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Abstract
Let H be a commutative faithfully flat Hopf algebra over a commutative

ring R. We give an exact sequence describing the group of H-Galois coobjects.
The other terms in the sequence are Harrison cohomology groups. This
generalizes an exact sequence due to Early and Kreimer and Yokogawa.

Résumé
Soit H une algèbre de Hopf commutative fidèlement plate sur un anneau

commutatif R. Nous étudions une suite exacte qui décrit le groupe des co-
objets H-Galois. Les autres termes de la suite sont des groupes de cohomologie
de Harrison. Cela généralise une suite exacte due à Early, Kreimer et
Yukogawa.

Introduction

Let H be a finite (i.e. a finitely generated projective) cocommutative Hopf algebra
over a commutative ring R. Chase and Sweedler [4] introduced the notion of H-
Galois object, generalizing classical Galois theory. Isomorphism classes of H-Galois
objects form a group Gal(R,H). The multiplication on Gal(R,H) is induced by
the cotensor product �H . Early and Kreimer [5] and, independently, Yokogawa [13]
showed that Gal(R,H) fits into an exact sequence

1−→H2(H,R,�m)
α
−→Gal(R,H)

β
−→H1(H,R,Pic)

γ
−→H3(H,R,�m)(1)

Here the cohomology groups are Sweedler cohomology groups, cf. [11]. The definition
of a Galois object can be generalized to the situation where H is not necessarily
finitely generated or projective ([9]). The idea is the following: consider an H-
comodule algebra A. Then we have a pair of adjoint functors between the category
R-mod and the category of relative (A,H)-modules. This category consists of
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R-modules equipped with an A-action and an H-coaction satisfying a certain
compatibility relation. If H is finite, then relative Hopf modules correspond to
(right) Aopp#H∗-modules, and this explains the relation with the theory of Chase
and Sweedler. If the adjunction is a category equivalence, then we say that A is an
H-Galois object.
The question that we are interested in is the following: can we generalize the exact
sequence (1) to the situation where the Hopf algebra H is not necessarily finitely
generated and projective? The proofs exhibited in [5] and [13] make intensive use of
the fact that the Hopf algebra H (and the H-Galois objects) are finitely generated
and projective. This allows to switch back and forth between H-comodule algebras
andH∗-module coalgebras. For example, the map β is given by forgetting the algebra
structure, followed by taking the dual. We then obtain an H∗-module, representing
a Sweedler cocycle. Of course these duality arguments no longer hold in the case
where H is infinite. Another problem is the fact that the cotensor product is not
naturally associative (unless we work over a field instead of a commutative ring).
Moreover, we cannot prove that the cotensor product of two H-Galois objects is
again an H-Galois object.
In this note, we propose to work with H-module coalgebras instead of H-comodule
algebras. In [9], Schneider introduces a Galois theory for H-module coalgebras,
leading to the notion of H-Galois coobject. If H is finite, then the dual of an H-
Galois coobject is an H∗-Galois object. We will show that, for H commutative, the
set of isomorphism classes of H-Galois coobjects forms a group Galco(R,H). The
operation is now induced by the tensor product ⊗H . Gal

co(R,H) fits into an exact
sequence, and, in the case where H is finite, a duality argument shows that the
exact sequence (1) follows from this new sequence.
When we try to add the H3-term to the sequence, we face a phenomenon that is
typical for the infinite case. We have to restrict attention to a subgroup of the group
of Galois coobjects. This subgroup is defined as follows: consider Galois coobjects
that have normal basis after we take a faithfully flat base extension. We will say
that such a Galois coobject has a geometric normal basis. Thus a Galois coobject
C has a geometric normal basis if C ⊗ S ∼= H ⊗ S as H ⊗ S-modules for some
faithfully flat commutative R-algebra S. If H is finite then all Galois coobjects have
a geometric normal basis, we can take a Zariski covering for S. We have to apply
a similar construction for the Picard group, and then we can state the generalized
exact sequence, see Theorem 3.4.
Along the way, we obtain two results that seem to be new even in the finite case:
we have an explicit construction for the inverse of an H-Galois coobject (Theorem
2.2), and, conversely, if an H-module coalgebra is a twisted form of H as an H-
module and is invertible as an H-module coalgebra, then it is an H-Galois coobject
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(Corollary 3.5).
Some additional difficulties arise if we try to construct a similar theory for Galois
objects; moreover, the formalism turns out to be much more complicated in this
situation, and this is why the author has the opnion that the coalgebra formalism
is the natural formalism for this type of problem.
For standard results and terminology about Hopf algebras, we refer to the literature,
e.g. [1], [7] or [11]. The reader should keep in mind that we work here over a
commutative ring, while the monographs cited above restrict attention to Hopf
algebras over a field.

1 Notations and preliminary results

Throughout this paper, H will be a commutative Hopf algebra over a commutative
ring R, and assume that H is faithfully flat as an R-module. For the comultiplication
on H we will use Sweedler’s sigma notation ([10]):

∆(h) =
∑
h1 ⊗ h2

A left H-module coalgebra is an R-module C such that C is a left H-module and an
R-coalgebra satisfying the compatibility relations

∆C(h⇀c) =
∑
(h1⇀c1)⊗ (h2⇀c2)(2)

εC(h⇀c) = εH(h)εC(c)(3)

for all h ∈ H and c ∈ C. The left action of H on C is denoted by ⇀. If H is
commutative, it makes no sense to distinguish between left and right H-module
coalgebras.
Let C be a left H-module coalgebra. Then a left (H,C)-Hopf module M is an
R-module that is a left H-module and a left C-comodule such that

ρM (h ·m) =
∑
h1⇀m(−1) ⊗ h2m(0)(4)

for all m ∈ M and h ∈ H . In the sequel, CH�(H) will denote the category of left
(H,C)-Hopf modules and H-linear C-colinear maps.

Proposition 1.1 — With notations as above, consider the functors

F : C
H�(H)−→R-mod :M �→ R⊗H M =M

G : R-mod−→C
H�(H) : N �→ C ⊗N

Then G is a right adjoint to F .
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Proof. This result is a special case of [3, Theorem 1.3]. We restrict to giving a brief
sketch of the proof. R is an H-module via the map ε. In fact, M =M/KerεM , and
in M we have the following identity:

hm = ε(h)m

for all h ∈ H and m ∈ M . For any M ∈ C
H�(H) and N ∈ R-mod we consider the

maps

α : HomCH(M,C ⊗N)−→HomR(M,N)

β : HomR(M,N)−→Hom
C
H(M,C ⊗N)

given by

α(f)(m) = (εC ⊗ IN )(f(m))

β(g)(m) =
∑
m(−1) ⊗ g(m(0))

for all f ∈ HomC
H�(H)(M,C⊗N), g ∈ HomR(M,N) and m ∈M . A straightforward

verification shows that f and g are well-defined and each others inverses. This finishes
the proof.

From the adjointness of the functors F and G in Proposition 1.1, it follows that
for all M ∈ C

H�(H) and N ∈ R-mod we have natural maps

ψM :M−→G(F (M)) = C ⊗M

φN : F (G(N)) = C ⊗N−→N

given by

ψM (m) =
∑
m(−1) ⊗m(0)

φN (
∑
i

ci ⊗ ni) =
∑
i

ε(ci)ni

Definition 1.2 — With notations as above, an H-module coalgebra C is called
an H-Galois coobject if the functors F and G from Proposition 1.1 are inverse
equivalences, or, equivalently, if ψM and φN are isomorphisms for all M ∈ C

H�(H)

and N ∈ R-mod.

We will now establish some necessary and sufficient conditions for an H-module
coalgebra to be an H-Galois coobject. It is clear that φN is an isomorphism for all
N ∈ R-mod if and only if the canonical map

φC : C−→R : c �→ ε(c)
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is an isomorphism.
Observe thatH⊗C can be given the structure of left (H,C)-Hopf module as follows:

k(h⊗ c) = kh⊗ c

ρH⊗C(h⊗ c) =
∑
h1⇀c1 ⊗ h2 ⊗ c2

for all h, k ∈ H and c ∈ C. It is readily verified that condition 4 is satisfied:

ρH⊗C(kh⊗ c) =
∑
k1h1⇀c1 ⊗ k2h2 ⊗ c2

=
∑
k1(h⊗ c)(−1) ⊗ k2(h⊗ c)(0)

A necessary condition forM to be an H-Galois coobject is therefore that δ = ψH⊗C
is an isomorphism. Let us describe δ. First we remark that F (H⊗C) = H⊗C = C,
since H ∼= R. Indeed, the maps

I ⊗ εH : H = R⊗H H−→R η ⊗ 1 : R−→H = R⊗H H

are well-defined and each others inverses.
Now G(F (H ⊗ C)) = C ⊗ C, where H acts and C coacts on the first factor:

h(c⊗ d) = h⇀c⊗ d

ρC⊗C(c⊗ d) =
∑
c1 ⊗ c2 ⊗ d

δ = ψH⊗C is given by the formula

δ(h⊗ c) =
∑
(h1⇀c1)⊗ ε(h2)c2 =

∑
(h⇀c1)⊗ c2

Theorem 1.3 — Let H be a commutative, faithfully flat Hopf algebra. For a left
H-module coalgebra C, the following conditions are equivalent:

1. C is an H-Galois coobject;

2. – C = R;

– δ = ψH⊗C : H⊗C−→C⊗C : h⊗c �→
∑
(h⇀c1)⊗c2 is an isomorphism;

– C is flat as an R-module.

3. – δ = ψH⊗C : H⊗C−→C⊗C : h⊗c �→
∑
(h⇀c1)⊗c2 is an isomorphism;

– C is faithfully flat as an R-module.

Proof. For full detail, we refer to [9] or to [3], where more general results are given.
The reader might object that the results in [3] are valid only if we work over a field k,
but it can be verified that the above Theorem is true over a commutative ring.

Corollary 1.4 — Let H be a commutative, faithfully flat Hopf algebra. Then H
viewed as a left H-module coalgebra is an H-Galois coobject.
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Proof. We only have to show that the map

δ : H ⊗H−→H ⊗H : h⊗ k �→
∑
hk1 ⊗ k2

has an inverse. This inverse is given by the formula

δ−1(h⊗ k) =
∑
hS(k1)⊗ k2

Harrison cohomology

For i = 0, 1, · · · , n+ 1, consider the maps εi : H⊗n−→H⊗n+1 defined as follows:

εi(h1 ⊗ · · · ⊗ hn) =


1⊗ h1 ⊗ · · · ⊗ hn if i = 0

h1 ⊗ · · · ⊗∆(hi)⊗ · · · ⊗ hn if i = 1, · · · , n

h1 ⊗ · · · ⊗ hn ⊗ 1 if i = n+ 1

Let P be a covariant functor from flat commutative R-algebras to abelian groups,
and consider

∆n =

n+1∑
i=0

(−1)iP (εi) : P (H
⊗n)−→P (H⊗n+1)

We obtain a complex 0−→P (H) ∆1−→P (H⊗2) ∆2−→P (H⊗3) ∆3−→· · · . The corresponding
cohomology groupsHn

Harr(H,R, P ) are called the Harrison cohomology groups with
values in P .

2 The group of Galois coobjects

Consider the set of isomorphism classes of H-Galois coobjects. In this Section, we
will show that this set forms a group under the operation induced by the tensor
product over H .
If C and D are two H-module coalgebras, then C ⊗H D is again an H-module
coalgebra. The action and comultiplication are given by the formulas

h⇀(c⊗ d) = h⇀c⊗ d = c⊗ h⇀d

and
∆(c⊗ d) =

∑
(c1 ⊗ d1)⊗ (c2 ⊗ d2)

We leave it to the reader to verify that ∆ is well-defined. Obviously, H is itself an
H-module coalgebra, and we have an H-module coalgebra isomorphism

H ⊗H C−→C : h⊗ c �→ h⇀c

for every H-module coalgebra C.
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Proposition 2.1 — Suppose that C and D are two H-Galois coobjects. Then C⊗HD
is also an H-Galois coobject.

Proof. As we have seen above, C ⊗H D is an H-module coalgebra. Let us first show
that C ⊗H D is flat as an R-module. Suppose that

0−→M ′−→M−→M ′′−→0

is an exact sequence of R-modules, and consider the commutative diagram

0 // C ⊗H ⊗D ⊗M ′ //

����

C ⊗H ⊗D ⊗M //

����

C ⊗H ⊗D ⊗M ′′ //

����

0

0 // C ⊗D ⊗M ′ //

��

C ⊗D ⊗M //

��

C ⊗D ⊗M ′′ //

��

0

0 // C ⊗H D ⊗M ′ //

��

C ⊗H D ⊗M //

��

C ⊗H D ⊗M ′′ //

��

0

0 0 0

The two top rows are exact since C, H and D are flat R-modules. The three columns
are exact because the tensor product is right exact. The Lemma of 5 now implies
that the bottom row is exact, and therefore C ⊗H D is exact.
Observe next that

C ⊗H D = C ⊗H D ⊗H R ∼= C ⊗H R ∼= R

Finally, the map

δ : H ⊗ C ⊗H D−→C ⊗H D ⊗ C ⊗H D : h⊗ c⊗ d �→
∑
h⇀c1 ⊗ d1 ⊗ c2 ⊗ d2

is an isomorphism. Indeed, observe that we have natural isomorphisms

H ⊗ C ⊗H D ∼= H ⊗H H ⊗ C ⊗H D ∼= (H ⊗ C)⊗H⊗H (H ⊗D)

We may therefore view δ as the map

δ : (H ⊗ C)⊗H⊗H (H ⊗D)−→C ⊗H D ⊗ C ⊗H D

given by
δ = τ23 ◦ (δC ⊗ δD)

and this map is an isomorphism. C ⊗H D now satisfies all the conditions of
Proposition 1.3, and is therefore an H-Galois coobject.
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Theorem 2.2 — Suppose that H is a Hopf algebra that is faithfully flat as an R-
module, and let C be an H-Galois coobject. Then there exists an H-Galois coobject
D such that C ⊗H D ∼= H as H-module coalgebras. As a coalgebra, D = Ccop. The
action of H on D is given by the formula

h
D
⇀d = S(h)

C
⇀d

for all h ∈ H and d ∈ D.

Proof. Let K = Hcop as a coalgebra, with H-action given by hK⇀d = S(h)k for
all h, k ∈ H . Then the antipode S : H → K is an isomorphism of H-comodule
algebras. It therefore suffices to show that C ⊗H D ∼= K as H-module coalgebras.
Since C = R, R is the coequalizer of the maps{

εH ⊗ IC

ψC
: H ⊗ C−→−→C

εC−→R−→0

Now H is flat as an R-module, and this implies that H is the coequalizer of the
maps {

IH ⊗ εH ⊗ IC

IH ⊗ ψC
: H ⊗H ⊗ C−→−→H ⊗ C

IH⊗εC−→ H−→0

Recall from Corollary 1.4 that

δ−1H ⊗ IC : H ⊗H ⊗ C−→H ⊗H ⊗ C : h⊗ k ⊗ c �→
∑
hS(k1)⊗ k2 ⊗ c

is an isomorphism. Therefore H is also the coequalizer of the maps{
β = (IH ⊗ εC ⊗ IC) ◦ (δ

−1
H ⊗ IC)

α = (IH ⊗ ψC) ◦ (δ
−1
H ⊗ IC)

: H ⊗H ⊗ C−→−→H ⊗ C
IH⊗εC−→ H−→0

One easily verifies that

α(h⊗ k ⊗ c) =
∑
hS(k1)⊗ (k2⇀c)

β(h⊗ k ⊗ c) = hS(k)⊗ c

Now consider the map

δ′ : H ⊗H ⊗ C−→D ⊗H ⊗ C : h⊗ k ⊗ c �→
∑
(h⇀c1)⊗ k ⊗ c2
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and observe that the diagram

H ⊗H ⊗ C
δ′

//

α

��

β

��

D ⊗H ⊗ C

ψD⊗IC

��

I⊗ψC

��

H ⊗ C
δ

//

IH⊗εC

��

D ⊗ C

��

H

��

D ⊗H C

��

0 0

commutes. Indeed,

((ψD ◦ IC) ◦ δ)(h⊗ k ⊗ c) =
∑
S(k)h⇀c1 ⊗ c2

= (δ ◦ β)(h⊗ k ⊗ c)

and

(δ ◦ α)(h ⊗ k ⊗ c) =
∑
((hS(k1)k2)⇀c1)⊗ (k3⇀c2)

=
∑
(h⇀c1)⊗ (k⇀c2)

= ((I ⊗ ψC) ◦ δ
′)(h⊗ k ⊗ c)

Now δ and δ′ are isomorphisms, and the two columns in the above diagram are
exact. It therefore follows that δ descends to an isomorphism H ∼= D ⊗H C.
We still have to show that D is an H-Galois coobject. It is clear that D is faithfully
flat as an R-module, since D = C as an R-module, and it therefore suffices to show
that

δD : H ⊗D−→D ⊗D : h⊗ d �→
∑
(S(h)⇀d2)⊗ d1

is an isomorphism.
We first show that δ is surjective. Take d ⊗ e ∈ D ⊗ D, and let δ−1C (e ⊗ d) =∑

i hi ⊗ ci ∈ H ⊗ C. Then

d⊗ e =
∑
i

ci2 ⊗ hi⇀ci1

=
∑
i

(S(hi3)hi2 )⇀ci2 ⊗ hi1⇀ci1

= δD

(∑
i

hi2 ⊗ hi1⇀ci
)
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Let us finally show that δD is injective. Suppose that

δD(
∑
i

$i ⊗ di) =
∑
i

S($i)⇀di2 ⊗ di1 = 0

Then

0 =
∑
i

di1 ⊗ S($i)⇀di2

=
∑
i

($i3S($i2))⇀di1 ⊗ S($i1)⇀di2

= δC

(∑
i

$i2 ⊗ S($i1)⇀di
)

Now δC is injective, and therefore∑
i

$i2 ⊗ S($i1)⇀di = 0

Applying τ ◦∆H to the first factor, we obtain∑
i

$i3 ⊗ $i2 ⊗ S($i1)⇀di = 0

Now let the second factor act on the third one. This yields that∑
i

$i ⊗ di = 0

and it follows that δD is injective.

From Corollary 1.4, Proposition 2.1 and Proposition 2.2, we may conclude the
following result.

Theorem 2.3 — Suppose that H is a commutative, faithfully flat Hopf algebra. Then
Galco(R,H), the set of isomorphism classes of H-Galois coobjects, forms a group
under the operation induced by the tensor product over H. We call this group the
group of H-Galois coobjects.

We will now show that Galco(R,H) fits into an exact sequence.

Theorem 2.4 — Let H be a commutative faithfully flat Hopf algebra. Then we have
an exact sequence

1−→H2Harr(H,R,�m)
α
−→Galco(R,H)

β
−→H1Harr(H,R,Pic)(5)

Proof. Definition of the map α.
Take a Harrison cocycle u =

∑
ui ⊗ vi ∈ �m(H

⊗2). Let C be equal to H as an
H-module, and define a comultiplication ∆C on C by the rule

∆C(c) = u∆(c)
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for all c ∈ C. From the cocycle relation, it follows easily that ∆C is coassociative.
Let us show that C has a counit. Since u =

∑
i ui ⊗ vi is a cocycle, we have that∑

i,j

ujui1 ⊗ vjui2 ⊗ vi =
∑
i,j

ui ⊗ ujvi1 ⊗ vjvi2

Apply IH ⊗ εH ⊗ IH to both sides to obtain∑
i,j

ujui ⊗ ε(vj)vi =
∑
i,j

ui ⊗ ε(uj)vjvi

or
(1⊗

∑
j

ε(vj)uj)u = (1⊗
∑
j

ε(uj)vj)u

or, since u is invertible ∑
j

ε(vj)uj =
∑
j

ε(uj)vj

Observe that
∑
j ε(vj)uj is invertible in H , since εH ⊗ IH is a multiplicative map.

We now define

εC(c) = (
∑
j

ε(vj)uj)
−1εH(c) = (

∑
j

ε(uj)vj)
−1εH(c)

It is straightforward to show that εC is a counit, and it follows that C is a coalgebra.
Left multiplication by elements of H makes C into an H-module coalgebra. To prove
that C is an H-Galois coobject, it suffices to show that

δC : H ⊗ C−→C ⊗ C : h⊗ c �→
∑
huic1 ⊗ vic2 = uδH(h⊗ c)

is an isomorphism. This is obvious, since u is invertible.
We define α([u]) = [C]. It is straightforward to show that α is a well-defined
monomorphism.
Definition of the map β.
Let C be an H-Galois coobject. We claim that C considered as an invertible H-
module (forget the comultiplication) is a Harrison cocycle with values in Pic. Observe
that

Pic(ε0)(C) = (H ⊗H)⊗ε0 C = H ⊗ C

Pic(ε2)(C) = (H ⊗H)⊗ε2 C = C ⊗H

and therefore
Pic(ε0)(C) ⊗H⊗H Pic(ε2)(C) ∼= C ⊗ C

On the other hand
Pic(ε1)(C) = (H ⊗H)⊗ε1 C
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is generated by monomials of the form

(h⊗ k)⊗ε1 c

subject to the relation

(h⊗ k)⊗ε1 l · c =
∑
(hl1 ⊗ kl2)⊗ε1 c

for all h, k, l ∈ H and c ∈ C. Consider the map

θ : (H ⊗H)⊗ε1 C−→H ⊗ C

given by
θ((h⊗ k)⊗ε1 c) =

∑
hS(k1)⊗ k2c

θ is well-defined, since

θ
(∑

(hl1 ⊗ kl2)⊗ε1 c
)
=
∑
hl1S(l2)S(k1)⊗ k2l3c

=
∑
hS(k1)⊗ k2l3c

= θ((h⊗ k)⊗ε lc)

θ is an isomorphism of R-modules. Its inverse is given by

θ−1(h⊗ c) = (h⊗ 1)⊗ε1 c

Indeed,

θ−1(θ((h ⊗ k)⊗ε c)) =
∑
(hS(k1)⊗ 1)⊗ε1 k2c

=
∑
(hS(k1)k2 ⊗ k3)⊗ε1 c

= (h⊗ k)⊗ε c

and
θ(θ−1(h⊗ c)) = θ((h ⊗ 1)⊗ε1 c) = h⊗ c

It follows that
δC ◦ θ : (H ⊗H)⊗ε1 C−→H ⊗ C

is an isomorphism of R-modules. δC ◦ θ can be described explicitly as follows:

(δC ◦ θ)((h ⊗ k)⊗ε1 c) = δC(
∑
hS(k1)⊗ k2c)

=
∑
hS(k1)k2c1 ⊗ k3c2

= (h⊗ k)∆C(c)(6)
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From (6), it follows easily that δC ◦ θ is H ⊗H-linear.
We now define β([C]) = [C].
Exactness at Galco(R,H).
Suppose that C = H as an H-module. From the coassociativity of the comultipli-
cation on C, it follows that u = ∆C(1) is a Harrison 2-cocycle. It is straightforward
to show that [C] = α([u]).

Galco(R,H) is now described completely if we can add one more term to the
long exact sequence (5). The obvious candidate for this next term is the third
Harrison cohomology group H3Harr(H,R,�m). If H is finite, then this works: the
exact sequence (5) (or at least a dual version of it), with the H3-term added to it is
then exact. This was shown independently by Early and Kreimer [5] and Yokogawa
[13]. In the general case, we are only able to describe a subgroup of Galco(R,H),
that coincides with the full Galco(R,H) if H is finite. This is what we will be doing
in the sequel.

3 Galois coobjects with geometric normal basis

A Galois coobject C has normal basis if C ∼= H as an H-module, or, equivalently,
if [C] ∈ Ker(γ) in Theorem 2.4. It follows from Theorem 2.4 that Galconb(R,H),
the subgroup of Galco(R,H) consisting of Galois objects with a normal basis,
is isomorphic to the second Harrison cohomology group H2Harr(H,R,�m). This
statement, which is much older then the exact sequence (5) is known as the normal
basis Theorem , and goes back to several authors, cf. for example [6] and [8]. We
now introduce the following geometric version of Galois object with a normal basis.

Definition 3.1 — Let A be a commutative faithfully flat R-algebra, and H a
commutative faithfully flat Hopf algebra. An invertible A-module I has a geometric
normal basis if there exists a faithfully flat commutative R-algebra S such that
I ⊗ S ∼= A ⊗ S as S-modules. An H-Galois coobject C has a geometric normal
basis if it has a geometric normal basis as an invertible H-module.

Obviously, the subsets of Galco(R,H) and Pic(A) consisting of isomorphism
classes of objects with geometric normal basis are subgroups. These subgroups will
be denoted by Galcognb(R,H) and Picgnb(R,A). We have the following inclusions:

Galconb(R,H) ⊂ Gal
co
gnb(R,H) ⊂ Gal

co(R,H)

Picgnb(R,A) ⊂ Pic(A)

Lemma 3.2 — If A (resp. H) is faithfully projective as an R-module, then

Galcognb(R,H) = Gal
co(R,H)
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and
Picgnb(R,A) = Pic(A)

Proof. Let I be an invertible H-module, and take p ∈ Spec(R). Then Hp = H ⊗Rp
is a finitely generated projective Rp-algebra and is therefore semilocal. Thus I ⊗Rp
is free of rank one as an Hp-module. A standard argument now shows that there is
a Zariski covering S = Rf1 × · · · × Rfn of R such that I ⊗ S is free of rank one as
an H ⊗ S-module.

With notations as in Theorem 2.4, we have that

Galcognb(R,H) = γ
−1(Piccognb(R,H))

and
Im(β) = Galconb(R,H) ⊂ Gal

co
gnb(R,H)

The exact sequence (5) therefore restricts to an exact sequence

1−→H2Harr(H,R,�m)
β
−→Galcognb(R,H)−→H

1
Harr(H,R,Picgnb(R, •))

Before extending this sequence, let us state the following technical Lemma.

Lemma 3.3 — Suppose that S is a faithfully flat R-algebra, and that C is an H-
module coalgebra. If S ⊗ C is an S ⊗ H-Galois coobject, then A is an H-Galois
coobject.

Proof. C is a faithfully flat R-module, because S ⊗ C is a faithfully flat S-module,
and S is a faithfully flat R-algebra. Furthermore

δS : (S ⊗H)⊗S (S ⊗ C) = S ⊗ (H ⊗ C)−→(S ⊗ C)⊗S (S ⊗ C) = S ⊗ (C ⊗ C)

defined by
δS(s⊗ (h⊗ c)) =

∑
s⊗ (h⇀c1)⊗ c2

is an isomorphism of S-modules. The fact that S is a faithfully flat R-algebra implies
that

δ : H ⊗ C−→C ⊗ S

is an isomorphism of R-modules.

Theorem 3.4 — Let H be a commutative faithfully flat Hopf algebra. Then we have
the following exact sequence

1−→H2Harr(H,R,�m)
α
−→Galcognb(R,H)

β
−→H1Harr(H,R,Picgnb(R, •))

γ
−→H3Harr(H,R,�m)

(7)
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Proof. Definition of the map γ.
Take a cocycle C ∈ Z1Harr(H,R,Picgnb(R, •)). We have an isomorphism

f : H⊗2 ⊗ε1 C−→C ⊗ C

of H⊗2-modules. Consider the following maps.

û : C−→C ⊗ C

given by
û(c) = f((1⊗ 1)⊗ε2 c)

and
ζ1, ζ2 : H

⊗2 ⊗ C−→C⊗3

given by

ζ1(h⊗ k ⊗ c) = (h⊗ k ⊗ 1)⇀
(
((û ⊗ IC) ◦ û)(c)

)
ζ2(h⊗ k ⊗ c) = (h⊗ k ⊗ 1)⇀

(
((IC ⊗ û) ◦ û)(c)

)
It is clear that û makes C into a coassociative coalgebra if and only if ζ1 = ζ2.
Suppose for a moment that C ∼= H as an H-module. Then for all h ∈ H , we have

û(h) = f((1⊗ 1)⊗ε2 h)

= f((
∑
h1 ⊗ h2)⊗ε2 1)

= (
∑
h1 ⊗ h2)f((1 ⊗ 1)⊗ε2 1)

= û(1)∆H(h)

Now write
u = û(1) =

∑
u1 ⊗ u2 =

∑
U1 ⊗ U2

and let
f−1(1⊗ 1) = v ⊗ε2 1

with
v =
∑
v1 ⊗ v2 =

∑
V 1 ⊗ V 2 ∈ H ⊗H

Then 1⊗ 1 = f(f−1(1⊗ 1)) = uv, and v = u−1. Observe next that the map

α : H⊗3−→H⊗3 : h⊗ k ⊗ l �→
∑
hl1 ⊗ kl2 ⊗ l3

is bijective; the inverse of α is given by the formula

α−1(h⊗ k ⊗ l) =
∑
hS(l2)⊗ kS(l1)⊗ l3
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We now have that

ζ1(h⊗ k ⊗ l) =
∑
(h⊗ k ⊗ 1)(û⊗ IH)(h

1l1 ⊗ u
2l2)

=
∑
(h⊗ k ⊗ 1)(U1u11l1 ⊗ U

2u12l2 ⊗ u
2l3)

=
∑
(U1 ⊗ U2 ⊗ 1)(u11 ⊗ u

1
2 ⊗ u2)(hl1 ⊗ kl2 ⊗ l3)

= ε3(u)ε1(u)α(h⊗ k ⊗ l)

and, in a similar way,

ζ2(h⊗ k ⊗ l) = ε0(u)ε2(u)α(h⊗ k ⊗ l)

Write m(εi(u)) for the map given by multiplication by εi(u). Then

ζ2 = m(ε0(u)) ◦m(ε2(u)) ◦ α

ζ−11 = α−1 ◦m(ε1(v)) ◦m(ε3(v))

and therefore

ζ2 ◦ ζ
−1
1 = m(ε0(u)) ◦m(ε2(u)) ◦m(ε1(v)) ◦m(ε3(v)) = m(∆2(u))

is given by multiplication by the coboundary ∆2(u).
We now return to the general case. Let S be a faithfully flat extension of R such
that S ⊗ C ∼= S ⊗H as S ⊗H-modules. The map

ζ1 ⊗ IS : C
⊗3 ⊗ S−→H⊗2 ⊗ C ⊗ S

is bijective (see above), and this implies that ζ1 is also bijective (S is faithfully flat).
Consider the map

ζ2 ◦ ζ
−1
1 : C⊗3

ζ−11−→H⊗2 ⊗ C
ζ2−→C⊗3

Then the map IS ⊗ (ζ2 ◦ ζ−11 ) is given by multiplication by a coboundary in
B3Harr(S⊗H,S,�m), and is an isomorphism of S⊗H⊗3-modules. ζ2◦ζ−11 is therefore
an isomorphism of (rank one) H⊗3-modules, and is given by multiplication by a unit
x ∈ �m(H

⊗3). Moreover 1S ⊗ x ∈ B3Harr(S ⊗H,S,�m) ⊂ Z3Harr(S ⊗H,S,�m) is a
cocycle, and thus x is a cocycle in Z3Harr(H,R,�m). We define δ([C]) = [x]. We leave
it to the reader to show that δ is well-defined: if we repeat the above arguments with
a different isomorphism f ′ : H⊗2 ⊗ε2 C−→C

⊗2 then we obtain a cocycle x′ that is
cohomologous to x.

Exactness at H1Harr(H,R,Picgnb(R, •)).
It is clear that δ ◦ β = 1. If C is an H-Galois coobject, then we can choose the
isomorphism

f : H⊗2 ⊗ε2 C−→C
⊗2
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as follows:
f((h⊗ k)⊗ε2 c) =

∑
h1c1 ⊗ k2c2

(see the end of the proof of Theorem 2.4). Now the map û defined above is nothing
else then the comultiplication on ∆C , and therefore ζ1 = ζ2 (C is coassociative),
and x = 1.
Conversely, if δ([C]) = [x], with x = ∆2(y−1) a coboundary, then we replace the
isomorphism f by f ′ given by

f ′((h⊗ k)⊗ε2 c) = yf((h⊗ k)⊗ε2 c)

Then it follows immediately that

û′(c) = yû(c)

ζ′1 = m(ε3(y)) ◦m(ε1(y)) ◦ ζ1

ζ′2 = m(ε0(y)) ◦m(ε2(y)) ◦ ζ1

and consequently
ζ′2 ◦ ζ

′
1 = m(∆2(y)) ◦ ζ2 ◦ ζ1 = 1

such that û′ makes C into a coassociative coalgebra. Finally, observe that S ⊗ C is
nothing else then S⊗H with comultiplication twisted by the Harrison cocycle 1S⊗û′.
Therefore S ⊗ C is an S ⊗H-Galois coobject, and, by the previous proposition, C
is an H-Galois coobject.

We have allready seen that an H-Galois coobject C is invertible as an H-module
coalgebra, that is, there exists an H-module coalgebra D such that C ⊗H D ∼= H
as H-module coalgebras. For an H-module coalgebra with geometric normal basis,
the converse also holds.

Corollary 3.5 — Let C and D be H-module coalgebras such that C ⊗H D ∼= H as
H-module coalgebras, and suppose that C (and therefore D) has a geometric normal
basis. Then C and D are H-Galois coobjects.

Proof. From Proposition 3.3, it follows that we can assume that C and D have
normal basis, that is, C ∼= D ∼= H as H-modules. Write ∆C(1) = u and ∆D(1) = v,
and consider the canonical isomorphism f : C ⊗H D → H : c ⊗ d �→ cd. The
H-module coalgebra structure on C⊗HD induces an H-module coalgebra structure
on H . The new comultiplication is given by

∆̃(1) = uv

Let H̃ be equal to H as an H-module with the new comultiplication ∆̃. By
assumption, H̃ is isomorphic to H as an H-module coalgebra. From the exactness
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of the sequence (5), it follows that uv ∈ B2(H,R,�m) is a coboundary. It follows in
particular that u and v are invertible. From the fact that C and D are coassociative,
it follows that u and v are Harrison cocycles, and we allready know that in this case
C and D are H-Galois coobjects.

Remark 3.6. Yokogawa [13] has shown that the exact sequence (1) can be extended
to an infinite sequence of infinite length. To this end, he introduces Sweedler
cohomology with values in the category of invertible modules, in the spirit of the
cohomology introduced by Villamayor and Zelinsky in [12]. Yokogawa’s observation
can be generalized to our situation. This leads to some new cohomology groups
Hn
Harr(H,R,Picgnb(R, •)). It can be shown that

H1Harr(H,R,Picgnb(R, •))
∼= Galcognb(R,H)

Moreover, we have a long exact sequence

1 // H2Harr(H,R,�m)
α1

// H1Harr(H,R,Picgnb(R, •))
β1

// H1Harr(H,R,Picgnb(R, •))
γ1

// H3Harr(H,R,�m)
α2

// H2Harr(H,R,Picgnb(R, •))
β2

// H2Harr(H,R,Picgnb(R, •))
γ2

// · · ·

(8)

We omit the details, since they are not that much different from the ones in
Yokogawa’s paper.
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