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ESTIMATES OF THE HIGHER ORDER DERIVATIVES OF
THE SOLUTIONS OF HYPOELLIPTIC EQUATIONS

Abstract. In this work we establish a connection between the behaviour
of the higher order derivatives of the solutions of the hypoelliptic equa-
tion P(D)u = f and the estimates of the derivatives of f (x) in terms of
multianisotropic Gevrey classes.

1. Introduction

The Gevrey classes play an important role in the theory of linear partial differential
equations as intermediate spaces between the C> and the analytic functions. In par-
ticular, whenever the properties of an operator differ in the C° and in the analytic
framework, it is natural to test its behaviour in the classes of the Gevrey functions and
distributions. As a matter of facts, that weak solutions of the equation P(D)u = f
belong to C°, in particular to Gevrey classes, is important for the application of varia-
tional methods to the differential equation. A complete description of linear differential
equations with constant coefficients having only C° solutions for all infinitely differ-
entiable right-hand sides has been given by L. Hormander [8]. Equations of this type
are called hypoelliptic.

It is well known (cf. [8], Chapter 11) that the regularity of the solutions of the
hypoelliptic equation P (D)u = f is determined by the behaviour of the function dp (¢)
as & — oo, where dp (&) is the distance from the point & € R to the surface {¢ : ¢ €
C", P(¢) =0}.

The behaviour of the function dp(£) at infinity is related to many properties of the
solutions of an hypoelliptic equation P(D)u = 0, in particular it belongs to the Gevrey
class G*(Q), where 1 € R" is determinated by the growth of the function dp (&) if
& € R"and |&| is sufficiently large (cf. [8], Theorem 11.4.1) (for the definition of the
Gevrey classes G*(Q), see for example [8] Def. 11.4.11).

V. Grushin [3, 4] proved that if P(D) is an hypoelliptic operator with index of
hypoelliplticity equal to A, then all the solutions of the nonhomogeneous equation
P(D)u = f belong to G*(Q) if f € G*(R).

In [2] L. Cattabriga derived for an hypoelliptic operator P (D) the algebraic con-
ditions ensuring that the map P(D) : G*(R") — G*(R") is an isomorphism. Such
hypoelliptic operators are called G*-hypoelliptic operators. The G*-hypoelliptic oper-
ators have been studied by many authors: L.R.\olevich, B.Pini, L.Rodino, L.Zanghirati
and others. Detailed references for G*-hypoelliptic operators can be found in the books
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L. Rodino [12, 1].

G.Ghazaryan [9] introduced some functional characteristics, called weight of hy-
poellipticity, which coincides with the function h(¢) = |&]| in the elliptic case and is
specified in the general case. Moreover, more fine estimates of higher order derivatives
of the solutions of an hypoelliptic equation P(D)u = 0 are obtained.

After introducing in [5] the concept of multianisotropic Gevrey classes, it became
possible to improve the above mentioned results and formulate a general theorem, es-
tablishing the relationship between the growth of the derivatives of the solutions of the
hypoelliptic equation P(D)u = f and the growth of the function f. We shall prove:

THEOREM 1. Let f € GB(Q). Then any solution of the hypoelliptic equation
P(D)u = f belongs to GB"AP(Q).

For a convex set B, G B(Q) is the associated multianisotropic Gevrey class, and the
set Ap is determined by the hypoelliptic operator P(D).

2. Definitions and notations

Let P(D) = ) y, D be a linear differential operator with constant coefficients, and

o
let P (&) be its characteristic polynomial . Here the sum goes over a finite set (P) =

{a o eNj, vy # 0}, where Nj = {a = (a1,...,an) : @ € No, i =1,...,n}is
the set of n-dimensional multi-indices.
We denote:

RY = {& e R" : &1...6, # 0},
R} ={EeR":& >0,j=1,..n}.

Let A= {vKe R, k=0,.. m).

DEFRINITION 1. The characteristic polyhedron (or Newton polyhedron) (C.P.)
N (A) of the set A is defined to be the smallest convex polyhedron in R} containing
all the points A U {0}. The characteristic polyhedron (or Newton polyhedron) (C.P.)
N = N (P) of a polynomial P (¢) (or of a operator P (D)) is defined to be the smallest
convex polyhedron in R} containing all the points (P) U {0}.

DEFINITION 2. A polyhedron NV is said to be completely regular (C.R.) if:

a) V has vertices at the origin and on all the coordinate axes of Nj different from
the origin.

b) all the coordinates of the exterior normals to the non-coordinate (n — 1) - di-
mensional faces A/ are strictly positive.

It is well known that if P(D) is an hypoelliptic operator, then C.P. of P(D) is a
C.R.

m
Leth(€) = Y [6", where 1° = 0,0% € R, [6]" = |ea"f - ... - [&]*F, and
k=0
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An = KM,

DerNITION 3. (cf. [9]) A function h(&) is called weight of hypoellipticity of the
polynomial P (&) (or of the operator P (D)) if there exists a constant C > 0 such that:

[ IDUPE[\¥ _ C ,
1) FP(&)—Q{Zﬂ)(m) S@, VE € R".

DEFINITION 4. A weight of hypoellipticity of the operator P(D) is called exact
weight of hypoellipticity of the operator P(D) if for any v € R} \ N (Ap):

SL;p §¥|Fp (&) = +o0.
By Lemma 11.1.4 of [8], for any weight of hypoellipticity of the operator P (D),
there exists a constant C > 0 such that:
@ h) <C-(1+dp). ¥V &eR"

We denote by A"~ the set of the exterior normals A (relative to A/(P)) of the non-
coordinate (n — 1) - dimensional faces A/ (P), for which 1m_in A= 1.

<I<n
We set:
Mp = {v:iveR], suplg”|- Fp(§) < oo},
£
EWN(P) = {pveR", (i) <1,VieA ).

It is well known (cf. [9], Lemma 3.5), that for any hypoelliptic operator P (D) the set
Mp isincluded in E(V(P)).

LEMMA 1. Let @ C R" be a bounded set, P(D) be an hypoelliptic operator and
h(&) be a weight of hypoellipticity of the operator P (D). Then there exists a constant
C > Osuch that for any function V € C3°(2), any ¢ € (0, 1) and any natural number
| the following estimate is satisfied:

Z 872|a\

(o) | 2
PO @) eh@) FOV| =<
O#aENS

2(R™)

C Z g2l

n
aeNy

2

P (§)(en (€)' (V) |

La(RM)

where F (V) is the Fourier transform of the function V (x).

This lemma can be proved similary to Lemma 11.1.4 of [8] using the estimates (2).

Foraboundedset 2 c RM"andfore > 0,wedenote Q, = {x : x € Q, p(X, Q) > &},
where p is a distance in R". Let § € (0, 1], r be a natural number, B = {x : x €
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R, ||x|| < 1} and ¢(x) > 0 a function such that ¢ € C3°(B), [ o(x)dx = 1. Denote

by ¢ (X) = xa o ¥ (p%(X), where forany ¢ > 0, p®(x) =& " cp(g) and xgq, (x) is
ré—5

the characteristic function of the set Q..

LEMMA 2. Let @ c R" be a bounded set, | be a natural number. Then there exists
a constant C; = C;(2) > 0 such that:

sup |D¥¢f| < Ci el e <1, j=1,2,. ...
XeQ

The proof easily follows from the following computations:

D95 0| V X9y, () - D p2(x = y)dy

5)" [ @iy

Je—5
—la|
= ()" [10ewiay < cieel

where C; = max 2711 [1D%g(y)|dy.

Letlkj € R? (j = 1,...,k) be vectors with rational coordinates, for which
min Al = 1,andd; (0 < dj <1, j = 1,..,k) be rational numbers such that

1<l<n
theset Ap = {v e RT : (v,A1) <di, i=1,..k} € MpisC.R.. We denote by
A% the set of the vertices of the polyhedron Ap.

We lethas (6) = X 1€

0
veAp

LEMMA 3. Let P(D) be an hypoelliptic operator (ordP=m), | be a natural number.
Then there exists a constant C > 0 such that forany e € (0, 1), 8 e |ApN NB and any
function u € C*°(R2) the following estimate is satisfied:

3)
2 2
2 Y g2l Dﬁp(ot)(D)u‘ <C Y o2 p(Ot)(D)u‘
0 n Lo(wej) n L2(we.(j-1))
#aeNj O#aeNy
I
) 2
€Y X e ha@) T FOf g POW||
i=1|g|<(i—-1m, BeNj 2
=12

where w CC Q.

Proof. For some constant C > 0 and for any g € | - Ap N Nj we have 1£]f <
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ChlAp (&), V& € R". Then by Parceval equality there is a constant C1 > 0 such that:

2 Y g2

O#aeNj
582l Z g2l

2
D#P® (D)u

La(wej)

2
D P@ (D) (ugt ‘
(D)(ugj) LR

O#OJENS
2
_ 2 —2el||gBp@ (£\F e‘
e Y eI POOF D
O#£aeNg
2
<ci Y e[ hap @) PO®FweD||
OeND 2
By Lemma 1 there is a constant C» > 0 such that:
2
2 ~2el||pBp@
e e=2el|| pAp@ (D uH
Zn ® La(:j)
0#aeNy
2
@ <C Y |6 hap ©) TP @ F (g
n Lo(RM)
0#£aeNj

2
-1 e
+ 2 [ehas €0t @F @[]

By Newton-Leibniz formula, we can estimate the second term of the right hand side of
(4) for a constant C3 > 0:

2
H(shAp €)' TP E)Fugh) ‘Lzm

= "(ShAp(S))'_lF(‘PfP(D)U)"iz(m

+Ca) H(ShAP (E))'*lF(P(a)(D)“(Da‘pf))"ZLZGR“)
0Za

- H(ShAP (S))'_lF(‘PfP(D)U)"iz(m

+C3 Z g2k

-1 (@) lel po e ?
(ehap (§)) " F (P (D)ue D%)‘Lzmn)

O#aeNj
< ||eha (é))'—le‘-"P(D)“)HZ
= P J Lz(Rn)
2
ol - o H
tCa), X e [ehan @) P @u D[

a#0|8|<m, 0#BeN]
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By the estimate (4) there is a constant C4 > 0 such that:

2
2 ~2el||pBp@ ‘
€ € DFP* (D)u
Zn ( ) LZ(wsj)
0#aeNj
2
~2la] 1-1p @ (£ l8l £ (DB ot
<Cs 3 & Y [|ehan@) P O@F G|
O#aeN] IBl=m
2
Ca-||e-h “RPOW|[
+Ca- || har @) TR POV

Going on analogously as above, since suppga]? C wg.(j—1) atstep (I—1), then we obtain
the estimate (3).
O

We denote by s the smallest natural number such that s - AS < NJ; and

for any multi-index « € s - A%, there is # € Np such that « = 2 - B. We
set Qp(&) = Z gP, qE) = |Q($)|%. Let Qp(D) be a differential operator, and
ﬁesA%

Qp (&) its corresponding polynomial. In Lemma 3 we can take q (&) in place of h a, (§).

LEMMA 4. Let P(D) be an hypoelliptic operator (ordP=m). Then there is a con-
stant C > 0 such that, for any ¢ € (0, 1), and any function u € C>°(2) the following
estimate is satisfied:

2
2s —2|o| (@)
2. P D)P Du‘
> n Qp(D)P (D]
0#ae Ny
2
<C- Z g2l P(O{)(D)U‘
n Lo(we(j-1))
(5) 0#£aeN]
S
. 2
e SID S SO SR
i=1 |g|<(i~1)-m, peN} 2
ji=12,..

where w CC Q.

The proof follows from Lemma 3 and the definition of the polynomial Q p(£).

LEMMA 5. For any couple of multi-indeces 8, @ such that 8 € sAp and @ €
AP\ (j—DAp, B>a (jeN, j<s),wehave | —a| <s—|.

Proof. We prove it by contradiction. Let’s suppose there are two multiindeces 8 €
sApand @ € jAp\ (j — DAp, B > a suchthat |8 — «| > s — j + 1. Since
a € (j — 1) Ap, then from the definition of the set Ap, it follows that there exists an
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index io : 1 < io < k such that (o, A%) > dig(j — 1). As_min W=1, 0<dy <1,
=J=

n
then (B, A10) = (B—a, A10)+(at, A10) > |B—a|+ (e, 110) > 5—j+1+(j—D)diy > sdh,
i.e. B &sApNNJ.

O

LEMMA 6. Let P(D) be an hypoelliptic operator (ordP=m), j be a natural num-
ber. Then there is a constant C > 0 for which the following estimate is satisfied:

2
2s —2|a| (@)
¢ ¢ D)P@ (D u‘
Zn Qe(®P@ O
O0#aeNy
2
<C. Y g2 P(“)(D)UH
6 = i
(6) Wt La(we(j—1))
S 2
—2
+C'Z Z € rHDﬁP(D)UHLz(wg(jfl))'

r=0 Be(r Ap\(r—1)Ap)NNJ

Proof. By Lemma 3, it is sufficient to estimate the second term of the right hand side
of (5). There is a constant C1 > 0 for which it holds:

S
> Y |leaenerF@rgipom|
i=1|y|<(i-Dm L2
<ci Y |ca@s+verForgipow||
lyI=(s=hm 20
™ —ci Y et ee@ 1RGP
lyI=(s-hm 20
<cu Y [jer@eFOrgiPOw|
lyI=(s—1m 280
2
+Cs- el"IF(D” ¢t P(D)u)
yg(stl)m ‘ ‘ J ‘ ‘LZ(R”)

Applying Parceval equality and the Newton-Leibniz formula to the first term of the
right hand side of (7), we obtain:

Y [Jer@eFD7gsPOwW|[;

IyI=G=-Dm 2K

2
@ == Y | Drghrou||
lyl=(s—1m 28

cce® Y Y [eferorepnpt o)

RM)
lyI=(s=Dm  BeN] 2089
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As from Lemma 5, forany « € s- Ap, B € rAp\(r —1DAp, 8 > @ (S > 1)
| — B| <'s —r, then by (8) there is a constant C, > 0 such that:

2
25 vIF (DY ?PDuH
Y ||Qe@e FOrgPOW||
lyl<(s—Dm
S
2
<Cie® Y Y 3 Qi prepf P
lyI=(s—1mr=0 fe(r Ap\(r—1)Ap)Ng ?
S
=C D, D ) )
lyI<(s=DmaesAp r=0 Be(r Ap\(r—1) Ap)NNG
2
Then by Lemma 2 from (7), there exists a constant C3 > 0 such that:
s . 2
> X |lea@ "R PO
- - La(RM)
i=1|y|l=@i-Dm
S
2 2
=C). D |IDPPON|L, e -y
r=0 Ber ApNNj
From this estimate we get the proof of the Lemma.
O

3. Estimates for higher order derivatives

For a convex set A C Ri we denote:

t-A={vr;veR];{eA} fort>0,
0-A=0,
t-A=¢ fort <O.

DEFINITION 5. (cf. [5]) Let @ c R be a open set. By GA($2) we denote the set
of the functions f € C°°(£2) such that for any compact subset K C 2 there exists a
constant C = C(K) for which:

sup ID* f(x)| < CI*Lji, ae jA, j=1,2,..

xeK

The class GA(L) is called multianisotropic Gevrey class.

In [5] it was proved that if A = {v : v € RT; (v, 4) < 1} forsome 1 € R N R,
min A = 1, then GA(Q) = G*(Q). If » = (1, ..., 1), then the class GA(L) is the

1<i<n

class of the analytic functions with real variables.
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LEMMA 7. Let V beaC.R. polyhedron, | a natural number, Q" c € c R" an open
set with diameter less than 2. If f € GV (Q'), then there is aconstantC = C(l, f) > 0
such that, forany j > | (j € Né), and any multiindex @ € j - M and § € (0, 1) the
following estimate is satisfied:

9) 81 sup |D*f(x)| <CltL,
xeszéjfl)(S

Proof. Since if (j —1)§ > 1, then Q/('—na = (@, therefore it is sufficient to prove the
estimate (9) inthe case 6(j — ) < 1. 'Ilhen

) . , , i i
sup |D°‘f(x)|§CJ+1-jJ=CJ+1.(J‘_|)J_(_LI)
Xeszéjfl)(S J

) i . 1\
<clth o -nl <cltt. (5) .

Now the proof easily follows.
O

THEOREM 2. Let u(x) be a solution of the hypoelliptic equation P(D)u = f,
where f € GAP(Q). Then there is a constant K = K (u, w) > 0 (w CC ) such that:

(10) €2js+2m . Z 872\o(|
OyéozeNS

kA jo12
LZ(wsj)

“ey

QL(DP@ D)y

where m denotes the order of P(D).

Proof. Since any solution u(x) of the hypoelliptic equation P(D)u = f belongs to
C>(Q) if f € C*°(R), then there is a constant K > 0 such that the inequality (10) is
true for j = 0. We proceed by induction. Let’s suppose that the estimate (10) is true
forany j < I(l > 0). Then we proveitfor j =1 + 1. Since V (x) = Q'P(D)u(x) isa
solution of the equation P(D)V = Q'P(D) f, then by Lemma 6 we get:
(11)

825(I+1)+2m . Z 872\a|

O#aeNg

2825(I+1)+2m. Z 8—2\a|

O#aeNj

<C .82$I+2m. Z 872\a|
OyéozeNS

+C.825I+2m_252 Z £

r=0 Ber ANN]

2

QFHD)P@ D)y

La(wg+1)e)

2

Qr(D)P(D)Qp(D)y|

Lo(wd+1)e)

2

P (D)Q5 (Dl

Lao(wie)

2

b7 QIP(D) f ‘ ‘ Lo(@e)
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And by induction we have:
2 ka4

12 825| +2m 8—2\0[|
( ) Z Lao(wie)

a#0

P (D)Qh (D)l

For the second term of the right hand side of the estimate (11), by Lemma 7, and as
f € GAP(Q), then there is a constant q = q( f, w) > 0 such that:

S
2

(13) g2sl+2m Z Z o2 DﬂQIP(D)f‘ o < q2(|+2).

r=0 Ber ApnN NS ¢
And by (12)-(13), we obtain from (11):
g2s(+D+2m 2872\04 Q|+1(D)P(°‘)(D)u‘ 2 < c. (K2(|+1) 4 q2(|+2))

P Lo(wisne)
a#0
< K2(|+2)

if K is sufficiently large.
O

THEOREM 3. Let u(x) be a solution of the hypoelliptic equation P(D)u = f,
where f € GAP (). Then for any w cC  there is a constant K1 = Ky(u, ) > 0
such that: )

< K2+ j2$j’ j

< =12, ...
L2(w)

Jokon|

Proof. Since p = p(w, 9R) > 0, then for any § € (0, p) there is Q' cc such that
o C Q4. Then for any natural number j, taking ¢ = ? from Theorem 2, we have:

2

N lobowlf < (2)o 2j+1)
(T) P ‘Lﬂw)‘(?) H P(D)u‘ L)y =
It follows:
j 2 ai+n (1YY _ c2ivn .
HQP(D)uHLZ(a))sK (5) =Kj S =12,

O
PROPOSITION 1. For any multiindex « ¢ (s — 1) Ap we have D*Qp(¢) = const.
Proof. Since for any multiindex «:

:3' Eﬂ—a’

DQe®) = D, o

BesAl.p>a
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then it is sufficient to consider the case o € sSAp. Let B € SA% N NB be such that
o < fo, @ # Po, then |Bo — «| > 1. By the difinition of the set Ap, there is a natural
numberio, (1 < ip < k) suchthat (e, Al0) > dig(s—1) and min AO = 1. So we obtain

<J <n

(Bo, Alo) = (Bo—a, A0) + (a, Al0) > |Bo—a|+dig(s —1) > 1+dj,(s—1) > sd,. This

leads to a contradiction, therefore such g € sA(F’, N NB can’t exist. The Proposition is
proved.

O

LEMMA 8. For any ¢ > 0 and any function ¢ € C3°(R"), there is a constant
C > 0 for which the following estimate is satisfied:

e DD glIL,@n < CUIQP(DI@IILy@n+e~PllpllL@n, 0 < j <s, Ya € jAp.

Proof. By the definition of the polynomial Qp (&), for anya € jJAp, 0 < j<5)
there is a constant C1 > 0 such that |£2¥| < Cl|Qp(§)| ,VE e RN,

Multiply the latter by ¢=25=1) for ¢ > 0, then by H&lder’s inequality there is a
constant C2 > 0 such that:

(14) 72501520 < C1e=25-D1Qp(8)] T < C2(QR(E) + £ %).

Applying Parceval equality, then for any ¢ € C3°(R") the following is satisfied:

e~ DD%||L@n < CUIQP(D)@lIL,&m + &~ OllollL®n)-

O

LEMMA 9. Let Q@ c R" be an open set, j be a natural number, 0 < j < s,
8 € (0, 1). Then for any function g5 € C°(2), 0 <¢s; <1, ¢; = 1onQ;, thereis
a constant Cs > 0 such that:

sup |Q’(D)gs| < Csd~ 1), Va e jAp\ (j — 1)Ap.
Q

The proof easily follows from Lemma 4.1 in [7] and Proposition 1.
For any number p, any open set @ C R" and any function f € L'ZOC(Q) we write

(cf. [TD:
Ng . (f) = Ny (f) = SUF()]t?“IIfIILg(Q,g)-
8>

THEOREM 4. For any multiindex 8 € jAp (j € Né, 0 < j <s)thereisa
constant C > 0 such that:

N;j(DPu) < C(Ns(Qp(D)u) + No(u)),  Vu € C®(RQ).
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Proof. Let g5 € C3°(£2) be a function satisfying the condition of Lemma 9, then by
Newton-Leibniz formula, we have:

QW @5
Qp(D)(gsu) = Y~ ¥—D"u
(15) ¢
(@) (@)
D D
_ Z Qp (I )Ps DYy + Z Qp (I )Ps DU
ag(s—1)Ap o ae(s—1)Ap ’

By Proposition 1 the first term of (15) is equal to ¢sQp(D)u. Therefore:

s—1

Qp(D)(¢5U)=¢6QP(D)U+Z Z

j=0ae(jAp\(j—1)Ap)

o
QW (D)gsa! .
<B Ty

So there is a constant C > 0 such that:

QP (D) (@sWIlL,mrm <C{llesQp(D)ullL,m®rn)

s—1
+3 > Q) (D)gs D ul|Lwn) -

j=0ae(jAp\(j—DAp)

By the definition of N, for a suitable constant Cy > 0 we have:

QP (D) (@sWIlLywny

s—1
<C*{NsQprDW + > > Nj (D*u)
(16) j=0ce(j Ap\(j—1)Ap)

s—1
<C187° I Ns(Qp(D)W) + ) >~ Nj(D“u)

j=00£€jAp

Since ||@sul|L,rm < No(u), then by Lemma 8 from (16) it follows that for a constant
C2 > 0 we have:

e~ S DIDP (s WLy

(17) st
<C2{87°INs(Qp(D)W) + Y > Nj(D“u) t +& *No(U) ¢,

j:OO{EjAp

VB € jAp. Takinge = 2, 8 < 92 and multiplying by (17) 5%, we get:

s—1

o7INj(DPu) < C2 { Ns(Qr(D)W) + > Y Nj(D*u) | .

(18) j=0waejAp

VB € jAp.
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Taking the sum of (18) forall j, j =0, ...,s:

S
Za<5—i> Z N; (DPu)
j=0

BejAp
s—1
< (541 C2{Ns(QD)u) + > > Nj(Du) + 0°No(u)
j=0aecjAp

For sufficiently large o, we can find a constant C3 = C3(o’) > 0 such that:

S
> o 37 Nj(DPu) < Ca{Ns(Qp(D)u) + No(u)).
j=0

BeiAp

The proof of the Lemma follows.
O

THEOREM 5. Any solution of an hypoelliptic equation P(D)u = f belongs to
GAP(Q), if f € GAP(Q).

Proof. Letw CcC Q2. By Theorem 4, for any v € C° (), we have:
IIDPVILpwert) < C2(l1QP(DIVIILpwe) + tIIVIL p(ws))-

wheret > 0. Takingt = 2,5 = (1 — {)§ we get:

8 —S
(19)  ID?v]lLywy) < Co2 (”QP(D)UHLg(w(l%)S) + <T) ||U||L2(w(l%)§)> .

By Theorem 1.1 of [6], for the polyhedron s Ap there is a natural number jo > s such
that any multi-index « € jAp, j > jo, can be represented in the forma = 8 + v,
where 8 € sSAp NN, y € (j —s)Ap NNG. For simplicity let jo = s. Therefore, every
|
multiindex « can be represented as o« = Za(k), where | = [Jg] if [Jg] is integer, and
k=1
I =[]+ 1otherwise, ™ € sAp NNJ, k = 1, .., 1. Now let g = a2, then by (19) we
get:

1 1
IIDa (Da * )u||L2(a)§)

1 s\ S 1
<C (IIQP(D)(D“ * )UIILZ(M(L%)(S + (|—> ||[D*™ U||L2(w(1%)5)>

(20) 2 1 2
<C (IID“ DA QP(D)UHLz(w(

1
1~

8 - O(Z O(*O(lfolz
+(I—> ||D* (D )U||L2(w(17]1)5) .
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Taking the function v = D"‘“"l‘“zQp(D)u in the first term of the right hand side

of (20) and taking v = Da—e'=2*; in the second term of the right hand side of (20),
applying to (20) the estimate (19) and working anologously to step (I — 1), we obtain:

| si
e i
ID“UllLywp) < Ch Y CI (3) 1Q8 ™ (D)UIIL e

i=0
I si
i=0
I Si
<C3) ¢ (%) M < (Ca@)HHjl,
i=0
i.e.ue GAP(Q).

LetueR",i=1..,n min uj=1land0<p <1,i=1,..n.

1<i<n

We denote by B = {v € RT}, (v, i) < pi, i =1, ...,n}.

THEOREM 6. Let f € GB(Q). Then any solution of the hypoelliptic equation
P(D)u = f belongs to GB AP (Q).

The theorem was proved analogously to Theorem 2.4 with some modifications. We
now present two examples clarifying the previous results.

EXAMPLE 1. Letn =2, P(5, aiy) = (83—)(22 - %)(:—; — 2. Using the notations

Di=12. Dy = %diy we have:
P(D) = (—D? —iD2)(~D2 —iD1) = iD} +iD3 + D?D3 — D1 Dy,
and its characteristic polynomial is:
P(§) = (—&] —iE)(—85 —it) =& +i8) + 78] — aatn

Itis easy to see that P (&) is a multi-quasi-elliptic polynomial, and therefore the set
Mp is a C.R. polyhedron. Simple computations show that Mp = {v € Ri, 2v1+v <
1; v1 + 2v1 < 1}. The exact weight hypoellipticity of the operator P (D) is

hE) = |E1]Z] + E22] + 1113 |E2) 3.

By Hormander Theorem (cf. 8, Theorem 11.4.1), all the solutions of the equation
P(D)u = 0 belong to the Gevrey class G%2(£2) and this result is sharp remaining in
the frame of the anisotropic Gevrey classes. However, from the hypoellipticity and the
form of the operator P (D), it follows that any solution can be represented in the form:

u(x,y) =ui(x,y) +uz2(x, y),
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where ui(x,y) € GY2(Q),u2(x,y) € G%1(£). Using this fact, we can estimate
D7{*D3%u, where a1 = a2 = j, j = 1,2, ... as follows: for any compact subset
K c  there exist two constants C1 = C1(K, u1) > 0and C» = C»(K, u2) > 0 such
that: o o o
sup |D3 D3u(x, y)| < sup |Dy Dus(X, )| + sup |D3 DJuz(x, y)|

xeK xeK

xeK

< Cfl+1j1jj2j +C§J+lj2jjlj < C?2’1+1j37

where C3 = max(C1, C2). Therefore, the classical Gevrey classes don’t describe com-
pletely the behaviour of the solutions of the hypoelliptic equation P(D)u = 0. Using
the multianisotropic classes Gevrey and noticing that (j, j) € 3j Mp, we have:

sup DI DJu(x, y)| < C2I+1j3i,
xeK

Let for example f € GB(), where:
2 3
B=3jve R+,3v1+§vz§l .

Then A=MpNB={veR2 3u+3vp<1liv+202 <1}
From Theorem 2.5 we have that all the solutions of the equation P(D)u = f
belong to GA(R).
EXAMPLE 2. Letn =2 and P (D) be the operator with symbol:
P =806 —8° + 6065 + 60 + 1.
The polynomial P (&) is not multi-quasi-elliptic. Simple computations show that:
2 2
Mp=1iveRy,2v1+32<Livi+v2 < 3l
Let P(D)u = f, where f € GB(), B for instance has the form:
2 3
B={ve R+,2v1+§vz§ 1}.

Since B N Mp = Mp, then from Theorem 2.5 it follows that u € GMP Q.
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