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Abstract

The subject began with Huygens’s theory of wave fronts as
envelopes of smoother waves, and subsequent work by Euler,
d’Alembert and Riemann. Singularities at the wave fronts were
not understood before Hadamard’s theory of “partie finie” at
the beginning of this century. Contributions by Herglotz and
Petrovsky and the theory of distributions created in the forties by
Laurent Schwartz greatly illuminated the study of singularities
of solutions of hyperbolic PDE’s. Solutions of Cauchy’s problem
given by Hadamard, Schauder, Petrovsky, and the author are dis-
cussed. More recently, microlocal analysis, initiated by M. Sato
and L. Hörmander led to important advances in understanding
the propagation of singularities. Functional analysis together
with distributions and microlocal analysis are expected to be
useful well into the next century.

Résumé

Le sujet débute avec la théorie de Huygens qui considère les
fronts d’onde comme des enveloppes d’ondes plus régulières, et
se poursuit par les travaux de Euler, d’Alembert et Riemann.
Les singularités des fronts d’onde n’ont pas été comprises avant
la théorie de la � partie finie � de Hadamard au début de ce
siècle. Les contributions de Herglotz, Petrovsky et dans les an-
nées quarante, la théorie des distributions de Laurent Schwartz
ont éclairé l’étude des singularités des solutions des EDP hyper-
boliques. On passe en revue les solutions au problème de Cauchy
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38 L. GÅRDING

données par Hadamard, Schauder, Petrovsky et l’auteur. Plus ré-
cemment, l’analyse microlocale de M. Sato et L. Hörmander a
permis de grandes avancées dans la compréhension de la propa-
gation des singularités. L’analyse fonctionnelle, les distributions
et l’analyse microlocale seront certainement des outils importants
du prochain siècle.

1. Introduction

The first example of a hyperbolic equation was the wave equation

utt − ∆u = 0.

In one space variable n, the solutions describe free movements with velocity
1 in a perfectly elastic medium. A nonlinear version appears in one dimen-
sional hydrodynamics. Riemann’s 1860 treatment was later completed by the
Rankine-Hugoniot jump conditions and conditions of entropy. Further exam-
ples of hyperbolic equations and systems appeared in the theory of electricity
and magnetism and elasticity.

Originally, the adjective hyperbolic marked the connection between the
wave equation and a hyperbolic conoid. When applied to general partial dif-
ferential operators or systems the term now indicates that one of the variables
is time t = t(x) and that the solutions of the system describe wave propa-
gation with finite velocity in all directions. More precisely, the solution u of
Cauchy’s problem with no source function and with data given for t = const.
should have the property that the value of u at a point depends continuously
on the values of the data and their derivatives in a compact set. For an oper-
ator P (D) with constant coefficients this means that there is a fundamental
solution E(x), i.e. a distribution such that P (D)E(x) = δ(x), whose support
is contained in a proper, closed cone.

In the first half of the twentieth century, local existence by classical ana-
lysis of solutions to Cauchy’s problem for hyperbolic equations with smooth
data was the main problem. Soon after, functional analysis and distributions
came into play and the introduction around 1970 of pseudodifferential op-
erators and microlocal analysis of distributions was followed by a period of
important results on the propagation of singularities, both free and under re-
flection in a boundary. Later this study was extended to nonlinear equations.
Another question, latent during the period, is the problem of global existence
of solutions for nonlinear equations close to linear ones. It took a new turn
with the study of blow-up times by Fritz John.
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Only a sample of the main results can be mentioned here. In particular, I
refrain from the various hyperbolic aspects of hydrodynamics and the theory
of scattering in spectral analysis.

The development of the theory of hyperbolic equations from 1900 cannot
be understood without a review of some of the main results from the time
before 1900. It is done here briefly under the heading of Prehistory.1

2. Prehistory

With three space variables the wave equation describes free propagation of
light in physical space with velocity 1. For this equation, Poisson proved what
in modern terms amounts to the fact that the wave operator ✷ = ∂2

t −∆ has
a fundamental solution

E(t, x) =
1

2π
H(t)δ(t2 − |x|2)

with support on the forward lightcone t = |x|. It was then only too easy to
believe this to be a general phenomenon, for instance that the equations for
the propagation of light in media with double refraction follow the same rule
known under the name of Huygens principle:2 all light from a point-source is
concentrated to the surface given by the rules of geometric optics. Both G.
Lamé and Sonya Kovalevski made this mistake till the use of Fourier analysis
proved that the existence of diffuse light outside such surfaces is the rule and
the contrary an exception (for a historical review, see [Gårding 1989]).

A fundamental solution of the wave operator for two space variables was
found by Volterra and, at the turn of the century, Tedone tried the general
case, but could only construct what amounts to sufficiently repeated integrals
with respect to time of purported fundamental solutions. Behind these dif-
ficulties is the fact that, in contrast to the properties of Laplace’s operator,
the fundamental solutions of the wave operator are distributions with singu-
larities outside the pole which get worse as the number n of space variables
increases. Before the theory of distributions, this was a formidable difficulty.

3. “Partie finie”

The obstacle which stopped Tedone, was surmounted by Hadamard in his
theory of partie finie, found before 1920 and exposed in [Hadamard 1932].

1The remarks and notes of Hadamard’s book 1932give a fuller account.
2Huygens’s minor premise according to Hadamard [1932].
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His operator is the wave operator with smooth, variable coefficients and has
the form

(3.1) L(x, ∂x) =
∑

ajk(x)∂j∂k + lower terms

where the metric form
∑
ajkξjξk has Lorentz signature +,−...−. A direction

for which the inverse metric form is positive, zero or negative is said to be
time-like, light-like and space-like respectively. Surfaces with time-like and
space-like normals are said to be space-like and time-like respectively. The
light rays are the geodesics of length zero. A time function t(x) with t′(x)
time-like is given.

The light rays with a positive time direction issued from a point y consti-
tute the forward light cone Cy with its vertex at y. Inside this light cone, the
fundamental solution with its pole at y has the same form as in the elliptic
case

(3.2) f(x, y)d(x, y)2−n

where f is a smooth function and d is the geodesic distance between x and
y. The difficulty is that d(x, y) = 0 when x ∈ Cy. The partie finie can
be said to be a renormalization procedure which extends this formula for
n odd to a distribution which is also a fundamental solution. For n even,
Hadamard uses what is called the method of descent. In the work by M.
Riesz [1949] the exponent 2 − n of (3.2) is replaced by α − n where α is
a complex paramater. At the same time f is made to depend on α and a
denominator Γ(α/2)Γ((α + 2 − n)/2) is introduced. The stage is then set for
an analytical continuation with respect to α. In this way and for selfadjoint
operators L, Riesz constructs kernels of the complex powers of L.

In his case, Hadamard could give a complete local solution of Cauchy’s
problem with data on a space-like surface, but the corresponding mixed prob-
lem with reflection in a time-like surface presented insurmountable difficulties.

4. Friedrichs-Lewy energy density, existence proofs

by Schauder and Petrovsky

The discovery of Friedrichs and Lewy [1928] that ∂1u✷u with u real is the
divergence of a tensor with a positive energy density on space-like surfaces
produced both uniqueness results and a priori energy estimates, decisive for
the later development.

A great step forward was taken by Schauder [1935, 1936a,b] who proved
local existence of solutions of Cauchy’s problem and also the mixed problem
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HYPERBOLIC EQUATIONS IN THE TWENTIETH CENTURY 41

for quasilinear wave operators. The method is to use approximations star-
ting from the case of analytic coefficients and analytic data. The success
of these papers depends on stable energy estimates derived from the energy
tensor and the use of the fact that square integrable functions with square
integrable derivatives up to order n form a ring under multiplication.3

Only a year after Schauder, Petrovsky [1937] extended his results for
Cauchy’s problem to strongly hyperbolic systems, in the simplest case

(4.1) ut +
n∑
1

Ak(t, x)uk +Bu = v, uk = ∂u/∂xk,

and the corresponding quasilinear versions. Here the coefficients are square
matrices of order m and the strong hyperbolicity with respect to the time
variable t means that all m velocities c given by

(4.2) det(cI +
∑

ξkAk(t, x)) = 0

are real and separate for all real ξ �= 0. The method is that of Schauder
starting from the analytic case, but Petrovsky had to find his own energy
estimate. For this he used the Fourier transform, but the essential point is to
be found in thirty rather impenetrable pages. Note that if the system (4.1) is
symmetric, i.e., the matrices Ak are Hermitian symmetric, then (4.2) holds
except that the velocities need not be separate. Moreover,

∂t|u(t, x)|2 +
∑

∂k(Aku(t, x), u(t, x)) = O(|u(t, x)|2 + |u(t, x)||v(t, x)|)

under suitable conditions on the coefficients. Hence the proper energy density
on t = const is here simply |u(t, x)|2dx.

Petrovsky’s paper was followed by a study [Petrovsky 1938] of conditions
for the continuity of Cauchy’s problem for operators whose coefficients depend
only on time.

5. Fundamental solutions, Herglotz and
Petrovsky

Herglotz [1926-28] and Petrovsky [1945] used the Fourier transform to con-
struct fundamental solutions E(P, t, x) for constant coefficient homogeneous
differential operators P = P (∂t, ∂x) of degree m which are strongly hyperbolic
with respect to t. Every such fundamental solution E is analytic outside a

3Soon after, Sobolev proved that one gets a ring also when n is replaced by (n + 1)/2
when n is odd and by (n + 2)/2 when n is even.
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wave front surfaceW (P ), which is the real dual of the real surface P (τ, ξ) = 0,
and vanishes for t < 0 and outside the outer sheet of W (P ).4 Petrovsky also
found explicit formulas for derivatives of order > m−n of a fundamental solu-
tion in terms of Abelian integrals, integrated over cycles c(x) of real dimension
n−3 in the complex projective intersection I of P (ξ) = 0 and (x, ξ) = 0. The
cycles depend on the parity5 of n and the component T of C(P )\W where x
is situated. When α(x) is homologous to zero in I, the region T is a lacuna,
i.e., the fundamental solution is a polynomial of degree m−n in T and hence
vanishes when m < n. The point of the paper is that the vanishing of the
cycle is necessary when the lacuna is stable under small deformations of the
operator.6

The intriguing paper [1937] by Petrovsky became the starting point for the
development after 1950 of a general theory of hyperbolic differential operators
by Leray and others and the paper [Petrovsky 1945] was generalized and
clarified by Atiyah, Bott and Gårding [1970, 1973].

A decisive factor in the further development was the full use of the dis-
tributions of Laurent Schwartz and later by pseudodifferential operators and
microlocal analysis.

6. Hyperbolicity for constant coefficients

Inspired by Petrovsky [1938], Gårding [1950] gave an intrinsic definition of
the hyperbolicity of differential operator P (D) with constant coefficients and
principal part Pm as follows. The operator is said to be hyperbolic with respect
to a hyperplane (x,N) = 0 or to be in a class hyp(N) if

(6.1) all smooth solutions u of Pu = v tend to zero locally uniformly in the
halfspace (x,N) > 0 when all their derivatives tend to zero locally uniformly
in the hyperplane (x,N) = 0 and all derivatives of v tend to zero locally
uniformly when (x,N) ≥ 0.

It is implicit in this definition that the value of a solution u of Pu = 0
at a point only depends on the values of u and its derivatives in a compact
subset of the initial plane.

Applying this condition to exponential solutions ei(x,ζ) with P (ζ) = 0
and suitable ζ, an equivalent algebraic condition was found, namely that
Pm(N) �= 0 and that P (ξ + tN) �= 0 for all real ξ when Im t is large enough

4The real dual is generated by gradP (ξ) when P (ξ) = 0 and has m sheets. Its intersection
with t ≥ 0 has [m+1

2
] sheets.

5When n is even, α(x) is just the real intersection.
6In his work, Petrovsky analysed the homology in middle dimension of a general algebraic

hypersurface.
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negative.7 It follows easily that Pm belongs to the class Hyp(N) of homoge-
nous elements in hyp(N), that Pm(ξ)/Pm(N) is real for real argument and
that the real, homogeneous hypersurface Pm = 0 consists of of m sheets
meeting the lines ξ = tN + const in m points. When these points are always
separate unless all zero, i.e., the real surface Pm(ξ) = 0 is non-singular outside
the origin, P is said to be strongly (strictly) hyperbolic. In this case, Pm +R
belongs to hyp(N) for any polynomial R of degree < m. In the general case,
Pm +R is hyperbolic if and only if R(ξ + iN)/Pm(ξ + iN) is bounded for all
real ξ [Svensson 1969].

The hyperbolicity cone Γ(N), defined as the connected component of
Pm(ξ) �= 0 that contains N , is open and convex and has the property that
P ∈ hyp(η) for all η ∈ Γ.

Every P ∈ hyp(N) has a fundamental solution, the distribution

E(P,N, x) = (2π)−n

∫
Rn

ei(x,ξ+iη)

P (ξ + iη)
dξ(6.2)

η ∈ −cN − Γ, c > 0, suff. large.

The Fourier-Laplace integral on the right does not depend on the choice of η.
As a function of x it is supported in a propagation cone C(P,N), dual to Γ and
consisting of all x such that (x,Γ) ≥ 0. This cone is proper, closed and convex
and has only the origin in common with all hyperplanes (x, η) = 0, η ∈ Γ.
The existence of such a fundamental solution is equivalent to the condition
(6.1). Note that a square matrix M(D) of partial differential operators whose
determinant P (D) belongs to hyp(N) is itself hyperbolic. In fact, there is
a matrix M ′(D) such that M(D)M ′(D) = P (D)I with I a unit matrix and
then M(D) has a fundamental solution M ′(D)E(P,N, x) with support in the
propagation cone of P .8

7. The theory of lacunas

Leray’s Princeton lectures [1953] and the paper by Atiyah et al. [1970] were
both written in an effort to understand [Petrovsky 1945]. The second one
extends his results to arbitrary P ∈ Hyp(N) which are complete, i. e., not
expressible in fewer than n variables. For this, it is important to consider also
the local hyperbolicity cones Γ(Pξ, N) ⊃ Γ(P,N) where Pξ(η) ∈ Hyp(N) is

7It is not difficult to see that hyp(−N) = hyp(N).
8If the class C∞ in (3.1) is replaced by a smaller Gevrey class, the class Hyp(N) is the

same, but the class hyp(N) may permit more lower terms. Actually there is quite a number
of papers dealing with hyperbolicity in Gevrey classes, but they will be disregarded here.
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the first non-vanishing homogeneous term in the Taylor expansion of Pm(ξ +
η). Note that Pξ(N) is all of R

n when Pm(ξ) �= 0 and a half-space when
Pm(ξ) = 0, gradPm(ξ) �= 0. The wave front surface W (P,N) is now defined
to be the union of the local propagation cones C(Pξ, N) , dual to the local
hyperbolicity cones Γ(Pξ, N). Modulo constant factors, the resulting formulas
for derivatives ∂ν

x of E of order |ν| are

∂ν
xE(P,N, x) ∼

∫
α∗

(x, ξ)qξνP (ξ)−1ω(ξ)

when q = m− n− |ν| ≥ 0 and

(7.1) ∂ν
xE(P,N, x) ∼

∫
tx∂α∗

(x, ξ)qξνP (ξ)−1ω(ξ)

when q < 0. Here
ω =

∑
(−1)j−1dξ1...d̂ξj ...dξn

so that the integrands are rational (n − 1)-forms of homogeneity zero on
Z = C

n and hence also closed forms of maximal degree on the n − 1-
dimensional projective space Z∗. They are holomorphic in Z∗ − P∗ and
Z∗ − P ∗ ∩X∗ respectively where P ∗,X∗ are the complex, projective surfaces
P (ζ) = 0 and X : (x, ζ) = 0 respectively. The forms are integrated over
certain homology classes α∗ and tx∂α∗. Their description is based on the
existence of a continuous map ξ → ξ − iv(ξ) where

v(ξ) ∈ Γ(Pξ , N) ∩ ReX, ∀ξ �= 0.

The class α∗ ∈ Hn−1(Z∗ − P ∗,X∗) is twice the projective image of this map
oriented by (x, ξ)ω(ξ) > 0. The class ∂α∗ ∈ Hn−2(X∗ − X∗ ∩ P ∗) is an
absolute class and tx∂α∗ denotes a tube around it.9

Connected components c of C(P,N) −W (P,N) where the fundamental
solution E(P,N, x) is a polynomial, necessarily homogeneous of degree m−n,
are called Petrovsky lacunas. The formula (7.1) shows c is a Petrovsky lacuna
if the Petrovsky condition ∂α∗ = 0 holds for some x ∈ c. The main point of
Atiyah et al. [1973] was to prove the converse of this statement by proving
the completeness of the rational cohomology used.10

9When possible, residues in the last integral down into X∗ ∩ P ∗ give integrals over the
original Petrovsky cycles.

10It has been shown that W (P, N) may be bigger than the singular support of E(P, N, x)
in C(P, N) when P is not strongly hyperbolic, but the answer is no for at most double
characteristics [Hörmander 1977].
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8. Cauchy’s problem for strongly hyperbolic

operators with variable coefficients

In his lectures, Leray [1953] solved Cauchy’s problem for smooth scalar differ-
ential operators and systems which are strongly hyperbolic in the sense that
the corresponding characteristic polynomials are strongly hyperbolic with re-
spect to some direction. A surface is said to be space-like when the operator
is hyperbolic with respect to its normals.

Assuming uniform hyperbolicity of P (x,D) = Dm
1 + ... with respect to x1

in some band a ≤ x1 ≤ b, Leray devised a suitable global energy form for
constant coefficients which he extended to variable coefficients by Gårding’s
inequality [1953]. This permitted him to construct solutions of Cauchy’s
problem with initial data on planes x1 = const. by approximations from the
analytic case. Leray’s paper also marks the first appearance of distributions
in the theory of hyperbolic equations, to be used ever after.

In Gårding [1956, 1958], the energy tensor of Friedrichs and Lewy was
extended to scalar, strongly hyperbolic operators with variable coefficients in
the following way, opened up by Leray [1953].

When |β| = m − 1, |α| = m, the product ∂αu(x)∂βu(x) with real u is a
divergence

∑
∂kCk(u, u) where every Ck is a quadratic form in the derivatives

of u of order m − 1. It follows that if P (x,D) and Q(x,D) are differential
operators of degrees m and m− 1, then

(8.1) ImQ(x,D)uP (x,D)u =
∑

∂kCk(x, u, u) + C0(x, u, u)

where all Ck are hermitian forms in the derivatives of u of order at mostm−1,
C0 containing only derivatives of order ≤ m− 1.

When Pm(x,D) = Dm
1 + lower terms has constant coefficients and is

strongly hyperbolic with respect to x1, and Q(x,D) = ∂Pm(x,D)/∂D1, a
Fourier transform in the variables x′ = (x2, ..., xn) shows that

(8.2)
∫
C1(u, u)dx′ ≥ c

∫ ∑
|α|=m−1

|Dαu(x)|2dx′, c > 0,

when the right side converges. If P (x,D) of order m is uniformly strongly
hyperbolic in a band B : 0 ≤ x1 ≤ a with time function x1, if the coefficients
are bounded and if the highest coefficients satisfy a uniform Lipschitz condi-
tion, this formula with an additional term of lower order extends to P (x,D)
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[Gårding 1953]. The result is an inequality for t > 0,11

‖ Dm−1u(t, .) ‖≤ C
∫ t

0
‖Pu(x1, .) ‖ dx1(8.3)

+Cect ‖ Dm−1u(0, .) ‖

for some C, c > 0 where

(8.4) ‖ Dku(t, .) ‖2=
∫ ∑

|α|≤k

|Dαu(t, x′)|2dx′.

The inequality (8.3) also has a local version for lens-shaped subsets of B
bounded from below by space-like surfaces. It follows in particular that so-
lutions of P (x,D)u = 0 which vanish at order m− 1 on a space-like surface,
vanish identically.

When the left side of (8.3) is finite, the vector T ku = u(t, .), ...,Dk
t u(t, .)

belongs to a certain Hilbert space Hk. Let C(Hk), L1(Hk), L∞(Hk) denote
functions of t such that, as a function of t, T ku(t, .) is continuous, integrable
and essentially bounded respectively with values in Hk.

Associated to (8.3) is the following Cauchy’s problem

(8.5) Pu = v when 0 < t < a, Tm−1u(0, .) = Tm−1w(0, .).

Here w ∈ C(Hm−1) and v ∈ L1(H0). This problem has a unique solution in
C(Hm−1). The proof by Gårding [1956, 1958] improved on earlier ones by
using only functional analysis and the inequality (8.3).

The existence of a solution can also be expressed as an inequality

(8.6) ‖ u ‖∞,0≤ c sup
v

|(u, Pv)|
‖ v ‖∞,m−1

, c > 0.

Here all functions are defined on a band 0 ≤ t ≤ a, u ∈ L∞(H0) with
the corresponding norm and v, equipped with the norm of L∞(Hm−1), runs
through the space C0 of all smooth compactly supported functions vanishing
close to t = 0. The inequality says in particular that PC0 is dense in L1(H0).
The analogous inequality

‖ u ‖∞,0≤ c sup
v

|(u,Av)|
‖ v ‖∞,0

, c > 0,

11It is proved in [Ivrii and Petkov 1974] that this inequality implies that P (x,D) is strongly
hyperbolic when its coefficients are sufficiently differentiable.
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where A = D1 + A2D2 + ... + AnDn + C is strongly hyperbolic as in (4.2),
is a consequence of its scalar counterpart (8.6). In fact, the left side is not
increased if we replace v by Bv where

B = D1 +B2D2...+BnDn

has the property that B(x, ξ)A′(x, ξ) = I detA′(x, ξ) where I is the m × m
unit matrix and A′ is the principal part of A. By hypothesis, detA(x, ξ)
is uniformly strongly hyperbolic and hence A(x,D)B(x,D) ≡ I detA(x,D)
modulo bounded terms of order < m. Since ‖ Bv ‖∞,0≤‖ Dm−1v ‖∞,0, the
result follows.

Under smoothness assumptions about the coefficients, the inequality (8.3)
was extended by Hörmander [1963] to the case when the norm square (8.4) is
replaced by

(8.7) ‖ Dk,su(t, .) ‖2=
∫ ∑

|α|≤k

|Dα(1 + |D′|)su(t, x′)|2dx′

where s is any real number and the right side is defined by the Fourier trans-
form in the varaible x′. In this way, also functions with distributional values in
the x′ direction are taken into account. This inequality permitted Hörmander
[1963] to solve the corresponding Cauchy’s problem very simply by a duality
argument. In particular, when the coefficients of P are smooth enough, the
operator P has a fundamental solution E(x, y): P (x,D)E(x, y) = δ(x − y)
which vanishes when x1 < y1.

Cauchy’s problem on a manifold. The inequality (8.3) for lens-shaped
regions proves the basic uniqueness theorem for strongly hyperbolic operators
P on a manifold: if Pu = 0 in some neighborhood of x0 and the Cauchy data
of u vanish on some smooth space-like surface S : s(x) = s(x0), then u = 0
close to x0.

To deal with more global situations it is convenient to require the existence
of smooth, real time functions t(x) such that P (x, ζ) ∈ hyp(grad t(x)) for all
x.12 The condition grad s(x) ∈ ±Γ(Pm(x, .), tx) with a fixed sign for smooth,
real s(x) defines two opposite classes T± of time functions. A region where
some time function is in T+ is positive or negative is called a future and a
past respectively and a surface where some time function is constant is said
to be space-like. The manifold X is said to be complete relative to P if
every compact set is contained in an intersection of a past and a future with

12By assuming the existence of time functions, Christodoulou and Klainerman [1993] were
able to prove global existence for Einstein’s equations with small data.
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compact closure.13 The intersection of all futures (pasts) containing a point
x then defines two propagation conoids C±(x) issuing from x. Leray [1953]
found suitable Sobolev spaces for the construction of inversesP−1

± of a strongly
hyperbolic operator P on a manifold, complete with respect to P such that
P−1
± u vanishes outside the union of the corresponding propagation conoids

issuing from suppu, supposed to be compact.

Nonlinear equations, hyperbolic conservation laws. The control of
lower order derivatives in Cauchy’s problem for linear, strongly hyperbolic
equations, makes it possible to use successive approximations to prove local
existence for Cauchy’s problem and quasilinear, and even nonlinear, strongly
hyperbolic equations. The proofs are almost as simple as in the second order
case, but involve a judicious use of Sobolev inequalities. The initial work by
Petrovsky [1937] and Leray [1953] was carried further by Dionne [1962].

Global existence is a problem beset with difficulties. Discontinuites may
appear and solutions may cease to exist. This is clear from the much studied
case of nonlinear hyperbolic conservation laws in two variables t, x

ut + f(u)x = 0, u, f(u) ∈ R
n,

where f is smooth and nonlinear and the matrix ∂f(u)/∂u has real, separate
eigenvalues. Burger’s equation for n = 1, ut + uux = 0 is a model case
exhibiting collisions and rarefaction waves depending on initial data for t =
0. The use of weak solutions [Lax 1957b] motivates jump conditions, the
classical Rankine-Hugoniot jump conditions, and existence proofs have to use
various entropy conditions. The case of arbitrary n has a refined existence
proof for initial data of small bounded variation [Glimm 1965] with a recent
amelioration by Young [1993]. When the initial total variation is not small
and n > 2 blow-up may occur (see Young [1995]). A short text cannot do
justice to the complicated nature and history of hyperbolic conservation laws.
There is ample material in [Smoller 1983].

9. Mixed boundary problems

Let P (D) be a differential operator, hyperbolic with respect to the first
variable x1, and consider boundary problems for P in a quarter space
x1 ≥ 0, x2 ≥ 0 with a source function, Cauchy data C on x1 = 0 and some
other linear data F on a non-characteristic plane x2 = 0. If the problem is
correctly posed, the reduced problem with vanishing source and non-vanishing

13The full Cauchy’s problem with data on a space-like surface requires this condition.
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Cauchy data should also be correctly posed. Hence the data F in the reduced
problem ought to propagate away in the positive x1 and x2 directions [Agmon
1962, Hersh 1963]. In particular, if n = 2 and

P (D) =
m∏
1

(D1 + akD2), ∀ak �= 0,

these solutions should be a linear combination of functions of x2 − akx1 with
ak < 0. For n = 2, this principle determines the form of mixed problems
for hyperbolic operators in regions limited by polygons (see [Campbell and
Robinson 1955] and [Thomée 1957]).

In the general case, the principle says that the reduced mixed boundary
problem should not have exponential solutions ei(x,ξ) with P (ξ) = 0 which
are exponentially large for x1 > 0, x2 > 0 when the solution is bounded when
x1 = 0, x2 ≥ 0 and x1 ≥ 0, x2 = 0. This means that Im ξ1 > 0, Im ξ2 > 0.
This criterion is workable since it follows from the hyperbolicity that the
polynomial

ξ2 → P (ξ), Imξ1 > 0, ξ3, ... real,

has no real zeros and hence a fixed number m+ of zeros with Im ξ2 > 0. The
remaining, forbidden ones have Im ξ2 < 0. It is therefore reasonable that
F can only have m+ independent data. Appropriate polynomial boundary
conditions on x2 = 0 have the form

Q1(D)u = g1, ...., Qm+(D)u = gm+

where Q1, ..., Qm+ should be linearly independent modulo the product of the
permitted factors14 of the polynomial ξ2 → P (ξ). There is a corresponding
determinant, the Lopatinski determinant, which should be hyperbolic in a
certain sense with respect to the first variable. As shown by Reiko Sakamoto
[1974] and exposed in [Hörmander 1983b, pp. 162-179], these conditions are
both necessary and sufficient for the mixed problem for strongly hyperbolic
operators to be correctly posed in the C∞ sense. The waves from the Cauchy
data at the boundary x2 = 0 are reflected in a way consistent with the bound-
ary condition.

In a wellknown paper by H.-O. Kreiss [1970], the problem above was put
for first order operators, strongly hyperbolic with respect to the first variable,

D1 +A2D2 + ...+AnDn,

whose coefficients are m × m matrices. The matrix A2 is supposed to be
diagonal with m+ positive and m−m+ negative eigenvalues which gives m+

14with zeros such that Im ξ2 > 0 when Imξ1 > 0.
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linear boundary operators. It is shown that a strengthening of the condition
above to no solutions with Imξ1 ≤ 0 gives L2 bounds of the solution in terms
of similar bounds for the data.

10. Hyperbolicity for variable coefficients

It is proved in [Ivrii and Petkov 1974] that an inequality (8.3) implies that
P (x,D) is strongly hyperbolic when its coefficients are sufficiently differen-
tiable. The same paper also offers necessary conditions for the hyperbolicity
for operators with variable coefficients as defined by an obvious localization
of (6.1) to a neighbourhood N of a point x0 and its intersection I with a
plane (x− x0, θ) = 0. It is required that u tends to zero close to x0 when all
the derivatives tend to zero locally uniformly in I and Pu tends to zero in
the same way in N . The verification of this property involves existence and
uniqueness of a suitable Cauchy’s problem.

By the construction of suitable asymptotic solutions it is shown that
P (x0,D) must be hyperbolic with respect to θ. The proofs have been simpli-
fied by Hörmander [1985a, pp. 400-403]. Earlier proofs by the same method
due to Lax [1957a] for analytic coefficients and Mizohata [1961-62] for first
order systems supposed that θ is not characteristic.

In the Cauchy’s problem for the operator D2
1 − x2

1D
2
2 + bD2, studied by

Oleinik [1970], the regularity of the solution requires more and more regular-
ity of the Cauchy data the smaller b is. This is the motivation in [Ivrii and
Petkov 1974] to define regular hyperbolicity (effective hyperbolicity accord-
ing to Hörmander [1977]) as hyperbolicity under addition of arbitrary lower
order terms in the operator. The authors then prove the following interesting
result. For an operator P (x,D) to be effectively hyperbolic in an open set it
is necessary that the fundamental matrix (Hamiltonian map)

(10.1)
(

pξx pξξ

−pxx −pxξ

)
, p = Pm(x, ξ),

skewsymmetric in symplectic structure given by dx ∧ dξ, has a pair of non-
vanishing real eigenvalues at every point where dp = 0 but d2p �= 0. When this
condition is not satisfied, there are conditions on the lower terms, exhibited
in [Hörmander 1977]. Finally, it is proved that the condition that

dPm(x, ξ) �= 0

is both necessary and sufficient for hyperbolicity with a fixed relation between
the regularity of the data and that of the solution independent of lower order
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terms. This condition implies strong hyperbolicity in an open set and at most
double zeros of Pm(x, ξ) on a bounding space-like surface. Tricomi’s operator
D2

1 − x1(D2
2 + ... +D2

n) in the region x1 ≥ 0 is here a classical example (see
[Hörmander 1985b, section 23.4]).

In contrast to this situation, the sufficiency of effective hyperbolicity for
hyperbolicity is a delicate problem. A positive answer is known only for
equations of order two [Iwasaki 1984, Nishitani 1984a,b]) and under a certain
restriction in the general case Ivrii [1978], removed by Melrose [1983]. The
fact that the condition (10.1) is invariant under canonical maps is used by
all these authors to get suitable normal forms of the operators which then
must involve pseudodifferential operators. The canonical maps are realized
by Fourier integral operators, a tool created by Hörmander [1971] (see below).

Outside of effective hyperbolicity, there are microlocal conditions at mul-
tiple characteristics which make the Cauchy’s problem correctly set in the
sense given above (see [Kajitani and Wakabayashi 1994] and the literature
quoted there).

Systems. Necessary conditions for hyperbolicity with respect to the time
variable x1 for first order hyperbolic operators

L(x,D) +B(x), L(x,D) = ED1 + L2(x)D2 + ...+ Ln(x)Dn.

is a much studied subject. The coefficients are smooth m ×m matrices and
E is the unit matrix. It is of course necessary that the determinant h(x, ξ) =
detL(x, ξ) be hyperbolic at every x, but this is not enough. A zero of order
r of h(x, ξ) must give a zero of order r − 2 of the cofactor matrix M(x, ξ) =
(mij(x, ξ)) and if L is effectively hyperbolic in the sense above, then every
h(x,D) +mij(x,D) must be hyperbolic with respect to x1 [Nishitani 1993].

11. Fundamental solutions by asymptotic series

It was clear from the formulas of Herglotz and Petrovsky that the singulari-
ties of the fundamental solutions of homogeneous, strongly hyperbolic oper-
ators P (D) ∈ Hyp(N) of degree m lie on the wave front surface, consisting
of [(m + 1)/2] sheets issued from the origin and contained in the dual to
the characteristic surface P (ξ) = 0.15 But the abstract existence proofs for
variable coefficients did not give this kind of information, nor is it expected

15The dual of P (ξ) = 0 is generated by x = gradP (ξ) when P (ξ) = 0. It has m sheets
and is invariant under reflection in the origin. The wave front surface is the restriction to
(x, N) ≥ 0 and has the number of sheets stated.
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unless the coefficients are smooth. But for the case of infinitely differentiable
coefficients, there are very precise results.

The construction of fundamental solutions of strongly hyperbolic oper-
ators by means of oscillating integrals [Lax 1957a, Ludwig 1960] gave the
first answer.16 The oscillatory integrals used have the following general form
introduced by Hörmander [1971],

(11.1) u(x) =
∫
a(x, θ)eiλ(x,θ)dθ.

The amplitude a(x, θ) is a smooth function with x in some open subset of R
n

and θ ∈ R
N . It is assumed that ∂α

θ a(x, θ) = O(|θ|m−|α|) for large θ, locally
uniformly in x. The phase function λ(x, θ) is supposed to be smooth and real
and homogeneous of degree 1 in θ. The assumption that dλ �= 0 makes u a
distribution which is a smooth function of x unless λθ(x, θ) = 0 for some θ. In
practice, the amplitude a(x, θ) is often polyhomogeneous, i.e., an asymptotic
sum of terms of decreasing integral homogeneity in θ for large values of this
variable.

When P (x,D) of order m is strongly hyperbolic with respect to x1, its
principal symbol p(x, ξ) is a product of m factors pk(x, ξ) of homogeneity
1 in ξ. The phase functions used in Lax’s paper are solutions λk(x, θ) of
the equations pk(x, gradλk) = 0 such that λk = µ =

∑
xkθk, k > 1 when

x1 = 0. These functions exist only for small x1, but permit an extension of
an oscillating integral wk(x2, ..., xn) with a polyhomogeneous amplitude and
phase function µ (and hence singular only at the origin) to an oscillating
integral Wk(x) with polyhomogeneous amplitude and phase function λk such
that P (x,D)wk is arbitrarily smooth. By a suitable choice of w1, ..., wm, the
difference between a fundamental solution E(x) supported in x1 ≥ 0 and the
sum W1 + ... +Wm can be made arbitrarily smooth. It follows that E(x) is
regular at x except when the θ-gradient of some λk(x, θ) vanishes, in particular
only at the origin when x1 = 0. Since dλk invariant under the characteristics
dx/dt = pξ(x, λx) of the equation p(x, λx) = 0, the fundamental solution is
singular only at the locus of these curves issued from the origin.

For larger times, the locus of characteristics may develop singularities, the
caustics of geometrical optics may occur. Oscillating integrals which represent
the fundamental solution beyond the caustics were constructed in Ludwig’s
paper.

16Both authors treat hyperbolic systems.
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12. Microlocal analysis, wave front sets,

pseudodifferential operators

All the results above are clarified by microlocal analysis which deals with lo-
calization in space and frequency of distributions and operators. A beginning
was made by Maslov [1964]. There is also a microlocal analysis for hyperfunc-
tions initiated by Sato [1969] and later developed by his students and others.
However, we shall stick to distributions, following Hörmander [1971].17

The setting of microlocal analysis is the cotangent bundle T ∗(X) of a
differentiable manifold X with local coordinates x, ξ and invariant differential
form ω = (dx, ξ). Let u be a distribution on R

n and let f ∈ C∞
0 . Simple

arguments show that the growth at infinity of the Fourier transform v(ξ) of
fu gets smaller in all directions when f is replaced by a product fg and
g ∈ C∞

0 . Hence there is for instance a natural localization Hs(x, ξ) of the
classical space Hs at a point x, ξ(ξ �= 0) invariant under multiplication by
smooth functions and consisting of distributions u such that (1 + |ξ|)sv(ξ)
belongs to L2 in some conical neighborhood of x, ξ for some f ∈ C∞

0 whose
support contains x. Another interesting object is the wave front set WF(u)
of a distribution u, equal to the complement of all x, ξ such that v(ξ) has
fast decrease in some conical neighborhood of x, ξ for some f as above. The
wave front set is a closed, conical subset of the cotangent bundle T ∗(X). The
projection of WF(u) on X is the singular support S(u) of u. All these notions
extend to distributions on a manifold.

An important example of wave front set is the following. The wave front
set of the oscillatory integral (11.1) is contained in the set of pairs x, ξ such
that λθ(x, θ) = 0. When the phase function is regular, i.e., the differentials
dλθ are linearly independent, this equation defines a conical Lagrangian man-
ifold, a submanifold of T ∗(Rn) of maximal dimension were the differential
form (ξ, dx) vanishes. One important result of Hörmander [1971] is that two
oscillatory integrals with regular phase functions with the same Lagrangian
produce the same distributions modulo smooth functions, at least when the
conical support of the amplitudes are small.

When the phase function λ of (11.1) has the form λ(x, y, θ), x ∈ R
n, y ∈

R
m, the integral I(x, y) represents the kernel of what is called a Fourier in-

tegral operator [Hörmander 1971]. Generally speaking, the corresponding
operator will map distributions u to distributions v such that

WF(v) ⊂ C(WF(u))

17Only the simplest version of microlocal analysis can be given here. For full exposition,
see Hörmander’s monumental four volumes [Hörmander 1983a,b, 1985a,b].
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where C = (x, ξ, y,−η) is a canonical relation such that (x, ξ, y, η) belongs
to the Lagrangian defined by I. This fact makes Fourier integral operators
a powerful tool in microlocal analysis which permits a change of variables in
the cotangent bundle which mixes its two ingredients.

When the phase function above has the form (x − y, θ) where the three
dimensions are the same, C reduces to the identity and the corresponding
operators are pseudodifferential operators in the form developed by Kohn
and Nirenberg [1965]. They were originally given as singular integrals by
Calderón and Zygmund [1957].

A pseudodifferential operator has the form

P (x,D)u(x) = (2π)−n

∫
P (x, ξ)û(ξ)dξ, û(ξ) =

∫
e−i(x,ξ)u(x)dx.

Here the left side is a definition, u ∈ C∞
0 and the symbol P (x, ξ) of P is a

smooth amplitude with properties as in (11.1), for instance polyhomogeneous.
When P (x, ξ) is a polynomial in the second variable, P (x,D) is a differential
operator. The first non-zero term in the expansion of P is the principal symbol
p(x, ξ) of P . Pseudodifferential operators act on Schwartz’s space S and, by
duality also on S′. In each case they form an algebra, the map from P to its
principal symbol being a homomorphism. The calculus of pseudodifferential
operators extends to distributions on a manifold X. Its symbols are then
defined on the cotangent bundle T ∗(X) with local coordinates (x, ξ).

One has WF(Pu) ⊂ WF(u) with equality when P (x,D) is elliptic, i.e.,
when CharP = ∅, and then also WF(u) = ∅ when Pu ∈ C∞. A proper
reduction of singularity may occur at the characteristic set Char(P ) where
p(x, ξ) = 0 and ξ �= 0. One of the uses of pseudodifferential operators is the
factorization of the principal parts of hyperbolic operators into a product of
pseudodifferential operators of degree 1.

Pseudodifferential operators give a short, equivalent definition of WF(u)
for a distribution on a manifold X, namely⋂

Pu∈C∞

CharP.

This is also the original definition in Hörmander [1970].

13. Propagation of singularities in boundary

problems

A pseudodifferential operator P (x,D) is said to be of real principal type
when its principal symbol p(x, ξ) is real and ∂ξp(x, ξ) �= 0 in CharP . The
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operator P has the characteristic equation p(x, ϕx) = 0 which in turn has the
characteristic curves

(13.1) xt = pξ(x, ξ), ξt = −px(x, ξ), p(x, ξ) = 0,

called (null) bicharacteristics of P . By geometrical optics theory they leave
both CharP and the restriction to CharP of the differential form ω invariant.

A basic general result proved by Hörmander [1970] gives to the wave front
sets of solutions of Pu = 0 a geometrical optics structure when P is a pseu-
dodifferential operator of principal type. It says that WF(u)\WF(Pu) is
invariant under the bicharacteristic flow (13.1) so that, in other words,

(13.2) WF(u)\WF(Pu) is a union of bicharacteristics.

To prove this result it suffices to show that a bicharacteristic interval I outside
WF(Pu) is outside WF(u) when its endpoints are. When P has order 1 and
its symbol vanishes outside a neighborhood of I, the proof is not difficult
and the general situation can be reduced to this case. In another version
([Duistermaat and Hörmander 1972], [Hörmander 1985b, p. 57]) the condition
that ∂ξp(x, ξ) �= 0 on Char p is eliminated, there is a radical reduction to the
case P = D1.

If P is a differential operator which is strongly hyperbolic with respect to
some θ, it follows from the general results above that the wave front set W
outside y of the fundamental solution E(P, x, y, θ) with pole at y and support
in the halfspace (x − y, θ) ≥ 0 consists of all bicharacteristics issued from y
and directed into this space. The fiber of the wave front set over y is R

n\0.
In fact this is the fiber over y of δ(x−y) and PE(x, y, θ) = δ(x−y). Caustics
appear when the projection of W on x-space is not invertible.

In the Cauchy’s problem for a hyperbolic operator in a half-space, the
source and the data on the boundary may be distributions and the question
of the singularities of the solution arises. The gross answer is that its wave
front set outside that of the source is generated by null bicharacteristics issuing
into the halfspace from the wave fronts of the source and the data. The precise
answer involves a calculus of pseudodifferential operators on a manifold with
boundary introduced by Melrose [1981] and exposed by Hörmander [1985a,
pp. 112-141].

The question of singularities of the solution of a mixed problem involve
reflections at a time-like boundary. The propagation of singularities in this
case involves some serious microlocal analysis and is the subject of papers by
Chazarain [1973], Melrose [1975], Taylor [1976], Andersson and Melrose [1977],
Eskin [1977], Melrose and Sjöstrand [1978, 1982], Ivrii [1980] and others.
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To take an example, let u be the solution of a second order equation
Pu = f in the interior of a manifold X with boundary ∂X where u = u0 and
consider the wave front set W of u outside the union of the wave front sets of
f and u0. The simplest case is reflection of a bicharacteristic by the law of ge-
ometrical optics. In addition, the boundary may contain a glancing set where
the incoming bicharacteristic is tangent to the boundary. The bicharacteristic
may then still be diffracted off the boundary, but there may also be gliding
rays which are limits of rays which are reflected many times. In all cases,
these bicharacteristics are part of the wave front set. A somewhat final result
[Melrose and Sjöstrand 1978, 1982] says roughly that a bicharacteristic in the
wave front set outside that of the source can always be continued except at
points over the boundary where the Hamilton field is radial.

Propagation of polarization. The notion of characteristic set Char(P )
of a scalar differential operator extends to a matrix operator P (x,D) of type
M×N with principal symbol p(x, ξ). It is defined as the set of triples (x, ξ, w ∈
CN ) such that p(x, ξ)w = 0, ξ �= 0.

The polarization set Wpol(u) of a distribution u(x) with k components is
then defined as the intersection of all Char(P ) with P of type 1×k, for which
Pu ∈ C∞. Polarization of electromagnetic waves fits this definition. The
projection of the polarization set is the wave front set WF(u) defined as the
union of the wave front sets of the components of u.

In simple cases, for instance for strongly hyperbolic systems, polariza-
tion propagates along certain Hamilton orbits which are unique liftings of
bicharacteristics. The propagation of polarization, not restricted to hyper-
bolic equations, has been studied in a series of papers by N. Dencker [1982,
1995].

14. Propagation of singularities for nonlinear
equations

If u ∈ Hs(x, ξ) ∩Ht(x, η), s > n/2, the properties of the Fourier transform of
u2 show that it may happen that u2 ∈ Hs+t−n/2(x, ζ) when ζ is a convex linear
combination of ξ, η. It is therefore natural that new and weaker singularities
appear in solutions of equations when nonlinearities are introduced. These
new singularities will then propagate along bicharacteristics which in turn may
meet to give still weaker singularities and so on. According to the number of
steps, this process will be called selfspreading of first order, second order, etc.

Selfspreading is made explicit in the paper by Rauch and Reed [1982]. It
deals with solutions u = (u1, ..., um) of strongly hyperbolic first order semi-

SÉMINAIRES ET CONGRÈS 3
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linear systems in two variables t, x with right hand sides which are smooth
functions of t, x, u. The initial value u(0, x) is supposed to be of class Hs

in an interval I and smooth outside. In the linear case, the singularities lie
on 2m forward characteristics from the endpoints of I which form a net with
crossings. In the semilinear case, new forward characteristics occur from the
lowest crossing points and so on. The end result is an explicit rule giving the
regularity of u in regions bounded by bicharacteristics. Roughly speaking,
the regularity increases with the distance to the origin. For more than two
variables this process of selfspreading of singularities may result in uniformly
distributed singularity. Beals [1983] constructed solutions u(t, .) ∈ Hs, with
0 < t < 1, s > (n + 1)/2, of the wave equation in 1 + n > 2 variables with a
suitable nonlinear term f(x)u3 and initial data in Hs,Hs−1, singular only at
the origin. The singular support of one such solution was shown to contain
the part of the forward light cone where t ≤ 1 and the solution is regular
there at least of the order 3s − n+ 1 + 0.

The method of paradifferential calculus by Bony [1981] (see also the review
article [Bony 1989]) has given some very general results about the propagation
of singularities of nonlinear strongly hyperbolic equations. The calculus is
based on smooth functions ϕ(ξ) supported in some annulus Ak : 1/k ≤ |ξ| ≤ k
with k > 1 such that the dyadic sum

∑∞
0 ϕ(2−jξ) equals 1−ψ(ξ) where ψ is

smooth and supported in |ξ| < 1. The action of paramultiplication Tu on a
distribution v is defined by the formula

∑
θ(2−jD)(uϕ(2−jD)v)

with ϕ(ξ) as above and θ(x) smooth and equal to 1 in Ak with support in
a slightly larger annulus. The crucial property of paramultiplication is that
if u ∈ Hs, v ∈ Ht, s + t > 0 then uv = Tuv + Tvu + R(u, v) where R maps
Hs ×Ht continuously to Hs+t−n/2 and similar properties for substitution.

Bony proved that a nonlinear differential operator of order m, F (u) =
F (x, u,Du, ...,Dmu), has a paralinearization L given by

Lu =
∑

T∂F/∂αu∂
αu

such that Lu belongs toH2s−2m−n/2
loc when u ∈ Hs, F (u) = 0 and s > m+n/2.

The operator L and the ordinary linearization LF =
∑

(∂F/∂αu)∂α have the
same principal parts.

The preceding result can be applied to the situation when LF is strongly
hyperbolic with some time variable t and F (u) = 0 in some region, u ∈ Hs.
Outside CharL the solution is locally in H2s−m−n/2 and regularity one step or
more lower is propagated along bicharacteristics. There are also analogous re-
sults about the reflection and diffraction of bicharacteristics (see [Bony 1989]).
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When the equation F (u) = 0 is semilinear and the interaction between
singularities are taken into account, more precise results have been obtained
by Chemin [1988] using a refined paradifferential calculus. Briefly, his results
say that if u ∈ Hs

loc and s exceeds some s0 depending on the equation, then
singularity of the order at most 3s+O(1) is propagated by a a certain modified
second order selfspreading. Chemin also shows that this result is close to best
possible.

More precise propagation of singularities, closer to the linear case, can
be obtained with special initial data describing simple waves. These are
the conormal distributions. The singular support of such a distribution is
a smooth hypersurface S : s(x) = 0 and the regularity of u does not decrease
under the action of smooth vector fields tangent to S. Example: u = f(s(x))
where f is a homogeneous distribution on the line. For wave equations with
nonlinear lower terms, initial data of this form are propagated close to the
linear case and the first order selfspreading suffices for a precise description.
Problems of this kind, the propagation caused by intersecting hypersurfaces,
by a hypersurface developing a swallowtail, by reflexion of a simple wave in
a wall, etc. are the subject of many papers of progressing complexity which
are still being published by, among others, Melrose and collaborators (see e.g.
[Bony 1989, Lebeau 1989, Melrose and Ritter 1985, 1987, Melrose and Barreto
1994, Barreto 1995]). These and many similar papers bear out Bony’s remark
that nonlinear singularities require more microlocal analysis, not less, than
linear ones.

15. Blow-up and global existence for wave
equations

The subject of global solutions of semilinear wave equations got new life in
the eighties. The impetus came from Fritz John’s papers about life-time and
blow-up of semilinear wave equations with small initial data [John Papers,
part. IV]. The best studied equations have the form

utt −
∑

ajk(u′)∂j∂ku− f(u′) = 0,(15.1)

u′ = gradu, ∂j = ∂/∂xj ,

or

(15.2) ✷u = g(u, u′, u′′), ✷ = ∂2
t − ∆

in 1 +n variables t, x with compactly supported initial data u(0, x) = εu0(x),
ut(0, x) = εu1(x) where ε > 0 is small. It is also assumed that the co-
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HYPERBOLIC EQUATIONS IN THE TWENTIETH CENTURY 59

efficients are smooth and that the equations deviate little from ✷u = 0 so that
ajk(u′) − δjk vanishes of order zero and f(u, u′, u′′) of order 1 for vanishing
arguments. The lifetime T of the solution is the maximal time below which the
solution is reasonably smooth. The work done with these equations is ample
confirmation of Schauder’s remark that the solution of nonlinear equations
means getting optimal bounds on solutions of linear equations. In particular,
the improvement below of the blow-up time with increasing n depends on the
increasing dispersion of initial data for the linear equation.

John worked with both equations above but mostly with the case n = 3
where ✷ has a fundamental solution ≥ 0. One of his many results [John 1979]
says that T ∼ ε−2 for the equation ∆u = u2. Improving on [John 1976],
John and Klainerman [1984] proved for equations (15.2) that T > ec/ε when
n = 3. For n > 4 this was improved by Klainerman [1985a] to existence for
all sufficiently small ε > 0 when g does not depend on u. The case n = 3
requires an extra condition on the main term, the null condition, found by
Klainerman [1986] and Christodoulou [1986]. For n = 4 and g = g(u′, u′′),
Hörmander proved [1991] that Tε ≥ ec/ε. The same estimate with ε2 was
obtained later by Li Ta-Tsien and Zhou Yi [1995]. Corresponding results
for nonlinear pertubations of the Klein-Gordon equation utt − ∆u + u =
F (u, u′), where the linear equation has a better energy density, are less delicate
[Klainerman 1985b].

Recent interest has been focussed on the details of the blow-up. Caffarelli
and Friedman [1986] found a space-like smooth blow-up surface for the wave
equation with right side F (u) ∼ Aup, A > 0, p > 1. Lindblad [1990a] proved
that the rescaled solution Uε(t, x) = ε−4u(t/ε2, x/ε2) of (15.2) in 1+3 variables
and f = u2 has a distribution limit v which solves (15.2) with the right side
v2 + µ in some interval 0 < t < T . Here µ is a measure carried by the
forward lightcone. More precise life times T for two space variables are given
in [Alinhac 1994, 1995] where it also conjectured — under certain regularity
assumptions— that the quotient 1/(T − t) describes the growth of the L2

norm of gradu at the point t close to T . Alinhac suggests that singularities
may appear as folds after a suitable change of variables and proposes better
approximations of the quasilinear equation than just the linear part. Such
methods were also used in [Hörmander 1989].

16. Concluding remarks

The development of the theory of hyperbolic partial differential equations
in the twentieth century is a continuing effort to master the singularities of
solutions of such equations. In this process new analysis was used and as old
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problems were solved, new ones have appeared.
The difficulty that the fundamental solution of a second order hyperbolic

operator has singularities of high order outside the pole was circumvented
by Hadamard in his use of the partie finie. The full use of the Fourier
transform has permitted the construction of fundamental solutions of homo-
geneous higher order hyperbolic partial differential operators with constant
coefficients, in the beginning with an incomplete treatment of the singulari-
ties. The algebraic definition of hyperbolicity has been motivated intrinsically
by the requirements of finite propagation velocity and continuity. New en-
ergy densities have made possible existence proofs for Cauchy’s problem and
mixed problems for linear and nonlinear hyperbolic differential equations us-
ing a passage to the limit from the analytic case. Afterwards, the theory of
distributions gave a better understanding of the nature of singularities and
functional analysis has given simple existence proofs for Cauchy’s problem
and mixed problems both for smooth and not smooth data. For nonlinear
equations, the control of lower order derivatives make local existence proofs
possible. As shown by the theory of hyperbolic conservation laws, global
existence and uniqueness are much more difficult problems. For quasilinear
equations, the problem of the lifetime of solutions with small initial data has
recently received much attention.

Microlocal analysis is a new tool for the study of the propagation of sin-
gularities of solutions of hyperbolic partial differential equations. For linear
equations and a variety of boundary problems, this study has given almost
definitive results, at least for smooth coefficients. Recent efforts are directed
towards the analysis of singularities of solutions of nonlinear hyperbolic equa-
tions. Here the nonlinearity itself generates singularities which have been
successfully treated for equations close to linear ones.
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quasilinéaires en dimension deux II, Duke Math. J., 73 (1994), pp. 543–
560.

[1995] Temps de vie et comportement explosif des solutions d’équations d’ondes
en dimension deux I, Ann. Sci. Ecole Norm. Sup., (IV) 28 (1995), pp. 225–
250.
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