
G. Milovanovic informed us that the solution to Problem 7 is known. See
https://arxiv.org/abs/2104.02348v2 for a revised version of our paper, which
contains the following text and references instead of Problem 7.

The Bernstein-type version of (41)/(43) was found by A. Guessab and G.
V. Milovanovic [1] much earlier and actually in a stronger form: if w(x) =
(1 + x)α(1− x)β , α, β > −1, is a Jacobi weight, then(∫ 1
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with equality for the corresponding Jacobi polynomial of degree n. Remarkably,
[1] also contains the analogue of this inequality for higher derivatives as well with
precise constants for all n.

In the α = β = −1/2 case this can be written in the somewhat less precise
form (∫ 1
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and this form has an extension to other Lp spaces and to several intervals (see
[2]): let E ⊂ R be a compact set consisting of non-degenerate intervals. Then
for 1 ≤ p < ∞ and for algebraic polynomials Pn of degree n = 1, 2, . . . we have(∫
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and this is precise in the usual sense. Note that if E = [−1, 1], then πωE(x) =
1/
√
1− x2, so in this case this inequality reduces to (1) for p = 2.
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