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ON OPTIMAL CENTER LOCATIONS FOR RADIAL BASIS

FUNCTION INTERPOLATION: COMPUTATIONAL ASPECTS

Abstract. The problem of choosing “good” nodes is a central one in poly-
nomial interpolation. Made curious from this problem, in this work we
present some results concerning the computation of optimal points sets for
interpolation by radial basis functions. Two algorithms for the construc-
tion of near-optimal set of points are considered. The first, that depends on
the radial function, compute optimal points by adding one of the maxima
of the power function with respect to the preceding set. The second, which
is independent of the radial function, is shown to generate near-optimal
sets which correspond to Leja extremal points. Both algorithms produce
point sets almost similar, in the sense of their mutual separation distances.
We then compare the interpolation errors and the growth of the Lebesgue
constants for both point sets.

1. Introduction

First some introductory material and definitions concerning the interpolation problem
with radial basis functions. Take a set X = {x1, . . . , xN } ⊆ � ⊆ Rd of N dis-
tinct points coming from a compact subset � of Rd . The points {xi} are usually re-
ferred as the data sites and the set X as the data set. Suppose further that N data
values f1, . . . , fN should be interpolated at the data sites. Fix then a basis function
φ : [0,∞) → R, a simple way to define an interpolant s f,X to f at X is by linear
combinations of the form

(1) s f,X (x) =
N∑

j=1

α jφ(‖x − x j‖)

where ‖ · ‖ is the Euclidean norm, and the coefficients {α j } are uniquely determined by
the interpolation conditions

(2) s f,X (xi) = fi , i = 1, ... , N

if the interpolation matrix Aφ,X := (φ(‖xi − x j‖)1≤i, j≤N is invertible. Furthermore,
for various reasons it is sometimes necessary to add the space Pd

m of polynomials of
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degree ≤ m in Rd to the interpolating functions. Interpolation is then uniquely possible
with the further requirement: if p ∈ Pd

m satisfies

p(xi) = 0, for all xi ∈ X ⇒ p = 0

and if φ is conditionally positive definite (shortly CPD) of order m on� (cf. e.g. [16]).
If Aφ,X is positive definite ∀ X ⊆ �, then φ is said positive definite (shortly PD),
that is conditionally positive definite of order m=0. Instead of φ, we can consider the
symmetric kernel function8(x, y) = φ(‖x − y‖), so that 8 : �×� → R, which is
the notation used later on in the paper.

In the paper we mainly focus to the case of positive definiteness, since every CPD
kernel has an associated normalized PD kernel (cf. e.g. [2, 17]).

The problem of finding good interpolation points for RBF interpolations has been
addressed only recently (cf. [3, 4, 8]). In particular, in [4] the authors showed how
difficult is the problem just in the one dimensional setting because one has to glob-
ally minimize a highly nonlinear function of Nd unknowns which is usually a hard
problem.

In our previous paper [7] we have already discussed the problem of finding good or
near-optimal interpolation points for radial basis function interpolation essentially by
minimizing the power function associated to the symmetric kernel 8. The main result
there was that those points are asymptotically uniformly distributed in the Euclidean
norm. That is why we called them near-optimal points.

The paper is organized as follows. In section 2 we essentially describe what we
consider near-optimal points for radial basis function interpolation and we introduce
the tools we shall use in the rest of the paper. In section 3 after presenting two algo-
rithms for computing near-optimal points, one depending on 8 and one independent,
i.e. data-independent, we investigate on some computational aspects and consequences
related to the problem presenting in particular for the dimension d = 2, the connec-
tion between these near-optimal points and Leja extremal sequences. In section 4 we
present numerical results: in particular we show the interpolation errors when inter-
polants are built on near-optimal point sets, and the corresponding Lebesgue constants.
In section 5 we conclude noticing that the most reliable near-optimal points are the
ones connected to the proper 8 even if the data-independent ones are proved to be
competitive.

2. Interpolation error, power function and Lebesgue constant

Given 8 : � × � → R, a positive definite kernel, the recovery of functions from
function values f (x j ) on the set X = {x1, ..., xN } ⊂ � of N different data sites, can
be done via interpolants of the form

(3) s f,X =
N∑

j=1

α j8(·, x j ) .
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This interpolant, as in classical polynomial interpolation, can also be written in terms
of cardinal functions u j ∈ VX = span{8(·, x) : x ∈ X} such that u j (xk) = δ j,k . Then,
the interpolant (3) takes the usual Lagrangian form

(4) s f,X =
N∑

j=1

f (x j)u j .

It is well-known that local error estimates for interpolation by radial basis functions
have the form (cf. e.g. [15])

(5) | f (x)− s f,X (x)| ≤ κ P8,X (x)

with κ a positive constant depending only on f and P8,X being the power function that
takes the explicit form

P2
8,X (x) = 8(x, x)− 2

N∑

j=1

u j (x)8(x, x j )+
N∑

j,k=1

u j (x)uk(x)8(x j , xk).

Moreover, letting u = (−1, u1(x), . . . , uN (x)) we have the alternative representation

(6) P2
8,X (x) = u A8,Y uT ,

as a quadratic form, where Y = X ∪ {x} and A8,Y is the interpolation matrix corre-
sponding to the set Y . This representation says immediately that the power function is
non-negative since the vector u annihilates all polynomials Pd

m due to the polynomial
reproduction property.

For positive definite kernels, given the set X where the numbering of its points
is fixed, for a second ordered set Y = {y1, ..., yN } we consider the matrix
A8,X (y1, ..., yN ) =

(
8(yi , x j )

)
1≤i, j≤N . We note that this matrix is symmetric and

has determinant that is independent of the order of the points in X . Moreover, since 8
is positive definite, the matrix is positive definite and has positive determinant that we
denote by det8,X (y1, ..., yN ) = det

(
8(yi , x j )

)
1≤i, j≤N . Thus, the cardinal functions

have the useful representation

(7) uk(x) = det8,X (x1, ..., xk−1, x, xk+1, ..., xN )

det8,X (x1, ..., xN )
,

which reminds the determinantal form of the elementary Lagrange polynomials in
polynomial interpolation. Moreover, from the representations (6) and (7), the power
function can also be rewritten as

(8) P2
8,X (x) = det8,Y (x, x1, ..., xN )

det8,X (x1, ..., xN )
.

In other words, the power function is nothing but the norm of the pointwise error func-
tional, and it can be numerically evaluated from the Lagrange basis.
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Typically, error estimates and convergence rates lead to the problem of bounding
the power function in terms of the fill distance,

hX,� = sup
x∈�

min
x j ∈X

‖x − x j‖2.

We will not discuss the details here: the interested reader can refer to [19]. Instead, we
remark that this minimization property has another consequence. Letting X and Y the
point sets above defined, then the associated power functions must necessarily satisfy

P2
8,X (x) ≥ P2

8,Y (x), x ∈ �,

due to the maximality property of the power function and the fact that the P8,X vanishes
only at the points of X (cf. [15, §4]) and this inequality holds pointwise and everywhere
in �. The above inequality will be an important ingredient for the Algorithm 1 to be
presented in the next section.

Also the separation distance

qX = 1

2
min

xi , x j ∈ X
xi 6= x j

‖xi − x j‖ ,

plays a role in finding good points for radial basis function interpolation. In fact, in [8],
the author studied point sets X ⊂ � which maximize the uniformity

ρX,� = qX

hX,�
= sup

Y∈X�
ρY,� ,

among all point sets Y ∈ X�, X� consisting of Voronoi vertices used to decompose
Rd into Voronoi tiles. The result there was that point sets that optimally balance h X,�

against qX , are optimally distributed in the domain�.

Finally, our last tool is the Lebesgue constant. As in the (univariate) polyno-
mial case, from the representation (4) we consider the Lebesgue function λN (x) :=∑N

j=1 |u j (x)| . Its maximum value,

(9) 3N := max
x∈�

λN (x) = max
x∈�

N∑

j=1

|u j (x)| ,

is referred to as the associated Lebesgue constant and gives the norm of the interpo-
lating projector Pn : C(�) → V�, with V� = span{8(·, x) : x ∈ �}, both spaces
equipped with the sup-norm. As well-known in the polynomial case, optimal points are
not known explicitly, therefore in applications we can restrict to near-optimal points,
that is, roughly speaking, points whose Lebesgue constant grows asymptotically like
the optimal one. Therefore, near-optimal points should be found among the ones that
minimize3N . In the framework of interpolation by polynomials, points that minimize
the Lebesgue constant by maximizing the Vandermonde determinant, are known as
Fekete points. Fekete points are well-known and widely studied for polynomial inter-
polation also in the multi-dimensional setting. For radial basis functions, only recently
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and only in the univariate case there were some attempts to find Fekete-like points [4].
The main conclusion of that paper was that, surprisingly w.r.t. the polynomial case
in which Fekete points have the arccosine distribution, optimal points for radial basis
function interpolation are asymptotically equidistributed. Actually, a similar conclu-
sion for 2-dimensional domains was also obtained in the paper [8]. Iske considered
perturbations of the data sites in order to improve the performance of the interpola-
tion process, showing that good points realize a balance between the quantities qX and
hX,�. Moreover, the same author in [9] has shown that the Lebesgue constant 3N

for interpolation by polyharmonic splines is indeed the condition number w.r.t. the
sup-norm of the interpolation operator and that this constant is invariant under uniform
scalings, rotations and translations of the domain.

On the basis of these arguments, using the representation by cardinal functions uk

of the interpolant s f,X , we can try to minimize the Lebesgue constant by maximizing
the denominator of each function uk in (7). Unfortunately these Vandermonde-like
matrices, which depend on 8, are not always well-conditioned.

Hence, to find near-optimal points for radial basis function interpolation we can
proceed along the following lines:

• by minimizing the power function, which depends on 8, in order to minimize
the error in (5);

• by finding a representation of the uk by well-conditioned matrices (for instance
using some kind of stable orthogonal expansions) and maximizing the corre-
sponding Vandermonde matrix, like for Fekete points, in order to minimize the
Lebesgue constant of the interpolating operator.

In this paper we have explored the first instance and in the next section we present
two methods that allow to compute near-optimal interpolation points: the first mini-
mizes the power function associated to the kernel 8; the second, based on geometric
considerations, is completely independent on8 and related to Leja extremal sequences.

3. On computing near-optimal point locations and Leja sequences

In the recent paper [7] we presented a numerical method that produces well–distributed
point sets based on a greedy algorithm that generates larger and larger point sets by
adding at each step one of the point where the power function attains its maxima with
respect to the preceding set. The algorithm steps are as follows.

Algorithm 1

1. Initial step: X1 = {x1} for some x1 ∈ � arbitrary chosen.

2. Iterative step:

(10) X j := X j−1 ∪ {x j } with P8,X j−1(x j ) = ‖P8,X j−1‖L∞(�), j ≥ 2.
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Note that practically, we maximized over some very large discrete set X ⊂ �

instead of maximizing on �. Letting P j := P8,X j , this algorithm converges in
the sense that lim j→∞ ‖Pj ‖L∞(�) = 0. In fact, since the point x j+1 is such that
Pj (x j+1) = ‖Pj ‖L∞(�) and since X j ⊆ X j+1, we have Pj (x) ≥ Pj+1(x) ≥ 0 for all
x ∈ �.

The convergence and the speed of convergence of the Algorithm 1 are stated in the
following Theorem.

THEOREM 1. (cf. [7, §4]) Suppose � ⊆ Rd is compact and satisfies an interior
cone condition. Suppose further that 8 ∈ C2(�1 × �1) is a positive definite kernel
defined on a convex and compact region �1 ⊇ �. Then, the greedy algorithm defined
in (10) converges at least like

‖Pj ‖L∞(�) ≤ C j−1/d

with a constant C > 0.

REMARKS. The Theorem holds for positive definite kernels: this is not a big re-
striction since, as already pointed out, every CPD kernel has an associated NPD kernel
(cf. Introduction). We also observe that the positive constant C is independent of j
and that the power function depress to zero quite slowly, as will appear clearer from
Examples.

3.1. A geometric greedy method

From experiments we have noted that Algorithm 1, that minimizes the power func-
tion P8,X , practically fills the currently largest hole in the data by placing a new data
point close to the center of that hole and as a surprise, independently of the function
8. Therefore, this observation suggested a new algorithm that we termed geometric
greedy algorithm since the construction of optimal points is simply based on geometric
considerations.

Algorithm 2

1. Let � be a compact set in Rd , and consider X0 = {x0} where x0 belongs to the
boundary of �.

2. If Xn ⊂ � is finite and consisting of n points, choose xn+1 ∈ � \ Xn so that its
distance to Xn is maximal. Thus, Xn+1 := X j ∪ {xn+1}.

REMARKS. As before, for numerical purposes we should consider a discretization
of � that is a finite set, say �N , with cardinality N . Then, each step of the algorithm
can be carried out in O(N) operations, since for each x ∈ �N \ Xn we should compute
the distance to its nearest neighbor within Xn . To update this array of length N , it
requires firstly computing the N − n values ‖x − xi‖2, i = 1, ..., N − n and then
taking the componentwise minimum within the i -th array of distances. The next point
xn+1 is then easily found by picking the maximum of the array of the minima.
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Defining the separation distance for points in Xn by

qn := 1

2
min

x , y ∈ Xn
x 6= y

‖x − y‖2

and the corresponding fill distance

hn := max
x∈�

min
y∈Xn

‖x − y‖2 = min
y∈Xn

‖xn+1 − y‖2 = h Xn,� .

PROPOSITION 1. Algorithm 2 produces point sets which are quasi-uniform in the
Euclidean distance, that is

hn ≥ qn ≥ 1

2
hn−1 ≥ 1

2
hn , ∀n ≥ 2.

Proof. The left–hand and right–hand sides are obvious. The remaining inequalities can
be settled by induction. Indeed, for X2 we have

q2 = 1

2
‖x2 − x1‖2 = 1

2
min
y∈X1

‖x2 − y‖2 = 1

2
h1.

Assuming that qn ≥ 1
2hn−1, then

qn+1 = min

{
qn,

1

2
min
x∈X j

‖xn+1 − x‖2

}
= min

{
qn,

1

2
hn

}
,

we get qn+1 ≥ min
{

1
2hn−1,

1
2 hn

}
≥ 1

2hn .

REMARKS.

• The above Algorithm 2 turns out to work quite well when it comes to finding
subsets of � of cardinality n with small fill distance h X,� and large separation
distance qX .

• The construction technique proposed in the Algorithm 2 is independent of the
Euclidean metric. In fact, the proof does not depend on the fact that qn and hn

are expressed by using the Euclidean metric. Hence, if µ is any metric on�, the
Algorithm 2 can be used to compute points asymptotically equidistributed in the
metric µ.

3.2. Leja sequences

Leja extremal sequences were introduced by F. Leja in his interesting paper (cf. [10])
and recently have attracted the attention of researchers for their important properties
and applications (cf. e.g. [13, 1, 6]).
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DEFINITION 1. Let λ1 be arbitrarily chosen in [a, b]. The points λs ∈ [a, b],
s = 2, ..., N , such that

(11)
s−1∏

k=1

|λs − λk | = max
x∈[a,b]

s−1∏

k=1

|x − λk | .

are called a Leja sequence for the interval [a, b] (cf. [10]).

We recall that Leja points, in the one-dimensional case, are computationally ef-
fective for polynomial interpolation in Newton form since they provide an increasing
sequence of points and they stabilize the computation of divided differences. More-
over, they can be extracted from a discretization of [a, b] in a fast way (the so-called
fast Leja points) and, like Chebyshev points, Fekete points and zeros of Jacobi orthog-
onal polynomials, they have the arccosine distribution (cf. [13, 1]).

Unfortunately the multivariate equivalent of Leja points are not yet completely ex-
plored, as it is the case for the study of near-optimal points for multivariate interpolation
(cf. [14, 6, 5]). For d = 2 something has been done.

DEFINITION 2. Let � be a compact subset of C ≈ R2 and w : � → R+ a real
positive function on � called weight function. Let z0 ∈ � be such that

(12) w(z0)‖z0‖ = max
z∈E

w(z)‖z‖ ,

and

(13) w(zn)

n−1∏

k=0

‖zn − zk‖ = max
z∈E

w(z)
n−1∏

k=0

‖z − zk‖ , zn ∈ � .

where ‖ · ‖ is any norm of R2 and z = x + i y , z = (x, y) and zn = (xn, yn), n =
1, 2, .... The sequence {zn} not-unique that satisfies (12) and (13) is called a sequence
of Leja points for �.

The distribution of Leja points so defined, depends on the choice of the weight
function w. Indeed, when w ≡ 1, for the maximum principle of analytic functions
Leja points distribute only on the boundary of � while for w 6= 1 they lye also in the
interior (cf. [14] and for more examples see [6]). A conceptually similar construction
of Leja points which is independent of the weight w, was suggested by L. Bos (private
communication to the author). The idea behind the construction is simple: find a se-
quence of points that maximize a function of distances from already computed points.
The proposed distance was simply the Euclidean distance.

DEFINITION 3. Let�N be a discretization of a compact domain� ⊂ C ≡ R2 and
let z0 be arbitrarily chosen in �N . The points zn, n = 1, 2, ....

(14) zn := max
z∈�N \{z0,...,zn−1}

min
0≤k≤n−1

‖z − zk‖2 .

are a set of Leja points for �N .
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In Figure 1 we show 60 Leja points on three classical domains computed by means
of (14).
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Figure 1: 60 Leja points on the square, the unit circle and the right triangle all dis-
cretized by 603 random points, computed by using (14).

Moreover, supported by numerical experiments, L. Bos proposed that the following
claim should be true.

CLAIM. If z0 = maxz∈� ‖z‖2, then the Leja points defined by (14) are asymptoti-
cally equidistributed w.r.t. the Euclidean metric.

REMARKS. The previous Definition 3 and the successive Claim, firstly stated in the
framework of Leja sequences, reveal the connection with near-optimal points computed
by Algorithm 2. From Proposition 1, we now know that the points constructed by (14)
are indeed the data–independent ones. Therefore, to prove the previous Claim we
simply resort to the proof of Proposition 1.

��

Thus, by Algorithms 1 and 2 (or equivalently by (14)) we have two sets of near–
optimal points for radial basis function interpolation. How close are these point sets?
Which point set is “better” for interpolation purposes? These are some of the questions
that we want to answer by numerical experiments in the next section.

4. Numerical results

In this section we present some examples of distribution of points as computed by
Algorithms 1 and 2 in the bidimensional setting. We considered the square � =
[−1, 1] × [−1, 1] on which we picked 10000 random points. We have run the Al-
gorithm 1 until the norm of the power function went below some fixed threshold η̃.
As for Algorithm 2, we computed once and for all the necessary points up to a given
number extracting them from a discretization of �. We have computed 406 points ex-
tracted from a discretization of 4063 points of �. The number 406 corresponds to the
dimension of the bivariate polynomials of degree ≤ 27 and the reason why we have
extracted N points from N3, comes from the theory of Leja sequences, as explained
in the book [14]. Moreover, we stopped to 406 because of RAM limitations of the
machine where computations where done. Consider that representing 4063 reals in
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double precisions requires 510Mb of RAM. But, this was not a big problem, since in
the following examples the points computed by Algorithm 1 were always less than 406.

In Figures 2-4 we show the distributions of the points computed both with the
greedy method, Algorithm 1, and the geometric greedy method, Algorithm 2. On
each figure we also show the separation distances among these points, making visually
clearer that Algorithm 2 generates points nearly equidistributed in the Euclidean metric
(as stated in Proposition 1).

By means of the Algorithm 1 applied to the Gaussian with scale 1, to reduce the
power function below η̃ = 2 · 10−7, we computed 65 points. For the Wendland’s
compactly supported function with scale 1, to reduce the power function below η̃ = 0.1
we computed 80 optimal points and for the inverse multiquadrics with scale 1, we
computed 90 points to depress the power function to η̃ = 2 · 10−5. The choice of
different η̃ depends on the decreasing rates of the associated power functions. Note
that, for a given N , i.e. the number of optimal points we wish to find, so far we are not
able to determine η̃8(N) corresponding to a particular8.

Furthermore, given81, let X1 be the optimal point set computed by minimizing the
associated power function, say P81,X1 , using Algorithm 1. Are these points optimal
also for another82 6= 81? If not, are the points computed by the Algorithm 2 optimal
for any given 8, instead? In what follows, we will try to give qualitative answers to
these “obvious” questions, showing in particular that the points computed by Algorithm
2 are good enough for almost all radial basis function interpolation problems.

We labeled by g-gauss-65, gg-65, g-wend-80, gg-80, g-invm-90 and gg-90 the point
sets computed by Algorithm 1 and 2, where the prefix ’g’ recalls the word greedy while
’gg’ the words geometric greedy. The labels gauss, wend, invm recall instead the type
of the radial function used in the minimization process. The ’gg’ point sets do not need
to recall the radial function since they are independent of it.

As for interpolation, we have considered two test functions: f1(x, y) = e−8(x2+y2)

and f2(x, y) =
√

x2 + y2 − xy. The first is C∞, while the second has discontinuity
of the gradient. In Tables 1-3, we show the interpolation errors in the L2-norm when
the interpolant is constructed by means of the Gaussian, Wendland’s and inverse mul-
tiquadrics, respectively. Each columns has an heading that recalls the set of points on
which interpolation took place. The errors have been computed by sampling the func-
tions on a regular grid of 30×30 points. While errors for the Gaussian are meaningless
except in some cases, essentially due to errors occurring along boundaries, the inter-
polation errors for Wendland’s and the inverse multiquadrics confirm, once again, that
the points computed by Algorithm 2 are as good as the points computed by Algorithm
1.

g-gauss-65 gg-65 g-wend-80 gg-80 g-invm-90 gg-90

f1 5.5 10−1 ∗∗ 5.6 10−1 ∗∗ 4.9 10−1 ∗∗
f2 7.3 10−1 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

Table 1. Errors in L2-norm for interpolation by the Gaussian. When errors are > 1.0
we put ∗∗.
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Figure 2: 65 optimal points for the Gaussian with scale 1. Right: the points as com-
puted by the geometric greedy algorithm (*) and the greedy algorithm (+). Left: the
separation distances among them.

g-gauss-65 gg-65 g-wend-80 gg-80 g-invm-90 gg-90

f1 2.1 10−1 1.6 10−1 1.3 10−1 1.1 10−1 1.4 10−1 1.0 10−1

f2 6.1 10−1 8.7 10−1 6.1 10−1 9.7 10−1 4.6 10−1 5.8 10−1

Table 2. Errors in L2-norm for interpolation by the Wendland’s function.

g-gauss-65 gg-65 g-wend-80 gg-80 g-invm-90 gg-90

f1 2.3 10−1 2.3 10−1 4.0 10−2 3.1 10−2 3.5 10−2 2.5 10−2

f2 5.9 10−1 6.0 10−1 3.8 10−1 4.6 10−1 3.7 10−1 3.6 10−1

Table 3. Errors in L2-norm for interpolation by the inverse multiquadrics.

We have also computed, and plotted in Figures 5-7, the Lebesgue constants asso-
ciated to these near-optimal point sets. The abscissas represent the polynomial degree
and run till the maximum polynomial degree representable with the number of points in
the sets. With the 65 points computed with the Gaussian the maximum degree is 9; for
the 80 points for the Wendland’s function and the 90 points computed for the inverse
multiquadrics the maximum polynomial degree is 11. The computations of Lebesgue
constants by means of (9) were done by discretizing the square [−1, 1]2 with a grid
of 40 × 40 points where we sampled the cardinal functions uk . The graphs show that,
except for the Gaussian, the Lebesgue constants of the optimal points computed by the
greedy method grow slower than the ones of the data-independent points. Moreover,
in all cases they grow approximately linearly in the polynomial degree (modulo some
constants). This explains once more why the errors computed with the Gaussian are
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Figure 3: 80 optimal points for the Wendland’s function. Right: the points as com-
puted by the geometric greedy algorithm (*) and the greedy algorithm (+). Left: the
separation distances among them.

meaningless. Of course, for a complete understanding of the asymptotic behavior of
the Lebesgue constants we should go further in the computations, but we were not able
due to hardware restrictions.

Concerning the computational efforts of both algorithms, we show in Table 4
the CPU time in seconds of Algorithm 1 for computing the optimal points for a
given threshold. These computational costs were determined by the Matlab function
cputime.

Gaussian scale 1, η̃ = 2 · 10−7, 65 points, 51 sec.
Gaussian scale 2, η̃ = 2 · 10−7, 32 points, 18 sec.

Wendland scale 1, η̃ = 0.1, 80 points, 76 sec.
Wendland scale 15, η̃ = 2 · 10−5, 100 points, 105 sec.

inverse multiquadrics scale 1, η̃ = 2 · 10−5, 90 points, 110 sec.
inverse multiquadrics scale 2, η̃ = 2 · 10−5, 34 points, 26 sec.

Table 4. Computational costs (cputime in seconds) of optimal points as computed by
Algorithm 1.

Algorithm 2 was run once and for all to compute at once the 406 points by means
of (14). These computations were done in about 5 minutes of CPU time on a PC
with 900MHz Athlon processor and in this case the program was written in Fortran
77. The coordinates of the points were stored in a file and used later on with the same
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Figure 4: 90 optimal points for the inverse multiquadrics with scale 1. Right: the points
as computed by the geometric greedy algorithm (*) and the greedy algorithm (+). Left:
the separation distances among them.

Matlab program that we wrote for making comparison plots, computing separation and
fill distances as well as Lebesgue constants with respect to the points computed by
Algorithm 1.

5. Conclusions

The paper essentially presented two main results.

• Optimal points for radial basis function interpolation can be computed inde-
pendently of the radial function and once for all. These points, in the two-
dimensional case, correspond to Leja points in the Euclidean metric. They are
asymptotically equidistributed with respect to the Euclidean metric (that is why
we called near-optimal). Moreover, Algorithm 2 can be used with any metric,
producing point sets asymptotically equidistributed with respect to that metric.

• From the Lebesgue constants behavior, we can conclude that data-independent
points have Lebesgue constants that grow faster than data-dependet ones. Ex-
periments on the growth of the Lebesgue constants on different nodal sets for
bivariate polynomial interpolation are currently in progress and will be presented
in the forthcoming paper [5]. From the results in that paper, here we only ob-
serve that quasi-uniformity is only a necessary condition for near-optimality of a
point set. Therefore, generally speaking, the study of the growth of the Lebesgue
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Figure 5: Lebesgue constants of the optimal points for the Gaussian (left) and the data-
independent points (right).

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60
Lebesgue constant for Wendland

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90
Lebesgue constant for Wendland

Figure 6: Lebesgue constants of the optimal points for the Wendland’s function (left)
and the data-independent points (right).

constant of a point set is not a general criterion to investigate on the goodness
of a point set. In the univariate setting for polynomial interpolation on bounded
intervals, a similar conclusion was obtained in the paper [11]. Hence, we can
confirm that data-independent points should be used in radial basis function in-
terpolation because of their general and effective computational technique and
their interpolation errors which are of the same order of the near-optimal points
computed by minimizing the power function.
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Figure 7: Lebesgue constants of the optimal points for the inverse multiquadrics (left)
and the data-independent points (right).
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Math. 132, Birkhäuser Verlag, Basel 1999, 255–282.

[18] WENDLAND H., Error estimates for interpolation by compactly supported radial
basis functions of minimal degree, J. Approx. Theory 93 (1998), 258–272.

[19] WU Z. AND SCHABACK R., Local error estimates for radial basis function inter-
polation of scattered data, IMA Journal of Numerical Analysis 13 (1993), 13–27.

AMS Subject Classification: 41A05, 41A25, 41A63, 65D05, 65D15.

Stefano DE MARCHI
Department of Computer Science
University of Verona
S.da Le Grazie, 15
37134 Verona, ITALY
e-mail: stefano.demarchi@univr.it


