
Rend. Sem. Mat. Univ. Pol. Torino
Vol. 61, 3 (2003)
Splines and Radial Functions

C. Dagnino - V. Demichelis - E. Santi

ON OPTIMAL NODAL SPLINES AND THEIR APPLICATIONS

Abstract. We present a survey on optimal nodal splines and some their
applications. Several approximation properties and the convergence rate,
both in the univariate and bivariate case, are reported.

The application of such splines to numerical integration has been con-
sidered and a wide class of quadrature and cubature rules is presented for
the evaluation of singular integrals, Cauchy principal value and Hadamard
finite-part integrals. Convergence results and condition number are given.

Finally, a nodal spline collocation method, for the solution of Volterra
integral equations of the second kind with weakly singular kernel, is also
reported.

1. Introduction

It is well known that the polynomial spline approximation operators for real-valued
functions are of great usefulness in the applications.

In their construction, it is desirable to obtain some nice properties as in particular:

1. the operator can be applied to a wide class of functions, including, for example,
continuous or integrable functions;

2. they are local in the sense that can depend only on the values of f in a small
neighbourhood of the evaluation point x ;

3. the operators allow to approximate smooth functions f with an order of accu-
racy comparable to the best spline approximation. The key for obtaining oper-
ators with such property is to require that they reproduce appropriate class of
polynomials.

The approximating splines obtained by applying the quasi-interpolatory operator
defined in [24] satisfy the above properties and, recently, they have been widely used
in the construction of integration formulas and in the numerical solution of integral
and integro-differential equations, see, for instance, [3,4,7,10,13,22,27,23,28,30,32]
and references therein.

This review paper is concerning the optimal nodal spline operators that, besides
the properties 1., 2., 3., have the advantage of being interpolatory. These splines, in-
troduced by DeVilliers and Rohwer [17,18] and studied in [12,14,16,19], have been
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utilized for constructing integration rules for the evaluation of weakly and strongly
singular integrals also defined in the Hadamard finite part sense, in one or two dimen-
sions and, more recently, for a collocation method producing the numerical solution of
weakly singular Volterra integral equations.

In Section 2., after a brief outline of the construction of one-dimensional nodal
spline operators, we shall present the tensor product of optimal nodal splines, recalling
also some convergence results.

Section 3. is devoted to the application of the nodal spline operators in the approx-
imation of different kind of 1D or 2D integrals and the main convergence results of the
corresponding integration formulas are reported.

Finally, Section 4. deals with a collocation method, based on nodal splines, for the
numerical solution of linear Volterra equation with weakly singular kernel.

2. Optimal nodal splines and their tensor product

2.1. One dimensional nodal splines

Let J = [a, b] be a given finite interval of the real line R, for a fixed integer m ≥ 3 and
n ≥ m − 1, we define a partition5n of J by

5n : a = τ0 < τ1 < ... < τn = b ,

generally called “primary partition”. We insert m − 2 distinct points throughout
(τν, τν+1), ν = 0, ..., n − 1 obtaining a new partition of J

Xn : a = x0 < x1, < ... < x(m−1)n = b,

where x(m−1)i = τi , i = 0, ..., n. Let

(1) Rn = max
0 ≤ k, j ≤ n − 1

|k − j | = 1

τk+1 − τk

τ j+1 − τ j
,

we say that the sequence of partitions {5n; n = m − 1,m, ...} is locally uniform (l.u.)
if, for all n, there exists a constant A ≥ 1 such that Rn ≤ A, i.e.

(2)
1

A
≤ τk+1 − τk

τ j+1 − τ j
≤ A , k, j = 0, 1, ..., n − 1 and |k − j | = 1 .

Since the convergence results of the nodal splines we shall consider are based on the
local uniformity property of the primary partitions sequence and one of our objectives
is the use of graded meshes, the following proposition shows that a sequence of primary
graded partitions is l.u. [8]. For the definition of graded partitions see for example [2].

PROPOSITION 1. Let [a, b] be a finite interval. The sequence of partitions {5n},
obtained by using graded meshes of the form

τi = a +
(

i

n

)r

(b − a) , 0 ≤ i ≤ n ,
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with grading exponent r ∈ R assumed ≥ 1, is l.u., i.e. it satisfies (2) with A = 2r − 1.

Now, after introducing two integers [16]

i0 =





1
2 (m + 1) m odd

1
2 m + 1 m even

and i1 = (m + 1)− i0

and two integer functions

pν =





0 ν = 0, 1, ..., i1 − 2
ν − i1 + 1 ν = i1 − 1, ..., n − i0
n − (m − 1) ν = n − i0 + 1, ..., n − 1

qν =





m − 1 ν = 0, 1, ..., i1 − 2
ν + i0 ν = i1 − 1, ..., n − i0
n ν = n − i0 + 1, ..., n − 1

consider the set {wi(x); i = 0, 1, ..., n} of functions defined as follows [17-19]

(3) wi(x) =





li(x) x ∈ [τ0, τi1−1], i ≤ m − 1
si(x) x ∈ (τi1−1, τn−i0+1), n ≥ m
l i(x) x ∈ [τn−i0+1, τn], i ≥ n − (m − 1)

where

li (x) =
m−1∏

k = 0
k 6= i

x − τk

τi − τk

l i (x) =
m−1∏

k = 0
k 6= n − i

x − τn−k

τi − τn−k

si (x) =
m−2∑

r=0

j1∑

j= j0

αi,r, j B(m−1)(i+ j)+r(x)

with j0 = max{−i0, i1 − 2 − i}, j1 = min{−i0 + m − 1, n − i0 − i}. The coefficients
αi,r, j are given in [19] and the B-spline sequence is constructed from the set of the
normalized B-splines for i = (m−1)(i1−2), (m−1)(i1−2)+1, ..., (m−1)(n−i0+1).
Then, the following locality property holds [17]

(4) si (x) = 0 , x 6∈ [τi−i0 , τi+i1 ].

Each wi(x) is nodal with respect to 5n , in the sense that

wi (τ j ) = δi, j , i, j = 0, 1, ..., n .
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Therefore, being det[wi(τ j )] 6= 0, the functions wi(x), i = 0, 1, . . . , n , are linearly
independent. Let S5n = span{wi(x); i = 0, 1, ..., n}, it is proved in [18] that, for all
s ∈ S5n , one has s ∈ Cm−2(J ).

For all g ∈ B(J ), where B(J ) is the set of real-valued functions on J , we consider
the spline operator Wn : B(J ) → S5n, so defined

Wng =
n∑

i=0

g(τi)wi (x) , x ∈ J .

By (4), for 0 ≤ ν < n we can write:

(5) Wng =
qν∑

i=pν

g(τi)wi(x), x ∈ [τν, τν+1] .

Moreover Wn p = p, for all p ∈ Pm , where Pm denotes the set of polynomials of
order m (degree ≤ m − 1), and Wng(τi) = g(τi), for i = 0, 1, ..., n, i.e. Wn is an
interpolatory operator [17,18].

Using the results in [17-19] we deduce that, for l.u. {5n}, Wn is a bounded projec-
tion operator in S5n . In fact, it is easy to show that

Wns = s , for all s ∈ S5n

and, if we denote:

||Wn|| = sup{||Wnh||∞ : h ∈ C(J ), ||h||∞ < 1},

with ||h||∞ = max
x∈I

|h(x)| , considering that

||Wn|| ≤ (m + 1)

[
m−1∑

λ=1

(Rn)
λ

]m−1

,

where Rn is defined in (1), from (2), if {5n} is l.u., we obtain ||Wn|| < ∞.

We remark that if we assume the (m − 2) points equally spaced throughout
(τν, τν+1), ν = 0, 1, . . . , n − 1, then the local uniformity constant of {Xn} will be
equal to that of {5n}.

Finally for all g ∈ Cs−1(J ), with 1 ≤ s ≤ m, we introduce the following quantity

Eνs =
{

Dν(g − Wn g) , 0 ≤ ν < s
DνWng , s ≤ ν < m.

If {Xn} is l.u., for 0 ≤ ν ≤ s − 1 there results [14,19]

(6) ||Eνs||∞ = O
(
H s−ν−1

n ω(Ds−1g; Hn; J )
)

where

(7) Hn = max
0≤i≤n−1

(τi+1 − τi)
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and for all f ∈ C(J ), ω( f ; δ; J ) = max
x , x + h ∈ J

0 < h ≤ δ

| f (x + h)− f (x)|.

For s ≤ ν < m in [14] a bound for |Eνs| is given.

Furthermore, for every t ⊆ J and g ∈ Cν(J ), 0 ≤ ν < m − 1 [27]

ω(DνWng; t; J ) = O
(
ω(Dνg; t; J )

)
.

2.2. Tensor product of optimal nodal splines

Let D be the R2 subset defined by [a, b] × [ã, b̃]. We consider partitions 5n and Xn

on which we construct the spline functions of order m {wi(x), i = 0, . . . , n} defined in
( 3 ).

Then we consider similar partitions of [ã, b̃], 5̃ñ and X̃ ñ and we construct the
corresponding functions of order m̃ {w̃ĩ(x̃), ĩ = 0, . . . , ñ}.

Now we may generate a set of bivariate splines

wi,ĩ (x, x̃) = wi(x)wĩ(x̃)

tensor product of the (3) ones.

Let B(D) denote the set of bounded real-valued functions on D. Then, for any
f ∈ B(D) we may define the following spline interpolating operator for (x, x̃) ∈
[τ j , τ j+1] × [τ̃ j̃ , τ̃ j̃+1],

(8) W ∗
nñ f (x, x̃) =

q j∑

i=p j

q̃ j∑

ĩ= p̃ j̃

wi,ĩ (x, x̃) f (τi , τ̃ĩ ),

with j = 0, 1, . . . , n − 1 and j̃ = 0, 1, . . . , ñ − 1.

In order to obtain the maximal order polynomial reproduction, we can assume m =
m̃, i.e. we use splines of the same order on both axes. We list in the following the main
properties of W ∗

nñ .

(a) W ∗
nñ is local, in the sense that W ∗

nñ f (x, x̃) depends only on the values of f in a
small neighbourhood of (x, x̃);

(b) W ∗
nñ interpolates f at the primary knots, i.e. W ∗

nñ f (τi , τ̃ĩ ) = f (τi , τ̃ĩ);

(c) W ∗
nñ has the optimal order polynomial reproduction property, that means W ∗

nñ p =
p, for all p ∈ P2

m , where P2
m is the set of bivariate polynomials of total order m.

For f ∈ Cs−1(D), 1 ≤ s < m we introduce the following quantity

Eνν̃s =
{

Dν,ν̃( f − W ∗
nñ f ) if 0 ≤ ν + ν̃ < s

Dν,ν̃W ∗
nñ f if s ≤ ν + ν̃ < m
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where Dν,ν̃ is the usual partial derivative operator.

Now we say that a collection of product partitions {Xn × X̃ ñ} of D is quasi uniform
(q.u.) if there exists a positive constant σ such that

1

δ̂
,
1

δ̃
,
1̃

δ̂
,
1̃

δ̃
≤ σ ,

where 1 = max1≤i≤n(m−1)(xi − xi−1), δ̂ = min1≤i≤n(m−1)(xi − xi−1) and 1̃ =
max1≤ĩ≤ñ(m−1)(x̃ ĩ − x̃ ĩ−1), δ̃ = min1≤ĩ≤ñ(m−1)(x̃ ĩ − x̃ ĩ−1).

We set

(9) H ∗ = Hn + H̃ñ and 1∗ = 1+ 1̃

where Hn is defined in ( 7 ) and likewise H̃ñ.

Assuming that f ∈ Cs−1(D) with 1 ≤ s < m and that {Wnñ f } is a q.u. sequence
of nodal splines, then for ν, ν̃ such that 0 ≤ ν + ν̃ ≤ s − 1

||Eνν̃s ||∞ = O
(
H ∗s−ν−ν̃−1ω(Ds−1 f ; H ∗; D)

)
.

In [9] local bounds of |Eνν̃s| are derived and local and global bounds of |Eνν̃s|, s ≤
ν + ν̃ < m , are also given.

Furthermore, for f ∈ Cp(D), 0 ≤ p < m − 1 , and for a q.u. sequence of nodal
splines {W ∗

nñ f }, there results for any non empty subset T of D

ω(D pW ∗
nñ f ; T ; D) = O

(
ω(D p f ; T ; D)

)
.

In the following we shall consider l.u. partitions in the one dimensional case and q.u.
partitions in the 2D one and we shall suppose always that the norm of the partitions
converges to zero as n → ∞ or n, ñ → ∞.

3. Numerical integration based on nodal spline operators

This section will deal with the numerical evaluation of some singular one-dimensional
integrals and of certain 2D singular integrals.

3.1. Product integration of singular integrands

Consider integrals of the form

(10) J (k f ) =
∫

I
k(x) f (x)dx

where k f ∈ L1(I ), but f is unbounded in I = [−1, 1].

In [26] product integration have been proposed, by substituting f by a sequence of
interpolatory nodal splines {Wn f } defined in (5), under different hypotheses on f .
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By using (6) with ν = 0, the author gets, firstly, the convergence of the quadrature
sum J (kWn f ), i.e.:

(11) J (kWn f ) → J (k f ) as n → ∞

by supposing f ∈ C(I ), k ∈ L1(I ) and Hn → 0 as n → ∞.

We recall that a computational procedure to generate the weights {vi (k) =∫
I k(x)wi(x)dx} of the above quadrature is given in [6].

Moreover in [26] the case when f ∈ PC(I ), k ∈ L1(I ) is studied and the conver-
gence of the quadrature rules sequence is proved.

We remark that in [11] the convergence (11) has been proved also for f ∈ R(I ),
the class of Riemann integrable functions on I and k ∈ L1(I ).

When the function f in (10) is singular in z ∈ [−1, 1) in [25] the author defines
the family of real valued functions Md (z; k):

(12)
Md(z; k) = { f : f ∈ PC(z, 1], ∃F : F = 0
on [−1, z], F is non negative, continuous

and nonincreasing on (z, 1), k F ∈ L1(I ) and | f | ≤ F on I }
.

He supposes that k satisfies one of the following conditions A, B:

(A) There exists δ > 0 : |k(x)| ≤ K (x), ∀x ∈ (z, z + δ], K is positive nonincreasing
in that interval and K F , F defined in (12), is a L1 function in I .

(B) Given q0 ∈ (0, 1), ∃δ, T , positive numbers (possibly depending on q0), such that
∫ c+h

c
|k(x)|dx ≤ hT |k(c + qh)|

∀q ∈ [q0, 1], ∀c and h satisfying z ≤ c < c + h ≤ z + δ. Besides |k(x) f (x)| ≤
G(x), ∀x ∈ (z, z + δ], where G is a positive non increasing L1 function in that
interval.

The following theorem can be proved.

THEOREM 1. Assume that f ∈ Md(−1; k) and k satisfies (A) or (B). If the se-
quence of partitions {5n} is l.u. and the norm converges to zero as n → ∞, then (11)
holds.

As consequence of that theorem if z = −1 the singularity can be ignored, provided
k satisfies (A) or (B).

In the case when z is an interior singularity, it must, in general, be avoided, i.e. we
must define a new integration rule

J ∗(kWn f ) =
n∑

i=J

vi (k) f (τi)
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where J is the smallest integer such that z ≤ τJ−λ, where τJ−λ is the left bound of the
support of sJ (x) and, if we assume that n is so large that J ≥ m, then wi = si and
vi (k) is given by:

vi (k) =
∫ τi+µ

τi−λ
k(x)si(x)dx ,

with λ = i0 and µ = i1.

Therefore, assuming that f ∈ Md (z; k), z > −1, and k satisfying (A) or (B). If
{5n} is locally uniform and the norm tends to zero as n → ∞, then

J ∗(kWn f ) → J (K f ) as n → ∞ .

If one wishes to use J (kWn f ) rather than J ∗(kWn f ) then k must be restricted in
[−1, z) as well as in (z, 1], for satisfying one of the following conditions ( Â) or (B̂).

(Â) : (A) holds and, in addition, |kz(x)| ≤ K (x) in (z, z + δ], where kz ∈ L1(2z −
1, 2z + 1) is defined by kz(z + y) = k(z − y).

(B̂) : (B) holds and so does (B) with k replaced by kz.

THEOREM 2. Let f ∈ Md(z; k), z > −1. Assume that k satsfies ( Â) or (B̂) and
that {5n} is l.u. and the norm converges to zero as n → ∞.

Define
Ĵ (kWn f ) = J (kWn f )− vρ f (τρ)

where τρ is the value of τi ≥ z closest to z. Then

Ĵ(kWn f ) → J (k f ) as n → ∞ .

In particular, if τρ = z then (11) holds. If z is such that for all n, τρ−z > C(τρ−τρ−1),
then (11) holds.

3.2. Cauchy principal value integrals

Consider the numerical evaluation of the Cauchy principal value (CPV) integrals

(13) J (k f ; λ) =
∫ 1

−1
− k(x)

f (x)

x − λ
dx, λ ∈ (−1, 1).

In [11] the problem has been investigated, following the “subtracting singularity” ap-
proach.

Assuming that J (k; λ) exists for λ ∈ (−1, 1), the integral (13) can be written in the
form

J (k f ; λ) =
∫ 1

−1
k(x)gλ(x)dx + f (λ)J (k; λ)

= I(kgλ)+ f (λ)J (k; λ),
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where

gλ(x) = g(x; λ) =





f (x)− f (λ)
x−λ x 6= λ

f ′(λ) x = λ and f ′(λ) exists
0 otherwise .

Therefore, approximating I(kgλ) by I(kWngλ) we can write [11]

J (k f ; λ) = Jn(k f ; λ)+ En(k f ; λ),

where
Jn(k f ; λ) = I(kWngλ)+ f (λ)J (k; λ) .

For any λ ∈ (−1, 1) we define a family of functions M̄d(z; k) = {g ∈ C(I\λ), ∃G : G
is continuous nondecreasing in [−1; λ), continuous non increasing in (λ, 1]; kG ∈
L1(I ), |g| < G in I }.

We assume
Nδ(λ) = {x : λ− δ ≤ x ≤ λ+ δ} ,

where δ > 0 is such that Nδ(λ) ⊂ I .

We denote by Hµ(I ), µ ∈ (0, 1], the set of Hölder continuous functions

Hµ(I ) = {g ∈ C(I ) : |g(x1)− g(x2)|
≤ L|x1 − x2|µ, ∀x1, x2 ∈ I, L > 0}

and by DT (I ) the set of Dini type functions

DT (I ) = {g ∈ C(I ) :
∫ l(I )

0
ω(g; t)t−1dt < ∞}

where l(I ) is the length of I and ω denotes the usual modulus of continuity.

The following convergence results for the quadrature rules Jn(k f ; λ), under differ-
ent hypotheses for the function f , are derived in [11].

THEOREM 3. For any λ ∈ (−1, 1), let f ∈ H1
(
Nδ(λ) ∩ R(I )

)
and k ∈ L1(I ).

Then, for l.u. {5n}, En(k f ; λ) → 0 as n → ∞.

THEOREM 4. Let f ∈ Hµ(I ), 0 < µ < 1, k ∈ L1(I ) ∩ C
(
Nδ(λ)

)
. Let h and p be

the greatest and the smallest integers such that τh < λ, τp > λ. We denote by τ ∗ the
node closest to λ

τ ∗ =
{
τh if λ− τh ≤ τp − λ

τp if λ− τh > τp − λ

and we suppose that there exists some positive constant C, such that

|τ ∗ − λ| > C max{(τh − τh−1), (τp+1 − τp)},

then, for l.u. {5n},
En(k f ; λ) → 0

as n → ∞.
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THEOREM 5. Let f ∈ C1(I ), k ∈ L1(I ). Then

En(k f ; λ) → 0 uniformly in λ, as n → ∞.

However, if k ∈ L1(I ) ∩ DT (−1, 1), then J (k f ; λ) exists for all λ(−1, 1). Besides

Jn(k f ; λ) → J (k f ; λ) as n → ∞

uniformly for all λ ∈ (−1, 1).

Moreover in [14] it has been proved that J (ωα,βWn; λ) → J (k f ; λ) uniformly
with respect to λ ∈ (−1, 1), for ωα,β(x) = (1 − x)α(1 + x)β, α, β > −1, and f (x) ∈
Hρ(−1, 1), 0 < ρ ≤ 1.

3.3. The Hadamard finite part integrals

We consider the evaluation of the finite part integrals of the form

(14) J̄ (ωα,β f ) =
∫

I
= ωα,β(x) f (x)

x + 1
dx,

where α > −1,−1 < β ≤ 0 and
∫
= denotes the Hadamard finite part (HFP).

It is well known that a sufficient condition so that (14) exists is

f ∈ Hµ(I ), 0 < µ ≤ 1, µ+ β > 0 .

We recall that [25]

(15) J̄ (ωα,β f ) =
∫ 1

−1
ωα,β(x)

f (x)− f (−1)

x + 1
dx + f (−1)

∫ 1

−1
= ωα,β(x)

x + 1
dx,

where, denoting c j = d j

dx j
(1−x) j

j !

∣∣∣
x=−1

, j = 0, 1, . . . , we obtain for the HFP in

(15),

∫ 1

−1
= ωα,β(x)

x + 1
dx =





log2 if α = β = 0

c0log2 +
∑∞

j=1
c j
j ! 2 j if β = 0, α 6= 0

α+β+1
β

2α+β 0(α+1)0(β+1)
0(α+β+2) if α > −1, −1 < β < 0,

where 0 is the gamma function.

Approximating f by Wn f in (14) we obtain the quadrature rule [5]:

(16) J̄(ωα,β f ) = J̄n( f )+ Ēn( f ),
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where

J̄n( f ) =
n∑

i=0

v̄i (ωα,β) f (τi)

with v̄i(ωα,β) = J̄(ωα,βwi), and

Ēn( f ) = J̄ (ωα,β( f − Wn f )).

A computational procedure for evaluating v̄i (ωα,β) is given in [6].

Denoting by Hs
µ(I ) the set of the functions f ∈ Cs(I ) having f (s) ∈ Hµ(I ), in [5]

the following theorem has been proved.

THEOREM 6. Let f ∈ Hs
µ(I ), 0 ≤ s ≤ m − 1, and µ + β > 0 if s = 0. Then, as

n → ∞:

||Ēn( f )||∞ =
{

O(H s+µ+β
n ) if β < 0

O(H s+µ
n | log Hn|) if β = 0 .

Consider now HFP integrals of the form:

(17) J ∗(ωα,β f ; λ; p) =
∫

I
= ωα,β(x)

f (x)

(x − λ)p+1 , λ ∈ [−1, 1], p ≥ 1

If f ∈ Hp
µ(I ), then J ∗(ωα,β f ; λ; p) exists.

In [20, 21] quadrature rules for the numerical evaluation of (17), based on some dif-
ferent type of spline approximation, including the optimal nodal splines, are considered
and studied.

In [29] the following theorem has been proved.

THEOREM 7. Assume that in (17) λ ∈ (−1, 1), p ∈ N and f ∈ H p
µ . Let { fn} be a

given sequence of functions such that fn ∈ Cp(I ) and

i) - ||D jrn||∞ = o(1) as n → ∞ j = 0, 1, . . . , p, where rn = f − fn

ii) - D jrn(−1) = 0 0 ≤ j ≤ p − β; D jrn(1) = 0 0 ≤ j ≤ p − α

iii) - rn ∈ Hp
σ (I ), ∀n, 0 < σ ≤ µ, σ + min(α, β) > 0.

Then

(18) J ∗(ωα,β fn; λ; p) → J ∗(ωα,β f ; λ; p) as n → ∞

uniformly for ∀λ ∈ (−1, 1).

If we consider a sequence of optimal nodal splines for approximating the function
f , in order to obtain the uniform convergence in (18) of integration rules, we must
modify the sequence {Wn} in the sequence {Ŵn f }, for which condition ii) is satified.
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Therefore, in [15], for 0 ≤ s, t ≤ p , are defined two sets of B-splines B̄i , B̄N−i

on the knot sets

{x0, . . . x0, x1, . . . , xs+1}, {xN−t−1, . . . , xN−1, xN , . . . , xN }

respectively, where N = (m − 1)n and x0, xN are repeated exactly m times.

Considering that Wn f (τi ) = f (τi), i = 0, n, one defines

gn(x) :=





∑s
i=1 di B̄i(x) x ∈ [x0, . . . , xs+1]

0 x ∈ (xs+1, . . . , xN−t−1)

∑t
i=1 d̃i B̄N−i (x) x ∈ [xN−t−1, . . . , xN ]

where di , d̃i are determined by solving two non-singular triangular systems obtained
by imposing

g( j)(τ0) = r ( j)
n (τ0) j = 1, 2, . . . , s

g( j)
n (τn) = r (s)n (τn) j = 1, 2, . . . , t

For the sequence {Ŵn f = Wn f + gn}, it is possible to prove the following:

THEOREM 8. Let {Ŵn f } be a sequence of modified optimal nodal splines and set
r̂n = f − Ŵn f , then

Ŵn f (τi) = f (τi) i = 0, . . . , n ;
D j r̂n(−1) = 0, 0 ≤ j ≤ p − β; D j r̂n(1) = 0, 0 ≤ j ≤ p − α,

Ŵng = g if g ∈ Pm .

Besides supposing f ∈ Cr(Ik), Ik = [τk, τk+1], hk = τk+1 − τk , for any x ∈ Ik there
results:

|Dν r̂n(x)| ≤ k̃νh
r−ν
k ω(Dr f ; hk; Ik), ν = 0, . . . , r

|Dr+1Ŵn f (x)| ≤ k̃r+1h−1
k ω(Dr f ; hk; Ik),

r̂n ∈ Hr
µ(I ).

Therefore all the conditions of theorem 3.3.2 being satisfied, if µ+ min(α, β) > 0,
then

J ∗(ωα,βŴn f ; λ; p) → J (ωα,β f ; λ; p) as n → ∞
uniformly for ∀λ ∈ (−1, 1).

3.4. Integration rules for 2-D CPV integrals

In this section we will consider the numerical evaluation of the following two types of
CPV integrals:

(19) J1( f ; x0, y0) =
∫

R
− ω1(x)ω2(y)

f (x, y)

(x − x0)(y − y0)
dxdy
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where R = [a, b]× [ã, b̃], x0 ∈ (a, b), y0 ∈ (ã, b̃), and we assume ω1(x) ∈ L1[a, b]∩
DT (Nδ(x0)), ω2(y) ∈ L1[ã, b̃] ∩ DT (Nδ(y0)); and

(20) J2(φ; P0) =
∫

D
−8(P0, P)d P, P0 ∈ D

where D denotes a polygonal region and 8(P0, P) is an integrable function on D
except at the point P0 where it has a second order pole.

For numerically evaluating (19), in [9] the following cubatures based on a sequence
of nodal splines ( 8 ) have been proposed:

J1(Wnñ f ; x0, y0) =
n∑

i=0

ñ∑

ı̃=0

vi(x0)ṽı̃(y0) f (τi , τ̃ı̃ ) ,

where vi (x0) =
∫ b

a
− ω1(x)

wi(x)

x − x0
dx , and ṽĩ (y0) =

∫ b̃

ã
− ω2(y)

w̃ĩ (y)

y − y0
dy.

We denote by Hp
µ,µ(R) the set of continuous functions having all partial derivatives

of order j = 0, . . . , p, p ≥ 0 continuous and each derivative of order p satisfying a
Hölder condition, i.e.:

| f (p)(x1, y1)− f (p)(x2, y2)| ≤ C(|x1 − x2|µ + |y1 − y2|µ), 0 < µ ≤ 1

for some constant C > 0, and we assume

(21) Enñ( f ; x0, y0) = J1( f ; x0, y0)− J1(Wnñ f ; x0, y0).

In [9] the following convergence theorem has been proved.

THEOREM 9. Let f ∈ Hp
µ,µ, 0 < µ ≤ 1, 0 ≤ p < m − 1. For the remainder term

in (21), there results:

Enñ( f ; x0, y0) = O
(
(1∗)p+µ−γ ),

where γ ∈ R, 0 < γ < µ, small as we like and 1∗ has been defined in (9).

In many practical applications it is necessary that rules, uniformly converging for
∀(x0, y0) ∈ (−1, 1)×(−1, 1), are available, in particular considering the Jacobi weight
type functions

ω1(x) = (1 − x)α1(1 + x)β1, ω2(y) = (1 − y)α2(1 + y)β2

with αi , βi > −1, i = 1, 2, (x, y) ∈ R = [−1, 1] × [−1, 1].

In order to obtain uniform convergence for approximating rules numerically evalu-
ating (19), can be useful to write the integral in the form

J1( f ; x0, y0) =
∫

R
− ω1(x)ω2(y)

f (x, y)− f (x0, y0)

(x − x0)(y − y0)
dxdy

+ f (x0y0)J (ω1; x0)J (ω2; y0)(22)
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where J (ω1; x0) =
∫ 1

−1
− ω1(x)

x − x0
dx, J (ω2; y0) =

∫ 1

−1
− ω2(y)

y − y0
dy.

We exploit the results in [31] where, considering a sequence of linear operators Fnñ
approximating f , the integration rule for (22):

J1(Fnñ; x0, y0) =
∫

R
− ω1(x)ω2(y)

Fnñ(x, y)− Fnñ(x0, y0)

(x − x0)(y − y0)
dxdy

+ f (x0, y0)J (ω1; x0)J (ω2; y0)

has been constructed. Denoting rnñ = f − Fnñ , and 1nñ the norm of the partition,
with lim

n → ∞
ñ → ∞

1nñ = 0, the following general theorem of uniform convergence has been

proved.

THEOREM 10. Let f ∈ H 0
µµ(R), and assume that the approximation Fnñ to f is

such that

i) rnñ(x,±1) = 0 ∀x ∈ [−1, 1], rnñ(±1, y) = 0 ∀y ∈ [−1, 1],

ii) ||rnñ||∞ = O(1νnñ), 0 < ν ≤ µ,

iii) rnñ ∈ H 0
σ (R), 0 < σ ≤ µ.

If ρ+γ − ε̄ > 0, where ρ = min(σ, ν), γ = min(α1, α2, β1, β2) and ε̄ is a positive
real number as small as we like, then, for the remainder term, Enñ = J1( f ; x0, y0) −
J1(Fnñ; x0, y0), there results:

Enñ( f ; x0.y0) → 0 as n → ∞, ñ → ∞

uniformly for ∀(x0, y0) ∈ (−1, 1)× (−1, 1).

If we consider Fnñ = Wnñ( f ; x, y) only the conditions ii), iii), with 1n,ñ = 1∗,
are satisfied, but we can modify Wnñ in the form

W̄nñ( f ; x, y) = Wnñ( f ; x, y)+ [ f (−1, y)− Wnñ( f ; −1, y)]B1−m(x)

+[ f (1, y)− Wnñ( f ; 1, y)]B(m−1)n−1(x)

+[ f (x,−1)− Wnñ( f ; x,−1)]B̃1−m(y)

+[ f (x, 1)− Wnñ( f ; x, 1)]B(m−1)ñ−1(y) .

Assuming r̄nñ(x, y) = f (x, y) − W̄nñ( f ; x, y), all the condition i) − i i i) are
verified and then

J1(W̄nñ; x0, y0) → J1( f ; x0, y0) as n, ñ → ∞

uniformly for ∀(x0, y0) ∈ (−1, 1)× (−1, 1).

Now we consider the integral (20) for which we refer to the results in [5,6]. Since
the polygon D can be thought as the union of triangles, each one with the singularity
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at one vertex, by introducing polar coordinates (r, ϑ) with origin at the singularity P0,
the evaluation of (20) can be reduced to the evaluation of

(23) J ∗
2 ( f ) =

∫ ϑ2

ϑ1

(∫ R(ϑ)

0
= f (r, ϑ)

r
dr

)
dϑ,

where
∫ R(ϑ)

0
= f (r, ϑ)

r
dϑ =

∫ R(ϑ)

0

f (r, ϑ)− f (0, ϑ)

r
dr + f (0, ϑ) log(R(ϑ));

the integration domain is a triangle (Fig. 1)

T = {(r, ϑ) : 0 ≤ r ≤ R(ϑ), ϑ1 ≤ ϑ ≤ ϑ2}
with

R(ϑ) =





d
sinϑ−cosϑ if s : y = cx + d

d
cosϑ if s : x = d .
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Figure 1. Domain of integration T .

The outer integral in (23) will be approximated by rules of the form considered in
section 3.1 with nodes5n = {τi}n

i=0 and weights {vi}n
i=0; for the inner one we consider

rules of the form (16), with α = β = 0, based on optimal nodal splines of order m̄ ≥ 3,
primary knots 5̄N = {τ̄i = ȳ(m̄−1)i}i=0,...,N corresponding to the partition

ȲN = {−1 = ȳ0 < ȳ1 · · · < ȳ(m̄−1)N = 1}
and we suppose that the norms Hn and H̄N , of 5n and 5̄N , respectively, converges to
0 as n and N → ∞.

We obtain the following rules

J ∗
2,n,N ( f ) = ϑ2 − ϑ1

2

n∑

i=0

vin

[
N∑

k=0

v̄kN f (rki , ξi )+ f (0, ξi) log

(
R(ξi )

2

)]
+Rn,N ( f ),

where 


ξi = [(ϑ2 − ϑ1)/2]τi + (ϑ2 + ϑ1)/2 i = 0, . . . , n

rki = [R(ξi )/2](τ̄kN )+ [R(ξ2)/2](τ̄kN + 1) i = 0, . . . , N .
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Let us assume R = maxϑ∈[ϑ1,ϑ2] |R(ϑ)|, R = [0, R] × [ϑ1, ϑ2] and define m∗ =
min(m, m̄).

We can prove the following theorem:

THEOREM 11. If f ∈ Hs
µ,µ(R) , 0 < µ ≤ 1 and 0 ≤ s ≤ m∗ − 1 , {5n} and

{ȲN } are sequence of locally uniform partitions, then

||Rn,N ( f )||∞ = O(H̄ s+µ
N | log(H̄N )| + H s+µ−ε

n )

where ε is a positive real as small as we like.

4. A collocation method for weakly singular Volterra equations

Consider the Volterra integral equation of the second kind

(24) y(x) = f (x)+
∫ x

0
k(x, s)y(s)ds x ∈ I ≡ [0, X]

where k is weakly singular kernel, in particular of convolution type of the form k(x−s),
where k ∈ C(0, X] ∩ L1(0, X), but k(t) can become unbounded as t → 0.

In [8], for numerically solving (24) a product collocation method, based on optimal
nodal splines, has been constructed, for which error analysis and condition number are
given.

If we consider a spline yn ∈ Sπn , written in the form

yn(x) =
n∑

j=0

α jw j (x) α j ∈ R, j = 0, . . . , n,

and we substitute such function in (24), we obtain

yn(x)−
∫ x

0
k(x, s)yn(s)ds + rn(x) = f (x)

where rn(x) is the residual term obtained in approximating y by yn.

The values α j are determined by imposing

(25) rn(τ j ) = 0 j = 0, . . . , n,

i.e. as solution of a linear system of the form

α j [1 − µ(τ j )] −
n∑

i = 0
i 6= j

µi(τ j )αi = f (τ j ) j = 0, . . . , n,

where µi(τ j ) =
∫ τ j

0
k(τ j , s)wi (s)ds.
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In the quoted paper the explicit form of µi(τ j ) for different values of i is provided.

Exploiting the properties of the operator Wn , which is a bounded interpolating pro-
jection operator, the condition (25) can be rewritten in the form

(26) (I − Wn K̃ )yn = Wn f,

where K̃ y =
∫

I
k̃(x, s)y(s)ds, with

k̃(x, s) =





k(x, s) 0 ≤ s ≤ x

0 s > x,

is a bounded compact operator on C(I ) [1]. Therefore we can deduce that equation
(26) has a unique solution and

THEOREM 12. For all n sufficiently large, say n ≥ N, the operator (I − Wn K̃ )−1

from C(I ) to C(I ) exists.

Moreover it is uniformly bounded, i.e.:

sup
n≥N

||(I − Wn K̃ )−1|| ≤ M < ∞

and
||y − yn||∞ ≤ ||(I − Wn K̃ )−1|| ||y − Wn y||∞.

This leads to ||y − yn||∞ converging to zero exactly with the same rate of the norm
of the nodal spline approximation error.
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