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RADIAL BASIS FUNCTIONS: BASICS, ADVANCED TOPICS

AND MESHFREE METHODS FOR TRANSPORT PROBLEMS

Abstract. This invited contribution first reviews basic features of multi-
variate interpolation by radial basis functions, before selected of its ad-
vanced topics are addressed, including recent results concerning local
polyharmonic spline interpolation. The latter is one main ingredient of
a novel class of adaptive meshfree semi-Lagrangian methods for transport
problems. The construction of these particle-based advection schemes is
discussed in detail. Numerical examples concerning meshfree flow simu-
lation are provided.

1. Introduction

Radial basis functions are well-known as traditional and powerful tools for multivariate
interpolation from scattered data, see [5, 12, 13, 38, 42] for some different surveys, and
[24] for a recent tutorial with accompanying exercises and supplementary software,
www.ma.tum.de/primus2001/radial/.

Just very recently, radial basis functions have gained enormous popularity in mesh-
free methods for partial differential equations (PDEs). The theory includes meshfree
Galerkin methods [51], collocation methods [16, 17], and multilevel schemes [15].
First applications of radial basis functions in computational fluid dynamics are dating
back to Kansa [26, 27]. There is nowadays a vast amount of literature on the subject,
see e.g. the rich bibliography in [15, 44]. For a couple of more recent contributions
concerning radial basis functions for solving PDEs, we refer to the special issue [56].

This paper first reviews basic features of multivariate interpolation by radial basis
functions in the following Section 2, before recent results concerning local polyhar-
monic spline interpolation are discussed in Section 3. The latter have provided recent
advances in the numerical simulation of transport processes by meshfree particle meth-
ods [1, 2, 3]. Details on these are explained in Section 4, and numerical examples
concerning meshfree flow simulation are finally presented in Section 5.

∗This paper is based on an invited lecture which I gave at the workshop Spline Functions and Radial
Functions: Applications to Integral and Differential Problems of the GNCS, held at the University of Turin
in February 2003. I wish to thank the organizers of the meeting for their generous support and their kind
hospitality. Moreover, the assistance of Martin Käser with the preparation of the numerical examples is
gratefully appreciated.
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2. Radial basis function interpolation

2.1. Interpolation scheme

In order to explain multivariate scattered data interpolation by radial basis func-
tions, suppose a data vector u

∣∣
4

= (u(ξ1), . . . , u(ξn))
T ∈ Rn of function values,

sampled from an unknown function u : Rd → R at a scattered finite point set
4 = {ξ1, . . . , ξn} ⊂ Rd , d ≥ 1, is given. Scattered data interpolation requirescomput-
ing a suitable interpolant s : R

d → R satisfying s
∣∣
4

= u
∣∣
4

, i.e.,

(1) s(ξ j ) = u(ξ j ), for all 1 ≤ j ≤ n.

To this end, the radial basis function interpolation scheme works with a fixed radial
function φ : [0,∞) → R, and the interpolant s in (1) is assumed to have the form

(2) s(x) =
n∑

j=1

c jφ(‖x − ξ j ‖)+ p(x), p ∈ Pd
m,

where ‖ · ‖ is the Euclidean norm on Rd . Moreover, Pd
m denotes the linear space

containing all real-valued polynomials in d variables of degree at most m − 1, where
m ≡ m(φ) is said to be the order of the basis function φ. We come back to the depen-
dence between m and φ later in Subsection 2.4. But let us first give some examples for
φ.

Classical choices for radial basis functions φ, along with their order m, are shown
in Table 1, where for any x ∈ R, the symbol dxe denotes as usual the smallest integer
greater than or equal to x . Later in this text, bxc denotes the largest integer less than or
equal to x .

Among the most popular radial basis functions are the polyharmonic splines, which
are discussed more detailed in Section 3. This class of radial basis functions includes
the thin plate splines, where φ(r) = r 2 log(r) and m = 2, which are particularly
suited for interpolation from planar scattered data. Further commonly used radial basis
functions are given by the Gaussians, φ(r) = exp(−r 2), the multiquadrics, φ(r) =
(1 + r 2)1/2 of order m = 1, and the inverse multiquadrics, φ(r) = (1 + r 2)−1/2, where
m = 0. Table 1 gives a more general form for the (inverse) multiquadrics and their
corresponding order m.

2.2. Compactly supported radial basis functions

More recent developments [50, 53] have provided a whole family of compactly sup-
ported radial basis functions. In this case, we have m = 0 for their order, and so the
polynomial part in (2) is omitted. While the radial basis functions in Table 1 can be
used in arbitrary space dimension d, the selection of one suitable compactly supported
φ depends on d, see Table 2. Since the dimension d is known beforehand, this is no
severe restriction, as shall be established below.
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Table 1: Radial basis functions.

Radial Basis Function φ(r) = Parameters Order

Polyharmonic Splines
r ν

r2k log(r)

ν > 0, ν /∈ 2N

k ∈ N

m = dν/2e

m = k + 1

Gaussians exp(−r 2) m = 0

Multiquadrics
(
1 + r 2

)ν
ν > 0, ν /∈ N m = dνe

Inverse Multiquadrics
(
1 + r 2

)ν
ν < 0 m = 0

To this end, let us further discuss some basics about compactly supported radial
basis functions. As to Wendland’s functions [50], these are of the form

(3) φd,k(r) =
{

pd,k, for 0 ≤ r ≤ 1,

0, for r > 1,

where pd,k is a specific univariate polynomial of degree bd/2c + 3k + 1, and so the
support supp(φd,k) of φd,k : [0,∞) → R is normalized to the unit interval [0, 1].
Moreover, due to Wendland’s construction in [50], the basis function φd,k has deriva-
tives up to order 2k, i.e., φd,k ∈ C2k(Rd). Possible choices for φd,k are listed in the
following Table 2, where the symbol

·= denotes equality up to a positive factor, and the
truncated power function (·)+ : R → [0,∞) is given by (x)+ = x , for x > 0, and
(x)+ = 0, for x ≤ 0.

By their construction, Wendland’s radial basis functions φd,k are positive definite
on Rd .

DEFINITION 1. A continuous radial function φ : [0,∞) → R is said to be positive
definite on Rd , φ ∈ PDd , iff for any finite set 4 = {ξ1, . . . , ξn}, 4 ⊂ Rd , of pairwise
distinct points the matrix

8φ,4 =
(
φ(‖ξ j − ξk‖)

)
1≤ j,k≤n ∈ R

n×n

is positive definite.

Due to the construction in [53], there exists, for any space dimension d, a positive
definite and compactly supported φ ∈ PDd of the form (3). Remarkably enough,



250 A. Iske

Table 2: Wendland’s compactly supported radial basis functions [50].

Dimension d Radial Basis Function Smoothness 2k

d = 1

φ1,0 = (1 − r)+
φ1,1

·= (1 − r)3+(3r + 1)

φ1,2
·= (1 − r)5+(8r 2 + 5r + 1)

C0

C2

C4

d ≤ 3

φ3,0 = (1 − r)2+
φ3,1

·= (1 − r)4+(4r + 1)

φ3,2
·= (1 − r)6+(35r 2 + 18r + 3)

φ3,3
·= (1 − r)8+(32r 3 + 25r 2 + 8r + 1)

C0

C2

C4

C6

d ≤ 5

φ5,0 = (1 − r)3+
φ5,1

·= (1 − r)5+(5r + 1)

φ5,2
·= (1 − r)7+(16r 2 + 7r + 1)

C0

C2

C4

Wendland showed that any basis function φd,k , constructed in [50] (such as any in
Table 2), has minimal degree among all positive definite functions φ ∈ PDd ∩C2k(Rd)

of the form (3). Moreover, by these properties, φd,k in (3) is unique up to a positive
constant.

2.3. Well-posedness of the interpolation problem

Now let us turn to the well-posedness of the interpolation problem (1). To this end, we
distinguish the case, where m = 0 from the one where m > 0.

First suppose m = 0 for the order of the basis functionφ, such as for the Gaussians,
the inverse multiquadrics (in Table 1) and Wendland’s functions (in Table 2). In this
case, the interpolant s in (2) has the form

(4) s(x) =
n∑

j=1

c jφ(‖x − ξ j‖).

By requiring the n interpolation conditions in (1), the computation of the unknown
coefficients c = (c1, . . . , cn)

T ∈ Rn of s in (4) amounts to solving the linear equation
system

(5) 8φ,4 · c = u
∣∣
4
.
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Recall that according to Definition 1, the matrix8φ,4 in (5) is guaranteed to be positive
definite, provided that φ ∈ PDd . In this case, the system (5) has a unique solution. This
in turn implies the well-posedness of the given interpolation problem already.

THEOREM 1. For φ ∈ PDd , the interpolation problem (1) has a unique solution s
of the form (4).

Now let us turn to the case, where m > 0 for the order of φ. In this case, the
interpolant s in (2) contains a nontrivial polynomial part, yielding q additional degrees

of freedom, where q =
(

m − 1 + d
d

)
is the dimension of the polynomial space Pd

m .

These additional degrees of freedom are usually eliminated by requiring the q moment
conditions

(6)
n∑

j=1

c j p(ξ j ) = 0, for all p ∈ Pd
m .

Altogether, this amounts to solving the linear system

(7)

[
8φ,4 54

5T
4 0

]
·
[

c

d

]
=
[

u
∣∣
4

0

]
,

where we let 54 =
(
(ξ j )

α
)

1≤ j≤n;|α|<m ∈ R
n×q , and d = (dα)|α|<m ∈ R

q for the

coefficients of the polynomial part in (2). Moreover, for any point x = (x1, . . . , xd)
T ∈

Rd , and multi-index α = (α1, . . . , αd) ∈ N
d
0 we let xα = xα1

1 · · · · · xαd
d , and |α| =

α1 + . . .+ αd .

In order to analyze the existence and uniqueness of a solution of (7), we first con-
sider its corresponding homogeneous system

8φ,4 · c +54 · d = 0,(8)

5T
4 · c = 0,(9)

here split into its interpolation conditions (8) and moment conditions (9). If we mul-
tiply the equation (8) from left with cT , and by using the moment conditions (9), we
immediately obtain the identity

(10) cT ·8φ,4 · c = 0.

Now in order to guarantee the existence of a solution to (8),(9) we require that the
matrix 8φ,4 ∈ R

n×n is, for any set 4 of interpolation points, positive definite on the
linear subspace of Rd containing all vectors c ∈ Rn satisfying (9), i.e.,

(11) cT ·8φ,4 · c > 0, for all c ∈ R
n \ {0} with 5T

4c = 0.

In this case, the basis function φ is said to be conditionally positive definite, which
deserves the following definition.
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DEFINITION 2. A continuous radial function φ : [0,∞) → R is said to be con-
ditionally positive definite of order m on Rd , φ ∈ CPDd(m), iff (11) holds for all
possible choices of finite point sets 4 ⊂ Rd .

As shall be established in the following Subsection 2.4, we remark that for every
radial basis function φ in Table 1, we either have φ ∈ CPDd(m) or −φ ∈ CPDd(m),
with the corresponding order m given in the last column of Table 1. In either case, we
say that m is the order of the radial basis function φ. Note that every positive definite
φ, such as for instance any of Wendland’s functions in Table 2, is conditionally positive
definite of order m = 0, and therefore PDd = CPDd(0).

Now let us return to the above discussion concerning the solvability of the linear
system (8),(9). With assuming φ ∈ CPDd(m) (or −φ ∈ CPDd(m)), we conclude
c = 0 directly from (10), and so (8) becomes 54 · d = 0. Therefore, in order to
guarantee a unique solution of (8),(9), it remains to require the injectivity of the matrix
54. But this property depends on the geometry of the interpolation points in4. Indeed,
note that the matrix54 is injective, iff for p ∈ Pd

m the implication

(12) p(ξ j ) = 0 for 1 ≤ j ≤ n H⇒ p ≡ 0

holds. In this case, any polynomial in Pd
m can uniquely be reconstructed from its func-

tion values sampled at the points in4. The point set4 is then said to be P d
m-unisolvent.

Note that the requirement (12) for the points in 4 is rather weak. Indeed, when m = 0,
the condition is empty, for m = 1 it is trivial, and for m = 2 the points in 4 must not
lie on a straight line.

We summarize the discussion of this subsection as follows.

THEOREM 2. For φ ∈ CPDd(m), the interpolation problem (1) has under con-
straints (6) a unique solution s of the form (2), provided that the interpolation points
in 4 are Pd

m-unisolvent by satisfying (12).

2.4. Conditionally positive definite functions

By the discussion in the previous subsection, radial basis function interpolation essen-
tially relies on the conditional positive definiteness the chosen basis function φ. Indeed,
this is one of the key properties of the interpolation scheme. In this subsection, we dis-
cuss two alternative ways for the construction and characterization of conditionally
positive definite functions.

One technique, dating back to Micchelli [35], works with completely monotone
functions. The other alternative relies on generalized Fourier transforms [23]. We
do not intend to discuss these two different techniques in all details. Instead of this
we briefly review relevant results. For a more comprehensive discussion concerning
conditionally positive definite functions, we refer to the recent survey [45].
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Completely monotone functions

DEFINITION 3. A function ψ ∈ C∞(0,∞) is said to be completely monotone on
(0,∞), iff

(−1)`ψ`(r) ≥ 0, ` = 0, 1, 2, . . . ,

holds for all r ∈ (0,∞).

Micchelli provides in [35] a sufficient criterion for φ ∈ CPDd(m), which gener-
alizes an earlier result by Schoenberg [47, 48] for positive definite radial functions.
Micchelli also conjectured the necessity of this criterion. This was finally shown by
Guo, Hu and Sun in [20]. We summarize the relevant results from [20, 35, 47, 48] by

THEOREM 3. Let φ : [0,∞) → R be a continuous radial function. Moreover, let
φ√ ≡ φ(

√·). Suppose φm ≡ (−1)mφ(m)√ is well-defined and φm is not constant. Then,

the following two statements are equivalent.

(a) φ ∈ CPDd(m) for all d ≥ 1;

(b) φm is completely monotone on (0,∞).

Now, by using Theorem 3, it is easy to show for any φ in Table 1 that either φ or −φ
is conditionally positive definite of order m, with m given in the last column of Table 1.
Note, however, that the characterization in Theorem 3 applies to radial functions only.
Moreover, it excludes the construction of compactly supported radial basis functions.
The latter is due to the Bernstein-Widder theorem [4] (see also [52]) which says that
any function ψ : [0,∞) → R is completely monotone on (0,∞), if and only if it has
a Laplace-Stieltjes-type representation of the form

ψ(r) =
∫ ∞

0
exp(−rs) dµ(s),

where µ is monotonically increasing with
∫∞

0 dµ(s) < ∞. Hence, in this case ψ has
no zero, and so any ψ = φm in (b) of Theorem 3 cannot be compactly supported.

Generalized Fourier transforms

A different technique for the characterization and construction of (not necessarily ra-
dial) functions φ ∈ CPDd(m), including compactly supported ones, is using (general-
ized) Fourier transforms, see the recent survey [45, Section 4] (which basically relies
on the results in [23]). We do not explain generalized Fourier transforms here, but
rather refer to the textbooks [18, 19], where a comprehensive treatment of the relevant
technical background is provided.

For the purposes in this subsection, it is sufficient to say that every radial basis func-
tion φ in Table 1 has a radial (generalized) Fourier transform φ̂ ∈ C(0,∞) satisfying
the following two properties.
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• φ̂(‖ · ‖) is L1-integrable around infinity, i.e.,

(13)
∫

Rd\B1(0)

∣∣∣φ̂(‖ω‖)
∣∣∣ dω < ∞,

• φ̂(‖ · ‖) has at most an algebraic singularity of order s0 ∈ N0 at the origin, such
that

(14)
∫

B1(0)
‖ω‖s0 φ̂(‖ω‖) dω < ∞,

holds, with s0 ∈ N0 being minimal in (14).

Table 3 shows the (generalized) Fourier transforms of the radial basis functions in
Table 1, along with their order s0, where

·= means equality up to a constant factor, and
where Kδ denotes the modified Bessel function.

We remark that if φ has a Fourier transform φ̂ ∈ L1(R
d),

φ̂(‖ω‖) =
∫

Rd
φ(‖x‖) exp(−i x Tω) dx,

in the classical sense, then this classical Fourier transform φ̂ coincides with the gener-
alized Fourier transform of φ. Examples are given by the Gaussians, the inverse multi-
quadrics, and Wendland’s compactly supported radial basis functions. In this case, we
have s0 = 0 for the order of φ̂.

Now let us turn straight to the characterization of conditionally positive definite
functions by generalized Fourier transforms. This particular characterization relies on
the identity

(15)
n∑

j,k=1

c j ckφ(‖ξ j − ξk‖) = (2π)−d
∫

Rd
φ̂(‖ω‖)

∣∣∣∣
n∑

j=1

c j exp(−iξT
j ω)

∣∣∣∣
2

dω,

which can be established [23] for any φ̂ satisfying (13) and (14), provided that the
symbol function

(16) σc,4(ω) =
n∑

j=1

c j exp(−iξT
j ω)

has a zero at the origin of order at least m = ds0/2e. Note that the latter can be
guaranteed by requiring the moment conditions (6) with m = ds0/2e.

THEOREM 4. A continuous radial function φ : [0,∞) → R is conditionally pos-
itive definite on Rd , if φ has a continuous nonnegative generalized Fourier transform
φ̂ 6≡ 0 satisfying (13) and (14). In this case, we have m = ds0/2e for the order of
φ ∈ CPDd(m).
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Proof. Let φ̂ satisfy (13) and (14), and suppose (6) with m = ds0/2e, so that the
identity (15) holds. By the nonnegativity of φ̂, the quadratic form

cT8φ,4c =
n∑

j,k=1

c j ckφ(‖ξ j − ξk‖)

appearing in the left hand side of (15), is nonnegative. Hence it remains to show that
cT8φ,4c vanishes, if and only if c = 0. In order to see this, suppose that cT8φ,4c,
and thus the right hand side in (15), vanishes. In this case, the symbol function σc,4

in (16) must vanish on an open subset of Rd with nonempty interior. But then, due
to the analyticity of σc,4, this implies that the symbol function vanishes identically on
Rd , i.e., σc,4 ≡ 0. Since the points in 4 are pairwise distinct, and so the exponentials
exp(−iξT

j ω) are linearly independent, the latter is true, if and only if c = 0.

Table 3: Generalized Fourier transforms of radial basis functions.

Radial Basis Function φ(r) = φ̂(s)
·= Order s0

Polyharmonic Splines
r ν

r2k log(r)

s−d−ν

s−d−2k

bνc + 1

2k + 1

Gaussians exp(−r 2) exp(−s2/4) 0

Multiquadrics
(
1 + r 2

)ν
Kd/2+ν(s) · s−(d/2+ν) b2νc + 1

Inverse Multiquadrics
(
1 + r 2

)ν
Kd/2+ν(s) · s−(d/2+ν) 0

2.5. Error estimates in native function spaces

This subsection is devoted to available bounds on the error ‖u − su,4‖L∞(�), where
� ⊂ Rd is a bounded and open domain comprising 4, i.e., 4 ⊂ �. Moreover, it
is assumed that � ⊂ Rd satisfies an interior cone condition, and u lies in the native
function space Fφ associated with the radial basis function φ ∈ CPDd(m).
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In order to explain the native function space Fφ just very briefly, let

Rφ =



sc,p,4 =

∑

ξ∈4
cξφ(‖ · −ξ‖)+ p :4 ⊂ R

d finite ,5T
4c = 0, p ∈ Pd

m





denote the recovery space of φ ∈ CPDd(m) containing all possible interpolants of the
form (2). Due to its conditional positive definiteness, φ provides by

(sc,p,4, sd,q,ϒ)φ =
∑

ξ∈4,υ∈ϒ
cξdυφ(‖ξ − υ‖), for sc,p,4, sd,q,ϒ ∈ Rφ,

a semi-inner product (·, ·)φ , and semi-norm | · |φ = (·, ·)1/2φ , whose kernel are the

polynomials in Pd
m . The topological closure of the linear space (Rφ, | · |φ) is the native

function space Fφ , i.e., Rφ = Fφ .

One key feature of the radial basis function interpolation scheme is its optimal
recovery, which can be explained as follows. For u ∈ Fφ and any finite point set
4 ⊂ Rd , the interpolant su,4 satisfying su,4

∣∣
4

= u
∣∣
4

is the orthogonal projection of u
onto the recovery space Rφ ⊂ Fφ , so that the Pythagoras theorem

|su,4|2φ + |u − su,4|2φ = |u|2φ, for u ∈ Fφ,

holds. Hence, by
|su,4|2φ ≤ |u|2φ, for u ∈ Fφ,

the interpolation process is optimal w.r.t. the optimal recovery space Fφ . For more
details on this, we refer to the variational theory in the seminal papers by Madych &
Nelson [29, 30, 31].

Now let us turn to error estimates. For the radial basis functions in Table 1, available
bounds on the pointwise error εx = u(x)− s(x), x ∈ �, are due to [30, 31, 54] of the
form

(17) |u(x)− su,4(x)| ≤ C · |u|φ · F1/2
φ (h%,4(x)), for u ∈ Fφ,

where, for some specific radius % > 0, the local fill distance

h%,4(x) = max
y∈B%(x)

min
ξ∈4

‖y − ξ‖

reflects the local density of 4 around x , where B%(x) = {y : ‖y − x‖ ≤ %}. Moreover,
Fφ : [0,∞) → [0,∞) is a monotonically increasing function with Fφ(0) = 0, which
depends merely on φ. For the radial basis functions φ in Table 1, its corresponding Fφ
is listed in Table 4, see also [42].

It can be shown that the given pointwise error bounds carry over to uniform bounds
in the domain�, yielding error estimates depending on the fill distance

(18) h4,� = max
y∈�

min
ξ∈4

‖y − ξ‖
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Table 4: Radial basis functions: Convergence Rates (see [42] for details).

Radial Basis Function φ(r) = Fφ(h)
·=

Polyharmonic Splines
r ν

r2k log(r)

hν

h2k

Gaussians exp(−r 2) exp(−α/h)

(Inverse) Multiquadrics
(
1 + r 2

)ν
exp(−α/h)

of 4 in �, i.e.,

(19) ‖u − su,4‖L∞(�) ≤ C · |u|φ · F1/2
φ (h4,�), for u ∈ Fφ .

For further details, we refer to [42, 46].

2.6. Lagrange representation of the interpolant

In the following discussion of this paper, especially in the following Section 3, it is
convenient to work with the Lagrange representation

(20) su,4(x) =
n∑

j=1

λ j (x)u(ξ j )

of the interpolant s ≡ su,4 in (2), where the Lagrange basis functions λ1(x), . . . , λn(x)
satisfy

(21) λ j (ξk) =
{

1, for j = k,

0, for j 6= k
1 ≤ j, k ≤ n,

and so s
∣∣
4

= u
∣∣
4

.

For a fixed x ∈ Rd , the vectors

λ(x) = (λ1(x), . . . , λn(x))
T ∈ R

n and µ(x) = (µ1(x), . . . , µq(x))
T ∈ R

q

are the unique solution of the linear system

(22)

[
8φ,4 54

5T
4 0

]
·
[
λ(x)

µ(x)

]
=
[
ϕ(x)

π(x)

]
,
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where ϕ(x) = (φ(‖x − ξ j ‖))1≤ j≤n ∈ Rn and π(x) = (xα)|α|<m ∈ Rq . We abbreviate
this linear system as

A · ν(x) = β(x)

by letting

A =
[
8φ,4 54

5T
4 0

]
, ν(x) =

[
λ(x)

µ(x)

]
, β(x) =

[
ϕ(x)

π(x)

]
.

This allows us to combine the two alternative representations for s in (20) and (2) by

(23)

s(x) = < λ(x), u
∣∣
4
>

= < ν(x), u4 >

= < A−1 · β(x), u4 >

= < β(x), A−1 · u4 >

= < β(x), b >,

where < ·, · > denotes the inner product of the Euclidean space Rd , and where we let

u4 =
[

u
∣∣
4

0

]
∈ R

n+q and b =
[

c
d

]
∈ R

n+q

for the right hand side and the solution of the linear system (7).

3. Polyharmonic spline interpolation

In this section, details on the interpolation by polyharmonic splines, often also referred
to as surface splines, are explained. The utility of polyharmonic splines for multivariate
interpolation was established by Duchon [8, 9, 10]. In order to discuss the particular
setting of Duchon, let us be more specific about the choice of the basis function φ.
According to [8, 9, 10], we assume from now the form

φd,k(r) =
{

r2k−d log(r), for d even,

r2k−d , for d odd,

for the polyharmonic splines, where k is required to satisfy 2k > d. According to
Table 1 (last column), the order of φd,k is given by m = k − dd/2e + 1.

Now note that the inclusion CPDd(m1) ⊂ CPDd(m2), for m1 ≤ m2, allows us to
also work with any order greater than m. In order to comply with Duchon’s setting,
we replace the minimal choice m = k − dd/2e + 1 by k ≥ m. Therefore, we let from
now m = k for the order of φd,k ∈ CPDd(m). We come back with an explanation
concerning this particular choice for m later in Subsection 3.1.
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With using m = k, the resulting interpolant in (2) has the form

(24) s(x) =
n∑

i=1

ciφd,k(‖x − ξi‖)+
∑

|α|<k

dαxα .

We remark that the polyharmonic spline φd,k is the fundamental solution of the k-th
iterated Laplacian, i.e.,

1kφd,k(‖x‖) = cδx .

For instance, for d = k = 2, the thin plate spline φ2,2(r) = r 2 log(r) solves the
biharmonic equation

11φ2,2(‖x‖) = cδx .

In this case, the interpolant s in (24) has the form

(25) s(x) =
n∑

i=1

ci‖x − ξi‖2 log(‖x − ξi‖)+ d1 + d2x1 + d3x2,

where we let x = (x1, x2)
T ∈ R

2. Finally, we remark that for the univariate case,
where d = 1, the polyharmonic spline φ1,k = r2k−1, k ≥ 1, coincides with the natural
spline of order 2k.

3.1. Optimal recovery in Beppo-Levi spaces

Recall the discussion in Subsection 2.5 concerning optimal recovery of radial basis
function interpolation in native function spaces. In this subsection, we wish to discuss
the native function space of polyharmonic splines.

Due to fundamental results in the seminal papers [8, 9, 10] of Duchon and [32, 33,
34] of Meinguet, for a fixed finite point set 4 ⊂ Rd , an interpolant s in (24) minimizes
the energy

(26) |u|2
BLk(Rd )

=
∫

Rd

∑

|α|=k

(
k
α

) (
Dαu

)2
dx,

(
k
α

)
= k!

α1! · · · · · αd !
,

among all functions u of the Beppo-Levi space

BLk(Rd) =
{

u ∈ C(Rd) : Dαu ∈ L2(Rd) for all |α| = k
}

⊂ C(Rd)

satisfying u
∣∣
4

= s
∣∣
4

. So the Beppo-Levi space BLk(Rd) is equipped with the semi-
norm | · |BLk(Rd), whose kernel is the polynomial space Pd

k . The latter explains why
we use order m = k rather than the minimal choice m = k − dd/2e + 1. In this case,
the Beppo-Levi space BLk(Rd) is the optimal recovery space Fφ for the polyharmonic
splines φd,k . Note that BLk(Rd) is the Sobolev space H k(Rd).
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When working with thin plate splines, φ2,2(r) = r 2 log(r), in two dimensions we
have

|u|2
BL2(R2)

=
∫

R2

(
u2

x1x1
+ 2u2

x1x2
+ u2

x2x2

)
dx1 dx2, for u ∈ BL2(R2).

In this case, the semi-norm | · |BL2(R2) is the bending energy of a thin plate of infinite
extent, and this explains the naming of thin plate splines.

3.2. Approximation order

The following result concerning the convergence rate of polyharmonic spline interpo-
lation is dating back to Wu & Schaback [54] (cf. Subsection 2.5).

THEOREM 5. Let � be a bounded and open domain satisfying an interior cone
condition. Then, there exist constants h0,C, such that for any finite point set 4 ⊂ �

satisfying h4,� ≤ h0 and any function u ∈ BLk(Rd) the error bound

‖u − s‖L∞(�) ≤ C · |u|BLk(Rd )h
k−d/2
4,�

holds, where s is the polyharmonic spline interpolant in (24), using φd,k , satisfying
s
∣∣
4

= u
∣∣
4

.

Hence, in this sense, the global approximation order of the polyharmonic spline
interpolation scheme, using φd,k , is p = k − d/2 with respect to the Beppo-Levi space
BLk(Rd).

In the following discussion of this subsection, we analyze the approximation order
of local polyharmonic spline interpolation. We remark that this analysis in combination
with the subsequent discussion concerning the stability of local polyharmonic spline
interpolation is relevant for the application in the following Section 4.

As regards the local approximation order, we consider solving, for some fixed point
ξ0 ∈ Rd and any h > 0, the interpolation problem

(27) u(ξ0 + hξ j ) = sh(ξ0 + hξ j ), 1 ≤ j ≤ n,

where 4 = {ξ1, . . . , ξn} ⊂ Rd is a Pd
k -unisolvent point set of moderate size, i.e., n is

small. Moreover, sh denotes the unique polyharmonic spline interpolant of the form

(28) sh(hx) =
n∑

j=1

ch
jφd,k(‖hx − hξ j ‖)+

∑

|α|<k

dh
α(hx)α

satisfying (27). The discussion in this subsection is dominated by the following defini-
tion.

DEFINITION 4. Let sh denote the polyharmonic spline interpolant, using φd,k , sat-
isfying (27). We say that the approximation order of local polyharmonic spline inter-
polation at ξ0 ∈ Rd and with respect to the function space F is p, iff for any u ∈ F the
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asymptotic bound

|u(ξ0 + hx)− sh(ξ0 + hx)| = O(h p), h → 0,

holds for any x ∈ Rd , and any finite Pd
k -unisolvent point set 4 ⊂ Rd .

For the sake of notational simplicity, we let from now ξ0 = 0, which is, due to the
shift-invariance of the interpolation scheme, without loss of generality.

Note that the coefficients ch = (ch
1 , . . . , ch

n)
T ∈ Rn, dh = (dh

α)|α|<k ∈ Rq of (28)
are solving the linear system

(29)

[
8h 5h

5T
h 0

]
·
[

ch

dh

]
=
[

u
∣∣
h4

0

]
,

where we let

8h =
(
φd,k(‖hξi − hξ j ‖

)
1≤i, j≤n ∈ R

n×n,

5h =
(
(hξi )

α
)

1≤i≤n;|α|<k ∈ R
n×q,

u
∣∣
h4 = (u(hξi ))1≤i≤n ∈ R

n.

We abbreviate the above linear system (29) as

(30) Ah · bh = uh,

i.e., for notational brevity, we let

Ah =
[
8h 5h

5T
h 0

]
, bh =

[
ch

dh

]
, and uh =

[
u
∣∣
h4

0

]
.

Recall from the discussion in Subsection 2.6 that any interpolant sh satisfying (27)
has a Lagrange-type representation of the form

(31) sh(hx) =
n∑

i=1

λh
i (hx)u(hξi ),

corresponding to the one in (20), where moreover

(32)
n∑

i=1

λh
i (hx)p(hξi) = p(hx), for all p ∈ Pd

k ,

due to the reconstruction of polynomials in Pd
k .
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Moreover, for x ∈ Rd , the vector λh(hx) = (λh
1(hx), . . . , λh

n(hx))T ∈ Rn is,
together with µh(hx) = (µh

α(hx))|α|<k ∈ Rq , the unique solution of the linear system

(33)

[
8h 5h

5T
h 0

]
·
[
λh(hx)

µh(hx)

]
=
[
ϕh(hx)

πh(hx)

]
,

where

8h =
(
φd,k(‖hξi − hξ j ‖)

)
1≤i, j≤n ∈ R

n×n,

5h =
(
(hξi )

α
)

1≤i≤n;|α|<k ∈ R
n×q ,

ϕh(hx) =
(
φd,k(‖hx − hξ j ‖)

)
1≤ j≤n ∈ R

n,

πh(hx) =
(
(hx)α

)
|α|<k ∈ R

q .

It is convenient to abbreviate the system (33) as Ah · νh(hx) = βh(hx), i.e., we let

Ah =
[
8h 5h

5T
h 0

]
, νh(hx) =

[
λh(hx)

µh(hx)

]
, βh(hx) =

[
ϕh(hx)

πh(hx)

]
.

Starting with the Lagrange representation of sh in (31), we obtain

(34)

sh(hx) = < λh(hx), u
∣∣
h4 >

= < νh(hx), uh >

= < A−1
h · βh(hx), uh >

= < βh(hx), A−1
h · uh >

= < βh(hx), bh >,

see the identity (23). This in particular combines the two alternative representations for
sh in (31) and (28).

The following lemma, proven in [25], plays a key role in the following discussion.
It states that the Lagrange basis of the polyharmonic spline interpolation scheme is
invariant under uniform scalings. As established in the recap of the proof from [25]
below, this result mainly relies on the (generalized) homogeneity of φd,k .

LEMMA 1. For any h > 0, let λh(hx) be the solution in (33). Then,

λh(hx) = λ1(x), for every x ∈ R
d .

Proof. For fixed 4 = {ξ1, . . . , ξn} ⊂ Rd , and any h > 0, let

Rh
φ,4 =

{
n∑

i=1

ciφd,k(‖ · −hξi‖)+ p : p ∈ Pd
k ,

n∑

i=1

ciq(ξi) = 0 for all q ∈ Pd
k

}
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denote the space of all possible polyharmonic spline interpolants of the form (28)
satisfying (27). In what follows, we show that Rh

φ,4 is a scaled version of R1
φ,4,

so that Rh
φ,4 =

{
σh(s) : s ∈ R1

φ,4

}
, where the dilatation operator σh is given by

σh(s) = s(·/h). This then implies that, due to the unicity of the interpolation in
either space, Rh

φ,4 or R1
φ,4, their Lagrange basis functions must coincide by satisfying

λh = σh(λ
1), as stated above.

In order to show that Rh
φ,4 = σh(R

1
φ,4), we distinguish the special case where

d is even from the one where d is odd. If the space dimension d is odd, then
Rh
φ,4 = σh(R

1
φ,4) follows immediately from the homogeneity of φd,k , where

φd,k(hr) = h2k−dφd,k(r).

Now suppose that d is even. In this case we have

φd,k(hr) = h2k−d
(
φd,k(r)+ r 2k−d log(h)

)
.

Therefore, any function sh ∈ Rh
φ,4 has, for some p ∈ Pd

k , the form

sh(hx) = h2k−d

(
n∑

i=1

ch
i φd,k(‖x − ξi‖)+ log(h)q(x)

)
+ p(x),

where we let

q(x) =
n∑

i=1

ch
i ‖x − ξi‖2k−d .

In order to see that sh is contained in σh(R
1
φ,4), it remains to show that the degree of

the polynomial q is at most k − 1. To this end, we rewrite q as

q(x) =
n∑

i=1

ch
i

∑

|α|+|β|=2k−d

cα,β · xα(ξi)
β =

∑

|α|+|β|=2k−d

cα,β · xα
n∑

i=1

ch
i (ξi )

β,

for some coefficients cα,β ∈ R with |α| + |β| = 2k − d. Due to the vanishing moment
conditions

n∑

i=1

ch
i p(hξi) = 0, for all p ∈ Pd

k ,

for the coefficients ch
1 , . . . , ch

n , this implies that the degree of q is at most 2k − d − k =
k − d < k. Therefore, sh ∈ σh(R

1
φ,4), and so Rh

φ,4 ⊂ σh(R
1
φ,4). The inclusion

R1
φ,4 ⊂ σ−1

h (Rh
φ,4) can be proven accordingly.

Altogether, we find that Rh
φ,4 = σh(R

1
φ,4) for any d, which completes our proof.

Now let us draw important conclusions on the approximation order of local poly-
harmonic spline interpolation with respect to C k . To this end, regard for u ∈ Ck , any
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x ∈ Rd and h > 0, the k-th order Taylor polynomial

(35) ph(y) =
∑

|α|<k

1

α!
Dαu(hx)(y − hx)α.

By using

u(hx) = ph(hξi )−
∑

0<|α|<k

1

α!
Dαu(hx)(hξi − hx)α, for all 1 ≤ i ≤ n,

in combination with (31) and (32), we obtain the identity

u(hx)− sh(hx) =
n∑

i=1

λh
i (hx)

[
ph(hξi )− u(hξi )

]
.

Now due to Lemma 1, the Lebesgue constant

3 = sup
h>0

n∑

i=1

∣∣λh
i (hx)

∣∣ =
n∑

i=1

∣∣λ1
i (x)

∣∣

is bounded, locally around the origin ξ0 = 0, and therefore we can conclude

|u(hx)− sh(hx)| = O(hk), h → 0.

Altogether, this yields the following result.

THEOREM 6. The approximation order of local polyharmonic spline interpolation,
using φd,k , with respect to Ck is p = k.

We remark that the above Theorem 6 generalizes a previous result in [21] concern-
ing the local approximation order of thin plate spline interpolation in the plane.

COROLLARY 1. The approximation order of local thin plate spline interpolation,
using φ2,2 = r2 log(r), with respect to C2 is p = 2.

3.3. Numerical stability

This section is devoted to the construction of a numerically stable algorithm for the
evaluation of polyharmonic spline interpolants. Recall that the stability of an algo-
rithm always depends on the conditioning of the given problem. For a more general
discussion on the relevant principles and concepts from error analysis, especially the
condition number of a given problem versus the stability of a numerical algorithm, we
recommend the textbook [22].

In order to briefly explain the conditioning of polyharmonic spline interpolation,
let � ⊂ Rd denote a compact domain comprising 4 = {ξ1, . . . , ξn}, i.e., 4 ⊂ �, the
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Pd
k -unisolvent set of interpolation points. Now recall that the condition number of an

interpolation operator I : C(�) → C(�), � ⊂ Rd , w.r.t. the L∞-norm ‖ · ‖L∞(�), is
the smallest number κ∞ satisfying

‖Iu‖L∞(�) ≤ κ∞ · ‖u‖L∞(�) for all u ∈ C(�).

Thus, κ∞ is the operator norm of I w.r.t. the norm ‖ · ‖L∞(�). In the situation of
polyharmonic spline interpolation, the interpolation operator Id,k : C(�) → C(�),
returns, for any given argument u ∈ C(�) the polyharmonic spline interpolant
Id,k(u) = su ∈ C(�) of the form (24) satisfying su

∣∣
4

= u
∣∣
4

. The following re-
sult is useful for the subsequent discussion on the stability of local interpolation by
polyharmonic splines.

THEOREM 7. The condition number κ∞ of interpolation by polyharmonic splines
is given by the Lebesgue constant

(36) 3(�,4) = max
x∈�

n∑

i=1

|λi (x)|.

Proof. For u ∈ C(�), let u
∣∣
4

be given, and let su = Id,k(u) ∈ C(�) denote the inter-
polant of the form (24) satisfying u

∣∣
4

= su
∣∣
4

. Using the Lagrange-type representation

su(x) =
n∑

i=1

λi(x)u(ξi)

of su , we obtain

‖Id,ku‖L∞(�) = ‖su‖L∞(�) ≤ max
x∈�

n∑

i=1

|λi (x)| · |u(ξi)| ≤ 3(�,4) · ‖u‖L∞(�)

for all u ∈ C(�), and therefore κ∞ ≤ 3(�,4).

In order to see that κ∞ ≥ 3(�,4), suppose that the maximum of 3(�,4) in
(36) is attained at x∗ ∈ �. Moreover, let g ∈ C(�) denote any function satisfying
g(ξi ) = sign(λi (x∗)), for all 1 ≤ i ≤ n, and ‖g‖L∞(�) = 1. Then, we obtain

‖Id,k g‖L∞(�) ≥
(
Id,kg

)
(x∗) =

n∑

i=1

λi(x
∗)g(ξi) =

n∑

i=1

|λi (x
∗)| = 3(�,4)

and thus ‖Id,kg‖L∞(�) ≥ 3(�,4)‖g‖L∞(�). But this implies 3(�,4) ≤ κ∞. Alto-
gether, κ∞ = 3(�,4), which completes our proof.

The above Lemma 1 immediately yields the following important result concerning
the stability of interpolation by polyharmonic splines.
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THEOREM 8. The absolute condition number of polyharmonic spline interpolation
is invariant under rotations, translations and uniform scalings.

Proof. Interpolation by polyharmonic splines is invariant under rotations and transla-
tions. It is easy to see that this property carries over to the absolute condition num-
ber. In order to see that κ∞ ≡ κ∞(�,4) is also invariant under uniform scalings, let
�h = {hx : x ∈ �} and 4h = {hξ : ξ ∈ 4}. Then, we obtain

3(�h, 4h) = max
hx∈�h

n∑

i=1

λh
i (hx) = max

x∈�

n∑

i=1

λi (x) = 3(�,4)

which shows that κ∞(�h, 4h) = κ∞(�,4).

Now let us turn to the construction of a numerically stable algorithm for evaluating
the polyharmonic spline interpolant sh satisfying (27). To this end, we require that
the given interpolation problem (27) is well-conditioned. Note that according to The-
orem 8, this requirement depends on the geometry of the interpolation points 4 w.r.t.
the center ξ0, but not on the scale h.

However, the spectral condition number of the matrix Ah depends on h. The fol-
lowing rescaling can be viewed as a simple way of preconditioning the matrix Ah for
very small h. To this end, in order to evaluate the polyharmonic spline interpolant sh

satisfying (27), we prefer to work with the representation

(37) sh(hx) =< β1(x), A−1
1 · uh >,

which immediately follows from the identity (34) and the scale-invariance of the La-
grange basis, Lemma 1. Due to (37) we can evaluate sh at hx by solving the linear
system

(38) A1 · b = uh .

The solution b ∈ Rn+q in (38) then yields the coefficients of sh(hx) w.r.t. the basis
functions in β1(x).

By working with the representation (37) for sh instead of the one in (28), we can
avoid solving the linear system (30). This is useful insofar as the linear system (30)
is ill-conditioned for very small h, but well-conditioned for sufficiently large h. The
latter relies on earlier results due to Narcowich and Ward [37], where it is shown that
the spectral norm of the matrix 8−1

h is bounded above by a monotonically decreasing
function of the minimal Euclidean distance between the points in h4. This in turns
implies that one should, for the sake of numerical stability, avoid solving the system
(30) directly for very small h. For further details on this, see [37] and the more general
discussion provided by the recent paper [43] of Schaback.
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4. Meshfree methods for transport problems

4.1. Transport equations

Numerical methods in flow simulation are concerned with time-dependent hyperbolic
conservation laws of the form

(39)
∂u

∂ t
+ ∇ f (u) = 0,

where for some domain � ⊂ Rd , d ≥ 1, and a compact time interval I = [0, T ],
T > 0, the solution u : I ×� → R of (39) is sought.

Moreover, f (u) = ( f1(u), . . . , fd (u))T denotes a given flux tensor, and we assume
that initial conditions

(40) u(0, x) = u0(x), for x ∈ �,

at time t = 0 are given.

One special case for (39) is passive advection, where the flux f is linear, i.e.,

f (u) = v · u,

and thus (39) becomes

(41)
∂u

∂ t
+ v · ∇u = 0,

provided that the given velocity field

v = v(t, x) ∈ R
d, t ∈ I, x ∈ �,

is divergence-free, i.e.,

div v =
d∑

j=1

∂v j

∂x j
≡ 0.

For a comprehensive introduction to hyperbolic conservation laws, we recommend
the textbook [28].

4.2. Semi-lagrangian advection

For the special case of passive advection, the resulting Cauchy problem (41), (40) is
well-posed. In this case, the solution u is constant along the streamlines of fluid parti-
cles, and the shapes of these streamlines are entirely determined by the given velocity
field v.

This suggests to work with a semi-Lagrangian method (SLM) in order to solve the
Cauchy problem for passive advection. Loosely speaking, a SLM is one which follows
the flow of a discrete set of particles along their streamline trajectories, and moreover
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the particle set is subject to dynamic changes during the simulation. Therefore, any
SLM may be regarded as a special instance of the classical method of characteristics
(MOC). Indeed, this is because the streamlines of the flow particles are the character-
istic curves of the equation (41) [28].

In order to be more precise about the SLM, let 4 ⊂ � denote a current finite
set of nodes, at time t ∈ I , each of whose elements ξ ∈ 4 corresponds to a fluid
particle located at ξ . Now for a fixed time step size τ > 0, the advection in the
SLM at time step t → t + τ is accomplished as follows. For any node ξ ∈ 4, an
approximation to its upstream point x− ≡ x−(ξ) is computed. The upstream point
x− of ξ is the spatial location of that particle at time t , which by traversing along
its corresponding streamline arrives at the node ξ at time t + τ . Figure 1 shows the
corresponding upstream point of a node ξ , along with its streamline trajectory.

x−

ξ

Figure 1: The point x− is the upstream point of the node ξ .

We remark that computing the upstream point x− of any node ξ ∈ 4 amounts to
solving the ordinary differential equation (ODE)

(42) ẋ = dx

dt
= v(t, x)

with initial condition x(t + τ) = ξ , and so x(t) = x−.

Adopting some standard notation from dynamic systems, we can express the up-
stream point x− of ξ as

(43) x− = 8t,t+τξ,

where 8t,t+τ : � → � denotes the continuous evolution of the (backward) flow of
(42). An equivalent formulation for (43) is given by ξ = 8t+τ,t x−, since 8t+τ,t is the
inverse of 8t,t+τ .
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Now since the solution u of (41) is constant along the trajectories of the flow parti-
cles, we have u(t, x−) = u(t + τ, ξ), and so the desired values {u(t + τ, ξ)}, ξ ∈ 4,
may immediately be obtained from the upstream point values u(t, x −). But in general,
neither the exact location of x−, nor the value u(t, x−) is known.

Therefore, during the performance of the flow simulation, this requires first com-
puting an approximation x̃ of the upstream point x− = 8t,t+τ ξ for each ξ ∈ 4. It is
convenient to express the approximation x̃ of x− as

x̃ = 9 t,t+τξ,

where 9 t,t+τ : � → � is the discrete evolution of the flow, corresponding to the
continuous evolution 8t,t+τ in (43) [7]. The operator 9 t,t+τ is given by any specific
numerical method for solving the above ODE (42).

Having computed x̃ , the value u(t, x̃) is then determined from the current values
{u(t, ξ)}ξ∈4 by local interpolation. Altogether, the above discussion leads us to the
following algorithm concerning the advection step t → t + τ of the semi-Lagrangian
method.

ALGORITHM 1. (Semi-lagrangian advection).

INPUT: Time step size τ > 0, node set 4 ⊂ �, and values {u(t, ξ)}ξ∈4.

FOR each ξ ∈ 4 DO

(a) Compute the upstream point approximation x̃ = 9 t,t+τ ξ ;

(b) Determine the value u(t, x̃) by local interpolation;

(c) Advect by letting u(t + τ, ξ) = u(t, x̃).

OUTPUT: The values u(t + τ, ξ), for all ξ ∈ 4, at time t + τ .

The local interpolation in step (b) of the above algorithm needs some comments.
First note that x̃ , the approximation of the upstream point of ξ , is not necessarily con-
tained in the node set 4. Therefore, the desired value u(t, x̃) is to be computed from
the given values {u(t, ξ)}ξ∈4 of u at the nodes in4. This is done by local interpolation.
To this end, a set N ≡ N (x̃) ⊂ 4 of neighbouring nodes of x̃ is determined. In order
to make one concrete example, N could, for some suitable number n, be the set of n
nearest neighbours of x̃ in 4. The given function values of u(t, ·) at the neighbouring
nodes are then used in order to solve the interpolation problem

(44) u(t, ν) = s(ν), for all ν ∈ N ,

by a suitable scattered data interpolation scheme, which outputs an interpolant s : � →
R satisfying (44). For this purpose, we prefer to work with polyharmonic spline inter-
polation, so that s in (44) is required to have the form (24). The desired approximation
of u(t, x̃) is obtained by the evaluation of s at x̃ , so we let u(t, x̃) = s(x̃).
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We remark that semi-Lagrangian advection schemes of the above form are uncondi-
tionally stable. This is in contrast to Eulerian schemes, which, for the sake of stability,
typically work with very small time steps [28]. For a concise analysis concerning the
convergence and stability of semi-Lagrangian methods, we refer to the paper [14] by
Falcone and Ferretti. A more general discussion on semi-Lagrangian methods is pro-
vided in the textbooks [11, 36]; for applications of the SLM in atmospheric problems,
see the review [49] by Staniforth and Côté and the seminal papers [40, 41] of Robert.

4.3. Method of backward characteristics

Now let us return to the general case of (39) where the flux function f is, unlike in
(41), nonlinear. We remark that nonlinear cases are much more complicated than the
linear one of passive advection. Therefore, the construction of a generalization to the
above semi-Lagrangian method in Algorithm 1 requires particular care. Indeed, in
contrast to the linear case, a nonlinear flux function f usually leads to discontinuities
in the solution u, shocks, as observed in many relevant applications, such as fluid flow
and gas dynamics. In such situations, the classical method of characteristics becomes
unwieldy or impossible, as the evolution of the flow along the characteristic curves is
typically very complicated, or characteristic curves may even be undefined (see [11,
Subsection 6.3.1] for a discussion on these phenomena).

Now in order to be able to model the behaviour of the solution with respect to
shock formation and shock propagation we work with a vanishing viscosity approach,
yielding the modified advection-diffusion equation

∂u

∂ t
+ ∇ f (u) = ε ·1u,(45)

where the parameter ε > 0 is referred to as the diffusion coefficient. In this way, the so-
lution u of the hyperbolic equation (39) is approximated arbitrarily well by the solution
of the modified parabolic equation (45), provided that the parameter ε is sufficiently
small. This modification is a standard stabilization technique for nonlinear equations,
dating back to Burgers [6], who utilized a flux function of the form

(46) f (u) = 1

2
u2 · r,

with some flow direction r ∈ Rd , for modelling free turbulences in fluid dynamics.
The resulting Burgers equation is nowadays a popular standard test case for nonlinear
transport equations. We come back to this test case in Subsection 5.2.

Now let us propose a meshfree advection scheme for solving the above nonlinear
equation (45). Starting point for this modified approach is the discretization

u(t + τ, ξ) − u(t, x−)

τ
= ε ·1u(t, x−)(47)

of the Lagrangian form
du

dt
= ε ·1u,
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of (45), where
du

dt
= ∂u

∂ t
+ ∇ f (u)

is the material derivative.

Note that the discretization in (47) allows us to work with a similar advection
scheme as in the linear case, given by Algorithm 1. Indeed, having computed for
any ξ ∈ 4 an approximation x̃ = 9 t,t+τξ to its upstream point x− = 8t,t+τ ξ , the
desired approximation of u(t + τ, ξ) is then given by

u(t + τ, ξ) = u(t, x̃)+ τ · ε ·1u(t, x̃), for ξ ∈ 4.

However, in contrast to plain passive advection, the characteristic curves of the equa-
tion (45) depend also on u. In particular, the advection velocity v = ∂ f (u)

∂u depends on
u. This amounts to applying a more sophisticated integration scheme (compared with
the one of the previous subsection) in order to compute for any ξ ∈ 4 its corresponding
upstream point approximation x̃ = 9 t,t+τξ . For the sake of brevity, we prefer to omit
these lengthy technical details, which are immaterial for the purposes of this chapter.
Instead, we refer to the discussion in [3].

The following algorithm reflects the advection step t → t + τ of the suggested
method of (backward) characteristics.

ALGORITHM 2. (Method of characteristics).

INPUT: Time step τ , nodes 4, values {u(t, ξ)}ξ∈4, diffusion coefficient ε.

FOR each ξ ∈ 4 DO

(a) Compute the upstream point approximation x̃ = 9 t,t+τ ξ ;

(b) Determine the values u(t, x̃) and 1u(t, x̃) by local interpolation;

(c) Advect by letting u(t + τ, ξ) = u(t, x̃)+ τ · ε ·1u(t, x̃).

OUTPUT: The values u(t + τ, ξ), for all ξ ∈ 4, at time t + τ .

Step (b) of Algorithm 2 deserves a comment concerning the interpolation of the
value 1u(t, x̃). Similar as in Algorithm 1 we work with local interpolation by poly-
harmonic splines, but with a smoother basis function, such that the Laplacian1s of the
interpolant s satisfying (44) is everywhere well-defined. The desired approximation of
1u(t, x̃) is then obtained by 1s(t, x̃).

4.4. Adaption rules

In this section, the adaptive modification of the node set 4 is explained. This is done
after each time step t → t + τ of the semi-Lagrangian method (Algorithm 1) in case of
passive advection (41), or of the method of characteristics (Algorithm 2), when solving
nonlinear advection-diffusion equations of the form (45). In either case, the current
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node values u(t, ξ), ξ ∈ 4, are used in order to adaptively modify 4. Immediately
before the first time step 0 → τ , the nodes are first randomly chosen in �, before the
adaption rules, to be explained below, are applied. This then yields the initial node set
4 ≡ 4(0).

The modification of the current node set 4 ≡ 4(t) (at time t) is accomplished by
the removal (coarsening), and the insertion (refinement) of selected nodes, so that a
modified node set 4 ≡ 4(t + τ) (at time t + τ ) is obtained. The adaptive modification
of the nodes in 4 relies on a customized a posteriori error indicator, to be explained in
the following subsection.

Error indication.

An effective strategy for the adaptive modification of the nodes requires well-motivated
refinement and coarsening rules as well as a customized error indicator. We understand
the error indicator η : 4 → [0,∞) as a function of the current node set 4 ≡ 4(t) (at
time t) which assigns a significance value η(ξ) to each node ξ ∈ 4. The value η(ξ) is
required to reflect the local approximation quality of the interpolation around ξ ∈ 4.
The significances η(ξ), ξ ∈ 4, are then used in order to flag single nodes ξ ∈ 4 as “to
be refined” or “to be coarsened” according to the following criteria.

DEFINITION 5. Let η∗ = maxξ∈4 η(ξ), and let θcrs, θref be two tolerance values
satisfying 0 < θcrs < θref < 1. We say that a node ξ ∈ 4 is to be refined, iff η(ξ) >
θref · η∗, and ξ is to be coarsened, iff η(ξ) < θcrs · η∗.

In our numerical examples, typical choices for the relative tolerance values are
θcrs = 0.001 and θref = 0.1. Note that a node ξ cannot be refined and be coarsened at
the same time; in fact, it may neither be refined nor be coarsened.

Now let us turn to the definition of the error indicator η. To this end, we follow
along the lines of [21], where a scheme for the detection of discontinuities of a surface,
fault lines, from scattered data was developed. We let

η(ξ) = |u(ξ)− s(ξ)|,
where s ≡ sN denotes the polyharmonic spline interpolant, which matches the val-
ues of u ≡ u(t, ·) at a neighbouring set N ≡ N (ξ) ⊂ 4 \ ξ of current nodes, i.e.,
s(ν) = u(ν) for all ν ∈ N . In our numerical examples for bivariate data, where d = 2,
we work with local thin plate spline interpolation. Recall that this particular interpo-
lation scheme reconstructs linear polynomials. In this case, the value η(ξ) vanishes
whenever u is linear around ξ . Moreover, the indicator η(ξ) is small whenever the
local reproduction quality of the interpolant s is good. In contrast to this, a high value
of η(ξ) typically indicates that u is subject to strong variation locally around ξ .

Coarsening and refinement

In order to obtain good approximation quality at small computational costs, we insert
new nodes into regions where the value of η is high (refinement), whereas nodes from
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4 are removed in regions where the value of η is small (coarsening).

To avoid additional computational overhead and complicated data structures, effec-
tive adaption rules are required to be as simple as possible. In particular, these rules
ought to be given by local operations on the current node set 4. The following coars-
ening rule is in fact very easy and, in combination with the refinement, it turned out to
be very effective as well.

Coarsening. A node ξ ∈ 4 is coarsened by its removal from the current node set 4,
i.e., 4 is modified by replacing 4 with 4 \ ξ .

As to the refinement rules, these are constructed on the basis of the local error
estimate (17) for polyharmonic spline interpolation. The refinement of any node ξ ∈ 4
should aim at the reduction of the local error (17) around ξ . We accomplish this by
reducing the distance function

dN = min
ν∈N

‖ · −ν‖

in a local neighbourhood of ξ . In order to explain this, we need to recall some ingredi-
ents from computational geometry, in particular Voronoi diagrams [39].

For any node ξ ∈ 4, its corresponding Voronoi tile

V4(ξ) =
{

y ∈ R
d : d4(y) = ‖y − ξ‖

}
⊂ R

d

w.r.t. the point set 4 is a convex polyhedron containing all points in Rd which are at
least as close to ξ as to any other point in 4. The boundary vertices of V4(ξ), called
Voronoi points, form a finite point set Vξ in the neighbourhood of ξ . Figure 2 shows
the Voronoi tile V4(ξ) of a node ξ along with the set Vξ of its Voronoi points.

ξ

VΞ(ξ)

Figure 2: Refinement of the node ξ . The Voronoi points (�) are inserted.

Now observe that for any ξ ∈ N , the distance function dN is convex on V4(ξ).
Moreover, the function dN has local maxima at the Voronoi points in Vξ . Altogether,
this gives rise to define the local refinement of nodes as follows.
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Refinement. A node ξ ∈ 4 is refined by the insertion of its Voronoi points into the
current node set 4, i.e., 4 is modified by replacing 4 with 4 ∪ Vξ .

5. Meshfree fluid flow simulation

In this section, the good performance of the proposed meshfree advection scheme is
shown, where the utility of the adaptive sampling strategy is demonstrated. To this
end, we work with the following two popular test case scenarios from flow simulation.

The slotted cylinder, subject of Subsection 5.1, is concerning passive advection. In
this case, the semi-Lagrangian method (Algorithm 1) in combination with the adaption
rules of Subsection 4.4 is used. The subsequent discussion in Subsection 5.2 is then
devoted to the aforementioned nonlinear Burgers equation. In this test case, we work
with the method of characteristics (Algorithm 2) in combination with the adaption rules
of Subsection 4.4

5.1. The slotted cylinder: a test case for passive advection

The slotted cylinder, suggested by Zalesak [55], is a popular test case scenario for
flow simulation concerning passive advection. In this test case, the domain � =
[−0.5, 0.5] × [−0.5, 0.5] ⊂ R2 is the shifted unit square, and the initial conditions
in (40) are given by

u0(x) =
{

1 for x ∈ D,
0 otherwise,

where D ⊂ � is the slotted disc of radius r = 0.15 centered at (−0.25, 0) with slot
width 0.06 and length 0.22, see Figure 3 (a).
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Figure 3: The slotted cylinder. (a) Initial condition and (b) velocity field.
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The slotted cylinder is rotated counter-clockwise by the steady flow field v(x) =
(−x2, x1), see Figure 3 (b). Throughout the simulation, we work with a constant time
step size τ = 0.1, so that one revolution of the slotted cylinder around the origin
requires 63 time steps. In our numerical experiment, we have recorded ten revolutions
of the slotted cylinder, i.e., we let I = [0, 629τ ].

Figure 6 shows the 3D view on the solution u and the corresponding node distribu-
tion during the first revolution of the slotted cylinder, at times t16 = 16τ , t32 = 32τ ,
and t47 = 47τ . Observe that the distribution of the nodes is well-adapted to the edges
of the slotted cylinder. In fact, the dense sampling along the edges leads to a high res-
olution of the model near the discontinuities of the solution u. On the other hand, the
sparsity of the sampling in flat regions, where u is constant, serves to reduce the data
size of the model, and thus the required computational costs. In conclusion, due to the
adaptive sampling strategy, the two (conflicting) requirements of good approximation
quality and computational efficiency are well-balanced.

As to the long-term behaviour of the simulation, Figure 7 shows in comparison the
3D view and the node distribution for the initial condition u0, along with the numerical
solution u obtained after five (at time t315 = 315τ ) and ten (at time t629 = 629τ ) full
revolutions of the slotted cylinder. Observe that the shape of the slotted cylinder is
maintained remarkably well. Moreover, numerical diffusion is widely avoided. This
robust behaviour is due to the adaptive node sampling, which continues to resolve the
edges of the slotted cylinder very well.

5.2. Burgers equation: a nonlinear standard test

The equation

(48)
∂u

∂ t
+ u∇u · r = ε ·1u,

was introduced in 1940 by Burgers [6] as a mathematical model of free turbulence in
fluid dynamics. Burgers equation (48) is nowadays a popular standard test case for the
simulation of nonlinear flow processes, and for the modelling of shock waves.

The nonlinear flux tensor (46) leads, in the hyperbolic equation (39), to shocks. As
soon as the shock front occurs, there is no classical solution of the equation (39), and
its weak solution becomes discontinuous. However, the modified parabolic equation
(48) has for all t > 0 a smooth solution uε which approximates (for sufficiently small
ε) the occuring shock front propagation arbitrarily well.

We use Burgers equation (48) in order to demonstrate the utility of adaptive sam-
pling, in combination with the meshfree method of characteristics (Algorithm 2), for
the modelling of shock fronts.

In the considered test case, we let

u0(x) =





0 for ‖x − c‖ ≥ R,

exp
(

‖x−c‖2

‖x−c‖2−R2

)
otherwise,



276 A. Iske

for the initial condition in (40), where R = 0.25, c = (0.3, 0.3), and we let the unit
square � = [0, 1]2 be the computational domain. Figure 4 shows the initial condition
and the flow field r = (1, 1), being aligned along the diagonal in �.
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Figure 4: Burgers equation. (a) Initial condition u0 and (b) flow field.
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Figure 5: Burgers equation. (a) Randomly chosen node set of size |4| = 4446 and (b)
initial node distribution comprising |4| = 1484 nodes.

The adaptive distribution of the initial node set is shown in Figure 5 (b). Recall
that the construction of this node set is done by applying the adaption rules of Subsec-
tion 4.4 on a randomly chosen node set in �. To this end, we first selected the node set
4 displayed in Figure 5 (a), of size |4| = 4446, by random, before the significances
η(ξ) at the nodes in4 are used in order to compute the initial node set4 ≡ 4(0) of the
simulation, shown in Figure 5 (b). Observe that the adaptive distribution of the nodes
in Figure 5 (b) manages to localize the support of the initial condition u0 very well.
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Moreover, in this simulation, a constant time step size τ = 0.004 is selected, and
we let I = [0, 330τ ]. A plot of the numerical solution u at the three time steps t110 =
110τ , t220 = 220τ , and t330 = 330τ is shown in Figure 8, along with the corresponding
distribution of the nodes. Observe that the adaptive node distribution continues to
localize the support of the solution u very well. This helps, on the one hand, to reduce
the resulting computational costs of the simulation. On the other hand, the shock front
propagation is well-resolved by the high density of the nodes around the shock, see
Figure 8. Altogether, the adaptive node distribution manages to capture the evolution
of the flow very effectively. This confirms the utility of the customized adaption rules
yet once more.
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Figure 6: The slotted cylinder. 3D view on the solution u (left column) and the corre-
sponding node distribution (right column) at time t16 = 16τ , t32 = 32τ , and t47 = 47τ .
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Figure 7: The slotted cylinder. 3D view and node distribution of the initial condition
(top row), where t = 0, after five revolutions (middle row), at time t315 = 315τ , and
after ten revolutions (bottom row), at time t629 = 629τ .
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Figure 8: Burgers equation. Evolution of the solution u at three different time steps,
t110 = 110τ , t220 = 220τ , and t330 = 330τ (left column), and the corresponding node
distribution (right column).
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