i, u) = co (1) are the sets
of sequences that are strongly bounded and strongly convergent to zero.

1 1 1
Now we shall put ¢p = ("‘ml)p = <(°‘”A"')Tj> Cp = (enttna) P with
nz1 n>1

I =

1 1
(@l%oDP _ 1 gand x = (“”—‘1 -t ) Pl tn_ . From the results of Section 2 we
[0l an An Mn-1 152
obtain -
— 1 o~
THEOREM 4. i) Ifa|r] € C1and (@ |A])P € Cq, then
(7) cf ) =5, and gy (h ) =5,

ii) Assume thata || € C1.

1
p

8 ity = @ |i|>

€ 6\1, then Ct.)t+p (A, u) = S;a;

b) if k =0 (1), thencd P (n, u) = sgp.
iii) Assume that« |A| € Cy.

a) (a|A)? e Cpimplies

i POw =5, and ¢ 0. u =5,

iv) Assume thato € C;".
. — p o
a) if¢p e Cithency, ™ (A, u) = S

b) if kx = 0 (1) then (;f/p()», w) = sz,.
p

Proof. Assertion i). First, we have
cf w) = {X/ A X ewf M)}

and since a |A| € C1, we get from iii) d) in Theorem 2, wd o) = S(aw)%' Thus,
using the identities A (u)™* = C(n) = D%Z we get ¢, pn) = D%ZS((XW)
and since (« |A|)Tl) e C1, we deduce that A is bijective from S(alkl)_Fl’ into itself, i.e.
s 1 =5 1 and we conclude that ¢ (x, u) = S¢,- By a similar reasoning we
()P (a|A) P

obtaincl (A, u) = szp.

1,
P

Assertion ii) a). Here we get

P O ) = X/ AT () X € wP W} 5
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and since « |A| € Cy, we have w2 (1) =s So

1.
(a|A]) P

GPGm=s (AT W),

(arfA])
and from ii) a) in Theorem 2, we get
+ _ i o
(8) S(aw)% (AT (w) = S5 if £p € C1.

This gives the conclusion.
Statement ii) b). As above we obtain using ii) b) in Theorem 2

,_T_-/ o o
Gl owy=s (AT (w)=s,_,
(alAhP P

since k = 0 (1).
iii) We have
ca P =X/ A X ewsPmw}.

Ifaec/:f,thenw;fp()»)zs and

1
()P

G Ppw=Cs 1 =D1¥

1.
(er|A]) P

128
wo (alah

1 and we conclude

1 —~
From i) a) in Theorem 2, (@ |A|)? € Cq implies s s( .
o

~ (@[2])
that cg P (h, w) = s, We getcy P (1, 1) = s;p reasoning as above.

1

P

iv) a) Since wiP () = s( IAI)% fora € C]J_F, we deduce that
o

+p _ + +p _ _ + .
c} (W)—{X/A () X € w] (A)—s(am)%}—sw)% (AT ()

and we conclude using (8). b) can be obtained reasoning as in ii) b).
([l

REMARK 2. Note that the previous sets are BK spaces and we can write for in-
o~ 1 o~
stance that if o [A| € C1 and (¢ |A])P € Cu, then c;™P (1, p) is a BK space with
respect to the norm || ||SEp and ¢, P (&, ) has AK.

COROLLARY 3. Assume that« |A| € T'. Then
i) cf () =ca P () =5,

i) o) = szp andc P (n, ) = S;O-p'
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Proof. Since T' C Cy, it is enough to show that « |A| € T if and only if (« |A|)% el
and apply i) and ii) in Theorem (4). Soputq = 1/p > 0, = « |A| and show that § €
[ifandonlyif &9 e T'. If& e T there is an integer N such that sup,- n.41 (5’51) <1,

then q
q
(gn_l) <| sup <€”_1) <1foralln> N +1,
";:n n>N+1 &n

- q
and £9 € I". Conversely, assume that £€% € T, that is limsup,,_, (—Eggl) <1 Bya
similar reasoning we get

1
a7a
fn-1 _ |: sup <§”_1> ] <1foralln> N +1,

éfn n>N+1 n

and & € T". We conclude applying Theorem (4).

In order to assert the next corollary, we need the following elementary lemma.
LEMMA 4. Letq > 0 be any real and « € U™ a nondecreasing sequence. Then
i) o« € Cy implies a9 € Cq, for q > 1,

i) o9 € Cy implies € Cy,for0 < q < 1.

Proof. Let g > 1. Since « is nondecreasing we see immediatly that for any given

n -1 -1 n -1
(aﬂ —aE ) =y (aq ak—ag) >0, and

integern > 1: ak
k k=1

=1

©) - (Zak) > L (Z ag>.
n k=1

k=1 %n

o 1 n
Since @ € Cjp implies — (Z ak> = 0O (1), we obtain i) using the inequality (9).
On \k=1

o~ 1 o~
Now, writing 8 = a% € Cj and applying i), we gete = 89 € C1 for 0 < q < 1. This
permits us to conclude for ii).
O
COROLLARY 4. Assume that o, A € U™* and « |A| is a nondecreasing sequence.
1 —~
i) If p> 1,then (@ |A])P € Cq implies

(10) ) =5, and cf (h,p) =5 ;

i) if0 < p<1,alx eCyifandonlyifc (h, n) = s,
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iii) If o |A| € T, then (10) holds.

1 o~ —~
Proof. i). If p> 1,0 < & < 1 and from Lemma4, (« |x)? € Cy implies « |A| € C1.
So we conclude using i) in Theorem 4.
Assertion ii). The necessity comes from i) in Theorem (4). Sufficiency. First, put

1

~ (an |An)P
= .
n>1

We have & € ¢ (A, p) = S¢, and using the convention ag = 0, we can write

1 1
n (on [An])P s ( 1)n—1 (on—1 [An-2)P )
- n— - - .
n>1

n Mn-1

|A (w) ol = ( pn (—1)

So
p
|A () &P = (((an I)\nl)% + (an-1 |)\n—l|)%) )

n>1

Then the condition X |A (1) @|P € sy implies that there is a real M > 0 such that
for every n:

E ok |A E ok |A + (ak— — .
~ k Ak = N |)\.n| k Ak k—1 [Ak—1 =

an [Anl k=1

We conclude that « |A] € C1. So ii) can be deduced from Theorem (4).

In the next result we shall denote by c? (1) the set c® (x, 2).
Consider now the following identities.

(11) Co?()»)=5( 11,
aP AP )

o

1 1
(a‘pmﬁ‘l>

COROLLARY 5. Assume that « |A| is nondecreasing.

(12) Py =s

i) If0 < p <1, then

a) «|A| € Cy if and only if (11) holds.
b) « || € Cy implies that (12) holds.

ii) If p > 1, the condition (« |A|)% eC implies that (11) and (12) hold.
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iii) «|A| € T implies (11) and (12).

Proof. i) a) comes from ii) in Corollary 4, where . = w. The proof of i) b) comes
from Lemma 4 and i) in Theorem (4). ii) comes from i) in Corollary 4. iii) comes from

Corollary 3.
([l

Now we can give an application which can be considered as corollary.

COROLLARY 6. i) ¢ (1) # | in the following cases:
a) 0<p<1land|rl eCq;
b) p>1land AP e Cu
ii) Coo (1) =l if and only if [A| € Cy.
iii) Assume that @ — oo.
a) Letp> 1. If (@ |A|)% € Cy, then
P (M) =lx implies  |An| = 00 asn — oo.
b) If0 < p <land«|A| € Cy, then
c?(A) =l implies A € co.

Proof. Case a). Since |A| € C1, we have ¢ (1) = S, b So the identity c2, (») =
loo implies that there are K1 and K, > 0 such that

1
(13) Ki<anl? Y<Ky foralln.

. 1 —~ i_ _
Since — — 1 > 0and |A| € Cq, we deduce that |An|P 1, casn— oo, which is
contradictory.

1
Case b). Here we get |An|5_1 = 0 (1) and (13) cannot be satisfied. ii) comes from
the equivalence a)<-b) in i) of Theorem 3 in which we put @ = e and A = p.

Assertion iii). Condition a) implies ¢} (\) = s< %\Al%"l) From the identity
o

c? (L) = |, there exist K1 and K2 > 0 such that

1 1 K 1 K
1_ 1 i_ 2
lus and  —F < |An|P 15—1 foralln > 1.
P P
n

an o
Since % — 1 < 0 we conclude that |[An] — oo asn — oo. b) can be obtained by a

similar reasoning.
O
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